JP5750342B2 - Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body - Google Patents

Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body Download PDF

Info

Publication number
JP5750342B2
JP5750342B2 JP2011198432A JP2011198432A JP5750342B2 JP 5750342 B2 JP5750342 B2 JP 5750342B2 JP 2011198432 A JP2011198432 A JP 2011198432A JP 2011198432 A JP2011198432 A JP 2011198432A JP 5750342 B2 JP5750342 B2 JP 5750342B2
Authority
JP
Japan
Prior art keywords
fine particles
insulating
insulating fine
conductive
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011198432A
Other languages
Japanese (ja)
Other versions
JP2013062069A (en
Inventor
修二 清水
修二 清水
佐々木 令晋
令晋 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011198432A priority Critical patent/JP5750342B2/en
Publication of JP2013062069A publication Critical patent/JP2013062069A/en
Application granted granted Critical
Publication of JP5750342B2 publication Critical patent/JP5750342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁性微粒子に関する。より詳細には、本発明は、導電性微粒子を被覆する用途に好適な絶縁性微粒子に関する。   The present invention relates to insulating fine particles. More specifically, the present invention relates to insulating fine particles suitable for use for coating conductive fine particles.

本発明は、また、絶縁性微粒子被覆導電性微粒子に関する。より詳細には、本発明は、導電性微粒子の表面に絶縁性微粒子が存在してなる絶縁性微粒子被覆導電性微粒子に関する。   The present invention also relates to conductive fine particles coated with insulating fine particles. More specifically, the present invention relates to insulating fine particle-coated conductive fine particles in which insulating fine particles are present on the surface of conductive fine particles.

本発明は、また、絶縁性微粒子被覆導電性微粒子を含む異方性導電接着剤組成物に関する。   The present invention also relates to an anisotropic conductive adhesive composition containing insulating fine particle-coated conductive fine particles.

本発明は、また、異方性導電接着剤組成物から得られる異方性導電成形体に関する。   The present invention also relates to an anisotropic conductive molded body obtained from the anisotropic conductive adhesive composition.

近年、電子部品の高密度実装化に伴い、電子回路の電極が微細化し、実装するICチップのバンプ(突起状電極)サイズもより狭小化する流れがある。   2. Description of the Related Art In recent years, with the trend toward high-density mounting of electronic components, there is a trend that the electrodes of electronic circuits are miniaturized and the bump (projection electrode) size of the IC chip to be mounted is further narrowed.

一方、対向する多数の電極間の電気的接続を行うため、従来、樹脂中に導電性微粒子が分散した異方性導電接着剤組成物が使用されている。例えば、異方性導電ペースト、異方性導電インク、異方性導電フィルム、異方性導電シート等が広く知られている。   On the other hand, an anisotropic conductive adhesive composition in which conductive fine particles are dispersed in a resin has been used in order to make electrical connection between a number of opposing electrodes. For example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive film, anisotropic conductive sheet and the like are widely known.

これらの異方性導電接着剤組成物を使用して、微細化、狭小化する電極間の安定した導通性を確保するためには、電極が捕捉する導電性微粒子の個数を増やす必要がある。しかし、その場合、隣接する導電性微粒子が接触すると電極間で短絡を起こすという問題があり、導通性とあわせて、さらなる絶縁信頼性の確保が課題となっている。   In order to use these anisotropic conductive adhesive compositions to ensure stable conductivity between electrodes that are miniaturized and narrowed, it is necessary to increase the number of conductive fine particles captured by the electrodes. However, in that case, there is a problem that when adjacent conductive fine particles come into contact with each other, a short circuit occurs between the electrodes, and it is a problem to ensure further insulation reliability together with conductivity.

導電性微粒子の表面を絶縁層で被覆した絶縁被覆導電性微粒子は、電気接続用異方導電材料として電極間に配置させた場合、該電極間に圧力または熱および圧力を作用させることで、電極間を結ぶ方向に導電性を生じさせる。さらに、このような絶縁被覆導電性微粒子においては、該微粒子間には必ず絶縁層が存在するので、目的としない横方向の導通の発生に起因する横方向の短絡を効果的に抑制することができる。   Insulating coated conductive fine particles in which the surface of the conductive fine particles is coated with an insulating layer are arranged between electrodes as an anisotropic conductive material for electrical connection. By applying pressure or heat and pressure between the electrodes, the electrodes Conductivity is generated in the connecting direction. Furthermore, in such insulating coated conductive fine particles, since an insulating layer always exists between the fine particles, it is possible to effectively suppress a lateral short circuit caused by the occurrence of undesired lateral conduction. it can.

例えば、導電性材料からなる微粒子を電気絶縁性物質の皮膜で被覆した電気接続用異方導電性粒子が提案されている(特許文献1、特に、図2参照)。また、特許文献1に記載の発明の応用として、導電性微粒子の表面に圧力により破れる絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献2)、導電性微粒子の表面に加熱により流動性が増加する絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献3)、導電性微粒子の表面に少なくとも2層の絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献4)、導電性微粒子の表面に所定の被覆状態に制御した絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献5)、導電性粒子の表面に特定の表面処理を施した絶縁性樹脂被覆層が形成された絶縁被覆導電粒子(特許文献6、7)が提案されている。   For example, anisotropic conductive particles for electrical connection in which fine particles made of a conductive material are covered with a film of an electrically insulating substance have been proposed (see Patent Document 1, particularly FIG. 2). In addition, as an application of the invention described in Patent Document 1, insulating coated conductive fine particles (Patent Document 2) in which an insulating resin coating layer that is torn by pressure is formed on the surface of the conductive fine particles, the surface of the conductive fine particles is heated. Insulating coated conductive fine particles (Patent Document 3) in which an insulating resin coating layer having increased fluidity is formed, and insulating coated conductive fine particles (in which at least two insulating resin coating layers are formed on the surface of the conductive fine particles ( Patent Document 4), insulating coated conductive fine particles (Patent Document 5) in which an insulating resin coating layer controlled to a predetermined covering state is formed on the surface of the conductive fine particles, and the surface of the conductive particles is subjected to a specific surface treatment. Insulating coated conductive particles (Patent Documents 6 and 7) on which an insulating resin coating layer is formed have been proposed.

他方、導電性微粒子の表面に絶縁性材料を微粒子の形で設けて絶縁被覆導電性微粒子とする形態が知られている。このような形態で用いられる絶縁性微粒子としては、例えば、エポキシ樹脂、ポリオレフィン樹脂、アクリル樹脂、スチレン樹脂等を材質とする絶縁性微粒子(特許文献8、特に、実施例では架橋アクリル樹脂を使用)、水酸基を表面に有する無機酸化物微粒子(特許文献9、特に、実施例ではシリカ微粒子を使用)、無機酸化物(特許文献10、特に実施例ではシリカ微粒子)、アミノ樹脂微粒子(特許文献11)が報告されている。   On the other hand, a form in which an insulating material is provided in the form of fine particles on the surface of the conductive fine particles to form insulating coated conductive fine particles is known. As the insulating fine particles used in such a form, for example, insulating fine particles made of an epoxy resin, a polyolefin resin, an acrylic resin, a styrene resin or the like (Patent Document 8, in particular, a crosslinked acrylic resin is used in Examples) Inorganic oxide fine particles having hydroxyl groups on the surface (Patent Document 9, especially using silica fine particles in Examples), inorganic oxide (Patent Document 10, particularly silica fine particles in Examples), amino resin fine particles (Patent Document 11) Has been reported.

しかし、従来の絶縁性微粒子被覆導電性微粒子においては、絶縁性微粒子の導電性微粒子に対する密着性が不十分であるため、異方性導電接着剤組成物を作製する際に、絶縁性微粒子が導電性微粒子表面から脱落しやすいという問題がある。そのため、最終的に異方性導電成形体として使用した場合に、導通性は問題ないものの、絶縁信頼性に劣るという問題がある。   However, in the conventional insulating fine particle-coated conductive fine particles, the adhesion of the insulating fine particles to the conductive fine particles is insufficient. Therefore, when the anisotropic conductive adhesive composition is produced, the insulating fine particles are electrically conductive. There is a problem that it easily falls off from the surface of the conductive fine particles. Therefore, when finally used as an anisotropic conductive molded article, although there is no problem in conductivity, there is a problem that the insulation reliability is inferior.

このようなことから、圧縮変形時における導電性微粒子表面からの絶縁性微粒子の脱落による導電性微粒子の接触を回避するため、従来よりも高いレベルの導電性微粒子と絶縁性微粒子間の密着性が求められている。また、導電性微粒子同士が隣接しても、絶縁性微粒子が十分な弾性を有し、塑性変形しないことが求められている。   For this reason, in order to avoid contact of the conductive fine particles due to the removal of the insulating fine particles from the surface of the conductive fine particles during compression deformation, the adhesion between the conductive fine particles and the insulating fine particles is higher than before. It has been demanded. Further, even when conductive fine particles are adjacent to each other, it is required that the insulating fine particles have sufficient elasticity and do not undergo plastic deformation.

特許第2794009号公報Japanese Patent No. 2779409 特開2000−67647号公報JP 2000-67647 A 特開2000−100249号公報Japanese Patent Laid-Open No. 2000-100239 特開2000−129157号公報JP 2000-129157 A 特開2004−146261号公報JP 2004-146261 A 特開2005−63904号公報JP 2005-63904 A 特開2006−236759号公報JP 2006-236759 A 特開2006−59721号公報JP 2006-59721 A 特開2009−170414号公報JP 2009-170414 A 特開2009−102731号公報JP 2009-102731 A 特開2011−86598号公報JP 2011-86598 A

本発明の課題は、導電性微粒子を被覆する用途に好適な絶縁性微粒子であって、導電性微粒子の表面と強固な密着性を有し、導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できるような、絶縁性微粒子を提供することにある。また、導電性微粒子の表面にこのような絶縁性微粒子が存在してなる絶縁性微粒子被覆導電性微粒子を提供することにある。また、このような絶縁性微粒子被覆導電性微粒子を含む異方性導電接着剤組成物を提供することにある。さらに、このような異方性導電接着剤組成物から得られる異方性導電成形体を提供することにある。   An object of the present invention is an insulating fine particle suitable for use for coating conductive fine particles, which has strong adhesion to the surface of the conductive fine particles, and is difficult to fall off / detach from the surface of the conductive fine particles. When the insulating fine particle-coated conductive fine particles coated with the insulating fine particles are contained in the anisotropic conductive adhesive composition, the density of the insulating fine particle-coated conductive fine particles is increased to increase the density of the insulating fine particles. To provide insulating fine particles that can exhibit excellent electrical conductivity and insulation properties because even if the coated conductive fine particles are adjacent to each other, the insulating fine particles have sufficient elasticity and do not undergo plastic deformation. . Another object of the present invention is to provide insulating fine particle-coated conductive fine particles in which such insulating fine particles are present on the surface of the conductive fine particles. Another object of the present invention is to provide an anisotropic conductive adhesive composition containing such insulating fine particle-coated conductive fine particles. Furthermore, it is providing the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition.

本発明の導電性微粒子被覆用の絶縁性微粒子は、
コア層の外周にシェル層を備えるコアシェル構造を有する、導電性微粒子被覆用の絶縁性微粒子であって、
該コア層がビニル重合体を含み、該シェル層がアミノ樹脂を含み、
該コア部の直径をDnm、該シェル部の厚みをdnmとしたときに、0.10<d/D<2.0である。
The insulating fine particles for coating the conductive fine particles of the present invention are:
Insulating fine particles for coating conductive fine particles, having a core-shell structure with a shell layer on the outer periphery of the core layer,
The core layer comprises a vinyl polymer, the shell layer comprises an amino resin,
When the diameter of the core part is Dnm and the thickness of the shell part is dnm, 0.10 <d / D <2.0.

本発明の絶縁性微粒子被覆導電性微粒子は、導電性微粒子の表面に本発明の絶縁性微粒子が存在してなる。   The insulating fine particle-coated conductive fine particles of the present invention have the insulating fine particles of the present invention on the surface of the conductive fine particles.

好ましい実施形態においては、本発明の絶縁性微粒子被覆導電性微粒子は、上記導電性微粒子の最表面に、金、パラジウム、銀、銅、錫、およびこれらの合金から選ばれる少なくとも1種を有する。   In a preferred embodiment, the insulating fine particle-coated conductive fine particles of the present invention have at least one selected from gold, palladium, silver, copper, tin, and alloys thereof on the outermost surface of the conductive fine particles.

好ましい実施形態においては、本発明の絶縁性微粒子被覆導電性微粒子は、上記導電性微粒子の平均粒子径が1.0μm〜5.0μmである。   In a preferred embodiment, the insulating fine particle-coated conductive fine particles of the present invention have an average particle size of 1.0 μm to 5.0 μm of the conductive fine particles.

本発明の異方性導電接着剤組成物は、本発明の絶縁性微粒子被覆導電性微粒子がバインダー樹脂中に分散してなる。   The anisotropic conductive adhesive composition of the present invention is obtained by dispersing the insulating fine particle-coated conductive fine particles of the present invention in a binder resin.

本発明の異方性導電成形体は、本発明の異方性導電接着剤組成物から得られる。   The anisotropic conductive molded body of the present invention is obtained from the anisotropic conductive adhesive composition of the present invention.

本発明によれば、導電性微粒子を被覆する用途に好適な絶縁性微粒子であって、導電性微粒子の表面と強固な密着性を有し、導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できるような、絶縁性微粒子を提供することができる。また、導電性微粒子の表面にこのような絶縁性微粒子が存在してなる絶縁性微粒子被覆導電性微粒子を提供することができる。また、このような絶縁性微粒子被覆導電性微粒子を含む異方性導電接着剤組成物を提供することができる。さらに、このような異方性導電接着剤組成物から得られる異方性導電成形体を提供することができる。   According to the present invention, the insulating fine particles are suitable for use in coating the conductive fine particles, have strong adhesion to the surface of the conductive fine particles, are not easily detached from the surface of the conductive fine particles, When the insulating fine particle-coated conductive fine particles coated with the insulating fine particles are contained in the anisotropic conductive adhesive composition, the density of the insulating fine particle-coated conductive fine particles is increased to increase the density of the insulating fine particles. Even if the coated conductive fine particles are adjacent to each other, since the insulating fine particles have sufficient elasticity and do not undergo plastic deformation, it is possible to provide insulating fine particles that can exhibit excellent conductivity and insulation. . Further, it is possible to provide insulating fine particle-coated conductive fine particles in which such insulating fine particles are present on the surface of the conductive fine particles. Moreover, an anisotropic conductive adhesive composition containing such insulating fine particle-coated conductive fine particles can be provided. Furthermore, the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition can be provided.

≪A.絶縁性微粒子≫
本発明の絶縁性微粒子は、導電性微粒子被覆用の絶縁性微粒子である。すなわち、本発明の絶縁性微粒子は、導電性微粒子の表面に配置させることによって絶縁性微粒子被覆導電性微粒子とすることができる絶縁性微粒子である。
≪A. Insulating fine particles >>
The insulating fine particles of the present invention are insulating fine particles for coating conductive fine particles. In other words, the insulating fine particles of the present invention are insulating fine particles that can be formed into insulating fine particle-coated conductive fine particles by being disposed on the surface of the conductive fine particles.

本発明の絶縁性微粒子は、コア層の外周にシェル層を備えるコアシェル構造を有する。   The insulating fine particles of the present invention have a core-shell structure having a shell layer on the outer periphery of the core layer.

本発明の絶縁性微粒子においては、コア部の直径をDnm、シェル部の厚みをdnmとしたときに、0.10<d/D<2.0である。d/Dは、好ましくは、0.12<d/D<1.50である。   In the insulating fine particles of the present invention, 0.10 <d / D <2.0, where Dnm is the diameter of the core and dnm is the thickness of the shell. d / D is preferably 0.12 <d / D <1.50.

コア部の直径は、任意の適切な方法によって測定し得る。コア部の直径は、例えば、動的光散乱粒度分布装置によって体積平均粒子径を測定して得られ得る。   The diameter of the core can be measured by any suitable method. The diameter of the core part can be obtained, for example, by measuring the volume average particle diameter with a dynamic light scattering particle size distribution device.

シェル部の厚みは、任意の適切な方法によって測定し得る。シェル部の厚みは、例えば、動的光散乱粒度分布装置によって測定される絶縁性微粒子およびコア部の体積平均粒子径に基づき、下記式によって算出し得る。   The thickness of the shell portion can be measured by any appropriate method. The thickness of the shell part can be calculated by the following formula based on, for example, the insulating fine particles measured by a dynamic light scattering particle size distribution device and the volume average particle diameter of the core part.

シェル部の厚み=(絶縁性微粒子の体積平均粒子径−コア部の体積平均粒子径)/2   Shell part thickness = (volume average particle diameter of insulating fine particles−volume average particle diameter of core part) / 2

このようなd/Dは、コアシェル構造における、コア部の大きさに対するシェル部の大きさを表す指標の一つであり、本発明の絶縁性微粒子においては、このようなd/Dが、0.10<d/D<2.0という特定の範囲内に収まることによって、導電性微粒子の表面と強固な密着性を有し、導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できるような、絶縁性微粒子を提供することができる。   Such d / D is one of the indexes representing the size of the shell portion with respect to the size of the core portion in the core-shell structure. In the insulating fine particles of the present invention, such d / D is 0. .10 <d / D <2.0, it has a strong adhesiveness to the surface of the conductive fine particles, and does not easily fall off or detach from the surface of the conductive fine particles. Insulating fine particle-coated conductive fine particles coated with insulating fine particles include an insulating fine particle-coated conductive fine particle by increasing the density of the conductive fine particle-coated conductive fine particles. Even if the fine particles are adjacent to each other, since the insulating fine particles have sufficient elasticity and do not undergo plastic deformation, it is possible to provide insulating fine particles that can exhibit excellent electrical conductivity and insulation.

