JP6897038B2 - Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this - Google Patents

Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this Download PDF

Info

Publication number
JP6897038B2
JP6897038B2 JP2016181813A JP2016181813A JP6897038B2 JP 6897038 B2 JP6897038 B2 JP 6897038B2 JP 2016181813 A JP2016181813 A JP 2016181813A JP 2016181813 A JP2016181813 A JP 2016181813A JP 6897038 B2 JP6897038 B2 JP 6897038B2
Authority
JP
Japan
Prior art keywords
electrode
conductive particles
manufacturing
layer
circuit member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016181813A
Other languages
Japanese (ja)
Other versions
JP2018046238A (en
Inventor
千絵 須鎌
千絵 須鎌
敏光 森谷
敏光 森谷
高橋 裕之
裕之 高橋
芳則 江尻
芳則 江尻
邦彦 赤井
邦彦 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016181813A priority Critical patent/JP6897038B2/en
Publication of JP2018046238A publication Critical patent/JP2018046238A/en
Application granted granted Critical
Publication of JP6897038B2 publication Critical patent/JP6897038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、接続構造体及びその製造方法、端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型に関する。 The present invention relates to a connection structure and a method for manufacturing the same, a method for manufacturing an electrode with a terminal, and conductive particles, a kit, and a transfer type used therein.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装と、COF(Chip−on−Flex)実装との二種に大別することができる。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう「異方性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。 The method of mounting the liquid crystal driving IC on the glass panel for liquid crystal display can be roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, the liquid crystal driving IC is directly bonded onto the glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, liquid crystal driving ICs are bonded to a flexible tape having metal wiring, and they are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The term "anisotropic" as used herein means that the material conducts in the pressurized direction and maintains the insulating property in the non-pressurized direction.

ところで、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金属バンプは狭ピッチ化及び狭面積化しており、そのため、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させるおそれがある。特にCOG実装ではその傾向が顕著である。隣接する回路電極間に導電粒子が流出すると、金属バンプとガラスパネルとの間に捕捉される異方導電性接着剤中の導電粒子数が減少し、対面する回路電極間の接続抵抗が上昇する接続不良を起こすおそれがある。このような傾向は、単位面積あたり2万個/mm未満の導電粒子を投入すると、より顕著である。 By the way, with the recent increase in the definition of the liquid crystal display, the metal bumps, which are the circuit electrodes of the liquid crystal driving IC, have become narrower in pitch and area, and therefore, the circuits in which the conductive particles of the anisotropic conductive adhesive are adjacent to each other. It may flow out between the electrodes and cause a short circuit. This tendency is particularly remarkable in COG mounting. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive captured between the metal bump and the glass panel decreases, and the connection resistance between the facing circuit electrodes increases. There is a risk of connection failure. Such a tendency becomes more remarkable when less than 20,000 conductive particles / mm 2 are charged per unit area.

これらの問題を解決する方法として、導電粒子(母粒子)の表面に複数の絶縁粒子(子粒子)を付着させ、複合粒子を形成させる方法が提案されている。例えば、特許文献1,2では導電粒子の表面に球状の樹脂粒子を付着させる方法が提案されている。更に単位面積あたり7万個/mm以上の導電粒子を投入した場合であっても、絶縁信頼性に優れた絶縁被覆導電粒子が提案されており、特許文献3では、第1の絶縁粒子と、第1の絶縁粒子よりもガラス転移温度が低い第2の絶縁粒子が導電粒子の表面に付着された絶縁被覆導電粒子が提案されている。 As a method for solving these problems, a method has been proposed in which a plurality of insulating particles (child particles) are attached to the surface of conductive particles (mother particles) to form composite particles. For example, Patent Documents 1 and 2 propose a method of adhering spherical resin particles to the surface of conductive particles. Further, even when 70,000 pieces / mm 2 or more conductive particles are charged per unit area, insulation-coated conductive particles having excellent insulation reliability have been proposed. In Patent Document 3, the first insulating particles are used. , An insulating coated conductive particle in which a second insulating particle having a glass transition temperature lower than that of the first insulating particle is attached to the surface of the conductive particle has been proposed.

特許第4773685号公報Japanese Patent No. 4773685 特許第3869785号公報Japanese Patent No. 3869785 特開2014−17213号公報Japanese Unexamined Patent Publication No. 2014-17213

ところで、電気的に互いに接続すべき回路部材の接続箇所が微小(例えばバンプ面積2000μm未満)である場合、安定した導通信頼性を得るために導電粒子を増やすことが好ましい。このような理由から、単位面積あたり10万個/mm以上の導電粒子を投入する場合もでてきている。しかしながら、このように接続箇所が微小である場合、特許文献1〜3に記載の絶縁被覆導電粒子を用いたとしても、導通信頼性と絶縁信頼性のバランスを取ることは難しく、未だ改善の余地があった。 By the way, when the connection points of the circuit members to be electrically connected to each other are very small (for example, the bump area is less than 2000 μm 2 ), it is preferable to increase the number of conductive particles in order to obtain stable conduction reliability. For this reason, it has come out even if you put 100,000 / mm 2 or more of the conductive particles per unit area. However, when the connection points are minute in this way, it is difficult to balance the conduction reliability and the insulation reliability even if the insulating coated conductive particles described in Patent Documents 1 to 3 are used, and there is still room for improvement. was there.

本発明は、上記課題に鑑みてなされたものであり、電気的に互いに接続すべき回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法を提供することを目的とする。また、本発明は、上記接続構造体を製造するのに有用な端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型を提供することを目的とする。 The present invention has been made in view of the above problems, and is a connection structure having excellent insulation reliability and conduction reliability even if the connection points of circuit members to be electrically connected to each other are minute. It is an object of the present invention to provide a manufacturing method. Another object of the present invention is to provide a method for manufacturing an electrode with a terminal useful for manufacturing the above-mentioned connection structure, and conductive particles, a kit, and a transfer type used for the method.

上記課題を解決するため、本発明者らは従来の手法では絶縁抵抗値が低下する理由について検討した。その結果、特許文献1,2に記載の発明では、導電粒子の表面に被覆されている絶縁粒子の被覆性が低く、単位面積あたり2万個/mm程度又はこれ未満の導電粒子の投入量であっても、絶縁抵抗値が低下しやすいことが分かった。 In order to solve the above problems, the present inventors have investigated the reason why the insulation resistance value is lowered by the conventional method. As a result, in the inventions described in Patent Documents 1 and 2, the covering property of the insulating particles coated on the surface of the conductive particles is low, and the input amount of the conductive particles of about 20,000 particles / mm 2 or less per unit area. Even so, it was found that the insulation resistance value tends to decrease.

特許文献3に記載の発明においては、特許文献1,2に記載の発明の欠点を補うため、第1の絶縁粒子と、第1の絶縁粒子よりもガラス転移温度が低い第2の絶縁粒子を導電粒子の表面に付着させている。これにより、導電粒子の投入量が単位面積あたり7万個/mm程度であれば絶縁抵抗値が十分に高い状態を維持できる。しかし、導電粒子の投入量が単位面積あたり10万個/mm以上ともなると絶縁抵抗値が不十分となる可能性があることが分かった。 In the invention described in Patent Document 3, in order to compensate for the shortcomings of the inventions described in Patent Documents 1 and 2, the first insulating particles and the second insulating particles having a lower glass transition temperature than the first insulating particles are used. It is attached to the surface of conductive particles. As a result, if the input amount of the conductive particles is about 70,000 particles / mm 2 per unit area, the insulation resistance value can be maintained at a sufficiently high state. However, it was found that the insulation resistance value may be insufficient when the input amount of the conductive particles is 100,000 particles / mm 2 or more per unit area.

本発明は本発明者らの上記知見に基づいてなされたものである。本発明は接続構造体の製造方法を提供する。すなわち、本発明に係る接続構造体の製造方法は以下の工程を含む。
・第一の基板と、第一の基板に設けられた第一の電極とを有する第一の回路部材を準備すること。
・第一の電極と電気的に接続される第二の電極を有する第二の回路部材を準備すること。
・粒径が2.0〜40μmである複数の導電粒子を準備すること。
・第一の電極の表面に上記複数の導電粒子を配置すること。
・第一の電極と、第一の電極の表面に配置された複数の導電粒子とを覆うめっき層を形成すること。
・第一の回路部材の一方の面であって導電粒子とともにめっき層によって覆われている第一の電極を有する面と、第二の回路部材の一方の面であって第二の電極を有する面との間に絶縁樹脂層を形成すること。
・第一の回路部材と絶縁樹脂層と第二の回路部材と含む積層体を当該積層体の厚さ方向の押圧した状態で加熱することによって第一の電極と第二の電極とを電気的に接続し且つ第一の回路部材と第二の回路部材と接着すること。
The present invention has been made based on the above findings of the present inventors. The present invention provides a method for manufacturing a connection structure. That is, the method for manufacturing the connection structure according to the present invention includes the following steps.
-Preparing a first circuit member having a first substrate and a first electrode provided on the first substrate.
-Prepare a second circuit member with a second electrode that is electrically connected to the first electrode.
-Prepare a plurality of conductive particles having a particle size of 2.0 to 40 μm.
-Place the above-mentioned plurality of conductive particles on the surface of the first electrode.
-Forming a plating layer that covers the first electrode and a plurality of conductive particles arranged on the surface of the first electrode.
One surface of the first circuit member having the first electrode covered with the conductive particles by the plating layer, and one surface of the second circuit member having the second electrode. To form an insulating resin layer between the surface and the surface.
-The first electrode and the second electrode are electrically heated by heating the laminate including the first circuit member, the insulating resin layer, and the second circuit member in a pressed state in the thickness direction of the laminate. And adhere to the first circuit member and the second circuit member.

上記接続構造体の製造方法によれば、第一の電極の表面に複数の導電粒子をめっき層で覆うことによってこれらをそれぞれ固定することで、電気的に互いに接続すべき第一の電極と第二の電極との間に導電粒子を十分安定的に配置することができる。これにより、第一の電極と第二の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を十分に効率的且つ安定的に製造することができる。すなわち、第一の電極の表面においてめっき層に覆われた状態の導電粒子がバンプ(接続用突起)の役割を果たすことで、従来技術のように異方性導電材料に含まれる無数の導電粒子が絶縁性を確保すべき隣接する電極間に流出することによって当該電極間でショートが発生することを高度に抑制できる。 According to the method for manufacturing the connection structure, the first electrode and the first electrode to be electrically connected to each other are fixed by covering the surface of the first electrode with a plurality of conductive particles with a plating layer. Conductive particles can be sufficiently stably arranged between the two electrodes. As a result, even if the connection portion between the first electrode and the second electrode is minute, it is possible to sufficiently efficiently and stably manufacture a connection structure having excellent insulation reliability and conduction reliability. .. That is, the conductive particles covered with the plating layer on the surface of the first electrode act as bumps (connecting protrusions), so that innumerable conductive particles contained in the anisotropic conductive material as in the prior art. It is possible to highly suppress the occurrence of a short circuit between the electrodes due to the outflow between the adjacent electrodes for which the insulating property should be ensured.

本発明は端子付き電極の製造方法を提供する。すなわち、本発明に係る端子付き電極の製造方法は以下の工程を含むものである。
・基板と、基板に設けられた電極とを有する回路部材を準備すること。
・粒径2.0〜40μmである複数の導電粒子を準備すること。
・電極の表面に上記複数の導電粒子を配置すること。
・電極と、電極の表面に配置された複数の導電粒子とを覆うめっき層を形成すること。
The present invention provides a method for manufacturing an electrode with a terminal. That is, the method for manufacturing an electrode with a terminal according to the present invention includes the following steps.
-Prepare a circuit member having a substrate and electrodes provided on the substrate.
-Prepare a plurality of conductive particles having a particle size of 2.0 to 40 μm.
-Place the above-mentioned plurality of conductive particles on the surface of the electrode.
-Forming a plating layer that covers the electrode and a plurality of conductive particles arranged on the surface of the electrode.

上記端子付き電極の製造方法によれば、電極の表面においてめっき層に覆われた状態の導電粒子がバンプ(接続用突起)の役割を果たすことができる。これにより、この電極と、この回路部材と電気的に接続すべき他の回路部材の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を十分に効率的且つ安定的に製造するのに有用である。 According to the above-mentioned method for manufacturing an electrode with terminals, conductive particles covered with a plating layer on the surface of the electrode can serve as bumps (connecting protrusions). As a result, even if the connection point between this electrode and the electrode of another circuit member to be electrically connected to this circuit member is very small, a connection structure having excellent insulation reliability and conduction reliability can be sufficiently provided. It is useful for efficient and stable production.

本発明において、電極(第一の電極)に複数の導電粒子を配置するとともに、これらをその位置に融着させるために、転写型を使用してもよい。すなわち、本発明に係る接続構造体の製造方法又は端子付き電極の製造方法は、電極(第一の電極)における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型を準備すること;複数の開口部に導電粒子を収容することを更に含み、回路部材(第一の回路部材)と転写型とを重ね合せることにより、電極(第一の電極)の表面に転写型の開口部にそれぞれ収容されている導電粒子を配置し、回路部材(第一の回路部材)と転写型とを重ね合せた状態において、電極(第一の電極)と、電極(第一の電極)の表面に配置された複数の導電粒子とを覆うめっき層を形成してもよい。 In the present invention, a transfer type may be used in order to dispose a plurality of conductive particles on the electrode (first electrode) and fuse them to the positions. That is, the method for manufacturing a connection structure or the method for manufacturing an electrode with a terminal according to the present invention is a transfer having a plurality of openings at positions corresponding to positions where a plurality of conductive particles are arranged on the electrode (first electrode). Preparing the mold; further including accommodating conductive particles in multiple openings, by superimposing the circuit member (first circuit member) and the transfer mold on the surface of the electrode (first electrode). Conductive particles housed in each of the openings of the transfer mold are arranged, and in a state where the circuit member (first circuit member) and the transfer mold are overlapped with each other, the electrode (first electrode) and the electrode (first electrode) A plating layer may be formed to cover a plurality of conductive particles arranged on the surface of the electrode).