このようなd/Dが、0.10以下の場合や、2.0以上の場合には、上記のような本発明の効果を発現することが困難になる。   When such d / D is 0.10 or less or 2.0 or more, it becomes difficult to exhibit the effects of the present invention as described above.

本発明の絶縁性微粒子においては、コア部の直径に対するシェル部の厚みの割合(d/D)が一定以上であることにより、導電性微粒子との良好な密着性を確保し得る。しかし、一方で、本発明を完成する過程において、コア部の直径に対するシェル部の厚みが大きくなると、導電性微粒子との密着性は優れるものの、絶縁性がかえって悪くなることが判明した。この原因は、本発明の絶縁性微粒子におけるシェル部の圧縮に対する弾性回復力が低いため、隣接する導電性微粒子間が接触して絶縁性微粒子が変形したときに、絶縁性微粒子の塑性変形が大きくなってしまい、導電性微粒子間の距離が狭まり、導電性微粒子表面同士の接触が発生しやすくなるためと推察される。   In the insulating fine particles of the present invention, when the ratio of the thickness of the shell part to the diameter of the core part (d / D) is not less than a certain value, good adhesion to the conductive fine particles can be ensured. However, on the other hand, in the process of completing the present invention, it has been found that when the thickness of the shell portion with respect to the diameter of the core portion increases, the adhesion with the conductive fine particles is excellent, but the insulating property is deteriorated. This is because the elastic recovery force against compression of the shell portion in the insulating fine particles of the present invention is low, and when the insulating fine particles are deformed due to contact between adjacent conductive fine particles, the plastic deformation of the insulating fine particles is large. This is presumably because the distance between the conductive fine particles is narrowed and contact between the surfaces of the conductive fine particles is likely to occur.

本発明の絶縁性微粒子の体積平均粒子径としては、任意の適切な体積平均粒子径を採用し得る。本発明の絶縁性微粒子の体積平均粒子径は、該絶縁性微粒子が有する特定のコアシェル構造によって、非常に精密にコントロールされ得る。   Any appropriate volume average particle diameter can be adopted as the volume average particle diameter of the insulating fine particles of the present invention. The volume average particle diameter of the insulating fine particles of the present invention can be very precisely controlled by the specific core-shell structure of the insulating fine particles.

本発明の絶縁性微粒子の体積平均粒子径としては、好ましくは0.005μm〜1.0μmであり、さらに好ましくは0.01μm〜0.8μmである。   The volume average particle diameter of the insulating fine particles of the present invention is preferably 0.005 μm to 1.0 μm, and more preferably 0.01 μm to 0.8 μm.

本発明の絶縁性微粒子の体積平均粒子径を上記のように非常に精密にコントロールできれば、導電性微粒子の表面と強固な密着性を有し、導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できるような、絶縁性微粒子を提供することができる。   If the volume average particle diameter of the insulating fine particles of the present invention can be controlled very precisely as described above, it has strong adhesion to the surface of the conductive fine particles, and it is difficult for the conductive fine particles to fall off or detach from the surface. When the insulating fine particle-coated conductive fine particles coated with the insulating fine particles are contained in the anisotropic conductive adhesive composition, the density of the insulating fine particle-coated conductive fine particles is increased to increase the density of the insulating fine particles. Even if the coated conductive fine particles are adjacent to each other, since the insulating fine particles have sufficient elasticity and do not undergo plastic deformation, it is possible to provide insulating fine particles that can exhibit excellent conductivity and insulation. .

体積平均粒子径の評価方法については後述する。   A method for evaluating the volume average particle diameter will be described later.

本発明の絶縁性微粒子の粒度分布のシャープさは、粒子径の変動係数(CV値)で示すことができる。本発明の絶縁性微粒子の粒度分布は、該絶縁性微粒子が有する特定のコアシェル構造によって、非常にシャープなものとなり得る。   The sharpness of the particle size distribution of the insulating fine particles of the present invention can be indicated by the coefficient of variation (CV value) of the particle diameter. The particle size distribution of the insulating fine particles of the present invention can be very sharp depending on the specific core-shell structure of the insulating fine particles.

本発明の絶縁性微粒子の粒子径の変動係数(CV値)としては、好ましくは40%以下であり、より好ましくは30%以下であり、さらに好ましくは20%以下である。   The coefficient of variation (CV value) of the particle size of the insulating fine particles of the present invention is preferably 40% or less, more preferably 30% or less, and even more preferably 20% or less.

本発明の絶縁性微粒子は、該絶縁性微粒子が有する特定のコアシェル構造によって、吸湿性が十分に低いものとなり得る。このような吸湿性は、例えば、飽和吸湿量で示すことができる。   The insulating fine particles of the present invention can have sufficiently low hygroscopicity due to the specific core-shell structure of the insulating fine particles. Such hygroscopicity can be represented by, for example, saturated moisture absorption.

本発明の絶縁性微粒子の飽和吸湿量は、好ましくは10重量%以下であり、より好ましくは7重量%以下であり、さらに好ましくは5重量%以下であり、特に好ましくは4重量%以下であり、最も好ましくは3重量%以下である。   The saturated moisture absorption amount of the insulating fine particles of the present invention is preferably 10% by weight or less, more preferably 7% by weight or less, still more preferably 5% by weight or less, and particularly preferably 4% by weight or less. Most preferably, it is 3% by weight or less.

本発明の絶縁性微粒子の残存ホルマリン量は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、さらに好ましくは100ppm以下であり、特に好ましくは50ppm以下である。   The amount of residual formalin in the insulating fine particles of the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 100 ppm or less, and particularly preferably 50 ppm or less.

本発明の絶縁性微粒子の残存ホルマリン量が上記範囲内に収まる場合には、低ホルマリンが強く望まれる環境においても、導電性微粒子の表面と強固な密着性を有し、導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できるような、絶縁性微粒子を提供することができる。   When the amount of residual formalin in the insulating fine particles of the present invention falls within the above range, even in an environment where low formalin is strongly desired, it has strong adhesion to the surface of the conductive fine particles, and from the surface of the conductive fine particles. The density of the conductive fine particles covered with the insulating fine particles when the conductive fine particles coated with the insulating fine particles are difficult to fall off or detached and the conductive fine particles covered with the insulating fine particles are contained in the anisotropic conductive adhesive composition. Even if the conductive fine particles coated with the insulating fine particles are adjacent to each other, the insulating fine particles have sufficient elasticity and are not plastically deformed. Fine particles can be provided.

本発明の絶縁性微粒子におけるコア層は、ビニル重合体を含む。本発明の絶縁性微粒子におけるコア層中のビニル重合体の含有割合は、好ましくは80重量%〜100重量%であり、より好ましくは90重量%〜100重量%であり、さらに好ましくは95重量%〜100重量%であり、特に好ましくは98重量%〜100重量%であり、最も好ましくは実質的に100重量%である。   The core layer in the insulating fine particles of the present invention contains a vinyl polymer. The content ratio of the vinyl polymer in the core layer in the insulating fine particles of the present invention is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight, and still more preferably 95% by weight. -100% by weight, particularly preferably 98% -100% by weight, most preferably substantially 100% by weight.

本発明の絶縁性微粒子におけるコア層が、ビニル重合体以外の成分を含む場合は、本発明の効果を損なわない範囲で、任意の適切な成分を含み得る。   When the core layer in the insulating fine particles of the present invention contains a component other than the vinyl polymer, it can contain any appropriate component as long as the effects of the present invention are not impaired.

ビニル重合体としては、例えば、分子内に少なくとも1個以上のエチレン性不飽和基を含有する化合物の重合体が挙げられる。ビニル重合体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキプロピル(メタ)アクリレート、2−ヒドロキブチル(メタ)アクリレート等の水酸基を有する単量体類;メトキシポリエチレングリコール(メタ)アクリレート、等のポリエチレングリコール成分を有する単量体類;(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリル酸イソアミル、(メタ)アクリル酸ラウリル、メタクリル酸テトラヒドロフルフリル等のアルキル(メタ)アクリレート類;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタンフルオロプロピル(メタ)アクリレート、オクタフルオロアミル(メタ)アクリレート等のフッ素原子含有(メタ)アクリレート類;グリシジル(メタ)アクリレート;(メタ)アクリル酸;(メタ)アクリルアミド;(メタ)アクリロニトリル等の重合体;芳香環を有するビニル重合体、芳香環を有する架橋ビニル重合体等の芳香環構造含有樹脂;等が挙げられる。   Examples of the vinyl polymer include a polymer of a compound containing at least one ethylenically unsaturated group in the molecule. Examples of vinyl polymers include monomers having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate; methoxypolyethylene glycol (meth) Monomers having a polyethylene glycol component such as acrylate; butyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isoamyl acrylate, lauryl (meth) acrylate, tetrahydroful methacrylate Alkyl (meth) acrylates such as furyl; fluorine atoms such as trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, pentanefluoropropyl (meth) acrylate, and octafluoroamyl (meth) acrylate (Meth) acrylates; glycidyl (meth) acrylate; (meth) acrylic acid; (meth) acrylamide; polymers such as (meth) acrylonitrile; aromatic polymers such as vinyl polymers having aromatic rings and crosslinked vinyl polymers having aromatic rings Ring structure-containing resin; and the like.

ビニル重合体は、1種のみであっても良いし、2種以上であっても良い。   Only one type of vinyl polymer may be used, or two or more types of vinyl polymers may be used.

ビニル重合体としては、上記の中でも、好ましくは、アルキル(メタ)アクリレート類の重合体、芳香環構造含有樹脂が挙げられる。   Among the above, the vinyl polymer is preferably a polymer of alkyl (meth) acrylates and an aromatic ring structure-containing resin.

アルキル(メタ)アクリレート類としては、好ましくはメタクリル酸エステルが挙げられ、より好ましくはメタクリル酸メチルが挙げられる。   As alkyl (meth) acrylates, Preferably, methacrylic acid ester is mentioned, More preferably, methyl methacrylate is mentioned.

芳香環構造含有樹脂としては、好ましくは、芳香環を有するビニル重合体、芳香環を有する架橋ビニル重合体が挙げられる。芳香環を有するビニル重合体、芳香環を有する架橋ビニル重合体は、工業的に平均粒子径が1μm以下のものを製造し易く、あるいは、入手し易いからである。   The aromatic ring structure-containing resin preferably includes a vinyl polymer having an aromatic ring and a crosslinked vinyl polymer having an aromatic ring. This is because a vinyl polymer having an aromatic ring and a crosslinked vinyl polymer having an aromatic ring are industrially easy to produce or easily obtain those having an average particle size of 1 μm or less.

芳香環を有するビニル重合体としては、芳香環含有ビニル化合物を必須に含むビニルモノマーの重合体が挙げられる。   Examples of the vinyl polymer having an aromatic ring include a polymer of a vinyl monomer that essentially contains an aromatic ring-containing vinyl compound.

芳香環含有ビニル化合物を必須に含むビニルモノマーの重合体としては、例えば、1種以上の芳香環含有ビニル化合物と1種以上の他のビニル化合物との共重合体が挙げられる。   Examples of the polymer of the vinyl monomer that essentially contains an aromatic ring-containing vinyl compound include a copolymer of one or more aromatic ring-containing vinyl compounds and one or more other vinyl compounds.

芳香環含有ビニル化合物としては、芳香族ビニル化合物が好ましく、中でも例えば、スチレン系モノマーが好ましい。スチレン系モノマーとしては、例えば、ジビニルベンゼン、スチレン、メチルスチレン、エチルスチレン(エチルビニルベンゼン)などが挙げられる。芳香環含有ビニル化合物としては、上記スチレン系モノマー以外に、メタクリル酸ベンジルなどの芳香環を有する(メタ)アクリレート等が挙げられる。   As the aromatic ring-containing vinyl compound, an aromatic vinyl compound is preferable, and among them, for example, a styrene monomer is preferable. Examples of the styrenic monomer include divinylbenzene, styrene, methylstyrene, ethylstyrene (ethylvinylbenzene), and the like. Examples of the aromatic ring-containing vinyl compound include (meth) acrylates having an aromatic ring such as benzyl methacrylate in addition to the styrene monomer.

芳香環含有ビニル化合物と共重合させ得る他のビニル化合物としては、例えば、分子内に少なくとも1個以上のエチレン性不飽和基を含有する化合物が挙げられる。このような他のビニル化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキプロピル(メタ)アクリレート、2−ヒドロキブチル(メタ)アクリレート等の水酸基を有する単量体類;メトキシポリエチレングリコール(メタ)アクリレート、等のポリエチレングリコール成分を有する単量体類;(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリル酸イソアミル、(メタ)アクリル酸ラウリル、メタクリル酸テトラヒドロフルフリル等のアルキル(メタ)アクリレート類;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタンフルオロプロピル(メタ)アクリレート、オクタフルオロアミル(メタ)アクリレート等のフッ素原子含有(メタ)アクリレート類;グリシジル(メタ)アクリレート;(メタ)アクリル酸;(メタ)アクリルアミド;(メタ)アクリロニトリル;等が挙げられる。   Examples of other vinyl compounds that can be copolymerized with the aromatic ring-containing vinyl compound include compounds containing at least one ethylenically unsaturated group in the molecule. Examples of such other vinyl compounds include monomers having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate; methoxypolyethylene Monomers having a polyethylene glycol component such as glycol (meth) acrylate; butyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isoamyl acrylate, lauryl (meth) acrylate, Alkyl (meth) acrylates such as tetrahydrofurfuryl methacrylate; trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, pentanefluoropropyl (meth) acrylate, octafluoroamyl (meth) acrylate, etc. Tsu atom-containing (meth) acrylates; glycidyl (meth) acrylate; (meth) acrylic acid; (meth) acrylamide; (meth) acrylonitrile; and the like.

芳香環含有ビニル化合物と共重合させ得る他のビニル化合物としては、これらの中でも、(メタ)アクリル酸エステルが好ましく、メタクリル酸エステルがより好ましく、メタクリル酸メチルがさらに好ましい。   Among these, as the other vinyl compound that can be copolymerized with the aromatic ring-containing vinyl compound, (meth) acrylic acid ester is preferable, methacrylic acid ester is more preferable, and methyl methacrylate is further preferable.

したがって、芳香環を有するビニル重合体としては、1種以上の芳香環含有ビニル化合物と1種以上の他のビニル化合物との共重合体が好ましく、スチレン系モノマーと(メタ)アクリル酸エステルとの共重合体がより好ましい。   Therefore, as the vinyl polymer having an aromatic ring, a copolymer of one or more aromatic ring-containing vinyl compounds and one or more other vinyl compounds is preferable, and a styrene monomer and a (meth) acrylic ester are used. A copolymer is more preferred.

芳香環を有する架橋ビニル重合体は、適度な架橋構造を有するので、このような重合体からなるコア層を有する絶縁性微粒子を導電性微粒子被覆用の絶縁性微粒子として用いると、絶縁性微粒子被覆導電性微粒子に適度な弾性を付与し得る。   Since the crosslinked vinyl polymer having an aromatic ring has an appropriate crosslinked structure, when insulating fine particles having a core layer made of such a polymer are used as insulating fine particles for coating conductive fine particles, insulating fine particle coating Appropriate elasticity can be imparted to the conductive fine particles.

芳香環を有する架橋ビニル重合体としては、例えば、多官能芳香環含有ビニル化合物を必須に含むビニルモノマーの重合体、単官能芳香環含有ビニル化合物および多官能ビニル化合物を必須に含むビニルモノマーの重合体が挙げられる。前者として、多官能芳香環含有ビニル化合物および単官能ビニル化合物を必須に含むビニルモノマーの重合体、多官能芳香環含有ビニル化合物および多官能ビニル化合物を必須に含むビニルモノマーの重合体、多官能芳香環含有ビニル化合物および単官能芳香環含有ビニル化合物を必須に含むビニルモノマーの重合体などが挙げられる。   Examples of the crosslinked vinyl polymer having an aromatic ring include, for example, a polymer of a vinyl monomer essentially containing a polyfunctional aromatic ring-containing vinyl compound, a monofunctional aromatic ring-containing vinyl compound, and a vinyl monomer essentially containing a polyfunctional vinyl compound. Coalescence is mentioned. As the former, a polymer of a vinyl monomer essentially containing a polyfunctional aromatic ring-containing vinyl compound and a monofunctional vinyl compound, a polymer of a vinyl monomer essentially containing a polyfunctional aromatic ring-containing vinyl compound and a polyfunctional vinyl compound, a polyfunctional aroma Examples thereof include polymers of vinyl monomers that essentially contain a ring-containing vinyl compound and a monofunctional aromatic ring-containing vinyl compound.

多官能芳香族ビニル化合物および単官能ビニル化合物を必須に含むビニルモノマーの重合体としては、例えば、1種以上の多官能芳香環含有ビニル化合物と1種以上の他の単官能ビニル化合物との共重合体が挙げられる。   As a polymer of a vinyl monomer essentially including a polyfunctional aromatic vinyl compound and a monofunctional vinyl compound, for example, a copolymer of one or more polyfunctional aromatic ring-containing vinyl compounds and one or more other monofunctional vinyl compounds is used. A polymer is mentioned.

多官能芳香環含有ビニル化合物および多官能ビニル化合物を必須に含むビニルモノマーの重合体としては、例えば、1種以上の多官能芳香環含有ビニル化合物と1種以上の多官能ビニル化合物と必要に応じて1種以上の他の単官能ビニル化合物の共重合体が挙げられる。   As a polymer of a vinyl monomer which essentially contains a polyfunctional aromatic ring-containing vinyl compound and a polyfunctional vinyl compound, for example, one or more polyfunctional aromatic ring-containing vinyl compounds and one or more polyfunctional vinyl compounds may be used as necessary. And copolymers of one or more other monofunctional vinyl compounds.