本発明は上記転写型を提供する。すなわち、本発明に係る転写型は上記接続構造体の製造方法又は上記端子付き電極の製造方法において使用されるものであって、電極表面における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する。この転写型によれば、電極表面の所定の位置に微細な複数の導電粒子(粒径2.0〜40μm)を効率的に配置し且つ融着できる。 The present invention provides the above transfer type. That is, the transfer type according to the present invention is used in the method for manufacturing the connection structure or the method for manufacturing the electrode with terminals, and is located at a position corresponding to a position on the surface of the electrode where a plurality of conductive particles are arranged. It has multiple openings. According to this transfer type, a plurality of fine conductive particles (particle size 2.0 to 40 μm) can be efficiently arranged and fused at a predetermined position on the electrode surface.

転写型の開口部は、当該開口部の奥側から転写型の表面側に向けて開口面積が拡大するテーパ状に形成されていることが好ましい。また転写型は可撓性を有する樹脂材料からなることが好ましい。これらの構成を採用することで、導電粒子の粒度分布にある程度の幅があっても、これよりも粒度分布の幅が狭い複数の導電粒子を容易に選択し、これらを電極表面に配置することができる。すなわち、転写型の開口部のサイズよりも小さい導電粒子は開口部に一旦収容されたとしても例えば開口部が形成されている面を下に向ければ落下し、一方、凹部のサイズよりも大きい導電粒子は凹部に収容されない。開口部のサイズに合う導電粒子が開口部に嵌り込み、この状態を維持したまま、転写型の開口部が形成されている面を電極表面に当接させることで電極表面に複数の導電粒子を開口部の形成パターンに則して配置することができる。 The transfer mold opening is preferably formed in a tapered shape in which the opening area expands from the back side of the opening toward the surface side of the transfer mold. The transfer type is preferably made of a flexible resin material. By adopting these configurations, even if the particle size distribution of the conductive particles has a certain width, a plurality of conductive particles having a narrower particle size distribution can be easily selected and arranged on the electrode surface. Can be done. That is, even if conductive particles smaller than the size of the transfer type opening are once housed in the opening, they will fall if, for example, the surface on which the opening is formed faces downward, while conductivity larger than the size of the recess. The particles are not contained in the recess. Conductive particles that match the size of the opening are fitted into the opening, and while maintaining this state, the surface on which the transfer-type opening is formed is brought into contact with the electrode surface, so that a plurality of conductive particles are formed on the electrode surface. It can be arranged according to the formation pattern of the opening.

本発明は導電粒子を提供する。すなわち、本発明に係る導電粒子は、上記接続構造体の製造方法又は上記端子付き電極の製造方法において使用されるものであって、粒径2.0〜40μmである。 The present invention provides conductive particles. That is, the conductive particles according to the present invention are used in the method for manufacturing the connection structure or the method for manufacturing the electrode with terminals, and have a particle size of 2.0 to 40 μm.

本発明は接続構造体を提供する。すなわち、本発明に係る接続構造体は、第一の基板と、第一の基板に設けられた第一の電極とを有する第一の回路部材と;第一の電極と電気的に接続されている第二の電極を有する第二の回路部材と、第一の電極と第二の電極との間に介在する上記導電粒子と、第一の電極と複数の導電粒子とを覆うめっき層と、第一の回路部材と第二の回路部材との間に設けられ、第一の回路部材と第二の回路部材と接着している絶縁樹脂層とを備える。この接続構造体によれば、電極の表面においてめっき層に覆われた状態の導電粒子がバンプ(接続用突起)の役割を果たしているため、第一の電極と第二の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方を十分高水準に達成できる。 The present invention provides a connection structure. That is, the connection structure according to the present invention has a first substrate and a first circuit member having a first electrode provided on the first substrate; and is electrically connected to the first electrode. A second circuit member having the second electrode, the conductive particles interposed between the first electrode and the second electrode, and a plating layer covering the first electrode and the plurality of conductive particles. An insulating resin layer provided between the first circuit member and the second circuit member and adhering to the first circuit member and the second circuit member is provided. According to this connection structure, the conductive particles covered with the plating layer on the surface of the electrode play the role of bumps (projections for connection), so that the connection points between the first electrode and the second electrode are minute. Even so, both insulation reliability and conduction reliability can be achieved at a sufficiently high level.

本発明は端子付き電極を製造するためのキットを提供する。すなわち、本発明に係るキットは、上記導電粒子と、一種又は二種以上の電解めっき液と、電極表面における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型とを備える。このキットによれば、電極表面の所定の位置に微細な複数の導電粒子(粒径2.0〜40μm)をめっき層によってそれぞれ十分安定的に固定できる。 The present invention provides a kit for manufacturing an electrode with a terminal. That is, the kit according to the present invention is a transfer type having a plurality of openings at positions corresponding to the above-mentioned conductive particles, one or more kinds of electrolytic plating solutions, and a plurality of conductive particles arranged on the electrode surface. And. According to this kit, a plurality of fine conductive particles (particle size 2.0 to 40 μm) can be sufficiently stably fixed at predetermined positions on the electrode surface by the plating layer.

本発明において、導電粒子は、基材粒子と、基材粒子の表面に形成された金属層とを備えることが好ましい。上記基材粒子の粒径は例えば1.5〜10μmであればよい。上記基材粒子は樹脂からなることが好ましい。樹脂からなる基材粒子は、回路接続体の接続部分に衝撃が加わった場合にその衝撃を吸収しやすく、回路接続体の接続信頼性の向上に寄与する。 In the present invention, the conductive particles preferably include base particles and a metal layer formed on the surface of the base particles. The particle size of the base particles may be, for example, 1.5 to 10 μm. The base material particles are preferably made of resin. When an impact is applied to the connection portion of the circuit connection, the base particle made of resin easily absorbs the impact and contributes to the improvement of the connection reliability of the circuit connection.

金属層は十分に高い導電性を確保できる限り、単層構造であっても多層構造であってもよい。金属層は、ニッケル又はニッケル合金を含む第一金属層を少なくとも含むことが好ましい。ニッケル又はニッケル合金を含む第一金属層を安定的に残存させて十分に優れた接続信頼性を得る観点から、第一金属層のニッケル含有率は85〜98質量%であることが好ましい。第一金属層としてニッケル又はニッケル合金を含む層を採用した場合、第一金属層はリン及びホウ素の少なくとも一方を含んでもよい。第一金属層に含まれるリン及び/又はホウ素は、例えば、金属層が多層構造である場合、金属層を構成する他の層からの元素が第一金属層に拡散することを抑制する。これにより導電粒子の信頼性を良好に保つことができる。 The metal layer may have a single-layer structure or a multi-layer structure as long as sufficiently high conductivity can be ensured. The metal layer preferably contains at least a first metal layer containing nickel or a nickel alloy. The nickel content of the first metal layer is preferably 85 to 98% by mass from the viewpoint of stably remaining the first metal layer containing nickel or a nickel alloy to obtain sufficiently excellent connection reliability. When a layer containing nickel or a nickel alloy is adopted as the first metal layer, the first metal layer may contain at least one of phosphorus and boron. Phosphorus and / or boron contained in the first metal layer suppresses the diffusion of elements from other layers constituting the metal layer into the first metal layer, for example, when the metal layer has a multi-layer structure. As a result, the reliability of the conductive particles can be kept good.

回路部材(第一の回路部材)の電極(第一の電極)を構成する材料として、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物が挙げられる。 Examples of the material constituting the electrode (first electrode) of the circuit member (first circuit member) include copper, nickel, palladium, gold, silver, alloys thereof, and indium tin oxide.

本発明によれば、電気的に互いに接続すべき回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法が提供される。また、本発明によれば、上記接続構造体を製造するのに有用な端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型が提供される。 According to the present invention, there is provided a connection structure and a method for manufacturing the same, which are excellent in both insulation reliability and conduction reliability even if the connection points of circuit members to be electrically connected to each other are minute. Further, according to the present invention, there is provided a method for manufacturing an electrode with a terminal useful for manufacturing the above-mentioned connection structure, and conductive particles, a kit and a transfer type used for the method.

図1は本発明に係る導電粒子の一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an embodiment of conductive particles according to the present invention. 図2は図1に示す導電粒子をめっき層によって覆うことによって形成された端子付き電極を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an electrode with a terminal formed by covering the conductive particles shown in FIG. 1 with a plating layer. 図3は図1に示すめっき層を第二のめっき層によって更に覆うことによって形成された端子付き電極を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an electrode with a terminal formed by further covering the plating layer shown in FIG. 1 with a second plating layer. 図4は本発明に係る接続構造体の一部を拡大して示す図であって、導電粒子及びめっき層によって第一の電極と第二の電極が電気的に接続された状態の一例を模式的に示す断面図である。FIG. 4 is an enlarged view showing a part of the connection structure according to the present invention, and is a schematic example of a state in which the first electrode and the second electrode are electrically connected by conductive particles and a plating layer. It is a cross-sectional view which shows. 図5は本発明に係る接続構造体の一実施形態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an embodiment of the connection structure according to the present invention. 図6(a)〜図6(c)は第一の回路部材に端子付き電極を形成する過程の一部(前半)の一例を模式的に示す断面図である。6 (a) to 6 (c) are cross-sectional views schematically showing an example of a part (first half) of the process of forming an electrode with a terminal on the first circuit member. 図7(a)及び図7(b)は第一の回路部材に端子付き電極を形成する過程の一部(後半)の一例を模式的に示す断面図である。7 (a) and 7 (b) are cross-sectional views schematically showing an example of a part (second half) of the process of forming an electrode with a terminal on the first circuit member. 図8(a)は本発明に係る転写型の一実施形態を模式的に示す平面図であり、図8(b)は図8(a)に示すb−b線における断面図である。8 (a) is a plan view schematically showing one embodiment of the transfer type according to the present invention, and FIG. 8 (b) is a cross-sectional view taken along the line bb shown in FIG. 8 (a). 図9は転写型の凹部(開口部)に導電粒子が捕捉された状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state in which conductive particles are trapped in a transfer type recess (opening). 図10(a)は転写型の一例を示すSEM写真であり、図10(b)は図10(a)に示す転写型の複数の開口部に導電粒子がそれぞれ配置された状態を示すSEM写真である。FIG. 10A is an SEM photograph showing an example of the transfer type, and FIG. 10B is an SEM photograph showing a state in which conductive particles are arranged in a plurality of openings of the transfer type shown in FIG. 10A. Is. 図11(a)〜図11(d)は図7(a)に示す端子付き電極が形成された第一の回路部材と、第二の回路部材とを備える接続構造体を形成する過程の一例を模式的に示す断面図である。11 (a) to 11 (d) are examples of a process of forming a connection structure including a first circuit member on which an electrode with a terminal shown in FIG. 7 (a) is formed and a second circuit member. It is sectional drawing which shows typically. 図12は各電極に計八個の導電粒子が融着した回路部材を模式的に示す平面図である。FIG. 12 is a plan view schematically showing a circuit member in which a total of eight conductive particles are fused to each electrode. 図13は各電極に計四個の導電粒子が融着した回路部材を模式的に示す平面図である。FIG. 13 is a plan view schematically showing a circuit member in which a total of four conductive particles are fused to each electrode.

以下、本発明に実施形態について説明する。本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. Unless otherwise specified, the materials exemplified below may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. The numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.

<導電粒子>
図1に示す導電粒子10は、基材粒子1と、基材粒子1の表面に形成された二層構造の金属層3とを備えた球状の粒子である。導電粒子10は、回路接続に先立って電極32の表面に電解めっき層(めっき層)5によって固定されるものである(図2参照)。したがって、特許文献1〜3に記載の従来の異方導電性接着剤に配合される導電粒子と異なり、粒子表面に絶縁粒子が付着していないものである。なお、本明細書でいう球状とは、真球だけでなく、楕円体、任意の回転体等も含み、例えば、アスペクト比としては、0.5以上であってもよく、0.8以上であってもよい。
<Conductive particles>
The conductive particles 10 shown in FIG. 1 are spherical particles including the base particles 1 and the metal layer 3 having a two-layer structure formed on the surface of the base particles 1. The conductive particles 10 are fixed to the surface of the electrode 32 by an electrolytic plating layer (plating layer) 5 prior to circuit connection (see FIG. 2). Therefore, unlike the conductive particles blended in the conventional anisotropic conductive adhesives described in Patent Documents 1 to 3, the insulating particles do not adhere to the particle surface. The sphere referred to in the present specification includes not only a true sphere but also an ellipsoid, an arbitrary rotating body, and the like. For example, the aspect ratio may be 0.5 or more, and 0.8 or more. There may be.

導電粒子10の粒径は、例えば2.0〜40μmであり、3〜20μm又は3.5〜10μmであってもよい。導電粒子10の粒径が2.5μm以上であれば、導電粒子に衝撃が加わっても導電粒子がその衝撃を十分に吸収できる傾向にあり、他方、粒径が15μm以下であれば、導電粒子の粒径のばらつきを十分に小さくでき、これにより導通信頼性及び絶縁信頼性を両立させやすい。導電粒子10の粒径は、走査電子顕微鏡(以下、SEM)を用いた観察により測定することができる。すなわち、導電粒子の平均粒径は、任意の導電粒子300個についてSEMを用いた観察により粒径の測定を行い、それらの平均値をとることにより得られる。 The particle size of the conductive particles 10 is, for example, 2.0 to 40 μm, and may be 3 to 20 μm or 3.5 to 10 μm. If the particle size of the conductive particles 10 is 2.5 μm or more, the conductive particles tend to be able to sufficiently absorb the impact even if an impact is applied to the conductive particles, while if the particle size is 15 μm or less, the conductive particles tend to be sufficiently absorbed. The variation in the particle size of the particles can be sufficiently reduced, which makes it easy to achieve both conduction reliability and insulation reliability. The particle size of the conductive particles 10 can be measured by observation using a scanning electron microscope (hereinafter, SEM). That is, the average particle size of the conductive particles can be obtained by measuring the particle size of 300 arbitrary conductive particles by observing with SEM and taking the average value thereof.