多官能芳香環含有ビニル化合物および単官能芳香環含有ビニル化合物を必須に含むビニルモノマーの重合体としては、例えば、1種以上の多官能芳香環含有ビニル化合物と1種以上の単官能芳香環含有ビニル化合物と必要に応じて1種以上の他の単官能ビニル化合物または多官能ビニル化合物の共重合体が挙げられる。   Examples of the polymer of the vinyl monomer essentially including the polyfunctional aromatic ring-containing vinyl compound and the monofunctional aromatic ring-containing vinyl compound include one or more polyfunctional aromatic ring-containing vinyl compounds and one or more monofunctional aromatic rings. Examples thereof include a copolymer of a vinyl compound and, if necessary, one or more other monofunctional vinyl compounds or polyfunctional vinyl compounds.

単官能芳香環含有ビニル化合物および多官能ビニル化合物を必須に含むビニルモノマーの重合体としては、例えば、1種以上の単官能芳香環含有ビニル化合物と1種以上の多官能ビニル化合物と必要に応じて1種以上の他の単官能ビニル化合物の共重合体が挙げられる。   As a polymer of a vinyl monomer that essentially contains a monofunctional aromatic ring-containing vinyl compound and a polyfunctional vinyl compound, for example, one or more monofunctional aromatic ring-containing vinyl compounds and one or more polyfunctional vinyl compounds, and as necessary And copolymers of one or more other monofunctional vinyl compounds.

多官能芳香環含有ビニル化合物の中でも多官能芳香族ビニル化合物が好ましく、多官能芳香族ビニル化合物としては、例えば、ジビニルベンゼンが挙げられる。   Among the polyfunctional aromatic ring-containing vinyl compounds, polyfunctional aromatic vinyl compounds are preferable, and examples of the polyfunctional aromatic vinyl compound include divinylbenzene.

他の単官能ビニル化合物としては、例えば、分子内に少なくとも1個以上のエチレン性不飽和基を含有する化合物であればよい。具体的には、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキプロピル(メタ)アクリレート、2−ヒドロキブチル(メタ)アクリレート等の水酸基を有する単量体類;メトキシポリエチレングリコール(メタ)アクリレート、等のポリエチレングリコール成分を有する単量体類;(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリル酸イソアミル、(メタ)アクリル酸ラウリル、メタクリル酸ベンジル、メタクリル酸テトラヒドロフルフリル等のアルキル(メタ)アクリレート類;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタンフルオロプロピル(メタ)アクリレート、オクタフルオロアミル(メタ)アクリレート等のフッ素原子含有(メタ)アクリレート類;グリシジル(メタ)アクリレート;(メタ)アクリル酸;(メタ)アクリルアミド;(メタ)アクリロニトリル;等が挙げられる。   The other monofunctional vinyl compound may be a compound containing at least one ethylenically unsaturated group in the molecule, for example. Specifically, for example, monomers having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate; methoxypolyethylene glycol (meth) acrylate Monomers having a polyethylene glycol component such as, butyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isoamyl acrylate, lauryl (meth) acrylate, benzyl methacrylate, methacryl Alkyl (meth) acrylates such as tetrahydrofurfuryl acid; trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, pentanefluoropropyl (meth) acrylate, octafluoroamyl (meth) acrylate, etc. Atom-containing (meth) acrylates; glycidyl (meth) acrylate; (meth) acrylic acid; (meth) acrylamide; (meth) acrylonitrile; and the like.

単官能芳香環含有ビニル化合物の中でも単官能芳香族ビニル化合物が好ましく、中でも、単官能スチレン系モノマーが好ましい。単官能スチレン系モノマーとしては、例えば、スチレン、メチルスチレン、エチルスチレン(エチルビニルベンゼン)などが挙げられる。   Among the monofunctional aromatic ring-containing vinyl compounds, monofunctional aromatic vinyl compounds are preferable, and among them, monofunctional styrene monomers are preferable. Examples of the monofunctional styrene monomer include styrene, methyl styrene, ethyl styrene (ethyl vinyl benzene), and the like.

多官能ビニル化合物としては、例えば、(ポリ)エチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、ジアリルフタレートおよびその異性体、トリアリルイソシアヌレートおよびその誘導体、等が挙げられる。   Examples of the polyfunctional vinyl compound include (poly) ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Examples include tetramethylol methane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, dipentaerythritol hexaacrylate, diallyl phthalate and its isomer, triallyl isocyanurate and its derivative, and the like.

多官能ビニル化合物としては、これらの中でも、(ポリ)エチレングリコールジ(メタ)アクリレートが好ましく、エチレングリコールジメタクリレートがより好ましい。   Among these, (poly) ethylene glycol di (meth) acrylate is preferable as the polyfunctional vinyl compound, and ethylene glycol dimethacrylate is more preferable.

芳香環を有する架橋性ビニル重合体を形成し得るモノマー中の、架橋性モノマー(多官能芳香環含有ビニル化合物、多官能ビニル化合物)の含有割合は、好ましくは1重量%〜90重量%であり、より好ましくは10重量%〜70重量%であり、さらに好ましくは20重量%〜60重量%であり、特に好ましくは30重量%〜50重量%である。   The content of the crosslinkable monomer (polyfunctional aromatic ring-containing vinyl compound, polyfunctional vinyl compound) in the monomer capable of forming a crosslinkable vinyl polymer having an aromatic ring is preferably 1% by weight to 90% by weight. More preferably, the content is 10% to 70% by weight, still more preferably 20% to 60% by weight, and particularly preferably 30% to 50% by weight.

本発明の絶縁性微粒子におけるシェル層は、アミノ樹脂を含む。アミノ樹脂は、好ましくは、アミノ化合物とホルムアルデヒドとの縮合物からなる。   The shell layer in the insulating fine particles of the present invention contains an amino resin. The amino resin is preferably composed of a condensate of an amino compound and formaldehyde.

本発明の絶縁性微粒子におけるシェル層中のアミノ樹脂の含有割合は、好ましくは80重量%〜100重量%であり、より好ましくは90重量%〜100重量%であり、さらに好ましくは95重量%〜100重量%であり、特に好ましくは98重量%〜100重量%であり、最も好ましくは実質的に100重量%である。   The content ratio of the amino resin in the shell layer in the insulating fine particles of the present invention is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight, and still more preferably 95% by weight to 100 wt%, particularly preferably 98 wt% to 100 wt%, most preferably substantially 100 wt%.

本発明の絶縁性微粒子におけるシェル層が、アミノ樹脂以外の成分を含む場合は、本発明の効果を損なわない範囲で、任意の適切な成分を含み得る。   When the shell layer in the insulating fine particles of the present invention contains a component other than the amino resin, it can contain any appropriate component as long as the effects of the present invention are not impaired.

アミノ化合物としては、好ましくは、多官能アミノ化合物であり、より好ましくは、トリアジン環構造を有する多官能アミノ化合物である。   The amino compound is preferably a polyfunctional amino compound, and more preferably a polyfunctional amino compound having a triazine ring structure.

アミノ化合物は、1種のみを用いても良いし、2種以上を併用しても良い。   Only 1 type may be used for an amino compound and it may use 2 or more types together.

トリアジン環構造を有する多官能アミノ化合物としては、例えば、メラミン;一般式(1)で表されるアミノ化合物;一般式(2)や一般式(3)などで表されるジアミノトリアジン化合物;ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンなどのグアナミン化合物;などが挙げられる。これらの中でも、メラミン、ベンゾグアナミンが好ましい。   Examples of the polyfunctional amino compound having a triazine ring structure include melamine; an amino compound represented by the general formula (1); a diaminotriazine compound represented by the general formula (2) or the general formula (3); And guanamine compounds such as cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, and spiroguanamine. Among these, melamine and benzoguanamine are preferable.

Figure 0005750342
Figure 0005750342

Figure 0005750342
Figure 0005750342

Figure 0005750342
Figure 0005750342

一般式(1)中、Rは、同一または異なり、水素原子または置換基があっても良いアルキル基を表し、Rの少なくとも1つは置換基があっても良いアルキル基である。 Formula (1), R 1, identical or different, represent an alkyl group which may if there is a hydrogen atom or a substituent, at least one of R 1 is an alkyl group which may have a substituent.

一般式(1)中、Rは、好ましくは、水素原子、ヒドロキシアルキル基である。 In general formula (1), R 1 is preferably a hydrogen atom or a hydroxyalkyl group.

一般式(2)中、Rは、同一または異なり、直鎖構造または側鎖を有する構造である炭素原子数1〜2の炭化水素基(−CH−、−CHCH−、−CH(CH)−)である。 In General Formula (2), R 2 is the same or different, and is a hydrocarbon group having 1 to 2 carbon atoms (—CH 2 —, —CH 2 CH 2 —, —, which is a linear structure or a structure having a side chain. CH (CH 3) -) is.

一般式(3)中、Rは、直鎖構造、側鎖を有する構造、置換基があっても良い芳香族環を有する構造、置換基があっても良い脂環を有する構造のいずれかである炭素原子数1〜8の炭化水素基である。 In general formula (3), R 3 is any one of a linear structure, a structure having a side chain, a structure having an aromatic ring which may have a substituent, and a structure having an alicyclic ring which may have a substituent. It is a C1-C8 hydrocarbon group which is.

なお、芳香族環を有する構造や脂環を有する構造は、側鎖を有する構造であっても良い。   The structure having an aromatic ring or the structure having an alicyclic ring may be a structure having a side chain.

アミノ化合物は、好ましくはグアナミン化合物を含む。   The amino compound preferably comprises a guanamine compound.

グアナミン化合物としては、例えば、ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンが挙げられ、好ましくはベンゾグアナミンである。このようなグアナミン化合物は、1種のみ用いても良いし、2種以上を併用しても良い。   Examples of the guanamine compound include benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, and spiroguanamine, and benzoguanamine is preferable. Such guanamine compounds may be used alone or in combination of two or more.

アミノ化合物中のグアナミン化合物の含有割合は、好ましくは10重量%〜100重量%であり、より好ましくは20重量%〜100重量%であり、さらに好ましくは40重量%〜100重量%であり、さらに好ましくは50重量%〜100重量%であり、さらに好ましくは60重量%〜100重量%であり、さらに好ましくは70重量%〜100重量%であり、さらに好ましくは80重量%〜100重量%であり、さらに好ましくは90重量%〜100重量%であり、特に好ましくは95重量%〜100重量%であり、最も好ましくは100重量%である。   The content ratio of the guanamine compound in the amino compound is preferably 10% by weight to 100% by weight, more preferably 20% by weight to 100% by weight, still more preferably 40% by weight to 100% by weight, Preferably they are 50 weight%-100 weight%, More preferably, they are 60 weight%-100 weight%, More preferably, they are 70 weight%-100 weight%, More preferably, they are 80 weight%-100 weight%. More preferably, it is 90 to 100% by weight, particularly preferably 95 to 100% by weight, and most preferably 100% by weight.

アミノ化合物中のグアナミン化合物の含有割合が上記範囲内に収まることにより、得られる絶縁性微粒子は、粒度分布がシャープであり、粒子径が精密にコントロールされ、絶縁性微粒子被覆導電性微粒子に好適に用いることができる。   When the content ratio of the guanamine compound in the amino compound falls within the above range, the obtained insulating fine particles have a sharp particle size distribution, the particle diameter is precisely controlled, and suitable for the insulating fine particle-coated conductive fine particles. Can be used.

本発明の絶縁性微粒子におけるシェル層を構成する縮合物の原料であるアミノ化合物中の、グアナミン化合物以外のアミノ化合物は、例えば、メラミン;上記一般式(1)で表されるアミノ化合物;上記一般式(2)や上記一般式(3)などで表されるジアミノトリアジン化合物;などが挙げられ、好ましくは、メラミンや上記一般式(1)で表されるアミノ化合物であり、より好ましくはメラミンである。   The amino compound other than the guanamine compound in the amino compound that is a raw material of the condensate constituting the shell layer in the insulating fine particles of the present invention is, for example, melamine; an amino compound represented by the above general formula (1); Diaminotriazine compounds represented by the formula (2) and the above general formula (3); and the like, and the like, preferably melamine and amino compounds represented by the above general formula (1), more preferably melamine. is there.

本発明の絶縁性微粒子におけるシェル層にはアミノ化合物以外の成分として、フェノール類を使用してもよい。フェノール類とは、フェノール性水酸基を有する化合物を意味する。フェノール性水酸基を有する化合物は、上記アミノ化合物と一緒に添加するなどアミノ化合物とホルムアルデヒドと共縮合することにより、ホルムアルデヒドとの縮合物、該フェノール類とアミノ化合物およびホルムアルデヒドの共縮合物としてシェル層に複合化できる。フェノール類の添加条件等については、本発明の作用効果を損なわない範囲で所望の吸湿性抑制効果を奏することができる。   In the shell layer in the insulating fine particles of the present invention, phenols may be used as components other than amino compounds. A phenol means a compound having a phenolic hydroxyl group. A compound having a phenolic hydroxyl group is added to the shell layer as a condensate of formaldehyde, a co-condensate of the phenols with the amino compound and formaldehyde by cocondensing with the amino compound and formaldehyde, such as by adding together with the amino compound. Can be combined. About the addition conditions etc. of phenol, the desired hygroscopic suppression effect can be show | played in the range which does not impair the effect of this invention.

上記フェノール類の使用量としては、アミノ化合物1モルに対して、好ましくは0.1〜3モルであり、より好ましくは0.2〜1.5モルである。   The amount of the phenols to be used is preferably 0.1 to 3 mol, more preferably 0.2 to 1.5 mol, with respect to 1 mol of the amino compound.

上記フェノール類としては、例えば、フェノール、o−エチルフェノール、p−エチルフェノール、混合クレゾール、p−n−プロピルフェノール、o−イソプロピルフェノール、p−イソプロピルフェノール、混合イソプロピルフェノール、o−sec−ブチルフェノール、m−tert−ブチルフェノ−ル、p−tert−ブチルフェノール、ペンチルフェノール、p−オクチルフェノール、p−ノニルフェノール、2,3−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、3,4−ジメチルフェノール、2,4−ジ−s−ブチルフェノール、3,5−ジメチルフェノール、2,6−ジ−s−ブチルフェノール、2,6−ジ−t−ブチルフェノール、3−メチル−4−イソプロピルフェノール、3−メチル−5−イソプロピルフェノール、3−メチル−6−イソプロピルフェノール、2−t−ブチル−4−メチルフェノール、3−メチル−6−t−ブチルフェノール、2−t−ブチル−4−エチルフェノール等のフェノール性水酸基を有する化合物;カテコール、レゾルシン、ビフェノール、ビスフェノールA、ビスフェノールS、ビスフェノールF等の分子内にフェノール性水酸基を2個以上有する化合物;などが挙げられる。   Examples of the phenols include phenol, o-ethylphenol, p-ethylphenol, mixed cresol, pn-propylphenol, o-isopropylphenol, p-isopropylphenol, mixed isopropylphenol, o-sec-butylphenol, m-tert-butylphenol, p-tert-butylphenol, pentylphenol, p-octylphenol, p-nonylphenol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,6-dimethylphenol, 3,4- Dimethylphenol, 2,4-di-s-butylphenol, 3,5-dimethylphenol, 2,6-di-s-butylphenol, 2,6-di-t-butylphenol, 3-methyl-4-isopropylphenol, 3 −Me Phenols such as ru-5-isopropylphenol, 3-methyl-6-isopropylphenol, 2-t-butyl-4-methylphenol, 3-methyl-6-t-butylphenol, 2-t-butyl-4-ethylphenol A compound having a hydroxyl group; a compound having two or more phenolic hydroxyl groups in the molecule, such as catechol, resorcin, biphenol, bisphenol A, bisphenol S, bisphenol F, and the like.

本発明の絶縁性微粒子は、コアシェル構造を構築するための任意の適切な方法で製造し得る。例えば、水性媒体中でコア層となる粒子が分散された状態で、アミノ化合物とホルムアルデヒドを反応(付加縮合反応)させることによりアミノ樹脂からなるシェル層を形成する。通常、この反応は加熱下(50〜100℃)で行い、架橋度を高めるために、ドデシルベンゼンスルホン酸や硫酸などの酸触媒の存在下で行われる。   The insulating fine particles of the present invention can be produced by any suitable method for constructing a core-shell structure. For example, a shell layer made of an amino resin is formed by reacting an amino compound and formaldehyde (addition condensation reaction) in a state in which particles serving as a core layer are dispersed in an aqueous medium. Usually, this reaction is performed under heating (50 to 100 ° C.), and is performed in the presence of an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in order to increase the degree of crosslinking.

コア層の製造方法としては、例えば、乳化重合、ミニエマルション重合、ソープフリー乳化重合、マイクロエマルション重合、懸濁重合などの任意の適切な樹脂粒子製造方法を採用し得る。好ましくは、レドックス系開始剤を用いた乳化重合による製造方法を採用し得る。レドックス系開始剤を用いた乳化重合による製造方法を採用すると、粒度分布がシャープであり、粒子径が精密にコントロールされたコア層を製造し得る。   As a method for producing the core layer, for example, any suitable resin particle production method such as emulsion polymerization, miniemulsion polymerization, soap-free emulsion polymerization, microemulsion polymerization, suspension polymerization or the like can be adopted. Preferably, a production method by emulsion polymerization using a redox initiator can be employed. When a production method by emulsion polymerization using a redox initiator is employed, a core layer having a sharp particle size distribution and a precisely controlled particle size can be produced.

シェル層の製造方法としては、例えば、特開2000−256432号公報、特開2002−293854号公報、特開2002−293855号公報、特開2002−293856号公報、特開2002−293857号公報、特開2003−55422号公報、特開2003−82049号公報、特開2003−138023号公報、特開2003−147039号公報、特開2003−171432号公報、特開2003−176330号公報、特開2005−97575号公報、特開2007−186716号公報、特開2008−101040号公報、特開2010−248475号公報などに記載のアミノ樹脂架橋粒子およびその製造方法を適用することが好ましい。具体的には、例えば、上記多官能アミノ化合物とホルムアルデヒドを、コア層となる粒子を分散含有させた水性媒体(好ましくは塩基性の水性媒体)中で反応(付加縮合反応)させて縮合物オリゴマーを生成させ、アミノ化合物とホルムアルデヒドとの縮合物(アミノ樹脂)を含むシェル層を形成させることができ、好ましくは、該縮合物オリゴマーが溶解または分散する水性媒体にドデシルベンゼンスルホン酸や硫酸などの酸触媒を混合して硬化させることによって、架橋されたアミノ樹脂を含むシェル層を形成させることができる。縮合物オリゴマーを生成させる段階、架橋構造のアミノ樹脂とする段階は、いずれも、50〜100℃の温度で加熱された状態で行うことが好ましい。また、シェル層の膜厚が均一なシェル層とするためには、上記のシェル層形成反応は界面活性剤の存在下で行われることが好ましい。   Examples of the method for producing the shell layer include, for example, JP 2000-256432 A, JP 2002-293854 A, JP 2002-293855 A, JP 2002-293856 A, JP 2002-293857 A, JP 2003-55422 A, JP 2003-82049 A, JP 2003-138023 A, JP 2003-147039 A, JP 2003-171432 A, JP 2003-176330 A, JP It is preferable to apply the amino resin crosslinked particles described in JP 2005-97575 A, JP 2007-186716 A, JP 2008-101040 A, JP 2010-248475 A, and the like, and the production method thereof. Specifically, for example, the polyfunctional amino compound and formaldehyde are reacted (addition condensation reaction) in an aqueous medium (preferably a basic aqueous medium) in which particles serving as a core layer are dispersed and contained, thereby resulting in a condensate oligomer. And a shell layer containing a condensate (amino resin) of an amino compound and formaldehyde can be formed. Preferably, an aqueous medium in which the condensate oligomer is dissolved or dispersed, such as dodecylbenzenesulfonic acid or sulfuric acid. A shell layer containing a crosslinked amino resin can be formed by mixing and curing the acid catalyst. It is preferable that both the step of generating the condensate oligomer and the step of preparing the amino resin having a crosslinked structure are performed in a state of being heated at a temperature of 50 to 100 ° C. In order to obtain a shell layer having a uniform thickness, the shell layer formation reaction is preferably performed in the presence of a surfactant.

また、得られた絶縁性微粒子の後処理方法(固液分離、乾燥、粉砕、分級等)については、特開2010−248475号公報記載の方法が適宜適用できる。   Further, as a post-treatment method (solid-liquid separation, drying, pulverization, classification, etc.) of the obtained insulating fine particles, a method described in JP 2010-248475 A can be applied as appropriate.

≪B.絶縁性微粒子被覆導電性微粒子≫
本発明の絶縁性微粒子被覆導電性微粒子は、導電性微粒子の表面に本発明の絶縁性微粒子が存在してなる。
≪B. Conductive fine particles coated with insulating fine particles >>
The insulating fine particle-coated conductive fine particles of the present invention have the insulating fine particles of the present invention on the surface of the conductive fine particles.

本発明の絶縁性微粒子被覆導電性微粒子は、絶縁性微粒子として本発明の絶縁性微粒子を有しているので、絶縁性微粒子が導電性微粒子の表面と強固な密着性を有し、絶縁性微粒子が導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できる。   Since the insulating fine particles coated conductive fine particles of the present invention have the insulating fine particles of the present invention as insulating fine particles, the insulating fine particles have strong adhesion to the surface of the conductive fine particles. Is difficult to fall off from the surface of the conductive fine particles, and when the insulating fine particle-coated conductive fine particles coated with the insulating fine particles are contained in the anisotropic conductive adhesive composition, the insulating property Even if the insulating fine particle-coated conductive fine particles are adjacent to each other by increasing the density of the fine particle-coated conductive fine particles, the insulating fine particles have sufficient elasticity and do not undergo plastic deformation. Can demonstrate.

上記導電性微粒子の表面に本発明の絶縁性微粒子を存在させる方法としては、任意の適切な被覆方法を採用し得る。例えば、無電解めっき処理後の導電性微粒子および本発明の絶縁性微粒子を有機溶媒あるいは水性媒体などの液体中に分散させた後にスプレードライを行う方法、有機溶媒あるいは水性媒体などの液体中で導電性微粒子の表面に本発明の絶縁性微粒子を付着させた後に導電性微粒子と本発明の絶縁性微粒子を化学結合させる方法、導電性微粒子の粉体と本発明の絶縁性微粒子の粉体の共存下で高速撹拌機による撹拌やハイブリダイゼーション処理を行う方法、などが挙げられる。   Any appropriate coating method can be adopted as a method for causing the insulating fine particles of the present invention to be present on the surface of the conductive fine particles. For example, a method in which the conductive fine particles after the electroless plating treatment and the insulating fine particles of the present invention are dispersed in a liquid such as an organic solvent or an aqueous medium and then spray-dried, conductive in a liquid such as an organic solvent or an aqueous medium. A method of chemically bonding the conductive fine particles and the insulating fine particles of the present invention after the insulating fine particles of the present invention are attached to the surface of the conductive fine particles, the coexistence of the conductive fine particle powder and the insulating fine particle powder of the present invention Examples of the method include stirring with a high-speed stirrer and a hybridization treatment.

本発明の絶縁性微粒子被覆導電性微粒子において、本発明の絶縁性微粒子による導電性微粒子の被覆率は、好ましくは1%〜98%であり、より好ましくは5%〜95%である。本発明の絶縁性微粒子による導電性微粒子の被覆率が1%未満の場合、隣接する絶縁性微粒子被覆導電性微粒子間での絶縁性を確保できないおそれがある。本発明の絶縁性微粒子による導電性微粒子の被覆率が98%を超えると、十分な導通性が得られないおそれがある。   In the conductive fine particles coated with the insulating fine particles of the present invention, the coverage of the conductive fine particles with the insulating fine particles of the present invention is preferably 1% to 98%, more preferably 5% to 95%. When the coverage of the conductive fine particles by the insulating fine particles of the present invention is less than 1%, there is a possibility that insulation between the adjacent insulating fine particle-coated conductive fine particles cannot be ensured. If the coverage of the conductive fine particles by the insulating fine particles of the present invention exceeds 98%, sufficient conductivity may not be obtained.

本発明の絶縁性微粒子被覆導電性微粒子は、異方性導電材料の構成材料として好適である。上記異方性導電材料とは、さまざまな形態により相対向する基板同士や電極端子同士を電気的に接続するものである。   The insulating fine particle-coated conductive fine particles of the present invention are suitable as a constituent material of an anisotropic conductive material. The anisotropic conductive material is used to electrically connect opposing substrates and electrode terminals in various forms.

上記異方性導電材料を用いて電極同士を電気的に接続する方法としては、任意の適切な方法を採用し得る。例えば、絶縁性のバインダー樹脂中に本発明の絶縁性微粒子被覆導電性微粒子を分散させて異方性導電接着剤組成物を作製したうえで、この異方性導電接着剤組成物により接続する方法;絶縁性のバインダー樹脂と本発明の絶縁性微粒子被覆導電性微粒子とを別々に使用して接続する方法;等が挙げられる。   Any appropriate method can be adopted as a method of electrically connecting the electrodes using the anisotropic conductive material. For example, a method of producing an anisotropic conductive adhesive composition by dispersing the insulating fine particle-coated conductive fine particles of the present invention in an insulating binder resin and then connecting with the anisotropic conductive adhesive composition A method in which the insulating binder resin and the insulating fine particle-coated conductive fine particles of the present invention are separately used for connection; and the like.

導電性微粒子の平均粒子径は、好ましくは1.0μm〜5.0μmであり、より好ましくは1.5μm〜3.5μmであり、さらに好ましくは2.0μm〜3.0μmである。絶縁性微粒子被覆導電性微粒子は、異方性導電接着剤組成物に用いる場合が多く、この場合、特に、絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、優れた導通性と絶縁性を発揮できるようにするために、近年、導電性微粒子の平均粒子径が小さいことが要求されている。   The average particle diameter of the conductive fine particles is preferably 1.0 μm to 5.0 μm, more preferably 1.5 μm to 3.5 μm, and still more preferably 2.0 μm to 3.0 μm. Insulating fine particle-coated conductive fine particles are often used in anisotropic conductive adhesive compositions. In this case, in particular, the insulating fine particle-coated conductive fine particles are increased by increasing the density of the insulating fine particle-coated conductive fine particles. In recent years, it has been required that the average particle size of the conductive fine particles be small in order to be able to exhibit excellent electrical conductivity and insulation even when adjacent to each other.

上記導電性微粒子は、基材粒子と該基材粒子表面を被覆する導電性金属層を有する。   The conductive fine particles have substrate particles and a conductive metal layer that covers the surface of the substrate particles.

上記基材粒子は、導電性微粒子の基材粒子として用い得るものであれば、任意の適切な基材粒子を採用し得る。このような基材粒子の材料としては、例えば、シリカなどの無機材料;シリコーン樹脂(ポリメチルシルセスキオキサン、フェニルシルセスキオキサン)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリブタジエンなど)、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、ポリスルホン、ポリカーボネート、フェノール樹脂、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、尿素樹脂などの有機材料;有機無機複合材料;などが挙げられる。これらの中でも、適度な弾性率や回復特性を有する点で、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、有機無機複合材料が好ましい。有機無機複合材料としては、任意の適切な有機無機複合材料を採用し得る。好ましくは、後述する、絶縁性微粒子として用いるアミノ樹脂微粒子の形態3における有機無機複合微粒子の形態a)〜e)と同様の形態のものを採用し得る。有機無機複合材料としては、また、特開2003−183337号公報や特開平8−81561号公報などに記載されているものを好ましく採用し得る。   Any appropriate base material particle can be adopted as the base material particle as long as it can be used as the base material particle of the conductive fine particles. Examples of the material for the base particles include inorganic materials such as silica; silicone resins (polymethylsilsesquioxane, phenylsilsesquioxane), polyolefin resins (polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride). , Polytetrafluoroethylene, polybutadiene, etc.), vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin etc.), polysulfone, polycarbonate, phenolic resin, amino resin (melamine resin, melamine-benzoguanamine) Resin, benzoguanamine resin, etc.), organic materials such as urea resin; organic-inorganic composite materials; and the like. Among these, vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin, etc.), amino resin (melamine resin, melamine-benzoguanamine resin) in terms of having an appropriate elastic modulus and recovery characteristics. Benzoguanamine resin, etc.) and organic-inorganic composite materials are preferred. Any appropriate organic-inorganic composite material can be adopted as the organic-inorganic composite material. Preferably, those having the same form as the forms a) to e) of the organic-inorganic composite fine particles in the form 3 of the amino resin fine particles used as insulating fine particles, which will be described later, can be employed. As the organic-inorganic composite material, those described in JP-A No. 2003-183337 and JP-A No. 8-81561 can be preferably employed.

上記基材粒子の平均粒子径は、好ましくは1.0μm〜5.0μmであり、より好ましくは1.5μm〜3.5μmであり、さらに好ましくは2.0μm〜3.0μmである。上記基材粒子の平均粒子径が1.0μm未満の場合、無電解めっきなどで導電性金属層を被覆する際に、粒子が凝集し易くなり、均一な導電性金属層を形成できないおそれがある。上記基材粒子の平均粒子径が5.0μmを超えると、微細化、狭小化する電極間の安定した電気的接続に利用できないおそれがある。   The average particle diameter of the substrate particles is preferably 1.0 μm to 5.0 μm, more preferably 1.5 μm to 3.5 μm, and still more preferably 2.0 μm to 3.0 μm. When the average particle diameter of the substrate particles is less than 1.0 μm, when the conductive metal layer is coated by electroless plating or the like, the particles are likely to aggregate and there is a possibility that a uniform conductive metal layer cannot be formed. . When the average particle diameter of the base particles exceeds 5.0 μm, there is a possibility that the base particles cannot be used for stable electrical connection between electrodes that are made finer and narrower.

平均粒子径の評価方法については後述する。   A method for evaluating the average particle diameter will be described later.

上記導電性金属層を構成する金属としては、任意の適切な金属を採用し得る。このような金属としては、例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ニッケル、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム、ニッケル−リン、ニッケル−ホウ素などの金属や金属化合物、および、これらの合金などが挙げられる。これらの中でも、導電性に優れ、工業的に安価であり、本発明の効果を十分に発現できる点で、上記導電性微粒子の最表面に、金、パラジウム、銀、銅、錫、およびこれらの合金から選ばれる少なくとも1種を有することが好ましく、金、パラジウム、およびこれらの合金から選ばれる少なくとも1種を有することがより好ましい。これらのような抵抗値の低い金属を適用するほど、絶縁性微粒子が導電性微粒子の表面と強固な密着性を有し、絶縁性微粒子が導電性微粒子の表面から脱落・脱離し難く、また、該絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、その絶縁性微粒子被覆導電性微粒子の密度を増やして該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できる。   Any appropriate metal can be adopted as the metal constituting the conductive metal layer. Examples of such metals include gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, nickel, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt, indium, nickel-phosphorus, nickel. -Metals and metal compounds such as boron, and alloys thereof. Among these, gold, palladium, silver, copper, tin, and these are formed on the outermost surface of the conductive fine particles in that they are excellent in conductivity, industrially inexpensive, and can sufficiently exhibit the effects of the present invention. It is preferable to have at least one selected from alloys, and it is more preferable to have at least one selected from gold, palladium, and alloys thereof. As the metal having a low resistance value such as these is applied, the insulating fine particles have stronger adhesion to the surface of the conductive fine particles, and the insulating fine particles are less likely to fall off from the surface of the conductive fine particles. When the insulating fine particle-coated conductive fine particles coated with the insulating fine particles are contained in the anisotropic conductive adhesive composition, the density of the insulating fine particle-coated conductive fine particles is increased to cover the insulating fine particles. Even if the conductive fine particles are adjacent to each other, the insulating fine particles have sufficient elasticity and are not plastically deformed, so that excellent conductivity and insulation can be exhibited.

上記導電性金属層の厚みは、好ましくは10〜500nm、より好ましくは20〜400nm、さらに好ましくは50〜300nmである。上記導電性金属層の厚みが10nm未満の場合、導電性微粒子として異方性導電接着剤組成物に用いた場合に、安定した電気的接続を維持し難くなるおそれがある。上記導電性金属層の厚みが500nmを超える場合、導電性微粒子としたときの表面の硬度が高くなりすぎ、回復率等の機械的特性を十分に発揮できないおそれがある。   The thickness of the conductive metal layer is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm. When the conductive metal layer has a thickness of less than 10 nm, it may be difficult to maintain a stable electrical connection when used as an anisotropic conductive adhesive composition as conductive fine particles. When the thickness of the conductive metal layer exceeds 500 nm, the surface hardness when the conductive fine particles are formed becomes too high, and there is a possibility that the mechanical properties such as the recovery rate cannot be sufficiently exhibited.

上記導電性金属層は、その表面に、実質的な割れや、導電性金属層が形成されていない面が存在しないものであることが好ましい。ここで、「実質的な割れや、導電性金属層が形成されていない面」とは、電子顕微鏡(倍率1000倍)を用いて任意の10000個の導電性微粒子の表面を観察した場合に、導電性金属層の割れ、および、基材粒子表面の露出が、実質的に目視で観察されないことを意味する。   The conductive metal layer preferably has no substantial cracks or a surface on which no conductive metal layer is formed on the surface. Here, “substantially cracked or a surface on which the conductive metal layer is not formed” means that when the surface of any 10,000 conductive fine particles is observed using an electron microscope (magnification 1000 times), It means that the crack of the conductive metal layer and the exposure of the surface of the base material particles are not substantially visually observed.

上記基材粒子の表面に導電性金属層を被覆する方法は、任意の適切な方法を採用し得る。例えば、無電解めっき法、置換めっき法などによるめっき方法;金属微粉を単独またはバインダーに混ぜ合わせて得られるペーストを基材粒子にコーティングする方法;真空蒸着、イオンプレーティング、イオンスパッタリングなどの物理的蒸着方法;などが挙げられる。これらの中でも、大掛かりな装置を必要とせず、容易に導電性金属層を形成できる点で、無電解めっき法が好ましい。   Arbitrary appropriate methods can be employ | adopted for the method of coat | covering the electroconductive metal layer on the surface of the said base particle. For example, plating method by electroless plating method, displacement plating method, etc .; method of coating a base particle with a paste obtained by mixing metal fine powder alone or in a binder; physical such as vacuum deposition, ion plating, ion sputtering Vapor deposition method; and the like. Among these, the electroless plating method is preferable because a conductive metal layer can be easily formed without requiring a large-scale apparatus.

通常、無電解めっき法は、(1)親水化工程(エッチング)、(2)触媒化工程、(3)無電解めっき工程、の3工程からなる。親水化工程(エッチング)は、基材粒子の種類に応じて、省略することができる。   In general, the electroless plating method includes three steps: (1) a hydrophilization step (etching), (2) a catalyst step, and (3) an electroless plating step. The hydrophilization step (etching) can be omitted depending on the type of the base particle.

上記親水化工程(エッチング)は、基材粒子の表面に微小な凹凸を形成して、導電性金属層の密着を良くするために行われる。上記親水化工程(エッチング)は、例えば、クロム酸、硫酸−クロム酸混液、過マンガン酸溶液等の酸化剤;塩酸、硫酸等の強酸;水酸化ナトリウム、水酸化カリウム等の強アルカリ溶液;などを用いて、基材粒子の表面に微小な凹凸を形成する。   The hydrophilization step (etching) is performed in order to improve the adhesion of the conductive metal layer by forming minute irregularities on the surface of the substrate particles. The hydrophilization step (etching) includes, for example, an oxidizing agent such as chromic acid, sulfuric acid-chromic acid mixed solution, permanganic acid solution; strong acid such as hydrochloric acid and sulfuric acid; strong alkaline solution such as sodium hydroxide and potassium hydroxide; Is used to form minute irregularities on the surface of the substrate particles.