[基材粒子]
基材粒子1は、球状であり且つ非導電性の材料からなる。基材粒子1の粒径は例えば1.5〜10μmであり、2〜10μmであってもよい。粒径が1.5μm以上であれば、導電粒子に衝撃が加わっても基材粒子1がその衝撃を十分に吸収できる傾向にあり、他方、粒径が10μm以下であれば、基材粒子1の粒径のばらつきを十分に小さくできる傾向にある。基材粒子1の粒径は、SEMを用いた観察により測定することができる。基材粒子1の平均粒径は、任意の基材粒子300個についてSEMを用いた観察により粒径の測定を行い、それらの平均値をとることにより得られる。
[Base particles]
The base particle 1 is made of a spherical and non-conductive material. The particle size of the base particle 1 is, for example, 1.5 to 10 μm, and may be 2 to 10 μm. If the particle size is 1.5 μm or more, the base particle 1 tends to be able to sufficiently absorb the impact even if an impact is applied to the conductive particles, while if the particle size is 10 μm or less, the base particle 1 tends to be sufficiently absorbed. There is a tendency that the variation in particle size can be made sufficiently small. The particle size of the base particle 1 can be measured by observation using an SEM. The average particle size of the base particle 1 is obtained by measuring the particle size of 300 arbitrary base particles by observation using SEM and taking the average value thereof.

基材粒子1の材質としては、特に限定されないが、樹脂又はシリカを採用できる。これらの具体例としては、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ガラス;シリカなどが挙げられる。基材粒子1として樹脂粒子を採用する場合、例えば、架橋アクリル粒子、架橋ポリスチレン粒子等を使用可能である。はんだによるリフロー接続を行うことを想定すると、基材粒子1のガラス転移点(Tg)は、はんだの融点よりも高いことが好ましい。一般的に普及しているSn−3質量%Ag−0.5質量%Cuを例にとると、その融点は217〜219℃であることから、基材粒子1としてはTgが例えば220℃以上の材料を採用すればよい。かかる材料を採用することで、リフロー接続のためにはんだを溶融させても、その温度が基材粒子1のTg未満であれば、基材粒子1の変形が十分に抑制されるため、導電粒子10に含まれる基材粒子1が優れた寸法安定性を示し、これにより良好な接続信頼性と絶縁信頼性を得られる傾向にある。 The material of the base particle 1 is not particularly limited, but resin or silica can be adopted. Specific examples of these include acrylic resins such as polymethylmethacrylate and polymethylacrylate; polyolefin resins such as polyethylene, polypropylene, polyisobutylene and polybutadiene; glass; silica and the like. When resin particles are used as the base material particles 1, for example, crosslinked acrylic particles, crosslinked polystyrene particles, and the like can be used. Assuming that the reflow connection is performed by soldering, the glass transition point (Tg) of the base particle 1 is preferably higher than the melting point of the solder. Taking the commonly used Sn-3 mass% Ag-0.5 mass% Cu as an example, the melting point is 217 to 219 ° C. Therefore, the base particle 1 has a Tg of, for example, 220 ° C. or higher. Material should be adopted. By adopting such a material, even if the solder is melted for reflow connection, if the temperature is less than Tg of the base particle 1, the deformation of the base particle 1 is sufficiently suppressed, so that the conductive particles The base particle 1 contained in 10 exhibits excellent dimensional stability, which tends to obtain good connection reliability and insulation reliability.

[金属層]
図1に示すように金属層3は単層構造であり基材粒子1を被覆している。金属層3は、例えばニッケル又はニッケル合金を含む層からなる。金属層3は必要に応じて複数の金属層からなる多層構造であってもよい。なお、金属層3は基材粒子1の全体を必ずしも被覆していなくてもよく、基材粒子1の表面の好ましくは80%以上、より好ましくは90%以上を被覆していればよい。
[Metal layer]
As shown in FIG. 1, the metal layer 3 has a single-layer structure and covers the base particles 1. The metal layer 3 is composed of, for example, a layer containing nickel or a nickel alloy. The metal layer 3 may have a multi-layer structure including a plurality of metal layers, if necessary. The metal layer 3 does not necessarily have to cover the entire base particle 1, and may preferably cover 80% or more, more preferably 90% or more of the surface of the base particle 1.

金属層3のニッケル含有量は、例えば85〜98質量%であり、87〜96質量%又は90〜95質量%であってもよい。ニッケル含有量が85〜98質量%であれば、後述の第二の電極42と導電粒子10が電気的に接合した後(図4参照)、金属層3が安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。 The nickel content of the metal layer 3 is, for example, 85 to 98% by mass, and may be 87 to 96% by mass or 90 to 95% by mass. When the nickel content is 85 to 98% by mass, the metal layer 3 remains stably after the second electrode 42 and the conductive particles 10 described later are electrically bonded (see FIG. 4), which is high. There is a tendency to maintain connection reliability.

金属層3の厚さは例えば0.05μm以上であり、0.05〜5μm、0.1〜3μm又は0.2〜2μmの範囲であってもよい。金属層3の厚さが0.05μm以上であれば、第二の電極42と導電粒子10が電気的に接合した後(図4参照)、金属層3が安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。なお、金属層3の厚さが0.05μm未満であると、第二の電極42と導電粒子10が電気的に接合した後において、基材粒子1と金属層3との密着性が不十分となりやすく、これにより接続信頼性が低下する傾向にある。 The thickness of the metal layer 3 is, for example, 0.05 μm or more, and may be in the range of 0.05 to 5 μm, 0.1 to 3 μm, or 0.2 to 2 μm. When the thickness of the metal layer 3 is 0.05 μm or more, the metal layer 3 remains stable after the second electrode 42 and the conductive particles 10 are electrically bonded (see FIG. 4), which is high. There is a tendency to maintain connection reliability. If the thickness of the metal layer 3 is less than 0.05 μm, the adhesion between the base particle 1 and the metal layer 3 is insufficient after the second electrode 42 and the conductive particles 10 are electrically bonded. This tends to reduce the connection reliability.

金属層3は、リン及びホウ素の少なくとも一方を含んでいてもよく、特にリンを含んでいてもよい。金属層3がこれらの元素を含むことで、第二の電極42と導電粒子10が電気的に接合した後において、金属層3の硬度が向上し、これにより、回路電極との接続抵抗値を十分に低くすることができる。 The metal layer 3 may contain at least one of phosphorus and boron, and may particularly contain phosphorus. When the metal layer 3 contains these elements, the hardness of the metal layer 3 is improved after the second electrode 42 and the conductive particles 10 are electrically bonded, thereby increasing the connection resistance value with the circuit electrode. It can be low enough.

金属層3は無電解ニッケルめっきにより形成することができる。無電解ニッケルめっきによる金属層3の形成は、公知の方法で実施すればよく、例えば基材粒子1の表面をパラジウム触媒化処理した後、無電解ニッケルめっきを実施すればよい。より好適には、無電解ニッケルめっきのための還元剤として次亜リン酸ナトリウム等のリン含有化合物を用いることで、リンを共析させることができ、ニッケル及びリンを含む合金(ニッケル−リン合金)が含まれる金属層3を形成することができる。あるいは、還元剤として、例えば、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム等のホウ素含有化合物を用いることで、ホウ素を共析させることができ、ニッケル及びホウ素を含む合金(ニッケル−ホウ素合金)が含まれる金属層3を形成することができる。 The metal layer 3 can be formed by electroless nickel plating. The metal layer 3 may be formed by electroless nickel plating by a known method. For example, the surface of the base particle 1 may be palladium-catalyzed and then electroless nickel plating may be performed. More preferably, phosphorus can be co-deposited by using a phosphorus-containing compound such as sodium hypophosphite as a reducing agent for electroless nickel plating, and an alloy containing nickel and phosphorus (nickel-phosphorus alloy). ) Can be formed. Alternatively, by using a boron-containing compound such as dimethylamine borane, sodium borohydride, or potassium borohydride as the reducing agent, boron can be co-deposited, and an alloy containing nickel and boron (nickel-boron) can be used. The metal layer 3 containing the alloy) can be formed.

<端子付き電極>
図2は、本実施形態に係る端子付き電極35を模式的に示す断面図である。すなわち、同図は第一の回路部材30の電極32表面に配置された導電粒子10が電解めっき層5によって覆われた状態を模式的に示したものである。電解めっき層5によって固定された導電粒子10は電極32表面においてバンプ(接続用突起)の役割を果たす。電解めっき層5は、例えば電解ニッケルめっき層又は電解パラジウムめっき層からなる。第一の回路部材30は、第一の回路基板31と、その表面31a上に配置された第一の電極32とを備える。
<Electrode with terminal>
FIG. 2 is a cross-sectional view schematically showing the electrode 35 with a terminal according to the present embodiment. That is, the figure schematically shows a state in which the conductive particles 10 arranged on the surface of the electrode 32 of the first circuit member 30 are covered with the electrolytic plating layer 5. The conductive particles 10 fixed by the electrolytic plating layer 5 serve as bumps (connecting protrusions) on the surface of the electrode 32. The electrolytic plating layer 5 is composed of, for example, an electrolytic nickel plating layer or an electrolytic palladium plating layer. The first circuit member 30 includes a first circuit board 31 and a first electrode 32 arranged on the surface 31a thereof.

第一の電極32の具体例としては、銅、銅/ニッケル、銅/ニッケル/金、銅/ニッケル/パラジウム、銅/ニッケル/パラジウム/金、銅/ニッケル/金、銅/パラジウム、銅/パラジウム/金、銅/スズ、銅/銀、インジウム錫酸化物等の電極が挙げられる。第一の電極32は、無電解めっき又は電解めっき又はスパッタで形成することができる。 Specific examples of the first electrode 32 include copper, copper / nickel, copper / nickel / gold, copper / nickel / palladium, copper / nickel / palladium / gold, copper / nickel / gold, copper / palladium, and copper / palladium. / Gold, copper / tin, copper / silver, indium tin oxide and other electrodes can be mentioned. The first electrode 32 can be formed by electroless plating, electroplating or sputtering.

電解めっき層5が電解ニッケルめっき層からなる場合、そのニッケル含有量は、例えば85〜98質量%であり、87〜96質量%又は90〜95質量%であってもよい。ニッケル含有量が85〜98質量%であれば、後述の第二の電極42と電解めっき層5が電気的に接合した後(図4参照)、また、電解めっき層5が安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。電解めっき層5が電解ニッケルめっき層からなる場合、その厚さは例えば0.05μm以上であり、0.05〜5μm、0.1〜3μm又は0.2〜2μmの範囲であってもよい。電解めっき層5の厚さが0.05μm以上であれば、第二の電極42と電解めっき層5が電気的に接合した後(図4参照)、電解めっき層5が安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。 When the electrolytic plating layer 5 is composed of an electrolytic nickel plating layer, the nickel content thereof is, for example, 85 to 98% by mass, and may be 87 to 96% by mass or 90 to 95% by mass. When the nickel content is 85 to 98% by mass, the electrolytic plating layer 5 remains stably after the second electrode 42 described later and the electrolytic plating layer 5 are electrically bonded (see FIG. 4). As a result, high connection reliability tends to be maintained. When the electrolytic plating layer 5 is made of an electrolytic nickel plating layer, its thickness is, for example, 0.05 μm or more, and may be in the range of 0.05 to 5 μm, 0.1 to 3 μm, or 0.2 to 2 μm. When the thickness of the electrolytic plating layer 5 is 0.05 μm or more, after the second electrode 42 and the electrolytic plating layer 5 are electrically bonded (see FIG. 4), the electrolytic plating layer 5 remains stably. As a result, high connection reliability tends to be maintained.

電解めっき層5は電解パラジウムめっき層からなる場合、そのパラジウム含有量は、例えば85〜98質量%であり、87〜96質量%又は90〜95質量%であってもよい。パラジウム含有量が85〜98質量%であれば、後述の第二の電極42と電解めっき層5が電気的に接合した後(図4参照)、電解めっき層5が安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。また、電解めっき層5が電解パラジウムめっき層からなる場合、その厚さは例えば0.05μm以上であり、0.05〜5μm、0.1〜3μm又は0.2〜2μmの範囲であってもよい。電解めっき層5の厚さが0.05μm以上であれば、第二の電極42と電解めっき層5が電気的に接合した後(図4参照)、電解めっき層5が安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。 When the electrolytic plating layer 5 is composed of an electrolytic palladium plating layer, the palladium content thereof is, for example, 85 to 98% by mass, and may be 87 to 96% by mass or 90 to 95% by mass. When the palladium content is 85 to 98% by mass, the electrolytic plating layer 5 remains stably after the second electrode 42 described later and the electrolytic plating layer 5 are electrically bonded (see FIG. 4). It tends to maintain higher connection reliability. When the electrolytic plating layer 5 is made of an electrolytic palladium plating layer, its thickness is, for example, 0.05 μm or more, even if it is in the range of 0.05 to 5 μm, 0.1 to 3 μm, or 0.2 to 2 μm. Good. When the thickness of the electrolytic plating layer 5 is 0.05 μm or more, after the second electrode 42 and the electrolytic plating layer 5 are electrically bonded (see FIG. 4), the electrolytic plating layer 5 remains stably. As a result, high connection reliability tends to be maintained.

図3は、図2に示す端子付き電極35の変形例を模式的に示す断面図である。同図に示す端子付き電極36は電解めっき層5がめっきによって形成された被覆層(第二のめっき層)6で覆われている点において、端子付き電極35と相違する。例えば、電解めっき層5を上記電解ニッケルめっき層によって構成し且つ被覆層6を無電解パラジウムめっき層又は上記電解パラジウムめっき層によって構成してもよく、この逆であってもよい。また、電解めっき層5が複数の電解ニッケルめっき層によって構成されていてもよく、複数のパラジウムめっき層によって構成されていてもよい。なお、パラジウムは拡散しづらく、更にニッケルの拡散を抑える効果があり、絶縁信頼性を向上できる効果が期待できることから、基材粒子1側から、電解ニッケルめっき層及び無電解パラジウムめっき層がこの順序で並んでいることが好ましい。 FIG. 3 is a cross-sectional view schematically showing a modified example of the electrode 35 with a terminal shown in FIG. The terminal-attached electrode 36 shown in the figure is different from the terminal-attached electrode 35 in that the electrolytic plating layer 5 is covered with a coating layer (second plating layer) 6 formed by plating. For example, the electrolytic plating layer 5 may be composed of the electrolytic nickel plating layer and the coating layer 6 may be composed of the electroless palladium plating layer or the electrolytic palladium plating layer, or vice versa. Further, the electrolytic plating layer 5 may be composed of a plurality of electrolytic nickel plating layers, or may be composed of a plurality of palladium plating layers. Since palladium is difficult to diffuse, has the effect of suppressing the diffusion of nickel, and can be expected to have the effect of improving insulation reliability, the electrolytic nickel plating layer and the electroless palladium plating layer are arranged in this order from the base particle 1 side. It is preferable that they are lined up in a row.