上記触媒化工程は、基材粒子の表面に無電解めっき工程の起点となり得る触媒層を形成するために行われる。触媒層を形成する方法としては、任意の適切な方法を採用し得る。例えば、無電解めっき用として市販されている触媒化試薬などを用いて行うことができる。このような市販されている触媒化試薬としては、例えば、ピンクシューマー(日本カニゼン株式会社製)、レッドシューマー(日本カニゼン株式会社製)などが挙げられる。触媒層を形成する方法としては、具体的には、例えば、塩化パラジウムと塩化スズとからなる溶液に基材粒子を浸漬した後、硫酸、塩酸等の強酸や水酸化ナトリウム等の強アルカリ溶液で活性化してパラジウムを基材粒子表面に析出させる方法;硫酸パラジウム溶液に基材粒子を浸漬した後、ジメチルアミンボラン等の還元剤を含む溶液で活性化してパラジウムを基材粒子表面に析出させる方法;などが挙げられる。   The catalyzing step is performed in order to form a catalyst layer that can serve as a starting point for the electroless plating step on the surface of the substrate particles. Any appropriate method can be adopted as a method of forming the catalyst layer. For example, it can be carried out using a catalytic reagent etc. commercially available for electroless plating. Examples of such commercially available catalyzing reagents include pink summers (manufactured by Nippon Kanisen Co., Ltd.) and red summers (manufactured by Nippon Kanisen Co., Ltd.). As a method for forming the catalyst layer, specifically, for example, after immersing the substrate particles in a solution composed of palladium chloride and tin chloride, a strong acid such as sulfuric acid or hydrochloric acid or a strong alkali solution such as sodium hydroxide is used. Method of activating and precipitating palladium on the surface of the base particle; Method of activating palladium with a solution containing a reducing agent such as dimethylamine borane after immersing the base particle in a palladium sulfate solution and precipitating palladium on the surface of the base particle And so on.

上記無電解めっき工程においては、好ましくは、基材粒子を水性媒体に十分に分散させ、水性スラリーを調製する。ここで、基材粒子は水性媒体に十分に分散させておくことが好ましい。基材粒子が凝集した状態で導電性金属層が形成すると、未処理面が露出するおそれがある。基材粒子の分散は、任意の適切な分散方法を採用し得る。例えば、通常撹拌、高速撹拌、コロイドミルやホモジナイザーのようなせん断分散装置を用いた分散、などが挙げられる。分散の際に、超音波照射を併用しても良い。また、分散の際に、界面活性剤などの分散剤を用いても良い。   In the electroless plating step, preferably, the base particles are sufficiently dispersed in an aqueous medium to prepare an aqueous slurry. Here, the base particles are preferably sufficiently dispersed in an aqueous medium. If the conductive metal layer is formed in a state where the base particles are aggregated, the untreated surface may be exposed. Arbitrary appropriate dispersion methods can be employ | adopted for dispersion | distribution of a base particle. For example, normal stirring, high speed stirring, dispersion using a shearing dispersion device such as a colloid mill or a homogenizer, and the like can be mentioned. When dispersing, ultrasonic irradiation may be used in combination. Moreover, you may use dispersing agents, such as surfactant, in the case of dispersion | distribution.

次いで、金属塩、還元剤、錯化剤などを含んだ無電解めっき浴に、上記分散処理した基材粒子スラリーを添加し、無電解めっきを行う。   Next, the dispersion-treated substrate particle slurry is added to an electroless plating bath containing a metal salt, a reducing agent, a complexing agent, etc., and electroless plating is performed.

上記金属塩としては、例えば、導電性金属層を構成する金属として上述した金属の塩が挙げられる。例えば、ニッケル塩を用いる場合、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられる。無電解めっき浴中における上記金属塩の濃度は、所望の厚みの導電性金属層が形成されるように、基材粒子のサイズ(表面積)に応じて適宜設定すれば良い。   As said metal salt, the salt of the metal mentioned above as a metal which comprises a conductive metal layer is mentioned, for example. For example, when nickel salt is used, nickel chloride, nickel sulfate, nickel acetate and the like can be mentioned. What is necessary is just to set the density | concentration of the said metal salt in an electroless-plating bath suitably according to the size (surface area) of a base particle so that the electroconductive metal layer of desired thickness may be formed.

上記還元剤としては、次亜燐酸ナトリウム、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジンなどが挙げられる。   Examples of the reducing agent include sodium hypophosphite, dimethylamine borane, sodium borohydride, potassium borohydride, hydrazine and the like.

上記錯化剤としては、例えば、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸、またはそれらのアルカリ金属塩やアンモニウム塩などのカルボン酸塩、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、アンモニウム化合物、EDTA、ピロリン酸(塩)などが挙げられる。上記錯化剤は、1種のみを用いても良いし、2種以上を併用しても良い。   Examples of the complexing agent include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid, carboxylates such as alkali metal salts and ammonium salts thereof, amino acids such as glycine, ethylenediamine, alkylamine, and the like. Aminic acid, ammonium compound, EDTA, pyrophosphoric acid (salt) and the like. Only 1 type may be used for the said complexing agent and it may use 2 or more types together.

上記無電解めっき法における無電解めっき浴のpHは、好ましくは4〜14である。   The pH of the electroless plating bath in the electroless plating method is preferably 4-14.

無電解めっき法においては、基材粒子のスラリーを添加すると、速やかに反応が始まり、水素ガスの発生を伴う。無電解めっき法における、無電解めっき工程の終了は、その水素ガスの発生が完全に認められなくなった時点をもって終了とする。反応終了後、反応系内から導電性微粒子を取り出し、必要に応じて洗浄、乾燥を行う。   In the electroless plating method, when a slurry of base material particles is added, the reaction starts quickly and is accompanied by generation of hydrogen gas. The end of the electroless plating process in the electroless plating method ends when the generation of hydrogen gas is no longer recognized. After completion of the reaction, the conductive fine particles are taken out from the reaction system, and washed and dried as necessary.

上記無電解めっき工程は、複数回繰り返しても良い。このようにすることで、基材粒子に複層の導電性金属層を被覆することができる。例えば、基材粒子にニッケルめっきを施してニッケル被覆粒子を得た後に、無電解金めっき浴に該ニッケル被覆粒子を投入して金めっきを施すことにより、最外層に金の被覆層を有する導電性微粒子が得られる。   The electroless plating process may be repeated a plurality of times. By doing in this way, a base metal particle can be coat | covered with a multilayer conductive metal layer. For example, after obtaining nickel-coated particles by performing nickel plating on the substrate particles, the nickel-coated particles are put into an electroless gold plating bath and gold-plated, so that the outermost layer has a gold coating layer. Fine particles are obtained.

≪C.異方性導電接着剤組成物≫
本発明の異方性導電接着剤組成物は、本発明の絶縁性微粒子被覆導電性微粒子がバインダー樹脂中に分散してなる。
≪C. Anisotropic conductive adhesive composition >>
The anisotropic conductive adhesive composition of the present invention is obtained by dispersing the insulating fine particle-coated conductive fine particles of the present invention in a binder resin.

上記バインダー樹脂としては、任意の適切なバインダー樹脂を採用し得る。例えば、アクリレート樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体等の熱可塑性樹脂;グリシジル基を有するモノマーやオリゴマー及びイソシアネート等の硬化剤との反応により得られる硬化性樹脂組成物等の光や熱による硬化性樹脂組成物;等が挙げられる。   Any appropriate binder resin can be adopted as the binder resin. For example, thermoplastic resins such as acrylate resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers; curable resin compositions obtained by reaction with curing agents such as monomers and oligomers having glycidyl groups and isocyanate Examples thereof include curable resin compositions by light and heat.

上記異方性導電接着剤組成物としては、任意の適切な用途に適用し得る。例えば、異方性導電ペースト、異方性導電インク、異方性導電接着剤、液晶表示素子(LCD)のシール剤に含有される導電性スペーサ等が挙げられる。   As said anisotropic conductive adhesive composition, it can apply to arbitrary appropriate uses. Examples thereof include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, and conductive spacers contained in a liquid crystal display element (LCD) sealant.

上記異方性導電ペーストは、例えば、異方性導電接着剤組成物をペースト状にすることにより得られる。得られた異方性導電ペーストは、例えば、適当なディスペンサーに入れられ、接続すべき電極上に所望の厚さに塗工され、塗工された異方性導電ペースト上に対向電極を重ね合わせ、加熱するとともに加圧して樹脂を硬化させることにより、電極間の接続に使用される。   The anisotropic conductive paste is obtained, for example, by making an anisotropic conductive adhesive composition into a paste. The obtained anisotropic conductive paste is put in, for example, a suitable dispenser, applied to a desired thickness on the electrode to be connected, and the counter electrode is superimposed on the coated anisotropic conductive paste. It is used for connection between electrodes by heating and pressurizing to cure the resin.

上記異方性導電インクは、例えば、異方性導電接着剤組成物に溶媒を加えて印刷に適した粘度にすることにより得られる。得られた異方性導電インクは、例えば、接着すべき電極上にスクリーン印刷し、その溶媒を蒸発させた後、印刷された異方性導電インクの上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive ink is obtained, for example, by adding a solvent to the anisotropic conductive adhesive composition to obtain a viscosity suitable for printing. The obtained anisotropic conductive ink is, for example, screen-printed on the electrode to be bonded, the solvent is evaporated, the counter electrode is superimposed on the printed anisotropic conductive ink, and the resultant is heated and compressed. Therefore, it is used for the connection between the electrodes.

≪D.異方性導電成形体≫
本発明の異方性導電成形体は、本発明の異方性導電接着剤組成物から得られる。本発明の異方性導電成形体の具体例としては、例えば、異方性導電膜、異方性導電フィルム、異方性導電シートなどが挙げられる。
≪D. Anisotropic conductive compact >>
The anisotropic conductive molded body of the present invention is obtained from the anisotropic conductive adhesive composition of the present invention. Specific examples of the anisotropic conductive molded body of the present invention include an anisotropic conductive film, an anisotropic conductive film, and an anisotropic conductive sheet.

本発明の異方性導電成形体は、例えば、本発明の異方性導電接着剤組成物に溶媒を加えて溶液状にし、この溶液を離型フィルム上に流し込んだ後、溶媒を蒸発させて異方性導電接着剤組成物を被膜状にすることにより得られる。   The anisotropic conductive molded body of the present invention is prepared by, for example, adding a solvent to the anisotropic conductive adhesive composition of the present invention to form a solution, pouring the solution onto a release film, and then evaporating the solvent. It is obtained by forming an anisotropic conductive adhesive composition into a film.

本発明の異方性導電成形体は、例えば、接着すべき電極上に配置され、配置された異方性導電成形体上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive molded body of the present invention is disposed, for example, on electrodes to be bonded, and is used for connection between electrodes by superposing a counter electrode on the disposed anisotropic conductive molded body and compressing by heating. Is done.

上記異方性導電成形体における膜厚、塗工膜厚及び印刷膜厚は、含有する絶縁性微粒子被覆導電性微粒子の平均粒子径と接続すべき電極の仕様とから計算し、接続すべき電極間に絶縁性微粒子被覆導電性微粒子が挟持され、接続すべき電極が形成された接合基板同士の空隙がバインダー樹脂層により充分に満たされるよう設定することが好ましい。   The film thickness, coating film thickness and printed film thickness in the anisotropic conductive molded body are calculated from the average particle diameter of the conductive fine particles covered with the insulating fine particles and the specifications of the electrodes to be connected, and the electrodes to be connected It is preferable to set so that the gap between the bonding substrates on which the insulating fine particle-coated conductive fine particles are sandwiched and the electrodes to be connected are formed is sufficiently filled with the binder resin layer.

本発明の絶縁性微粒子被覆導電性微粒子を用いた異方性導電成形体は、相対向する電極基板間の電気的な接続を確保することができると同時に隣接する電極間でのショートを防ぐことができる。また、経時安定性にも優れるので、長期間の使用においても導電性の低下を来すことなく、電極基板間の電気的な接続を堅持し信頼性の向上を図ることができる。   The anisotropic conductive molded body using the conductive fine particles coated with the insulating fine particles of the present invention can ensure electrical connection between opposing electrode substrates and at the same time prevent short-circuiting between adjacent electrodes. Can do. In addition, since the stability over time is excellent, the electrical connection between the electrode substrates can be maintained and the reliability can be improved without deteriorating the conductivity even during long-term use.

以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下では、便宜上、「重量部」を単に「部」と記すことがある。また、「重量%」を「wt%」と記すことがある。また、本明細書において、「重量」とあるのは、「質量」と読み替えても良い。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples. In the following, “parts by weight” may be simply referred to as “parts” for convenience. In addition, “wt%” may be described as “wt%”. In this specification, “weight” may be read as “mass”.

<絶縁性微粒子、コア部の体積平均粒子径、変動係数(CV)>
動的光散乱粒度分布測定装置(ピーエスエスジャパン社製、「NICOMP380」)により、絶縁性微粒子およびコア部(コア粒子)の体積平均粒子径、変動係数(CV)を測定した。
<Insulating fine particles, volume average particle diameter of core, coefficient of variation (CV)>
The volume average particle diameter and coefficient of variation (CV) of the insulating fine particles and the core part (core particle) were measured with a dynamic light scattering particle size distribution measuring device (“NICOMP 380” manufactured by PS Japan Ltd.).

<シェル部の厚み>
動的光散乱粒度分布測定装置(ピーエスエスジャパン社製、「NICOMP380」)により測定した絶縁性微粒子およびコア部(コア粒子)の体積平均粒子径の値をもとに、下記式に従ってシェル部の厚み(d)を算出した。
シェル部の厚み=(絶縁性微粒子の平均粒子径−コア部(コア粒子)の平均粒子径)/2
<Thickness of shell part>
Based on the value of the volume average particle diameter of the insulating fine particles and the core part (core particle) measured by a dynamic light scattering particle size distribution measuring device (“NICOMP 380” manufactured by PS Japan Co., Ltd.), The thickness (d) was calculated.
Shell part thickness = (average particle diameter of insulating fine particles−average particle diameter of core part (core particle)) / 2

<基材粒子>
粒度分布測定装置(ベックマンコールター社製、「コールターマルチサイザーIII型」)により30000個の粒子の粒子径を測定し、個数平均粒子径、粒子径の標準偏差を求めるとともに、下記式に従って粒子径のCV値(変動係数)を算出した。
基材粒子の変動係数(%)=100×(粒子径の標準偏差/個数平均粒子径)
<Base material particles>
A particle size distribution measuring device (Beckman Coulter, “Coulter Multisizer III type”) measures the particle size of 30000 particles, obtains the number average particle size, the standard deviation of the particle size, and calculates the particle size according to the following formula: CV value (coefficient of variation) was calculated.
Coefficient of variation of base material particle (%) = 100 × (standard deviation of particle diameter / number average particle diameter)

<導電性微粒子>
フロー式粒子像解析装置(シスメックス社製、「FPIA(登録商標)−3000」)を用いて、導電性微粒子3000個の粒子径(μm)を測定し、個数平均粒子径を求めた。
<Conductive fine particles>
Using a flow type particle image analyzer (manufactured by Sysmex Corporation, “FPIA (registered trademark) -3000”), the particle diameter (μm) of 3000 conductive fine particles was measured, and the number average particle diameter was determined.

<絶縁性微粒子の被覆状態の評価>
SEMを用いて、絶縁性微粒子の被覆状態の評価を下記の基準に従って行った。
(A):異方性導電接着剤組成物製造前の絶縁性微粒子被覆導電性微粒子における絶縁性微粒子の被覆率(%)
(B):異方性導電接着剤組成物をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って取り出した絶縁性微粒子被覆導電性微粒子における絶縁性微粒子の被覆率(%)
被覆率低下度(%)=100×((A)−(B))/(A)
被覆率低下度が10%未満:○
被覆率低下度が10%以上:×
<Evaluation of coating state of insulating fine particles>
Using SEM, the coating state of the insulating fine particles was evaluated according to the following criteria.
(A): Covering ratio of insulating fine particles in conductive fine particles coated with insulating fine particles before production of anisotropic conductive adhesive composition (%)
(B): After the anisotropic conductive adhesive composition is diluted with toluene, the dispersion rate of the insulating fine particles in the conductive fine particle-coated conductive fine particles taken out by performing ultrasonic dispersion treatment for 30 minutes, followed by filtration ( %)
Degree of coverage reduction (%) = 100 × ((A) − (B)) / (A)
Coverage reduction degree is less than 10%: ○
Coverage reduction is 10% or more: ×

<導通性の評価>
異方性導電成形体の電極間の抵抗値を4端子法により測定した。
抵抗値が10Ω未満:○
抵抗値が10Ω以上:×
<Evaluation of conductivity>
The resistance value between the electrodes of the anisotropic conductive molded body was measured by a four-terminal method.
Resistance value is less than 10Ω: ○
Resistance value is 10Ω or more: ×

<絶縁性の評価>
絶縁性微粒子被覆導電性微粒子をバインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)に50000個/mmになるように分散し、30μmピッチの対向した櫛形パターンフィルム間に塗布し圧着した後、パターン間の抵抗を測定し、以下の基準により評価した。
抵抗値が100MΩ以上:○
抵抗値が100MΩ未満:×
<Evaluation of insulation>
Insulating fine particle-coated conductive fine particles were dispersed in struct bond XN-5A (manufactured by Mitsui Chemicals) as a binder resin so as to be 50000 pieces / mm 3 , and applied between 30 μm pitch opposed comb pattern films and pressure-bonded. Then, the resistance between patterns was measured and evaluated according to the following criteria.
Resistance value is 100 MΩ or more: ○
Resistance value is less than 100 MΩ: ×

〔実施例1〕:絶縁性微粒子(1)
(コア粒子の作製)
攪拌機、温度計、および冷却機を備えたステンレス製の反応釜に、脱イオン水800部およびドデシルベンゼンスルホン酸ナトリウム(有効成分60重量%;以下「DBSNa」と称する)2.3部を加え、内温を75℃まで昇温し、同温度に保った。
他方、上記反応釜とは異なる容器に、メタクリル酸メチル(以下「MMA」と称する)140部とジビニルベンゼン(有効成分81重量%;以下「DVB」と称する)60部とを混合して、単量体組成物200部を調製した。
上記反応釜内を窒素ガスで置換した後、上記単量体組成物20部(単量体組成物全量の10重量%)、0.4重量%過酸化水素水50部、および0.4重量%L−アスコルビン酸水溶液50部を上記反応釜内に添加して、初期重合反応を行った。
次いで、上記単量体組成物の残部(単量体組成物全量の90重量%)180部、0.4重量%過酸化水素水450部、および0.4重量%L−アスコルビン酸水溶液450部を、各々異なる投入口より反応釜へ6時間かけて均一に滴下した。その後、内温を90℃まで昇温し、同温度で6時間保持して熟成を行い、ビニル重合体コア粒子(1)が分散したビニル重合体コア粒子分散液(1)を得た。この分散液の一部を抜き取り、分散液の仕込み総重量を200部とした。
なお、分散中のビニル重合体コア粒子(1)の平均粒子径および変動係数を測定したところ、体積平均粒子径は72nm、変動係数は11%であった。
(シェル層の形成による絶縁性微粒子の製造)
ベンゾグアナミン(以下「BG」と称する)100部、37重量%ホルマリン130部、65重量%DBSNa12部、ドデシルベンゼンスルホン酸(以下「DBS」と称する)10部、イオン交換水1300部を均一に分散混合し、BG分散液を得た。
上記の90℃に保持されたビニル重合体コア粒子分散液(1)200部中に上記のBG分散液を8時間かけて滴下した。滴下後、さらに90℃で4時間保持し、その後30℃まで冷却して、ビニル重合体コア粒子(1)の表面がBGとホルムアルデヒドとの縮合物により被覆された絶縁性微粒子(1)を含有する分散液を得た。この分散液中の絶縁性微粒子(1)の平均粒子径および変動係数を測定したところ、体積平均粒子径は146nm、変動係数は8%であった。
上記絶縁性微粒子(1)を含有する分散液を遠心分離機により固液分離を行い、上澄みを廃棄し、得られた濾過ケーキをメタノールに希釈して、再分散を行った。その再分散したメタノールスラリーを遠心分離により固液分離し、上澄み液を廃棄して得られた濾過ケーキを190℃で5時間真空乾燥を行った後、ジェットミル粉砕機(粉砕圧:0.7MPa)による粉砕と気流分級を行い、絶縁性微粒子(1)を得た。
上記ビニル重合体コア粒子(1)の体積平均粒子径は72nmであり、絶縁性微粒子(1)の体積平均粒子径は146nmであるので、絶縁性微粒子(1)においてd/D=0.51であった。
結果を表1に示す。
[Example 1]: Insulating fine particles (1)
(Production of core particles)
To a stainless steel reaction kettle equipped with a stirrer, a thermometer, and a cooler, 800 parts of deionized water and 2.3 parts of sodium dodecylbenzenesulfonate (active ingredient 60% by weight; hereinafter referred to as “DBSNa”) are added, The internal temperature was raised to 75 ° C. and kept at the same temperature.
On the other hand, 140 parts of methyl methacrylate (hereinafter referred to as “MMA”) and 60 parts of divinylbenzene (81% by weight of active ingredient; hereinafter referred to as “DVB”) are mixed in a container different from the above reaction vessel. 200 parts of the monomer composition was prepared.
After replacing the inside of the reaction kettle with nitrogen gas, 20 parts of the monomer composition (10% by weight of the total amount of the monomer composition), 50 parts of 0.4% by weight of hydrogen peroxide water, and 0.4% by weight An initial polymerization reaction was carried out by adding 50 parts of a% L-ascorbic acid aqueous solution to the reaction kettle.
Subsequently, the remainder of the monomer composition (90% by weight of the total amount of the monomer composition) 180 parts, 450 parts by weight of 0.4% by weight hydrogen peroxide water, and 450 parts by weight of 0.4% by weight L-ascorbic acid aqueous solution Were dripped uniformly into the reaction kettle over 6 hours from different inlets. Thereafter, the internal temperature was raised to 90 ° C., and the mixture was aged for 6 hours at the same temperature to obtain a vinyl polymer core particle dispersion (1) in which the vinyl polymer core particles (1) were dispersed. A part of this dispersion was extracted, and the total weight of the dispersion was 200 parts.
In addition, when the average particle diameter and coefficient of variation of the vinyl polymer core particles (1) being dispersed were measured, the volume average particle size was 72 nm and the coefficient of variation was 11%.
(Manufacture of insulating fine particles by forming a shell layer)
100 parts of benzoguanamine (hereinafter referred to as “BG”), 130 parts of 37% by weight formalin, 12 parts of 65% by weight DBSNa, 10 parts of dodecylbenzenesulfonic acid (hereinafter referred to as “DBS”) and 1300 parts of ion-exchanged water are uniformly dispersed and mixed. A BG dispersion was obtained.
The BG dispersion was dropped into 200 parts of the vinyl polymer core particle dispersion (1) maintained at 90 ° C. over 8 hours. After the dropping, the mixture is further held at 90 ° C. for 4 hours, and then cooled to 30 ° C. to contain insulating fine particles (1) whose surfaces of the vinyl polymer core particles (1) are coated with a condensate of BG and formaldehyde. A dispersion was obtained. When the average particle size and variation coefficient of the insulating fine particles (1) in this dispersion were measured, the volume average particle size was 146 nm, and the variation coefficient was 8%.
The dispersion containing the insulating fine particles (1) was subjected to solid-liquid separation using a centrifuge, the supernatant was discarded, and the obtained filter cake was diluted with methanol for redispersion. The re-dispersed methanol slurry was subjected to solid-liquid separation by centrifugation, and the filtrate obtained by discarding the supernatant was vacuum-dried at 190 ° C. for 5 hours, and then a jet mill grinder (pulverization pressure: 0.7 MPa). ) And air classification to obtain insulating fine particles (1).
Since the volume average particle diameter of the vinyl polymer core particle (1) is 72 nm and the volume average particle diameter of the insulating fine particles (1) is 146 nm, d / D = 0.51 in the insulating fine particles (1). Met.
The results are shown in Table 1.

〔実施例2〕:絶縁性微粒子(2)
(コア粒子の作製)
DBSNaの量を1.5部に変更した以外は、実施例1と同様に行い、ビニル重合体コア粒子(2)が分散したビニル重合体コア粒子分散液(2)を得た。この分散液中のビニル重合体コア粒子(2)の平均粒子径および変動係数を測定したところ、体積平均粒子径は110nm、変動係数は12%であった。
(シェル層の形成による絶縁性微粒子の製造)
BGの量を18部、37重量%ホルマリンの量を18.2部、65重量%DBSNaの量を1.7部、DBSの量を1.4 部、イオン交換水の量を180部に変更した以外は、実施例1と同様に行い、絶縁性微粒子(2)を含有する分散液を得た。この分散液中の絶縁性微粒子(2)の平均粒子径および変動係数を測定したところ、体積平均粒子径は136nm、変動係数は5%であった。次いで、固液分離、乾燥、粉砕、分級を実施例1と同様の手法により行い、絶縁性微粒子(2)を得た。
上記ビニル重合体コア粒子(2)の体積平均粒子径は110nmであり、絶縁性微粒子(2)の体積平均粒子径は136nmであるので、絶縁性微粒子(2)においてd/D=0.12であった。
結果を表1に示す。
[Example 2]: Insulating fine particles (2)
(Production of core particles)
Except having changed the quantity of DBSNa into 1.5 parts, it carried out similarly to Example 1 and obtained the vinyl polymer core particle dispersion liquid (2) in which the vinyl polymer core particle (2) was disperse | distributed. When the average particle diameter and coefficient of variation of the vinyl polymer core particles (2) in this dispersion were measured, the volume average particle diameter was 110 nm and the coefficient of variation was 12%.
(Manufacture of insulating fine particles by forming a shell layer)
Changed the amount of BG to 18 parts, 37% by weight formalin to 18.2 parts, 65% by weight DBSNa to 1.7 parts, DBS to 1.4 parts, and ion-exchanged water to 180 parts. A dispersion containing insulating fine particles (2) was obtained in the same manner as in Example 1 except that. When the average particle size and variation coefficient of the insulating fine particles (2) in this dispersion were measured, the volume average particle size was 136 nm, and the variation coefficient was 5%. Next, solid-liquid separation, drying, pulverization, and classification were performed in the same manner as in Example 1 to obtain insulating fine particles (2).
Since the volume average particle diameter of the vinyl polymer core particle (2) is 110 nm and the volume average particle diameter of the insulating fine particles (2) is 136 nm, d / D = 0.12 in the insulating fine particles (2). Met.
The results are shown in Table 1.

〔実施例3〕:絶縁性微粒子(3)
(コア粒子の作製)
DBSNaの量を3部に変更した以外は、実施例1と同様に行い、ビニル重合体コア粒子(3)が分散したビニル重合体コア粒子分散液(3)を得た。この分散液中のビニル重合体コア粒子(3)の平均粒子径および変動係数を測定したところ、体積平均粒子径は50nm、変動係数は13%であった。
(シェル層の形成による絶縁性微粒子の製造)
BGの量を1500部、37重量%ホルマリンの量を1950部、65重量%DBSNaの量を185部、DBSの量を220部、イオン交換水の量を19500部に変更した以外は、実施例1と同様に行い、絶縁性微粒子(3)を含有する分散液を得た。この分散液中の絶縁性微粒子(3)の平均粒子径および変動係数を測定したところ、体積平均粒子径は240nm、変動係数は6%であった。次いで、固液分離、乾燥、粉砕、分級を実施例1と同様の手法により行い、絶縁性微粒子(3)を得た。
上記ビニル重合体コア粒子(3)の体積平均粒子径は50nmであり、絶縁性微粒子(3)の体積平均粒子径は240nmであるので、絶縁性微粒子(3)においてd/D=1.90であった。
結果を表1に示す。
[Example 3]: Insulating fine particles (3)
(Production of core particles)
Except having changed the quantity of DBSNa into 3 parts, it carried out similarly to Example 1 and obtained the vinyl polymer core particle dispersion liquid (3) in which the vinyl polymer core particle (3) was disperse | distributed. When the average particle diameter and coefficient of variation of the vinyl polymer core particles (3) in this dispersion were measured, the volume average particle diameter was 50 nm and the coefficient of variation was 13%.
(Manufacture of insulating fine particles by forming a shell layer)
Except for changing the amount of BG to 1500 parts, the amount of 37% by weight formalin to 1950 parts, the amount of 65% by weight DBSNa to 185 parts, the amount of DBS to 220 parts, and the amount of ion-exchanged water to 19500 parts. 1 was performed to obtain a dispersion containing insulating fine particles (3). When the average particle size and coefficient of variation of the insulating fine particles (3) in this dispersion were measured, the volume average particle size was 240 nm and the coefficient of variation was 6%. Next, solid-liquid separation, drying, pulverization, and classification were performed in the same manner as in Example 1 to obtain insulating fine particles (3).
Since the volume average particle diameter of the vinyl polymer core particle (3) is 50 nm and the volume average particle diameter of the insulating fine particles (3) is 240 nm, d / D = 1.90 in the insulating fine particles (3). Met.
The results are shown in Table 1.

〔比較例1〕:絶縁性微粒子(C1)
(コア粒子の作製)
実施例1と同様に行い、ビニル重合体コア粒子(C1)が分散したビニル重合体コア粒子分散液(C1)を得た。この分散液中のビニル重合体コア粒子(C1)の平均粒子径および変動係数を測定したところ、体積平均粒子径は112nm、変動係数は12%であった。
(シェル層の形成による絶縁性微粒子の製造)
BGの量を8部、37重量%ホルマリンの量を10.4部、65重量%DBSNaの量を1部、DBSの量を1.2 部、イオン交換水の量を105部に変更した以外は、実施例1と同様に行い、絶縁性微粒子(C1)を含有する分散液を得た。この分散液中の絶縁性微粒子(C1)の平均粒子径および変動係数を測定したところ、体積平均粒子径は132nm、変動係数は5%であった。次いで、固液分離、乾燥、粉砕、分級を実施例1と同様の手法により行い、絶縁性微粒子(C1)を得た。
上記ビニル重合体コア粒子(C1)の体積平均粒子径は112nmであり、絶縁性微粒子(C1)の体積平均粒子径は132nmであるので、絶縁性微粒子(C1)においてd/D=0.09であった。
結果を表1に示す。
[Comparative Example 1]: Insulating fine particles (C1)
(Production of core particles)
In the same manner as in Example 1, a vinyl polymer core particle dispersion (C1) in which the vinyl polymer core particles (C1) were dispersed was obtained. When the average particle size and coefficient of variation of the vinyl polymer core particles (C1) in this dispersion were measured, the volume average particle size was 112 nm and the coefficient of variation was 12%.
(Manufacture of insulating fine particles by forming a shell layer)
Other than changing the amount of BG to 8 parts, the amount of 37% by weight formalin to 10.4 parts, the amount of 65% by weight DBSNa to 1 part, the amount of DBS to 1.2 parts, and the amount of ion-exchanged water to 105 parts Was carried out in the same manner as in Example 1 to obtain a dispersion containing insulating fine particles (C1). When the average particle size and coefficient of variation of the insulating fine particles (C1) in this dispersion were measured, the volume average particle size was 132 nm and the coefficient of variation was 5%. Next, solid-liquid separation, drying, pulverization, and classification were performed in the same manner as in Example 1 to obtain insulating fine particles (C1).
Since the volume average particle diameter of the vinyl polymer core particle (C1) is 112 nm and the volume average particle diameter of the insulating fine particles (C1) is 132 nm, d / D = 0.09 in the insulating fine particles (C1). Met.
The results are shown in Table 1.

〔比較例2〕:絶縁性微粒子(C2)
(コア粒子の作製)
実施例3と同様に行い、ビニル重合体コア粒子(C2)が分散したビニル重合体コア粒子分散液(C2)を得た。この分散液中のビニル重合体コア粒子(C2)の平均粒子径および変動係数を測定したところ、体積平均粒子径は50nm、変動係数は16%であった。
(シェル層の形成による絶縁性微粒子の製造)
BGの量を1900部、37重量%ホルマリンの量を2470部、65重量%DBSNaの量を345部、DBSの量を280部、イオン交換水の量を25000部に変更した以外は、実施例1と同様に行い、絶縁性微粒子(C2)を含有する分散液を得た。この分散液中の絶縁性微粒子(C2)の平均粒子径および変動係数を測定したところ、体積平均粒子径は260nm、変動係数は7%であった。次いで、固液分離、乾燥、粉砕、分級を実施例1と同様の手法により行い、絶縁性微粒子(C2)を得た。
上記ビニル重合体コア粒子(C2)の体積平均粒子径は50nmであり、絶縁性微粒子(C2)の体積平均粒子径は260nmであるので、絶縁性微粒子(C2)においてd/D=2.10であった。
結果を表1に示す。
[Comparative Example 2]: Insulating fine particles (C2)
(Production of core particles)
In the same manner as in Example 3, a vinyl polymer core particle dispersion (C2) in which the vinyl polymer core particles (C2) were dispersed was obtained. When the average particle size and coefficient of variation of the vinyl polymer core particles (C2) in this dispersion were measured, the volume average particle size was 50 nm and the coefficient of variation was 16%.
(Manufacture of insulating fine particles by forming a shell layer)
Except for changing the amount of BG to 1900 parts, the amount of 37% by weight formalin to 2470 parts, the amount of 65% by weight DBSNa to 345 parts, the amount of DBS to 280 parts, and the amount of ion-exchanged water to 25,000 parts. 1 was performed to obtain a dispersion containing insulating fine particles (C2). When the average particle size and variation coefficient of the insulating fine particles (C2) in this dispersion were measured, the volume average particle size was 260 nm and the variation coefficient was 7%. Next, solid-liquid separation, drying, pulverization, and classification were performed in the same manner as in Example 1 to obtain insulating fine particles (C2).
Since the volume average particle diameter of the vinyl polymer core particle (C2) is 50 nm and the volume average particle diameter of the insulating fine particles (C2) is 260 nm, d / D = 2.10 in the insulating fine particles (C2). Met.
The results are shown in Table 1.