<接続構造体>
図4は、本実施形態に係る接続構造体50の一部を拡大して模式的に示す断面図である。すなわち、同図は第一の回路部材30の電極32と第二の回路部材40の電極42が導電粒子10及び電解めっき層5を介して電気的に接続された状態を模式的に示したものである。第二の回路部材40は、第二の回路基板41と、その表面41a上に配置された第二の電極42とを備える。なお、ここでは端子付き電極35を採用しているが、これの代わりに端子付き電極36を採用してもよい。
<Connection structure>
FIG. 4 is an enlarged sectional view schematically showing a part of the connection structure 50 according to the present embodiment. That is, the figure schematically shows a state in which the electrode 32 of the first circuit member 30 and the electrode 42 of the second circuit member 40 are electrically connected via the conductive particles 10 and the electrolytic plating layer 5. Is. The second circuit member 40 includes a second circuit board 41 and a second electrode 42 arranged on the surface 41a thereof. Although the terminal-equipped electrode 35 is used here, the terminal-equipped electrode 36 may be used instead.

接続構造体50は、図4に示すとおり、第一の回路部材30と、第二の回路部材40と、第一の電極32と第二の電極42との間に介在している導電粒子10と、導電粒子10を覆う電解めっき層5と、第一の回路部材30と第二の回路部材40との間に設けられた絶縁樹脂層55とを備える。本実施形態においては、導電粒子10Aの第一金属層3aが第一の電極32に融着し且つ第二の電極42の表面に接触している。回路部材30,40の間に充填された絶縁樹脂層55は、第一の回路部材30と第二の回路部材40が接着された状態を維持するとともに、第一の電極32と第二の電極42が電気的に接続された状態を維持する。 As shown in FIG. 4, the connection structure 50 includes conductive particles 10 interposed between the first circuit member 30, the second circuit member 40, and the first electrode 32 and the second electrode 42. And an electrolytic plating layer 5 that covers the conductive particles 10, and an insulating resin layer 55 provided between the first circuit member 30 and the second circuit member 40. In the present embodiment, the first metal layer 3a of the conductive particles 10A is fused to the first electrode 32 and is in contact with the surface of the second electrode 42. The insulating resin layer 55 filled between the circuit members 30 and 40 maintains a state in which the first circuit member 30 and the second circuit member 40 are adhered to each other, and the first electrode 32 and the second electrode The 42 remains electrically connected.

回路部材30,40のうちの一方の具体例として、ICチップ(半導体チップ)、抵抗体チップ、コンデンサチップ、ドライバーIC等のチップ部品;リジット型のパッケージ基板が挙げられる。これらの回路部材は、回路電極を備えており、多数の回路電極を備えているものが一般的である。回路部材30,40のうちの他方の具体例としては、金属配線を有するフレキシブルテープ基板、フレキシブルプリント配線板、インジウム錫酸化物(ITO)が蒸着されたガラス基板等の配線基板が挙げられる。 Specific examples of one of the circuit members 30 and 40 include chip components such as IC chips (semiconductor chips), resistor chips, capacitor chips, and driver ICs; rigid type package substrates. These circuit members are provided with circuit electrodes, and are generally provided with a large number of circuit electrodes. Specific examples of the other of the circuit members 30 and 40 include wiring boards such as flexible tape boards having metal wiring, flexible printed wiring boards, and glass boards on which indium tin oxide (ITO) is vapor-deposited.

図5に示す接続構造体50は、図4に示す導電粒子10及び電解めっき層5による接続部分を複数(図5には三つ図示)備える。互いに対面する電極32,42同士の電気的接続は導電粒子10及び電解めっき層5によって確保されるため、異方導電性接着剤を使用しなくてもよく、換言すれば、絶縁樹脂層55は導電粒子を含有しないものを採用すればよい。したがって、本実施形態及びその変形例によれば、狭ピッチ(例えば10μmレベルのピッチ)での絶縁信頼性を大幅に向上させることができる。 The connection structure 50 shown in FIG. 5 includes a plurality of connection portions formed by the conductive particles 10 and the electrolytic plating layer 5 shown in FIG. 4 (three are shown in FIG. 5). Since the electrical connection between the electrodes 32 and 42 facing each other is secured by the conductive particles 10 and the electrolytic plating layer 5, it is not necessary to use an anisotropic conductive adhesive. In other words, the insulating resin layer 55 is Those that do not contain conductive particles may be adopted. Therefore, according to the present embodiment and its modification, the insulation reliability at a narrow pitch (for example, a pitch of 10 μm level) can be significantly improved.

接続構造体50の適用対象としては、液晶ディスプレイ、パーソナルコンピュータ、携帯電話、スマートフォン、タブレット等のデバイスが挙げられる。 Applications of the connection structure 50 include devices such as liquid crystal displays, personal computers, mobile phones, smartphones, and tablets.

<端子付き電極の製造方法>
図6〜10を参照しながら、端子付き電極35の製造方法について説明する。ここでは、第一の回路部材30が有する電極32表面に複数の導電粒子10を配置し、これらを覆うように電解めっき層5を形成することによって端子付き電極35を製造する方法を説明する。図6(a)〜(c)及び図7(a),(b)は第一の回路部材に端子付き電極を形成する過程の前半及び後半の一例をそれぞれ模式的に示す断面図である。
<Manufacturing method of electrodes with terminals>
A method of manufacturing the electrode 35 with a terminal will be described with reference to FIGS. 6 to 10. Here, a method of manufacturing the electrode 35 with terminals by arranging a plurality of conductive particles 10 on the surface of the electrode 32 included in the first circuit member 30 and forming an electrolytic plating layer 5 so as to cover them will be described. 6 (a) to 6 (c) and 7 (a) and 7 (b) are cross-sectional views schematically showing examples of the first half and the second half of the process of forming an electrode with a terminal on the first circuit member, respectively.

(転写型の準備)
まず、複数の導電粒子10を電極32の表面に配置するとともにその状態を維持したまま電解めっき層5を形成するための転写型60を準備する。図8(a)は転写型60の平面図であり、図8(b)は図8(a)に示すB−B線における断面図である。図9は、転写型60が有する複数の凹部(開口部)62に導電粒子10が収容された状態を示す断面図である。複数の凹部62は、導電粒子10が配列されるべき電極32表面の位置に対応する位置にそれぞれ設けられている。
(Preparation of transfer type)
First, a transfer mold 60 for arranging a plurality of conductive particles 10 on the surface of the electrode 32 and forming the electrolytic plating layer 5 while maintaining the state is prepared. 8 (a) is a plan view of the transfer type 60, and FIG. 8 (b) is a cross-sectional view taken along the line BB shown in FIG. 8 (a). FIG. 9 is a cross-sectional view showing a state in which the conductive particles 10 are housed in the plurality of recesses (openings) 62 of the transfer mold 60. The plurality of recesses 62 are provided at positions corresponding to the positions on the surface of the electrode 32 on which the conductive particles 10 should be arranged.

転写型60の凹部62は、凹部62の底部62a側(奥側)から転写型60の表面60a側に向けて開口面積が拡大するテーパ状に形成されていることが好ましい。すなわち、図9に示すように、凹部62の底部62aの幅(図9における幅a)は、凹部62の表面60aにおける開口の幅(図9における幅b)よりも狭いことが好ましい。そして、凹部62のサイズ(テーパ角度及び深さ)は、電極32表面に配列すべき導電粒子10のサイズに応じて設定すればよい。すなわち、電極32表面に配列すべき導電粒子10を凹部62に収容したとき、凹部62から突出する導電粒子10の高さ(転写型60の表面60aから導電粒子10の上端部までの距離(図9における距離c))は、電極32の表面により確実に導電粒子10を融着させる観点から、好ましくは1μm以上であり、より好ましくは2μm以上であることが好ましい。 The recess 62 of the transfer mold 60 is preferably formed in a tapered shape in which the opening area expands from the bottom 62a side (back side) of the recess 62 toward the surface 60a side of the transfer mold 60. That is, as shown in FIG. 9, the width of the bottom portion 62a of the recess 62 (width a in FIG. 9) is preferably narrower than the width of the opening on the surface 60a of the recess 62 (width b in FIG. 9). The size (taper angle and depth) of the recess 62 may be set according to the size of the conductive particles 10 to be arranged on the surface of the electrode 32. That is, when the conductive particles 10 to be arranged on the surface of the electrode 32 are housed in the recess 62, the height of the conductive particles 10 protruding from the recess 62 (the distance from the surface 60a of the transfer mold 60 to the upper end of the conductive particles 10 (FIG. The distance c)) in 9 is preferably 1 μm or more, more preferably 2 μm or more, from the viewpoint of reliably fusing the conductive particles 10 to the surface of the electrode 32.

転写型60を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。これらのうち、凹部62に導電粒子10を収容した状態で保持する観点から、可撓性を有する樹脂材料からなることが好ましい。転写型60の凹部62は、フォトリソグラフ法等の公知の方法によって形成することができる。なお、上述のとおり、転写型60は第一の回路部材30とともに電解めっき液に浸漬されることから、耐薬品性及び耐熱性を有する材質からなることが好ましい。 As the material constituting the transfer mold 60, for example, an inorganic material such as a metal such as silicon, various ceramics, glass, and stainless steel, and an organic material such as various resins can be used. Of these, from the viewpoint of holding the conductive particles 10 in the recess 62 in a state of being accommodated, it is preferably made of a flexible resin material. The recess 62 of the transfer mold 60 can be formed by a known method such as a photolithography method. As described above, since the transfer mold 60 is immersed in the electrolytic plating solution together with the first circuit member 30, it is preferably made of a material having chemical resistance and heat resistance.

転写型60を使用することで、導電粒子10の粒度分布にある程度の幅があっても、これよりも粒度分布の幅が狭い複数の導電粒子10を容易に選択し、これらを電極32表面に配置することができる。すなわち、転写型60の凹部62のサイズよりも小さい導電粒子10は凹部62に一旦収容されたとしても例えば凹部62が形成されている面を下に向ければ落下し、一方、凹部62のサイズよりも大きい導電粒子10は凹部62に収容されない。凹部62のサイズに合う導電粒子10が凹部62に嵌り込み、この状態を維持したまま、転写型60の凹部62が形成されている面を電極表面に当接させることで電極32表面に複数の導電粒子10を凹部62の形成パターンに則して配置することができる(図6(a)及び図6(b)参照)。なお、ここでは、導電粒子10が配置される開口部として凹部62(有底の開口)を例示したが、開口部は転写型の表面から裏面にかけて貫通する孔によって構成されていてもよい。 By using the transfer type 60, even if the particle size distribution of the conductive particles 10 has a certain width, a plurality of conductive particles 10 having a narrower particle size distribution can be easily selected and these can be applied to the surface of the electrode 32. Can be placed. That is, even if the conductive particles 10 smaller than the size of the recess 62 of the transfer mold 60 are once housed in the recess 62, they will fall if the surface on which the recess 62 is formed is turned downward, while the size of the recess 62 is larger than the size of the recess 62. The large conductive particles 10 are not housed in the recess 62. Conductive particles 10 that match the size of the recess 62 are fitted into the recess 62, and while maintaining this state, the surface on which the recess 62 of the transfer mold 60 is formed is brought into contact with the electrode surface, whereby a plurality of conductive particles 10 are brought into contact with the electrode surface. The conductive particles 10 can be arranged according to the formation pattern of the recesses 62 (see FIGS. 6A and 6B). Although the recess 62 (bottomed opening) is illustrated here as the opening in which the conductive particles 10 are arranged, the opening may be formed by a hole penetrating from the front surface to the back surface of the transfer mold.

図10(a)は本発明者らが実際に作製した転写型の一例を示すSEM写真である。図10(b)は図10(a)に示す転写型の複数の開口部に導電粒子がそれぞれ配置された状態を示すSEM写真である。図10(a)に示す転写型は、メッシュ状で底がない開口部を有するもののように見えるが、この転写型の開口部は底を有するものである。 FIG. 10A is an SEM photograph showing an example of a transfer type actually produced by the present inventors. FIG. 10B is an SEM photograph showing a state in which conductive particles are arranged in the plurality of openings of the transfer type shown in FIG. 10A. The transfer type shown in FIG. 10 (a) appears to have a mesh-like opening with no bottom, but the opening of this transfer type has a bottom.