〔実施例4〕:絶縁性微粒子被覆導電性微粒子(1)、異方性導電接着剤組成物(1)、異方性導電成形体(1)
(導電性微粒子(1)の合成)
冷却管、温度計、滴下口を備えた四つ口フラスコに、界面活性剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製、ハイテノール(登録商標)NF−08)2部をイオン交換水で溶解した水溶液150部を仕込んだ。そこへ、予め準備しておいた、スチレン50部、1,6−ヘキサンジオールジアクリレート50部、重合開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製、V−65)2部を仕込み、TKホモミキサー(特殊機化工業社製)により7000rpmで5分間乳化分散させて、懸濁液を調製した。この懸濁液に、イオン交換水250部を加え、窒素雰囲気下で65℃に昇温し、65℃で2時間保持し、ラジカル重合を行った。ラジカル重合の後、生成した乳濁液を固液分離し、得られたケーキをイオン交換水、次いで、メタノールで洗浄した。その後、分級を行い、窒素雰囲気下で、40℃で2時間真空乾燥を行い、重合体微粒子(1)を得た。重合体微粒子(1)の粒子径をコールターマルチサイザーIII型(ベックマンコールター社製)により測定したところ、平均粒子径は2.7μm、変動係数(CV)は3.7%であった。
ビーカーに「ピンクシューマー」(日本カニゼン株式会社製)50部とイオン交換水400部を入れ、混合して混合液を得た。別途、イオン交換水50部に重合体微粒子(1)10部を加えて超音波分散を行ったものを準備し、上記混合液に投入し、30℃で10分間撹拌して懸濁液とし、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
次に、「レッドシューマー」(日本カニゼン株式会社製)100部とイオン交換水350部を入れ、混合して混合液を得た。別途、イオン交換水50部に上記で得られた乾燥粒子10部を加えて超音波分散を行ったものを準備し、上記混合液に投入し、30℃で10分間撹拌して懸濁液とした後、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
以上の操作により、重合体微粒子(1)の表面にパラジウムが吸着されたパラジウム活性重合体微粒子(1)を得た。
パラジウム活性重合体微粒子(1)をイオン交換水500部に添加し、超音波分散処理を30分間行い、粒子を十分に分散させて微粒子懸濁液を得た。この微粒子懸濁液を50℃で撹拌しながら、硫酸ニッケル6水和物50g/L、次亜リン酸ナトリウム1水和物20g/L、ジメチルアミンボラン2.5g/L、クエン酸50g/Lからなる無電解めっき液(pH=7.5)を徐々に微粒子懸濁液に添加して、無電解ニッケルめっきを行った後、置換金メッキを行い、得られた微粒子を濾別し、イオン交換水で洗浄した後、さらにメタノールで洗浄し、60℃で12時間真空乾燥を行い、導電性微粒子(1)を得た。導電性微粒子(1)の平均粒子径は2.8μmであった。
(絶縁性微粒子被覆導電性微粒子(1)の製造)
実施例1で得られた絶縁性微粒子(1)の濃度が5.0重量%になるように、メタノール中に超音波分散させた。得られた絶縁性微粒子(1)のメタノール分散液100部に、上記導電性微粒子(1)50部を加え、超音波を用いて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面を絶縁性微粒子(1)で被覆して、絶縁性微粒子被覆導電性微粒子(1)を得た。
結果を表2に示した。
(異方性導電接着剤組成物(1)の製造)
バインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)100部に上記絶縁性微粒子被覆導電性微粒子(1)を2部加え、遊星式攪拌装置を用いてバインダー樹脂中に絶縁性微粒子被覆導電性微粒子(1)を均一に分散させて、異方性導電接着剤組成物(1)を得た。
得られた異方性導電接着剤組成物(1)をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って、絶縁性微粒子被覆導電性微粒子を取り出し、SEMにて絶縁性微粒子の被覆状態を評価した。
結果を表2に示した。
(異方性導電成形体(1)の製造)
得られた異方性導電接着剤組成物(1)をITOガラス基板2枚の間にパターンが直交および対向するようにして挟み、160℃で20分、加重6kg/cmで加熱および加圧し、異方性導電成形体(1)を得た。
(導通性、絶縁性の評価)
得られた絶縁性微粒子被覆導電性微粒子(1)、異方性導電成形体(1)を用いて、導通性、絶縁性を評価した。
結果を表2に示した。
[Example 4]: Insulating fine particle-coated conductive fine particles (1), anisotropic conductive adhesive composition (1), anisotropic conductive molded body (1)
(Synthesis of conductive fine particles (1))
Polyoxyethylene styrenated phenyl ether sulfate ammonium salt (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Hightenol (registered trademark) NF-08) as a surfactant in a four-necked flask equipped with a condenser, thermometer, and dropping port 150 parts of an aqueous solution prepared by dissolving 2 parts with ion-exchanged water was charged. There were prepared 50 parts of styrene, 50 parts of 1,6-hexanediol diacrylate, and 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd.) as a polymerization initiator. Product, V-65) 2 parts were charged and emulsified and dispersed at 7000 rpm for 5 minutes using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a suspension. To this suspension, 250 parts of ion-exchanged water was added, the temperature was raised to 65 ° C. under a nitrogen atmosphere, and the mixture was held at 65 ° C. for 2 hours to perform radical polymerization. After radical polymerization, the produced emulsion was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and then with methanol. Thereafter, classification was performed, and vacuum drying was performed at 40 ° C. for 2 hours under a nitrogen atmosphere to obtain polymer fine particles (1). When the particle diameter of the polymer fine particles (1) was measured by Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.), the average particle diameter was 2.7 μm and the coefficient of variation (CV) was 3.7%.
In a beaker, 50 parts of “Pink Summer” (manufactured by Nippon Kanisen Co., Ltd.) and 400 parts of ion-exchanged water were mixed to obtain a mixture. Separately, 10 parts of the polymer fine particles (1) were added to 50 parts of ion-exchanged water, and prepared by ultrasonic dispersion. The mixture was added to the above mixture and stirred at 30 ° C. for 10 minutes to form a suspension. This suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then vacuum-dried at 100 ° C. for 2 hours in a nitrogen atmosphere.
Next, 100 parts of “Red Schumer” (manufactured by Nippon Kanisen Co., Ltd.) and 350 parts of ion-exchanged water were added and mixed to obtain a mixed solution. Separately, 10 parts of the dry particles obtained above were added to 50 parts of ion-exchanged water to prepare an ultrasonic dispersion, and the mixture was put into the mixed solution and stirred at 30 ° C. for 10 minutes. Then, this suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then vacuum-dried at 100 ° C. for 2 hours in a nitrogen atmosphere.
By the above operation, palladium active polymer fine particles (1) having palladium adsorbed on the surface of the polymer fine particles (1) were obtained.
Palladium activated polymer fine particles (1) were added to 500 parts of ion exchange water, and ultrasonic dispersion treatment was performed for 30 minutes to sufficiently disperse the particles, thereby obtaining a fine particle suspension. While stirring this fine particle suspension at 50 ° C., nickel sulfate hexahydrate 50 g / L, sodium hypophosphite monohydrate 20 g / L, dimethylamine borane 2.5 g / L, citric acid 50 g / L An electroless plating solution (pH = 7.5) consisting of the following is gradually added to the fine particle suspension, electroless nickel plating is performed, displacement gold plating is performed, and the resulting fine particles are filtered and ion exchanged After washing with water, it was further washed with methanol and vacuum dried at 60 ° C. for 12 hours to obtain conductive fine particles (1). The average particle diameter of the conductive fine particles (1) was 2.8 μm.
(Production of insulating fine particle-coated conductive fine particles (1))
Ultrasonic dispersion was performed in methanol so that the concentration of the insulating fine particles (1) obtained in Example 1 was 5.0% by weight. After adding 50 parts of the conductive fine particles (1) to 100 parts of the methanol dispersion liquid of the obtained insulating fine particles (1) and uniformly dispersing using ultrasonic waves, the methanol is distilled off by an evaporator, The surface of the conductive fine particles (1) was coated with the insulating fine particles (1) to obtain insulating fine particle-coated conductive fine particles (1).
The results are shown in Table 2.
(Manufacture of anisotropic conductive adhesive composition (1))
2 parts of the insulating fine particle-coated conductive fine particles (1) are added to 100 parts of struct bond XN-5A (manufactured by Mitsui Chemicals) as a binder resin, and the insulating fine particle-coated conductive material is added to the binder resin using a planetary stirrer. The anisotropic fine particles (1) were uniformly dispersed to obtain an anisotropic conductive adhesive composition (1).
The obtained anisotropic conductive adhesive composition (1) is diluted with toluene, and then subjected to ultrasonic dispersion treatment for 30 minutes, followed by filtration, taking out the conductive fine particles coated with the conductive fine particles, and insulating with an SEM. The covering state of the conductive fine particles was evaluated.
The results are shown in Table 2.
(Manufacture of anisotropic conductive molded body (1))
The obtained anisotropic conductive adhesive composition (1) was sandwiched between two ITO glass substrates so that the patterns were orthogonal and opposed, and heated and pressurized at 160 ° C. for 20 minutes and with a load of 6 kg / cm 2. An anisotropic conductive molding (1) was obtained.
(Evaluation of conductivity and insulation)
Using the obtained insulating fine particle-coated conductive fine particles (1) and anisotropic conductive molded body (1), conductivity and insulation were evaluated.
The results are shown in Table 2.

〔実施例5〕:絶縁性微粒子被覆導電性微粒子(2)、異方性導電接着剤組成物(2)、異方性導電成形体(2)
(導電性微粒子(2)の合成)
実施例1において置換金めっきの代わりに置換パラジウムめっきを行ったこと以外は実施例1と同様の手法により導電性微粒子(2)を得た。
導電性微粒子(2)の平均粒子径は2.8μmであった。
(絶縁性微粒子被覆導電性微粒子(2)の製造)
実施例1で得られた絶縁性微粒子(1)の濃度が5.0重量%になるように、メタノール中に超音波分散させた。得られた絶縁性微粒子(1)のメタノール分散液100部に、上記導電性微粒子(2)50部を加え、超音波を用いて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(2)の表面を絶縁性微粒子(1)で被覆して、絶縁性微粒子被覆導電性微粒子(2)を得た。
結果を表2に示した。
(異方性導電接着剤組成物(2)の製造)
バインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)100部に上記絶縁性微粒子被覆導電性微粒子(2)を2部加え、遊星式攪拌装置を用いてバインダー樹脂中に絶縁性微粒子被覆導電性微粒子(2)を均一に分散させて、異方性導電接着剤組成物(2)を得た。
得られた異方性導電接着剤組成物(2)をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って、絶縁性微粒子被覆導電性微粒子を取り出し、SEMにて絶縁性微粒子の被覆状態を評価した。
結果を表2に示した。
(異方性導電成形体(2)の製造)
得られた異方性導電接着剤組成物(2)をITOガラス基板2枚の間にパターンが直交および対向するようにして挟み、160℃で20分、加重6kg/cmで加熱および加圧し、異方性導電成形体(2)を得た。
(導通性、絶縁性の評価)
得られた絶縁性微粒子被覆導電性微粒子(2)、異方性導電成形体(2)を用いて、導通性、絶縁性を評価した。
結果を表2に示した。
[Example 5]: Insulating fine particle-coated conductive fine particles (2), anisotropic conductive adhesive composition (2), anisotropic conductive molded body (2)
(Synthesis of conductive fine particles (2))
Conductive fine particles (2) were obtained in the same manner as in Example 1 except that instead of displacement gold plating in Example 1, substitution palladium plating was performed.
The average particle size of the conductive fine particles (2) was 2.8 μm.
(Production of insulating fine particle-coated conductive fine particles (2))
Ultrasonic dispersion was performed in methanol so that the concentration of the insulating fine particles (1) obtained in Example 1 was 5.0% by weight. After adding 50 parts of the conductive fine particles (2) to 100 parts of the methanol dispersion of the obtained insulating fine particles (1) and uniformly dispersing using ultrasonic waves, the methanol is distilled off by an evaporator, The surface of the conductive fine particles (2) was coated with the insulating fine particles (1) to obtain insulating fine particle-coated conductive fine particles (2).
The results are shown in Table 2.
(Manufacture of anisotropic conductive adhesive composition (2))
2 parts of the above-mentioned insulating fine particle-coated conductive fine particles (2) are added to 100 parts of struct bond XN-5A (manufactured by Mitsui Chemicals) as a binder resin, and the insulating fine particle-coated conductive material is added to the binder resin using a planetary stirrer. The anisotropic fine particles (2) were uniformly dispersed to obtain an anisotropic conductive adhesive composition (2).
The obtained anisotropic conductive adhesive composition (2) is diluted with toluene, and then subjected to ultrasonic dispersion treatment for 30 minutes, followed by filtration, taking out the conductive fine particles coated with the conductive fine particles, and insulating with an SEM. The covering state of the conductive fine particles was evaluated.
The results are shown in Table 2.
(Manufacture of anisotropic conductive molded body (2))
The obtained anisotropic conductive adhesive composition (2) was sandwiched between two ITO glass substrates so that the patterns were orthogonal and opposed, and heated and pressurized at 160 ° C. for 20 minutes and with a load of 6 kg / cm 2. An anisotropic conductive molded body (2) was obtained.
(Evaluation of conductivity and insulation)
Using the obtained insulating fine particle-coated conductive fine particles (2) and anisotropic conductive molded body (2), conductivity and insulation were evaluated.
The results are shown in Table 2.

〔実施例6〕:絶縁性微粒子被覆導電性微粒子(3)、異方性導電接着剤組成物(3)、異方性導電成形体(3)
(絶縁性微粒子被覆導電性微粒子(3)の製造)
実施例2で得られた絶縁性微粒子(2)の濃度が5.0重量%になるように、メタノール中に超音波分散させた。得られた絶縁性微粒子(2)のメタノール分散液100部に、上記導電性微粒子(1)50部を加え、超音波を用いて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面を絶縁性微粒子(2)で被覆して、絶縁性微粒子被覆導電性微粒子(3)を得た。
結果を表2に示した。
(異方性導電接着剤組成物(3)の製造)
バインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)100部に上記絶縁性微粒子被覆導電性微粒子(3)を2部加え、遊星式攪拌装置を用いてバインダー樹脂中に絶縁性微粒子被覆導電性微粒子(3)を均一に分散させて、異方性導電接着剤組成物(3)を得た。
得られた異方性導電接着剤組成物(3)をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って、絶縁性微粒子被覆導電性微粒子を取り出し、SEMにて絶縁性微粒子の被覆状態を評価した。
結果を表2に示した。
(異方性導電成形体(3)の製造)
得られた異方性導電接着剤組成物(3)をITOガラス基板2枚の間にパターンが直交および対向するようにして挟み、160℃で20分、加重6kg/cmで加熱および加圧し、異方性導電成形体(3)を得た。
(導通性、絶縁性の評価)
得られた絶縁性微粒子被覆導電性微粒子(3)、異方性導電成形体(3)を用いて、導通性、絶縁性を評価した。
結果を表2に示した。
[Example 6]: Insulating fine particle-coated conductive fine particles (3), anisotropic conductive adhesive composition (3), anisotropic conductive molded body (3)
(Production of insulating fine particle-coated conductive fine particles (3))
Ultrasonic dispersion was performed in methanol so that the concentration of the insulating fine particles (2) obtained in Example 2 was 5.0% by weight. After adding 50 parts of the above-mentioned conductive fine particles (1) to 100 parts of the methanol dispersion liquid of the obtained insulating fine particles (2) and uniformly dispersing using ultrasonic waves, the methanol is distilled off by an evaporator, The surface of the conductive fine particles (1) was coated with the insulating fine particles (2) to obtain the conductive fine particles (3) coated with the insulating fine particles.
The results are shown in Table 2.
(Production of anisotropic conductive adhesive composition (3))
2 parts of the insulating fine particle-coated conductive fine particles (3) are added to 100 parts of struct bond XN-5A (manufactured by Mitsui Chemicals) as a binder resin, and the insulating fine particle-coated conductive material is added to the binder resin using a planetary stirrer. Conductive fine particles (3) were uniformly dispersed to obtain an anisotropic conductive adhesive composition (3).
The obtained anisotropic conductive adhesive composition (3) is diluted with toluene, and then subjected to ultrasonic dispersion treatment for 30 minutes, followed by filtration, taking out the conductive fine particles coated with the insulating fine particles, and insulating with an SEM. The covering state of the conductive fine particles was evaluated.
The results are shown in Table 2.
(Manufacture of anisotropic conductive molded body (3))
The obtained anisotropic conductive adhesive composition (3) was sandwiched between two ITO glass substrates so that the patterns were orthogonal and opposed, and heated and pressurized at 160 ° C. for 20 minutes and with a load of 6 kg / cm 2. An anisotropic conductive compact (3) was obtained.
(Evaluation of conductivity and insulation)
Using the obtained insulating fine particle-coated conductive fine particles (3) and anisotropic conductive molded body (3), conductivity and insulation were evaluated.
The results are shown in Table 2.

〔実施例7〕:絶縁性微粒子被覆導電性微粒子(4)、異方性導電接着剤組成物(4)、異方性導電成形体(4)
(絶縁性微粒子被覆導電性微粒子(4)の製造)
実施例3で得られた絶縁性微粒子(3)の濃度が5.0重量%になるように、メタノール中に超音波分散させた。得られた絶縁性微粒子(3)のメタノール分散液100部に、上記導電性微粒子(1)50部を加え、超音波を用いて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面を絶縁性微粒子(3)で被覆して、絶縁性微粒子被覆導電性微粒子(4)を得た。
結果を表2に示した。
(異方性導電接着剤組成物(4)の製造)
バインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)100部に上記絶縁性微粒子被覆導電性微粒子(4)を2部加え、遊星式攪拌装置を用いてバインダー樹脂中に絶縁性微粒子被覆導電性微粒子(4)を均一に分散させて、異方性導電接着剤組成物(4)を得た。
得られた異方性導電接着剤組成物(4)をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って、絶縁性微粒子被覆導電性微粒子を取り出し、SEMにて絶縁性微粒子の被覆状態を評価した。
結果を表2に示した。
(異方性導電成形体(4)の製造)
得られた異方性導電接着剤組成物(4)をITOガラス基板2枚の間にパターンが直交および対向するようにして挟み、160℃で20分、加重6kg/cmで加熱および加圧し、異方性導電成形体(4)を得た。
(導通性、絶縁性の評価)
得られた絶縁性微粒子被覆導電性微粒子(4)、異方性導電成形体(4)を用いて、導通性、絶縁性を評価した。
結果を表2に示した。
[Example 7]: Insulating fine particle-coated conductive fine particles (4), anisotropic conductive adhesive composition (4), anisotropic conductive molded body (4)
(Production of insulating fine particle-coated conductive fine particles (4))
Ultrasonic dispersion was performed in methanol so that the concentration of the insulating fine particles (3) obtained in Example 3 was 5.0% by weight. After adding 50 parts of the above-mentioned conductive fine particles (1) to 100 parts of the methanol dispersion liquid of the obtained insulating fine particles (3) and uniformly dispersing using ultrasonic waves, the methanol is distilled off with an evaporator, The surface of the conductive fine particles (1) was coated with the insulating fine particles (3) to obtain conductive fine particles (4) coated with the insulating fine particles.
The results are shown in Table 2.
(Manufacture of anisotropic conductive adhesive composition (4))
2 parts of the above-mentioned insulating fine particle-coated conductive fine particles (4) are added to 100 parts of struct bond XN-5A (manufactured by Mitsui Chemicals) as a binder resin, and the insulating fine particle-coated conductive material in the binder resin using a planetary stirrer. Conductive fine particles (4) were uniformly dispersed to obtain an anisotropic conductive adhesive composition (4).
The obtained anisotropic conductive adhesive composition (4) is diluted with toluene, then subjected to ultrasonic dispersion treatment for 30 minutes, and then filtered to take out the conductive fine particles coated with insulating fine particles, and insulate with SEM. The covering state of the conductive fine particles was evaluated.
The results are shown in Table 2.
(Manufacture of anisotropic conductive molded body (4))
The obtained anisotropic conductive adhesive composition (4) was sandwiched between two ITO glass substrates so that the patterns were orthogonal and opposed to each other, and heated and pressurized at 160 ° C. for 20 minutes with a load of 6 kg / cm 2. An anisotropic conductive compact (4) was obtained.
(Evaluation of conductivity and insulation)
Using the obtained insulating fine particle-coated conductive fine particles (4) and anisotropic conductive molded body (4), conductivity and insulation were evaluated.
The results are shown in Table 2.

〔比較例3〕:絶縁性微粒子被覆導電性微粒子(C1)、異方性導電接着剤組成物(C1)、異方性導電成形体(C1)
(絶縁性微粒子被覆導電性微粒子(C1)の製造)
比較例1で得られた絶縁性微粒子(C1)の濃度が5.0重量%になるように、メタノール中に超音波分散させた。得られた絶縁性微粒子(C1)のメタノール分散液100部に、上記導電性微粒子(1)50部を加え、超音波を用いて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面を絶縁性微粒子(C1)で被覆して、絶縁性微粒子被覆導電性微粒子(C1)を得た。
結果を表2に示した。
(異方性導電接着剤組成物(C1)の製造)
バインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)100部に上記絶縁性微粒子被覆導電性微粒子(C1)を2部加え、遊星式攪拌装置を用いてバインダー樹脂中に絶縁性微粒子被覆導電性微粒子(C1)を均一に分散させて、異方性導電接着剤組成物(C1)を得た。
得られた異方性導電接着剤組成物(C1)をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って、絶縁性微粒子被覆導電性微粒子を取り出し、SEMにて絶縁性微粒子の被覆状態を評価した。
結果を表2に示した。
(異方性導電成形体(C1)の製造)
得られた異方性導電接着剤組成物(C1)をITOガラス基板2枚の間にパターンが直交および対向するようにして挟み、160℃で20分、加重6kg/cmで加熱および加圧し、異方性導電成形体(C1)を得た。
(導通性、絶縁性の評価)
得られた絶縁性微粒子被覆導電性微粒子(C1)、異方性導電成形体(C1)を用いて、導通性、絶縁性を評価した。
結果を表2に示した。
[Comparative Example 3]: Insulating fine particle-coated conductive fine particles (C1), anisotropic conductive adhesive composition (C1), anisotropic conductive molded body (C1)
(Production of insulating fine particle-coated conductive fine particles (C1))
Ultrasonic dispersion was performed in methanol so that the concentration of the insulating fine particles (C1) obtained in Comparative Example 1 was 5.0% by weight. After adding 50 parts of the conductive fine particles (1) to 100 parts of the methanol dispersion of the obtained insulating fine particles (C1) and uniformly dispersing using ultrasonic waves, the methanol is distilled off with an evaporator, The surface of the conductive fine particles (1) was coated with the insulating fine particles (C1) to obtain insulating fine particle-coated conductive fine particles (C1).
The results are shown in Table 2.
(Manufacture of anisotropic conductive adhesive composition (C1))
2 parts of the insulating fine particle-coated conductive fine particles (C1) are added to 100 parts of struct bond XN-5A (Mitsui Chemical Co., Ltd.) as a binder resin, and the insulating fine particle coated conductive material is added to the binder resin using a planetary stirrer. Conductive fine particles (C1) were uniformly dispersed to obtain an anisotropic conductive adhesive composition (C1).
The obtained anisotropic conductive adhesive composition (C1) is diluted with toluene, and then subjected to ultrasonic dispersion treatment for 30 minutes, followed by filtration, taking out the insulating fine particle-coated conductive fine particles, and insulating with an SEM. The covering state of the conductive fine particles was evaluated.
The results are shown in Table 2.
(Manufacture of anisotropic conductive molded body (C1))
The obtained anisotropic conductive adhesive composition (C1) was sandwiched between two ITO glass substrates so that the patterns were orthogonal and opposed, and heated and pressurized at 160 ° C. for 20 minutes and with a load of 6 kg / cm 2. An anisotropic conductive molded body (C1) was obtained.
(Evaluation of conductivity and insulation)
Using the obtained insulating fine particle-coated conductive fine particles (C1) and anisotropic conductive molded body (C1), conductivity and insulation were evaluated.
The results are shown in Table 2.

〔比較例4〕:絶縁性微粒子被覆導電性微粒子(C2)、異方性導電接着剤組成物(C2)、異方性導電成形体(C2)
(絶縁性微粒子被覆導電性微粒子(C2)の製造)
比較例2で得られた絶縁性微粒子(C2)の濃度が5.0重量%になるように、メタノール中に超音波分散させた。得られた絶縁性微粒子(C2)のメタノール分散液100部に、上記導電性微粒子(1)50部を加え、超音波を用いて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面を絶縁性微粒子(C2)で被覆して、絶縁性微粒子被覆導電性微粒子(C2)を得た。
結果を表2に示した。
(異方性導電接着剤組成物(C2)の製造)
バインダー樹脂としてのストラクトボンドXN−5A(三井化学社製)100部に上記絶縁性微粒子被覆導電性微粒子(C2)を2部加え、遊星式攪拌装置を用いてバインダー樹脂中に絶縁性微粒子被覆導電性微粒子(C2)を均一に分散させて、異方性導電接着剤組成物(C2)を得た。
得られた異方性導電接着剤組成物(C2)をトルエンに希釈した後、30分間超音波分散処理を行い、次いで濾過を行って、絶縁性微粒子被覆導電性微粒子を取り出し、SEMにて絶縁性微粒子の被覆状態を評価した。
結果を表2に示した。
(異方性導電成形体(C2)の製造)
得られた異方性導電接着剤組成物(C2)をITOガラス基板2枚の間にパターンが直交および対向するようにして挟み、160℃で20分、加重6kg/cmで加熱および加圧し、異方性導電成形体(C2)を得た。
(導通性、絶縁性の評価)
得られた絶縁性微粒子被覆導電性微粒子(C2)、異方性導電成形体(C2)を用いて、導通性、絶縁性を評価した。
結果を表2に示した。
[Comparative Example 4]: Insulating fine particle-coated conductive fine particles (C2), anisotropic conductive adhesive composition (C2), anisotropic conductive molded body (C2)
(Production of insulating fine particle-coated conductive fine particles (C2))
Ultrasonic dispersion was performed in methanol so that the concentration of the insulating fine particles (C2) obtained in Comparative Example 2 was 5.0% by weight. To 100 parts of the resulting dispersion of insulating fine particles (C2) in methanol, 50 parts of the conductive fine particles (1) are added and dispersed uniformly using ultrasonic waves, and then the methanol is distilled off with an evaporator. The surface of the conductive fine particles (1) was coated with insulating fine particles (C2) to obtain conductive fine particles coated with insulating fine particles (C2).
The results are shown in Table 2.
(Manufacture of anisotropic conductive adhesive composition (C2))
2 parts of the insulating fine particle-coated conductive fine particles (C2) are added to 100 parts of struct bond XN-5A (manufactured by Mitsui Chemicals) as a binder resin, and the insulating fine particle-coated conductive material is added to the binder resin using a planetary stirrer. Conductive fine particles (C2) were uniformly dispersed to obtain an anisotropic conductive adhesive composition (C2).
The obtained anisotropic conductive adhesive composition (C2) is diluted with toluene, then subjected to ultrasonic dispersion treatment for 30 minutes, and then filtered to take out the conductive fine particles coated with insulating fine particles, and insulate with SEM. The covering state of the conductive fine particles was evaluated.
The results are shown in Table 2.
(Manufacture of anisotropic conductive molded body (C2))
The obtained anisotropic conductive adhesive composition (C2) was sandwiched between two ITO glass substrates so that the patterns were orthogonal and opposed, and heated and pressurized at 160 ° C. for 20 minutes and with a load of 6 kg / cm 2. An anisotropic conductive molded body (C2) was obtained.
(Evaluation of conductivity and insulation)
Using the obtained insulating fine particle-coated conductive fine particles (C2) and anisotropic conductive molded body (C2), conductivity and insulation were evaluated.
The results are shown in Table 2.

Figure 0005750342
Figure 0005750342

Figure 0005750342
Figure 0005750342

表1、2に示すように、0.10<d/D<2.0を満たす本発明の絶縁性微粒子(実施例1−3)を用いた実施例4−7においては、絶縁性微粒子の被覆率低下度に基づく被覆状態の評価が○(被覆率低下度が10%未満)となっており、絶縁性微粒子が導電性微粒子の表面と強固な密着性を有し、絶縁性微粒子が導電性微粒子の表面から脱落・脱離し難いことが判る。また、実施例4−7においては、導通性と絶縁性の評価がいずれも○となっており、絶縁性微粒子で被覆された絶縁性微粒子被覆導電性微粒子を異方性導電接着剤組成物中に含有させた場合に、本実施例で採用した50000個/mmという高密度の絶縁性微粒子被覆導電性微粒子が存在する異方性導電材料において該絶縁性微粒子被覆導電性微粒子同士が隣接しても、該絶縁性微粒子が十分な弾性を有し、塑性変形しないため、優れた導通性と絶縁性を発揮できることが判る。 As shown in Tables 1 and 2, in Example 4-7 using the insulating fine particles of the present invention (Example 1-3) satisfying 0.10 <d / D <2.0, the insulating fine particles The evaluation of the coating state based on the degree of coverage reduction is ○ (the degree of coverage reduction is less than 10%), the insulating fine particles have strong adhesion to the surface of the conductive fine particles, and the insulating fine particles are conductive. It can be seen that it is difficult for the fine particles to fall off from the surface. Moreover, in Example 4-7, the evaluation of both conductivity and insulation is ○, and the insulating fine particle-coated conductive fine particles coated with the insulating fine particles are contained in the anisotropic conductive adhesive composition. In the anisotropic conductive material having the high density insulating fine particle coated conductive fine particles of 50000 / mm 3 employed in this example, the insulating fine particle coated conductive fine particles are adjacent to each other. However, since the insulating fine particles have sufficient elasticity and do not undergo plastic deformation, it can be seen that excellent conductivity and insulation can be exhibited.

一方、d/Dが0.10以下である絶縁性微粒子(比較例1:d/D=0.09)を用いた比較例3においては、絶縁性微粒子の被覆率低下度に基づく被覆状態の評価が×(被覆率低下度が10%以上)となっており、絶縁性微粒子が導電性微粒子の表面と十分な密着性を有さず、絶縁性微粒子が導電性微粒子の表面から脱落・脱離し易くなっていることが判る。また、比較例3においては、絶縁性の評価が×となっており、優れた絶縁性が発揮できないことが判る。   On the other hand, in Comparative Example 3 using insulating fine particles having a d / D of 0.10 or less (Comparative Example 1: d / D = 0.09), the coating state based on the degree of decrease in the coverage of the insulating fine particles The evaluation is x (the degree of coverage reduction is 10% or more), the insulating fine particles do not have sufficient adhesion to the surface of the conductive fine particles, and the insulating fine particles are dropped from the surface of the conductive fine particles. It turns out that it is easy to release. Moreover, in the comparative example 3, evaluation of insulation is x and it turns out that the outstanding insulation cannot be exhibited.

また、d/Dが2.0以上である絶縁性微粒子(比較例2:d/D=2.10)を用いた比較例4においては、絶縁性の評価が×となっており、優れた絶縁性が発揮できないことが判る。   Further, in Comparative Example 4 using insulating fine particles having a d / D of 2.0 or more (Comparative Example 2: d / D = 2.10), the evaluation of insulating property was x, which was excellent. It turns out that insulation cannot be demonstrated.

本発明の絶縁性微粒子は、絶縁性微粒子被覆導電性微粒子に用いることで、それを電気接続用異方導電材料として好適に用いることができる。   The insulating fine particles of the present invention can be suitably used as an anisotropic conductive material for electrical connection by using the insulating fine particles coated conductive fine particles.

Claims (6)

コア層の外周にシェル層を備えるコアシェル構造を有する、導電性微粒子被覆用の絶縁性微粒子であって、
該コア層がビニル重合体を含み、該シェル層がアミノ樹脂を含み、
該コア部の直径をDnm、該シェル部の厚みをdnmとしたときに、0.10<d/D<2.0である、
導電性微粒子被覆用の絶縁性微粒子。
Insulating fine particles for coating conductive fine particles, having a core-shell structure with a shell layer on the outer periphery of the core layer,
The core layer comprises a vinyl polymer, the shell layer comprises an amino resin,
When the diameter of the core part is Dnm and the thickness of the shell part is dnm, 0.10 <d / D <2.0.
Insulating fine particles for coating conductive fine particles.
導電性微粒子の表面に請求項1に記載の絶縁性微粒子が存在してなる、絶縁性微粒子被覆導電性微粒子。   2. Conductive fine particles coated with insulating fine particles, wherein the insulating fine particles according to claim 1 are present on the surface of the conductive fine particles. 前記導電性微粒子の最表面に、金、パラジウム、銀、銅、錫、およびこれらの合金から選ばれる少なくとも1種を有する、請求項2に記載の絶縁性微粒子被覆導電性微粒子。   The insulating fine particle-coated conductive fine particles according to claim 2, comprising at least one selected from gold, palladium, silver, copper, tin, and alloys thereof on the outermost surface of the conductive fine particles. 前記導電性微粒子の平均粒子径が1.0μm〜5.0μmである、請求項2または3に記載の絶縁性微粒子被覆導電性微粒子。   The insulating fine particle-coated conductive fine particles according to claim 2 or 3, wherein the conductive fine particles have an average particle diameter of 1.0 µm to 5.0 µm. 請求項2から4までのいずれかに記載の絶縁性微粒子被覆導電性微粒子がバインダー樹脂中に分散してなる、異方性導電接着剤組成物。   An anisotropic conductive adhesive composition comprising the insulating fine particle-coated conductive fine particles according to any one of claims 2 to 4 dispersed in a binder resin. 請求項5に記載の異方性導電接着剤組成物から得られる、異方性導電成形体。

An anisotropic conductive molded body obtained from the anisotropic conductive adhesive composition according to claim 5.

JP2011198432A 2011-09-12 2011-09-12 Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body Active JP5750342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198432A JP5750342B2 (en) 2011-09-12 2011-09-12 Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198432A JP5750342B2 (en) 2011-09-12 2011-09-12 Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Publications (2)

Publication Number Publication Date
JP2013062069A JP2013062069A (en) 2013-04-04
JP5750342B2 true JP5750342B2 (en) 2015-07-22

Family

ID=48186577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198432A Active JP5750342B2 (en) 2011-09-12 2011-09-12 Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Country Status (1)

Country Link
JP (1) JP5750342B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821552B2 (en) * 2011-11-10 2015-11-24 日立化成株式会社 Water-repellent conductive particles, anisotropic conductive material, and conductive connection structure
JP5821551B2 (en) * 2011-11-10 2015-11-24 日立化成株式会社 Conductive particles, anisotropic conductive materials, and conductive connection structures
JP6739988B2 (en) * 2015-04-30 2020-08-12 積水化学工業株式会社 Base particle, method for producing base particle, conductive particle, conductive material, and connection structure
JP6897038B2 (en) * 2016-09-16 2021-06-30 昭和電工マテリアルズ株式会社 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686120B2 (en) * 2003-11-11 2011-05-18 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP5554077B2 (en) * 2009-09-15 2014-07-23 株式会社日本触媒 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Also Published As

Publication number Publication date
JP2013062069A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP5140209B2 (en) Conductive fine particles, resin particles and anisotropic conductive material using the same
JP5245021B1 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5583647B2 (en) Conductive fine particles and anisotropic conductive material using the same
KR20140106510A (en) Conductive fine particles and anisotropically conductive material containing same
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5750342B2 (en) Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP5466022B2 (en) Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5667557B2 (en) Conductive fine particles and anisotropic conductive materials
JP5856379B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5711105B2 (en) Conductive fine particles and anisotropic conductive materials
JP5554077B2 (en) Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP2012221952A (en) Conductive particulate and anisotropic conductive material using the same
JP5951977B2 (en) Conductive fine particles
JP5917318B2 (en) Conductive fine particles
JP2013120658A (en) Conductive fine particle and anisotropic conductive material including the same
JP2007299640A (en) Conductive fine particle and anisotropic conductive material
JP5583572B2 (en) Conductive fine particles
JP5581276B2 (en) Conductive fine particles
JP5883283B2 (en) Conductive particles and anisotropic conductive materials
JP5583611B2 (en) Conductive fine particles
JP5667555B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5536634B2 (en) Conductive fine particles
JP5670133B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5750342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150