(導電粒子の配置及びめっき層の形成)
図6(a)は各凹部62に導電粒子10を収容している転写型60を第一の回路部材30の表面に対面させた状態を模式的に示す断面図である。図6(b)は転写型60の凹部62に収容された導電粒子10を第一の電極32の表面に当接させた状態を模式的に示す断面図である。図6(b)に示す状態を維持した状態で電解めっき処理(例えば電解ニッケルめっき処理又は電解パラジウムめっき処理)を実施することによって、第一の電極32及び導電粒子10を覆う電解めっき層5を形成する。図6(c)は導電粒子10の下側(第一の電極32側)に電解めっき層5aを形成した状態を模式的に示す断面図である。電解めっき層5aが形成されることによって導電粒子10が第一の電極32に固定された状態となったら電極32の表面から転写型60を外し、更に電解めっき処理を継続する。これにより、図7(a)に示すとおり、第一の電極32及びその上に配置された導電粒子10を覆うように電解めっき層5が形成される。このようにして得られた端子付き電極35の電解めっき層5の表面に更に被覆層6(例えば無電解パラジウムめっき層)を形成することで図7(b)に示す構成の端子付き電極36が得られる。
(Arrangement of conductive particles and formation of plating layer)
FIG. 6A is a cross-sectional view schematically showing a state in which the transfer mold 60 containing the conductive particles 10 in each recess 62 faces the surface of the first circuit member 30. FIG. 6B is a cross-sectional view schematically showing a state in which the conductive particles 10 housed in the recess 62 of the transfer mold 60 are brought into contact with the surface of the first electrode 32. By performing the electrolytic plating treatment (for example, electrolytic nickel plating treatment or electrolytic palladium plating treatment) while maintaining the state shown in FIG. 6B, the electrolytic plating layer 5 covering the first electrode 32 and the conductive particles 10 is formed. Form. FIG. 6C is a cross-sectional view schematically showing a state in which the electrolytic plating layer 5a is formed on the lower side (first electrode 32 side) of the conductive particles 10. When the conductive particles 10 are fixed to the first electrode 32 by forming the electrolytic plating layer 5a, the transfer mold 60 is removed from the surface of the electrode 32, and the electrolytic plating process is continued. As a result, as shown in FIG. 7A, the electrolytic plating layer 5 is formed so as to cover the first electrode 32 and the conductive particles 10 arranged on the first electrode 32. By further forming a coating layer 6 (for example, an electroless palladium plating layer) on the surface of the electrolytic plating layer 5 of the terminal electrode 35 thus obtained, the terminal electrode 36 having the configuration shown in FIG. 7B can be obtained. can get.

電解めっき層5は、図6(b)に示す積層体(導電粒子を収容した転写型60及び第一の回路部材30)を例えば電解ニッケルめっき液に浸漬することで形成することができる。電解ニッケルめっき液としては、ワット浴(硫酸ニッケル、塩化ニッケル、ホウ酸を主成分とするニッケルめっき浴)、スルファミン酸浴(スルファミン酸ニッケルとホウ酸を主成分とするニッケルめっき浴)、ホウフッ化浴等を用いることができる。なかでも、ワット浴からの析出皮膜が、素地となる導電粒子10及び第一の電極32との密着性がよく、耐食性を高くできる傾向にある。そのため、電解ニッケルめっきには、ワット浴を用いることが好ましい。 The electrolytic plating layer 5 can be formed by immersing the laminate (transfer mold 60 containing conductive particles and the first circuit member 30) shown in FIG. 6B, for example, in an electrolytic nickel plating solution. The electrolytic nickel plating solution includes a watt bath (nickel plating bath containing nickel sulfate, nickel chloride, and boric acid as main components), a sulfamic acid bath (nickel plating bath containing nickel sulfamate and boric acid as main components), and boric acid. A bath or the like can be used. Among them, the precipitated film from the watt bath tends to have good adhesion to the conductive particles 10 as a base material and the first electrode 32, and can have high corrosion resistance. Therefore, it is preferable to use a watt bath for electrolytic nickel plating.

電解ニッケルめっきにより形成する電解ニッケルめっき層(電解めっき層5)の厚さは、0.05〜5μmであることが好ましく、0.1〜3μmであるとより好ましく、0.2〜1μmであると更に好ましい。この厚さを0.05μm以上とすることで、導電粒子10及び第一の電極32との良好な接続を得ることができるようになる。ただし、5μmを越えてもこれらの効果がそれ以上大きくは向上せず、経済的でないので、電解ニッケルめっき層の厚さの上限は5μmであればよい。 The thickness of the electrolytic nickel plating layer (electroplating layer 5) formed by electrolytic nickel plating is preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm, and 0.2 to 1 μm. Is even more preferable. By setting this thickness to 0.05 μm or more, good connection with the conductive particles 10 and the first electrode 32 can be obtained. However, even if it exceeds 5 μm, these effects are not significantly improved and it is not economical. Therefore, the upper limit of the thickness of the electrolytic nickel plating layer may be 5 μm.

電解ニッケルめっき層(電解めっき層5)の外側(第一の電極32と反対側)の面に、パラジウム又はパラジウム合金からなる被覆層6(第二のめっき層)を形成してもよい。この被覆層6は、電解パラジウムめっき層でも無電解パラジウムめっき層でもよいが、厚さの均一性及び電気を必要としないことから、無電解パラジウムめっきによって被覆層6を形成することが好ましい。 A coating layer 6 (second plating layer) made of palladium or a palladium alloy may be formed on the outer surface (opposite side of the first electrode 32) of the electrolytic nickel plating layer (electroplating layer 5). The coating layer 6 may be an electrolytic palladium plating layer or an electroless palladium plating layer, but it is preferable to form the coating layer 6 by electroless palladium plating because it does not require uniformity of thickness and electricity.

無電解パラジウムめっきとして、置換パラジウムめっき及び還元剤を用いる還元型パラジウムめっきが適用できる。無電解パラジウムめっきによるパラジウム層の形成方法としては、特に、置換パラジウムめっきを行った後、還元型パラジウムめっきを行う方法が好ましい。これは、電解ニッケルめっきにより形成した被覆層6上では、そのままでは無電解パラジウムめっき反応が起こりづらい傾向にあるためである。あらかじめ置換パラジウムめっきでパラジウムを置換析出させておき、その後に還元型パラジウムめっきによりパラジウム層を析出させることで、良好にパラジウム層を形成することができる。 As electroless palladium plating, substituted palladium plating and reduced palladium plating using a reducing agent can be applied. As a method for forming the palladium layer by electroless palladium plating, a method of performing reduced palladium plating after performing substituted palladium plating is particularly preferable. This is because the electroless palladium plating reaction tends to be difficult to occur on the coating layer 6 formed by electrolytic nickel plating as it is. A palladium layer can be satisfactorily formed by preliminarily precipitating palladium by substitution palladium plating and then precipitating the palladium layer by reduced palladium plating.

パラジウム層の厚さは、0.003〜0.5μmであると好ましく、0.01〜0.3μmであるとより好ましく、0.03〜0.2μmであると更に好ましい。パラジウム層の厚さが0.5μmを超えると、パラジウム層の形成による効果がそれ以上は向上せず、経済的でない傾向にある。一方、0.03μmよりも薄いと、パラジウム層が析出していない部分が含まれ易く、パラジウム層を形成することによる絶縁信頼性の向上効果が十分に得られなくなるおそれがある。 The thickness of the palladium layer is preferably 0.003 to 0.5 μm, more preferably 0.01 to 0.3 μm, and even more preferably 0.03 to 0.2 μm. When the thickness of the palladium layer exceeds 0.5 μm, the effect of forming the palladium layer is not further improved, and it tends to be uneconomical. On the other hand, if it is thinner than 0.03 μm, a portion where the palladium layer is not precipitated is likely to be included, and the effect of improving the insulation reliability by forming the palladium layer may not be sufficiently obtained.

無電解パラジウムめっきに用いるめっき液のパラジウムの供給源としては、特に限定されないが、塩化パラジウム、塩化パラジウムナトリウム、塩化パラジウムアンモニウム、硫酸パラジウム、硝酸パラジウム、酢酸パラジウム、酸化パラジウム等のパラジウム化合物等が挙げられる。具体的には、酸性塩化パラジウム「PdCl2/HCl」、硫酸テトラアンミンパラジウム「Pd(NHNO」、硝酸パラジウムナトリウム塩「Pd(NO/HSO」、ジニトロジアンミンパラジウム「Pd(NH(NO」、ジシアノジアンミンパラジウム「Pd(CN)(NH」、ジクロロテトラアンミンパラジウム「Pd(NHCl」、スルファミン酸パラジウム「Pd(NHSO」、硫酸ジアンミンパラジウム「Pd(NHSO」、シュウ酸テトラアンミンパラジウム「Pd(NH」、硫酸パラジウム「PdSO」等を適用することができる。また、めっき液に添加する緩衝剤等についても特に限定されない。 The source of palladium in the plating solution used for electroless palladium plating is not particularly limited, and examples thereof include palladium compounds such as palladium chloride, sodium palladium chloride, ammonium palladium chloride, palladium sulfate, palladium nitrate, palladium acetate, and palladium oxide. Be done. Specifically, acidic palladium chloride "PdCl2 / HCl", tetraammine palladium sulfate "Pd (NH 3 ) 4 NO 2 ", palladium sodium nitrate salt "Pd (NO 3 ) 2 / H 2 SO 4 ", dinitrodiammine palladium " Pd (NH 3 ) 2 (NO 2 ) 2 ”, dicyanodiammine palladium“ Pd (CN) 2 (NH 3 ) 2 ”, dichlorotetraammine palladium“ Pd (NH 3 ) 4 Cl 2 ”, palladium sulfamate“ Pd (NH 3) 2 ” 2 SO 3) 2 ', sulfate diammine palladium "Pd (NH 3) 2 SO 4", oxalate tetraamminepalladium "Pd (NH 3) 4 C 2 O 4 ", is possible to apply the palladium sulfate "PdSO 4", etc. it can. Further, the buffering agent or the like added to the plating solution is not particularly limited.

無電解パラジウムめっきにより形成されるパラジウム層は、パラジウムの純度が90質量%以上であると好ましく、99質量%以上であるとより好ましく、100質量%に近いと特に好ましい。パラジウムの純度が90質量%未満であると、その形成時に電解ニッケルめっき5上への析出が起こりづらくなり、パラジウム層を形成することによる絶縁信頼性の向上効果が十分に得られなくなるおそれがある。 The palladium layer formed by electroless palladium plating preferably has a palladium purity of 90% by mass or more, more preferably 99% by mass or more, and particularly preferably close to 100% by mass. If the purity of palladium is less than 90% by mass, precipitation on the electrolytic nickel plating 5 is unlikely to occur during its formation, and the effect of improving insulation reliability by forming the palladium layer may not be sufficiently obtained. ..

無電解パラジウムめっきに用いる還元剤に、ギ酸化合物を使用すると、得られるパラジウム層(被覆層)の純度が99質量%以上になり易くなり、均一な析出は可能となる。また、還元剤に次亜リン酸及び亜リン酸等のリン含有化合物、又はホウ素含有化合物を使用する場合、得られるパラジウム層がパラジウム−リン合金及び/又はパラジウム−ホウ素合金になるため、その場合は、パラジウムの純度が90質量%以上となるように還元剤の濃度、pH、浴温などを調節することが好ましい。 When a formic acid compound is used as the reducing agent used for electroless palladium plating, the purity of the obtained palladium layer (coating layer) tends to be 99% by mass or more, and uniform precipitation becomes possible. Further, when a phosphorus-containing compound such as hypophosphorous acid or phosphorous acid or a boron-containing compound is used as the reducing agent, the obtained palladium layer becomes a palladium-phosphorus alloy and / or a palladium-boron alloy. It is preferable to adjust the concentration, pH, bath temperature, etc. of the reducing agent so that the purity of palladium is 90% by mass or more.

また、パラジウム層は、必ずしも無電解パラジウムめっきにより形成しなくてもよく、電解パラジウムめっきにより形成することもできる。その場合、電解パラジウムに用いる電解パラジウムめっき液のパラジウムの供給源としては、特に限定されず、塩化パラジウム、塩化パラジウムナトリウム、塩化パラジウムアンモニウム、硫酸パラジウム、硝酸パラジウム、酢酸パラジウム、酸化パラジウム等のパラジウム化合物を適用できる。具体的には、酸性塩化パラジウム(PdCl/HCl)、硫酸テトラアンミンパラジウム(Pd(NH)NO)、硝酸パラジウムナトリウム塩(Pd(NO)/HSO)、ジニトロジアンミンパラジウム(Pd(NH)(NO))、ジシアノジアンミンパラジウム(Pd(CN)(NH))、ジクロロテトラアンミンパラジウム(Pd(NH)Cl)、スルファミン酸パラジウム(Pd(NHSO))、硫酸ジアンミンパラジウム(Pd(NH)SO)、シュウ酸テトラアンミンパラジウム(Pd(NH))、硫酸パラジウム(PdSO)などが例示できる。また、電解パラジウムめっき液に含有させる緩衝剤等についても特に限定されず、公知の電解パラジウムめっき液に含まれるものを適用することが可能である。 Further, the palladium layer does not necessarily have to be formed by electroless palladium plating, and may be formed by electrolytic palladium plating. In that case, the source of palladium in the electrolytic palladium plating solution used for electrolytic palladium is not particularly limited, and palladium compounds such as palladium chloride, sodium palladium chloride, ammonium palladium chloride, palladium sulfate, palladium nitrate, palladium acetate, and palladium oxide are used. Can be applied. Specifically, acidic palladium chloride (PdCl 2 / HCl), tetraammine palladium sulfate (Pd (NH 3 ) 4 NO 2 ), sodium palladium nitrate (Pd (NO 3 ) 2 / H 2 SO 4 ), dinitrodiammine palladium. (Pd (NH 3 ) 2 (NO 2 ) 2 ), dicyanodiammine palladium (Pd (CN) 2 (NH 3 ) 2 ), dichlorotetraammine palladium (Pd (NH 3 ) 4 Cl 2 ), palladium sulfamate (Pd (NH 3) 4 Cl 2) Examples thereof include NH 2 SO 3 ) 2 ), diammine palladium sulfate (Pd (NH 3 ) 2 SO 4 ), tetraammine palladium oxalate (Pd (NH 3 ) 4 C 2 O 4 ), and palladium sulfate (PdSO 4). Further, the buffering agent and the like contained in the electrolytic palladium plating solution are not particularly limited, and those contained in known electrolytic palladium plating solutions can be applied.

<接続構造体の製造方法>
図11(a)〜図11(d)を参照しながら、接続構造体50の製造方法について説明する。これらの図は、図7(a)に示す端子付き電極35が形成された第一の回路部材30と、第二の回路部材40とを備える接続構造体を形成する過程の一例を模式的に示す断面図である。本実施形態においては、絶縁性を有する樹脂材料からなる所定の厚さの絶縁樹脂フィルム55pを予め準備し(図11(a))、これを第一の回路部材30の表面にラミネートすることにより、第一の回路部材30の表面(端子付き電極35も含む)を被覆する(図11(b)参照)。ラミネートした絶縁樹脂フィルム55p上に、第二の電極42が形成された面が対面するように第二の回路部材40を配置する(図11(c)参照)。その後、これらの部材の積層体の厚さ方向(図11(d)に示す矢印A及び矢印Bの方向)に加圧することによって電極35を第二の電極42と接触させる。絶縁樹脂フィルムが例えば熱硬化性樹脂からなる場合、矢印A及び矢印Bの方向に加圧する際に全体を加熱することによって熱硬化性樹脂を硬化させることができる。これにより、熱硬化性樹脂の硬化物からなる絶縁樹脂層55が回路部材30,40の間に形成される。なお、ここでは絶縁樹脂フィルム55pを第一の回路部材30の表面に配置する場合を例示したが、これの代わりにペースト状の絶縁樹脂組成物を第一の回路部材30の表面に塗布してもよい。
<Manufacturing method of connection structure>
A method of manufacturing the connection structure 50 will be described with reference to FIGS. 11 (a) to 11 (d). These figures schematically show an example of a process of forming a connection structure including the first circuit member 30 on which the terminal-attached electrode 35 shown in FIG. 7A is formed and the second circuit member 40. It is sectional drawing which shows. In the present embodiment, an insulating resin film 55p having a predetermined thickness made of an insulating resin material is prepared in advance (FIG. 11A), and this is laminated on the surface of the first circuit member 30. , The surface of the first circuit member 30 (including the terminal-equipped electrode 35) is covered (see FIG. 11B). The second circuit member 40 is arranged on the laminated insulating resin film 55p so that the surfaces on which the second electrodes 42 are formed face each other (see FIG. 11C). After that, the electrode 35 is brought into contact with the second electrode 42 by applying pressure in the thickness direction of the laminated body of these members (directions of arrows A and B shown in FIG. 11D). When the insulating resin film is made of, for example, a thermosetting resin, the thermosetting resin can be cured by heating the whole when pressurizing in the directions of arrows A and B. As a result, the insulating resin layer 55 made of a cured product of the thermosetting resin is formed between the circuit members 30 and 40. Although the case where the insulating resin film 55p is arranged on the surface of the first circuit member 30 is illustrated here, instead of this, a paste-like insulating resin composition is applied to the surface of the first circuit member 30. May be good.

本実施形態によれば、接続面積が例えば16〜2000μmあるいは25〜1600μm又は100〜1000μmであるように微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法が提供される。 According to this embodiment, even in very small such that the contact area is for example 16~2000Myuemu 2 or 25~1600Myuemu 2 or 100 to 1000 [mu] m 2, the connection structure both insulation reliability and conduction reliability is excellent and The manufacturing method is provided.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

<実施例1>
[導電粒子の作製]
(工程a)前処理工程
平均粒径3.0μmの架橋ポリスチレン粒子(株式会社日本触媒製、商品名「ソリオスター」)2gを、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製、商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した。次に、φ3μmのメンブレンフィルタ(ミリポア株式会社製)で濾過した後、水洗を行うことで樹脂粒子を得た。その後、pH6.0に調整された0.5質量%ジメチルアミンボラン液に樹脂粒子を添加し、表面が活性化された樹脂粒子を得た。そして、20mLの蒸留水に、表面が活性化された樹脂粒子を浸漬した後、超音波分散することで、樹脂粒子分散液を得た。
<Example 1>
[Preparation of conductive particles]
(Step a) Pretreatment step 2 g of crosslinked polystyrene particles (manufactured by Nippon Catalyst Co., Ltd., trade name "Soliostar") with an average particle size of 3.0 μm are added to Atotech Neogant 834 (manufactured by Atotech Japan Co., Ltd.) Name) was added to 100 mL of a palladium-catalyzed solution containing 8% by mass, and the mixture was stirred at 30 ° C. for 30 minutes. Next, after filtering with a membrane filter of φ3 μm (manufactured by Millipore Co., Ltd.), resin particles were obtained by washing with water. Then, resin particles were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to obtain resin particles having an activated surface. Then, the resin particles whose surface was activated were immersed in 20 mL of distilled water and then ultrasonically dispersed to obtain a resin particle dispersion liquid.

(工程b)第一金属層の形成
工程aを経て得た樹脂粒子分散液を、80℃に加温した水1000mLで希釈した後、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加した。次に、樹脂粒子を2g含む分散液に、下記組成(下記成分を含む水溶液。1g/Lの硝酸ビスマス水溶液をめっき液1Lあたり1mL添加した。以下同様)の金属層形成用無電解ニッケルめっき液500mLを5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過した。濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表1に示す厚さ0.5μmのニッケル−リン合金(ニッケル濃度93質量%、残部リン)からなる金属層を形成した。金属層を形成することにより得た粒子Aは6gであり、外径は4μmであった。
(金属層形成用無電解ニッケルめっき液)
硫酸ニッケル:400g/L
次亜リン酸ナトリウム:150g/L
酢酸:120g/L
硝酸ビスマス水溶液(1g/L):1mL/L
(Step b) Formation of First Metal Layer The resin particle dispersion obtained in step a was diluted with 1000 mL of water heated to 80 ° C., and then 1 mL of a 1 g / L bismuth nitrate aqueous solution was added as a plating stabilizer. .. Next, a non-electrolytic nickel plating solution for forming a metal layer having the following composition (an aqueous solution containing the following components. 1 mL of a 1 g / L bismuth nitrate aqueous solution was added per 1 L of the plating solution. The same applies hereinafter) to a dispersion liquid containing 2 g of resin particles. 500 mL was added dropwise at a dropping rate of 5 mL / min. After 10 minutes had passed after the completion of the dropping, the dispersion liquid to which the plating liquid was added was filtered. The filtrate was washed with water and then dried in a vacuum dryer at 80 ° C. In this way, a metal layer made of a nickel-phosphorus alloy (nickel concentration 93% by mass, balance phosphorus) having a thickness of 0.5 μm shown in Table 1 was formed. The particle A obtained by forming the metal layer was 6 g, and the outer diameter was 4 μm.
(Electroless nickel plating solution for metal layer formation)
Nickel sulfate: 400 g / L
Sodium hypophosphate: 150 g / L
Acetic acid: 120 g / L
Bismuth nitrate aqueous solution (1 g / L): 1 mL / L

[端子付き電極の作製]
(工程c)
工程bを経て得た導電粒子(外径4μm)を、開口径5μm角、底部径3μm角、深さ4μm(底部径3μm角は、開口部を上面からみると、開口径5μm角の中央に位置するものとする)の転写型の凹部に配置した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。
[Manufacturing electrodes with terminals]
(Step c)
Conductive particles (outer diameter 4 μm) obtained through step b are placed at the center of the opening diameter 5 μm square, bottom diameter 3 μm square, and depth 4 μm (bottom diameter 3 μm square is the center of the opening diameter 5 μm square when the opening is viewed from the top surface. It was placed in a transfer type recess (which shall be located). A polyimide film (thickness 100 μm) was used as the transfer type film.

銅バンプ(面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362)付きチップ(1.7×1.7mm、厚さ:0.5mm)と、導電粒子を凹部に配置した転写型を対面させ、銅バンプと導電粒子を接触させた。この状態の積層体を以下の組成の電解ニッケルめっき液中に浸漬してから電解ニッケルめっきを行い、銅バンプと導電粒子を接続した。なお、電解ニッケルめっきは、液温55℃、電流密度1.0A/dmの条件で、銅バンプと導電粒子を接触させた状態で、2分間めっきを行い、銅バンプ及び導電粒子上に、厚さ0.5μmの電解めっき層が形成されるように行った。
(電解ニッケルめっき液)
硫酸ニッケル:240g/L
塩化ニッケル:45g/L
ホウ酸:30g/L
界面活性剤:3ml/L
pH:4
(日本高純度化学株式会社製、商品名:ピット防止剤♯62)
A chip (1.7 x 1.7 mm, thickness: 0.5 mm) with copper bumps (area 15 μm × 30 μm, space 10 μm, height: 10 μm, number of bumps 362) and a transfer mold in which conductive particles are arranged in recesses. They were faced to each other and the copper bumps and conductive particles were brought into contact with each other. The laminate in this state was immersed in an electrolytic nickel plating solution having the following composition, and then electrolytic nickel plating was performed to connect the copper bumps and the conductive particles. The electrolytic nickel plating is performed under the conditions of a liquid temperature of 55 ° C. and a current density of 1.0 A / dm 2 for 2 minutes in a state where the copper bumps and the conductive particles are in contact with each other. The electrolytic plating layer having a thickness of 0.5 μm was formed.
(Electrolytic nickel plating solution)
Nickel sulfate: 240 g / L
Nickel chloride: 45 g / L
Boric acid: 30 g / L
Surfactant: 3 ml / L
pH: 4
(Manufactured by Japan High Purity Chemical Co., Ltd., Product name: Pit inhibitor # 62)

図12のように、銅バンプ上に8μmピッチで八個の導電粒子が配置された端子付き電極付きチップC1を得た。これと同様にして、下記の構成のチップC2,C3(1.7×1.7mm、厚さ:0.5mm)を得た。図13は、銅バンプ上に8μmピッチで四個の導電粒子が配置されたチップC2(回路部材)を模式的に示す平面図である。
・チップC1…面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数八個
・チップC2…面積15μm×15μm、スペース10μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数四個
・チップC3…面積15μm×30μm、スペース6μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数八個
As shown in FIG. 12, a chip C1 with an electrode with a terminal was obtained in which eight conductive particles were arranged on a copper bump at a pitch of 8 μm. In the same manner as this, chips C2 and C3 (1.7 × 1.7 mm, thickness: 0.5 mm) having the following configurations were obtained. FIG. 13 is a plan view schematically showing a chip C2 (circuit member) in which four conductive particles are arranged on a copper bump at a pitch of 8 μm.
・ Chip C1… Area 15 μm × 30 μm, space 10 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps ・ Chip C2… area 15 μm × 15 μm, space 10 μm, height: 10 μm, number of bumps 362, Number of conductive particles on copper bumps: 4 ・ Chip C3: Area 15 μm × 30 μm, space 6 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps 8

[接続構造体の作製]
(工程d)
フェノキシ樹脂(ユニオンカーバイド社製、商品名「PKHC」)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、分子量:85万)75gとを、酢酸エチル400gに溶解し、溶液を得た。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185、旭化成エポキシ株式会社製、商品名「ノバキュアHX−3941」)300gを加え、撹拌して接着剤溶液を得た。得られた接着剤溶液を、セパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータを用いて塗布し、90℃で10分間の加熱することにより乾燥して、厚さ10μmの接着フィルム(絶縁樹脂フィルム)をセパレータ上に作製した。
[Preparation of connection structure]
(Step d)
Copolymer of 100 g of phenoxy resin (manufactured by Union Carbide, trade name "PKHC") and acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, 3 parts by mass of glycidyl methacrylate, molecular weight: 85 (10,000) 75 g was dissolved in 400 g of ethyl acetate to obtain a solution. To this solution, 300 g of a liquid epoxy resin (epoxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name "Novacure HX-3941") containing a microcapsule type latent curing agent was added, and the mixture was stirred to obtain an adhesive solution. .. The obtained adhesive solution is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) using a roll coater, and dried by heating at 90 ° C. for 10 minutes to obtain an adhesive film having a thickness of 10 μm. (Insulating resin film) was prepared on a separator.

次に、作製した接着フィルムを用いて、端子付き電極付きチップ(1.7×1.7mm、厚さ:0.5mm)と、IZO回路付きガラス基板(厚さ:0.7mm)との接続を、以下に示すi)〜iii)の手順に従って行うことによって接続構造体を得た。
i)接着フィルム(2×19mm)をIZO回路付きガラス基板に、80℃、0.98MPa(10kgf/cm)で貼り付けた。
ii)セパレータを剥離し、チップのバンプとIZO回路付きガラス基板の位置合わせを行った。
iii)190℃、40gf/バンプ、10秒の条件でチップ上方から加熱及び加圧を行い、本接続を行った。作製した導電粒子等の条件を表1にまとめて示した。
Next, using the produced adhesive film, a connection between a chip with an electrode with a terminal (1.7 x 1.7 mm, thickness: 0.5 mm) and a glass substrate with an IZO circuit (thickness: 0.7 mm). The connection structure was obtained by following the procedure i) to iii) shown below.
i) An adhesive film (2 × 19 mm) was attached to a glass substrate with an IZO circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ).
ii) The separator was peeled off, and the bump of the chip and the glass substrate with the IZO circuit were aligned.
iii) This connection was made by heating and pressurizing from above the chip under the conditions of 190 ° C., 40 gf / bump, and 10 seconds. The conditions of the produced conductive particles and the like are summarized in Table 1.

<導電粒子の金属層の厚さ及び成分の評価>
得られた導電粒子の中心付近を通るようにウルトラミクロトーム法で断面を切り出した。透過型電子顕微鏡装置(以下「TEM装置」と略称する、日本電子株式会社製、商品名「JEM−2100F」)を用いて任意の倍率で観察した。得られた画像から、導電粒子の中心部から半径方向における、金属層の厚さをそれぞれ測定した。5個の導電粒子について各5箇所測定し、合計25箇所の平均値を、金属層の厚さとした。また、EDXマッピングデータから、金属層における元素の含有量(純度)を算出した。
<Evaluation of metal layer thickness and composition of conductive particles>
A cross section was cut out by an ultramicrotome method so as to pass near the center of the obtained conductive particles. Observation was performed at an arbitrary magnification using a transmission electron microscope device (hereinafter abbreviated as "TEM device", manufactured by JEOL Ltd., trade name "JEM-2100F"). From the obtained images, the thickness of the metal layer in the radial direction from the center of the conductive particles was measured. Five conductive particles were measured at five points each, and the average value of a total of 25 points was taken as the thickness of the metal layer. In addition, the content (purity) of the element in the metal layer was calculated from the EDX mapping data.

[接続構造体の評価]
得られた接続構造体の導通抵抗試験及び絶縁抵抗試験を以下のように行った。
[Evaluation of connection structure]
The conduction resistance test and the insulation resistance test of the obtained connection structure were carried out as follows.

(導通抵抗試験−吸湿耐熱試験)
チップ電極(バンプ)/ガラス電極(IZO)間の導通抵抗に関して、導通抵抗の初期値と吸湿耐熱試験(温度85℃、湿度85%の条件で100、300、500、1000、2000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。なお、前述のチップC1及びチップC2を用いて評価した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表2に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が2Ω未満
B:導通抵抗の平均値が2Ω以上5Ω未満
C:導通抵抗の平均値が5Ω以上10Ω未満
D:導通抵抗の平均値が10Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
(Conduction resistance test-moisture absorption and heat resistance test)
Regarding the conduction resistance between the chip electrode (bump) / glass electrode (IZO), after the initial value of the conduction resistance and the moisture absorption and heat resistance test (leaved for 100, 300, 500, 1000, 2000 hours under the conditions of temperature 85 ° C. and humidity 85%). The value of was measured for 20 samples, and the average value thereof was calculated. The evaluation was performed using the above-mentioned chips C1 and C2. From the obtained average value, the conduction resistance was evaluated according to the following criteria. The results are shown in Table 2. If the following criteria A or B are satisfied after 500 hours of the moisture absorption and heat resistance test, it can be said that the conduction resistance is good.
A: Average value of conduction resistance is less than 2Ω B: Average value of conduction resistance is 2Ω or more and less than 5Ω C: Average value of conduction resistance is 5Ω or more and less than 10Ω D: Average value of conduction resistance is 10Ω or more and less than 20Ω E: Conduction resistance The average value of is 20Ω or more

(導通抵抗試験−高温放置試験)
チップ電極(バンプ)/ガラス電極(IZO)間の導通抵抗に関して、導通抵抗の初期値と高温放置試験(温度100℃の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。なお、前述のチップC1を用いて評価した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表2に示す。なお、高温放置試験100時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が2Ω未満
B:導通抵抗の平均値が2Ω以上5Ω未満
C:導通抵抗の平均値が5Ω以上10Ω未満
D:導通抵抗の平均値が10Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
(Conduction resistance test-high temperature standing test)
Regarding the conduction resistance between the chip electrode (bump) / glass electrode (IZO), the initial value of the conduction resistance and the value after the high temperature standing test (leaving 100, 300, 500, 1000 hours at a temperature of 100 ° C.) are 20 samples. Was measured, and the average value thereof was calculated. The evaluation was performed using the above-mentioned chip C1. From the obtained average value, the conduction resistance was evaluated according to the following criteria. The results are shown in Table 2. If the criteria A or B below are satisfied after 100 hours of the high temperature standing test, it can be said that the conduction resistance is good.
A: Average value of conduction resistance is less than 2Ω B: Average value of conduction resistance is 2Ω or more and less than 5Ω C: Average value of conduction resistance is 5Ω or more and less than 10Ω D: Average value of conduction resistance is 10Ω or more and less than 20Ω E: Conduction resistance The average value of is 20Ω or more

(絶縁抵抗試験)
チップ電極間の絶縁抵抗に関しては、絶縁抵抗の初期値とマイグレーション試験(温度60℃、湿度90%、20V印加の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、全20サンプル中、絶縁抵抗値が10Ω以上となるサンプルの割合を算出した。なお、前述のチップC1及びチップC3を用いて評価した。得られた割合から下記基準に従って絶縁抵抗を評価した。結果を表2に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たした場合は絶縁抵抗が良好といえる。
A:絶縁抵抗値10Ω以上の割合が100%
B:絶縁抵抗値10Ω以上の割合が90%以上100%未満
C:絶縁抵抗値10Ω以上の割合が80%以上90%未満
D:絶縁抵抗値10Ω以上の割合が50%以上80%未満
E:絶縁抵抗値10Ω以上の割合が50%未満
(Insulation resistance test)
Regarding the insulation resistance between the chip electrodes, the initial value of the insulation resistance and the value after the migration test (100, 300, 500, 1000 hours left under the conditions of temperature 60 ° C., humidity 90%, 20V application) were measured for 20 samples. and, in all 20 samples was calculated the ratio of the sample insulation resistance is 10 9 Omega more. The evaluation was performed using the above-mentioned chips C1 and C3. The insulation resistance was evaluated from the obtained ratio according to the following criteria. The results are shown in Table 2. If the following criteria A or B are satisfied after 500 hours of the moisture absorption and heat resistance test, it can be said that the insulation resistance is good.
A: percentage of higher insulation resistance 10 9 Omega 100%
B: Insulation resistance value 10 9 Ω or more is 90% or more and less than 100% C: Insulation resistance value 10 9 Ω or more is 80% or more and less than 90% D: Insulation resistance value 10 9 Ω or more is 50% or more and less than 80% E: ratio of more than the insulation resistance 10 9 Omega is less than 50%

<実施例2>
実施例1の(工程d)において、銅バンプ及び導電粒子上に電解ニッケルめっき層を形成した後、更にその表面に無電解パラジウムめっき層を形成したこと以外は実施例1と同様にして、導電粒子、端子付き電極の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。なお、無電解パラジウムめっきは、浸漬時間3分、温度60℃の条件で実施し、電解ニッケルめっき層の表面上に、厚さ0.03μmの無電解パラジウムめっきが形成された。
(無電解パラジウムめっき液)
塩化パラジウム・・・・0.07g/L
エチレンジアミン・・・0.05g/L
ギ酸ナトリウム・・・・0.2g/L
酒石酸・・・・・・・・0.11g/L
pH・・・・・・・・・7
<Example 2>
Conductive in the same manner as in Example 1 except that an electroless nickel plating layer was formed on the copper bumps and conductive particles and then an electroless palladium plating layer was further formed on the surface of the copper bump and the conductive particles in (step d) of Example 1. Particles, electrodes with terminals, connection structures were prepared, and conductive particles and connection structures were evaluated. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2. The electroless palladium plating was carried out under the conditions of an immersion time of 3 minutes and a temperature of 60 ° C., and an electroless palladium plating having a thickness of 0.03 μm was formed on the surface of the electrolytic nickel plating layer.
(Electroless palladium plating solution)
Palladium chloride ... 0.07 g / L
Ethylenediamine: 0.05 g / L
Sodium formate ... 0.2 g / L
Tartaric acid ・ ・ ・ ・ ・ ・ ・ ・ 0.11g / L
pH ・ ・ ・ ・ ・ ・ ・ ・ ・ 7

<実施例3>
実施例2における無電解パラジウムめっき液への浸漬時間を5分にし、無電解パラジウムめっき層の厚さを0.05μmにしたこと以外は、実施例2と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 3>
Conductive particles and bumps were formed in the same manner as in Example 2 except that the immersion time in the electroless palladium plating solution in Example 2 was set to 5 minutes and the thickness of the electroless palladium plating layer was set to 0.05 μm. The connection terminals were manufactured, the connection structure was manufactured, and the conductive particles and the connection structure were evaluated. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例4>
実施例2における無電解パラジウムめっき液への浸漬時間を10分にし、無電解パラジウムめっき層の厚さを0.1μmにしたこと以外は、実施例2と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 4>
Conductive particles and bumps were formed in the same manner as in Example 2 except that the immersion time in the electroless palladium plating solution in Example 2 was 10 minutes and the thickness of the electroless palladium plating layer was 0.1 μm. The connection terminals were manufactured, the connection structure was manufactured, and the conductive particles and the connection structure were evaluated. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例5>
実施例1における(工程c)の工程において、電解ニッケルめっき層を形成する代わりに、電解パラジウムめっき液であるパラブライトSST−L(日本高純度化学株式会社、商品名)を用いて、60℃、1A/dmで20秒間、電解パラジウムめっきを行い、0.1μmの厚さのパラジウムめっき層を析出させた。それ以外は、実施例1と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 5>
In the step (step c) of Example 1, instead of forming the electrolytic nickel plating layer, Parabright SST-L (Japan High Purity Chemical Co., Ltd., trade name), which is an electrolytic palladium plating solution, is used at 60 ° C. Electrolytic palladium plating was performed at 1 A / dm 2 for 20 seconds to precipitate a palladium plating layer having a thickness of 0.1 μm. Other than that, conductive particles, bump-shaped connection terminals, connection structures were produced, and conductive particles and connection structures were evaluated in the same manner as in Example 1. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例6>
実施例1における(工程c)の工程において、電解ニッケルめっき層を形成する代わりに、電解パラジウムめっき液であるパラブライトSST−L(日本高純度化学株式会社、商品名)を用いて、60℃、1A/dmで1分間、電解パラジウムめっきを行い、0.3μmの厚さのパラジウム層を析出させた。それ以外は、実施例1と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 6>
In the step (step c) of Example 1, instead of forming the electrolytic nickel plating layer, Parabright SST-L (Japan High Purity Chemical Co., Ltd., trade name), which is an electrolytic palladium plating solution, is used at 60 ° C. Electrolytic palladium plating was performed at 1 A / dm 2 for 1 minute to precipitate a palladium layer having a thickness of 0.3 μm. Other than that, conductive particles, bump-shaped connection terminals, connection structures were produced, and conductive particles and connection structures were evaluated in the same manner as in Example 1. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例7>
実施例1における(工程c)の工程において、電解ニッケルめっき層を形成する代わりに、電解パラジウムめっき液であるパラブライトSST−L(日本高純度化学株式会社、商品名)を用いて、60℃、1A/dmで1分40秒間、電解パラジウムめっきを行い、0.5μmの厚さのパラジウムめっき層を析出させた。それ以外は、実施例1と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 7>
In the step (step c) of Example 1, instead of forming the electrolytic nickel plating layer, Parabright SST-L (Japan High Purity Chemical Co., Ltd., trade name), which is an electrolytic palladium plating solution, is used at 60 ° C. Electrolytic palladium plating was performed at 1 A / dm 2 for 1 minute and 40 seconds to precipitate a palladium plating layer having a thickness of 0.5 μm. Other than that, conductive particles, bump-shaped connection terminals, connection structures were produced, and conductive particles and connection structures were evaluated in the same manner as in Example 1. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例8>
実施例1における(工程a)〜(工程c)の工程を行った後、銅バンプ及び導電粒子上に、電解ニッケルめっき層を形成したバンプ形状の接続用端子表面に、電解パラジウムめっき液であるパラブライトSST−L(日本高純度化学株式会社、商品名)を用いて、60℃、1A/dmで20秒間、電解パラジウムめっきを行い、0.1μmの厚さのパラジウムめっき層を析出させた。これ以降は、実施例1における(工程d)以降と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 8>
After performing the steps (step a) to (step c) in Example 1, an electrolytic palladium plating solution is applied to the bump-shaped connecting terminal surface on which an electrolytic nickel plating layer is formed on copper bumps and conductive particles. Electrolytic palladium plating was performed at 60 ° C. and 1 A / dm 2 for 20 seconds using Parabrite SST-L (Japan High Purity Chemical Co., Ltd., trade name) to precipitate a palladium plating layer having a thickness of 0.1 μm. It was. After that, in the same manner as in (Step d) and subsequent steps in Example 1, the conductive particles and bump-shaped connecting terminals were manufactured, the connecting structure was manufactured, and the conductive particles and the connecting structure were evaluated. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例9>
実施例1における(工程a)〜(工程c)の工程を行った後、銅バンプ及び導電粒子上に、電解ニッケルめっき層を形成したバンプ形状の接続用端子表面に、電解パラジウムめっき液であるパラブライトSST−L(日本高純度化学株式会社、商品名)を用いて、60℃、1A/dmで1分間、電解パラジウムめっきを行い、0.3μmの厚さのパラジウムめっき層を析出させた。これ以降は、実施例1における(工程d)以降と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 9>
After performing the steps (step a) to (step c) in Example 1, an electrolytic palladium plating solution is applied to the bump-shaped connecting terminal surface on which an electrolytic nickel plating layer is formed on copper bumps and conductive particles. Electrolytic palladium plating was performed at 60 ° C. and 1 A / dm 2 for 1 minute using Parabrite SST-L (Japan High Purity Chemical Co., Ltd., trade name) to precipitate a palladium plating layer having a thickness of 0.3 μm. It was. After that, in the same manner as in (Step d) and subsequent steps in Example 1, the conductive particles and bump-shaped connecting terminals were manufactured, the connecting structure was manufactured, and the conductive particles and the connecting structure were evaluated. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例10>
実施例1における(工程a)〜(工程c)の工程を行った後、銅バンプ及び導電粒子上に、電解ニッケルめっき層を形成したバンプ形状の接続用端子表面に、電解パラジウムめっき液であるパラブライトSST−L(日本高純度化学株式会社、商品名)を用いて、60℃、1A/dmで1分40秒間、電解パラジウムめっきを行い、0.5μmの厚さのパラジウムめっき層を析出させた。これ以降は、実施例1における(工程d)以降と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 10>
After performing the steps (step a) to (step c) in Example 1, an electrolytic palladium plating solution is applied to the bump-shaped connecting terminal surface on which an electrolytic nickel plating layer is formed on copper bumps and conductive particles. Electrolytic palladium plating was performed at 60 ° C. and 1 A / dm 2 for 1 minute and 40 seconds using Parabrite SST-L (Nippon High Purity Chemical Co., Ltd., trade name) to form a palladium plating layer with a thickness of 0.5 μm. It was precipitated. After that, in the same manner as in (Step d) and subsequent steps in Example 1, the conductive particles and bump-shaped connecting terminals were manufactured, the connecting structure was manufactured, and the conductive particles and the connecting structure were evaluated. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<比較例1>
実施例1における(工程c)の工程において、電解ニッケルめっき層を形成する代わりに、硫酸銅浴を用い、液温25℃、電流密度1.0A/dmの条件で、2分間、電解銅めっきを行い、0.5μmの厚さの銅めっき層を析出させた。それ以外は、実施例1と同様にして、導電粒子、バンプ形状の接続用端子の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表3にまとめて示した。また、評価結果を表4に示す。
<Comparative example 1>
In the step (step c) of Example 1, instead of forming the electrolytic nickel plating layer, a copper sulfate bath was used, and the electrolytic copper was used for 2 minutes under the conditions of a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2. Plating was performed to precipitate a copper plating layer having a thickness of 0.5 μm. Other than that, conductive particles, bump-shaped connection terminals, connection structures were produced, and conductive particles and connection structures were evaluated in the same manner as in Example 1. The conditions of the produced conductive particles and the like are summarized in Table 3. The evaluation results are shown in Table 4.

<比較例2>
[導電粒子の作製]
実施例1(工程a)を行った後、実施例1の(工程b)を引き続き行い、無電解ニッケルめっきの液量を100mLとし、表5に示す厚さ0.1μmのニッケル−リン合金(ニッケル濃度93質量%、残部リン)からなる第1の層を形成した。第1の層を形成することにより得た粒子Aは2.8gであり、外径は3.2μmであった。第1の金属層(ニッケル)を形成した粒子2.8gを、50℃で加温した水200mLで希釈し、めっき安定剤として1g/Lの硝酸ビスマス水溶液を0.2mL添加し、下記組成の第2の金属層形成用無電解パラジウムめっき液20mLを、1mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過した。濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表5に示す厚さ0.02μmのパラジウムめっき(パラジウムの純度100%)からなる第3の層を形成した。なお、アクリル粒子の外側に、内側から順に第1の金属層(ニッケル)0.1μm、第2の金属層(パラジウム)0.02μmが形成された、外径3.24μmの導電粒子3gを得た。
(無電解パラジウムめっき液)
塩化パラジウム:7g/L
EDTA・2ナトリウム:100g/L
クエン酸・2ナトリウム:100g/L
ギ酸ナトリウム:20g/L
pH:6
<Comparative example 2>
[Preparation of conductive particles]
After performing Example 1 (step a), the (step b) of Example 1 was continued, and the liquid volume of electroless nickel plating was set to 100 mL, and the nickel-phosphorus alloy having a thickness of 0.1 μm shown in Table 5 was used. A first layer composed of nickel concentration 93% by mass and balance phosphorus) was formed. The particle A obtained by forming the first layer was 2.8 g, and the outer diameter was 3.2 μm. 2.8 g of the particles forming the first metal layer (nickel) was diluted with 200 mL of water heated at 50 ° C., and 0.2 mL of a 1 g / L bismuth nitrate aqueous solution was added as a plating stabilizer to obtain the following composition. 20 mL of the electroless palladium plating solution for forming the second metal layer was added dropwise at a dropping rate of 1 mL / min. After 10 minutes had passed after the completion of the dropping, the dispersion liquid to which the plating liquid was added was filtered. The filtrate was washed with water and then dried in a vacuum dryer at 80 ° C. In this way, a third layer made of palladium plating (palladium purity 100%) having a thickness of 0.02 μm shown in Table 5 was formed. In addition, 3 g of conductive particles having an outer diameter of 3.24 μm, in which a first metal layer (nickel) 0.1 μm and a second metal layer (palladium) 0.02 μm were formed on the outside of the acrylic particles in order from the inside, were obtained. It was.
(Electroless palladium plating solution)
Palladium chloride: 7 g / L
EDTA.2 sodium: 100 g / L
Citric acid / 2 sodium: 100 g / L
Sodium formate: 20 g / L
pH: 6

[第1の絶縁粒子の作製]
500mlフラスコに入った純水400g中に下に示す配合モル比に従ってモノマーを加えた。全モノマーの総量が、純水に対して10質量%になるように配合した。窒素置換後、70℃で撹拌しながら6時間加熱を行った。攪拌速度は300min−1(300rpm)であった。なお、KBM−503(信越シリコーン社製、商品名)は、3−メタクリロキシプロピルトリメトキシシランである。合成することで得た第1の絶縁粒子の平均粒径は315nm、Tgは116℃であった。
(第1の絶縁粒子の配合モル比)
スチレン:600
ペルオキソ二硫酸カリウム:6
メタクリル酸ナトリウム:5.4
スチレンスルホン酸ナトリウム:0.32
ジビニルベンゼン:16.8
KBM−503:4.2
[Preparation of first insulating particles]
Monomers were added to 400 g of pure water in a 500 ml flask according to the compounding molar ratio shown below. It was blended so that the total amount of all the monomers was 10% by mass with respect to pure water. After the nitrogen substitution, heating was carried out for 6 hours with stirring at 70 ° C. The stirring speed was 300 min -1 (300 rpm). KBM-503 (manufactured by Shinetsu Silicone Co., Ltd., trade name) is 3-methacryloxypropyltrimethoxysilane. The average particle size of the first insulating particles obtained by the synthesis was 315 nm, and the Tg was 116 ° C.
(Mole ratio of first insulating particles)
Styrene: 600
Potassium persulfate: 6
Sodium methacrylate: 5.4
Sodium styrene sulfonate: 0.32
Divinylbenzene: 16.8
KBM-503: 4.2

[第2の絶縁粒子の作製]
500mlフラスコに入った純水400g中に下に示す配合モル比に従ってモノマーを加えた。全モノマーの総量が、純水に対して10質量%になるように配合した。窒素置換後、70℃で撹拌しながら6時間加熱を行った。攪拌速度は300min−1(300rpm)であった。合成することで得た第2の絶縁粒子の平均粒径は100nm、Tgは116℃であった。
(第2の絶縁粒子の配合モル比)
スチレン:600
ペルオキソ二硫酸カリウム:6
アクリル酸メチル:270
メタクリル酸ナトリウム:5.4
スチレンスルホン酸ナトリウム:2.0
ジビニルベンゼン:16.8
KBM−503:4.2
[Preparation of second insulating particles]
Monomers were added to 400 g of pure water in a 500 ml flask according to the compounding molar ratio shown below. It was blended so that the total amount of all the monomers was 10% by mass with respect to pure water. After the nitrogen substitution, heating was carried out for 6 hours with stirring at 70 ° C. The stirring speed was 300 min-1 (300 rpm). The average particle size of the second insulating particles obtained by the synthesis was 100 nm, and the Tg was 116 ° C.
(Mole ratio of second insulating particles)
Styrene: 600
Potassium persulfate: 6
Methyl acrylate: 270
Sodium methacrylate: 5.4
Sodium styrene sulfonate: 2.0
Divinylbenzene: 16.8
KBM-503: 4.2

第1の絶縁粒子及び第2の絶縁粒子の平均粒径をHITACHI S−4800(日立ハイテク株式会社製、商品名)の画像解析により測定した。第1の絶縁粒子及び第2の絶縁粒子のTgを、DSC(パーキンエルマー社製DSC−7型)を用いて、サンプル量10mg、昇温速度5℃/分、測定雰囲気:空気の条件で測定した。 The average particle size of the first insulating particles and the second insulating particles was measured by image analysis of HITACHI S-4800 (manufactured by Hitachi High-Tech Co., Ltd., trade name). The Tg of the first insulating particles and the second insulating particles was measured using a DSC (DSC-7 type manufactured by PerkinElmer) with a sample amount of 10 mg, a heating rate of 5 ° C./min, and a measurement atmosphere: air conditions. did.

(シリコーンオリゴマーの調製)
攪拌装置、コンデンサー及び温度計を備えたガラスフラスコに、3−グリシドキシプロピルトリメトキシシラン118gとメタノール5.9gを配合した溶液を加えた。更に、活性白土5g及び蒸留水4.8gを添加し、75℃で一定時間攪拌した後、重量平均分子量1300のシリコーンオリゴマーを得た。得られたシリコーンオリゴマーは、水酸基と反応する末端官能基としてメトキシ基又はシラノール基を有するものである。得られたシリコーンオリゴマー溶液にメタノールを加えて、固形分20質量%の処理液を調製した。
(Preparation of silicone oligomer)
A solution containing 118 g of 3-glycidoxypropyltrimethoxysilane and 5.9 g of methanol was added to a glass flask equipped with a stirrer, a condenser and a thermometer. Further, 5 g of activated clay and 4.8 g of distilled water were added, and the mixture was stirred at 75 ° C. for a certain period of time to obtain a silicone oligomer having a weight average molecular weight of 1300. The obtained silicone oligomer has a methoxy group or a silanol group as a terminal functional group that reacts with a hydroxyl group. Methanol was added to the obtained silicone oligomer solution to prepare a treatment liquid having a solid content of 20% by mass.

なお、シリコーンオリゴマーの重量平均分子量はゲルパーミエーションクロマトグラフィー法(GPC)法によって測定し、標準ポリスチレンの検量線を用いて換算することにより算出した。GPCの条件を以下に示す。
GPC条件
ポンプ:日立 L−6000型(株式会社日立製作所製、商品名)
カラム:Gelpack GL−R420、Gelpack GL−R430、Gelpack GL−R440(以上、日立化成株式会社製、商品名)
溶離液:テトラヒドロフラン(THF)
測定温度:40℃
流量:2.05mL/分
検出器:日立 L−3300型RI(株式会社日立製作所製、商品名)
The weight average molecular weight of the silicone oligomer was measured by a gel permeation chromatography (GPC) method and calculated by converting using a standard polystyrene calibration curve. The conditions of GPC are shown below.
GPC condition pump: Hitachi L-6000 type (manufactured by Hitachi, Ltd., product name)
Columns: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (all manufactured by Hitachi Kasei Co., Ltd., trade name)
Eluent: tetrahydrofuran (THF)
Measurement temperature: 40 ° C
Flow rate: 2.05 mL / min Detector: Hitachi L-3300 type RI (manufactured by Hitachi, Ltd., product name)

[絶縁被覆導電粒子の作製]
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を調製した。次にアクリル粒子の外側に、内側から順に第1の層(ニッケル)0.1μm、第3の層(パラジウム)0.02μmが形成された、外径3.24μmの導電粒子3gを上記反応液に加え、室温で2時間スリーワンモーターと直径45mmの攪拌羽で攪拌した。メタノールで洗浄後、孔径3μmのメンブレンフィルタ(ミリポア社製)を用いてろ過することで、表面にカルボキシル基を有する導電粒子を得た。
[Preparation of insulating coated conductive particles]
A reaction solution was prepared by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol. Next, 3 g of conductive particles having an outer diameter of 3.24 μm, in which a first layer (nickel) 0.1 μm and a third layer (palladium) 0.02 μm were formed on the outside of the acrylic particles in this order from the inside, were added to the above reaction solution. In addition, the mixture was stirred at room temperature for 2 hours with a three-one motor and a stirring blade having a diameter of 45 mm. After washing with methanol, the particles were filtered using a membrane filter (manufactured by Millipore) having a pore size of 3 μm to obtain conductive particles having a carboxyl group on the surface.

次に重量平均分子量70,000の30%ポリエチレンイミン水溶液(和光純薬社製)を超純水で希釈し、0.3質量%ポリエチレンイミン水溶液を得た。上記表面にカルボキシル基を有する導電粒子を0.3質量%ポリエチレンイミン水溶液に加え、室温で15分攪拌した。その後、孔径3μmのメンブレンフィルタ(ミリポア社製)を用いて導電粒子をろ過し、ろ過された導電粒子を超純水200gに入れて室温で5分攪拌した。更に孔径3μmのメンブレンフィルタ(ミリポア社製)を用いて導電粒子をろ過し、上記メンブレンフィルタ上にて200gの超純水で2回洗浄を行った。これらの作業を行うことにより、吸着していないポリエチレンイミンが除去され、表面がアミノ基含有ポリマーで被覆された導電粒子が得られた。 Next, a 30% polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a weight average molecular weight of 70,000 was diluted with ultrapure water to obtain a 0.3% by mass polyethyleneimine aqueous solution. Conductive particles having a carboxyl group on the surface were added to a 0.3 mass% polyethyleneimine aqueous solution, and the mixture was stirred at room temperature for 15 minutes. Then, the conductive particles were filtered using a membrane filter (manufactured by Millipore) having a pore size of 3 μm, and the filtered conductive particles were placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Further, the conductive particles were filtered using a membrane filter having a pore size of 3 μm (manufactured by Millipore), and washed twice with 200 g of ultrapure water on the membrane filter. By performing these operations, unadsorbed polyethyleneimine was removed, and conductive particles whose surface was coated with an amino group-containing polymer were obtained.

次に、第1の絶縁粒子をシリコーンオリゴマーで処理し、表面にグリシジル基含有オリゴマーを有する第1の絶縁粒子のメタノール分散媒を調製した。一方、第2の絶縁粒子も同様にシリコーンオリゴマーで処理し、表面にグリシジル基含有オリゴマーを有する第2の絶縁粒子のメタノール分散媒を調製した。 Next, the first insulating particles were treated with a silicone oligomer to prepare a methanol dispersion medium for the first insulating particles having a glycidyl group-containing oligomer on the surface. On the other hand, the second insulating particles were also treated with a silicone oligomer in the same manner to prepare a methanol dispersion medium for the second insulating particles having a glycidyl group-containing oligomer on the surface.

上記表面がアミノ基含有ポリマーで被覆された導電粒子をイソプロピルアルコールに浸漬し、第1の絶縁粒子のメタノール分散媒を滴下した。第1の絶縁粒子の被覆率は、第1の絶縁粒子のメタノール分散媒の滴下量で調整した。次いで、第2の絶縁粒子のメタノール分散媒を滴下することで、絶縁被覆導電粒子を作製した。第2の絶縁粒子の被覆率は、第2の絶縁粒子の滴下量で調整した。第1の絶縁粒子による被覆率は30%、第2の絶縁粒子による被覆率は25%であり、絶縁粒子による被覆率は合計で55%であった。 The conductive particles whose surface was coated with the amino group-containing polymer were immersed in isopropyl alcohol, and the methanol dispersion medium of the first insulating particles was added dropwise. The coverage of the first insulating particles was adjusted by the amount of the methanol dispersion medium of the first insulating particles added dropwise. Then, the methanol dispersion medium of the second insulating particles was added dropwise to prepare the insulating coated conductive particles. The coverage of the second insulating particles was adjusted by the amount of the second insulating particles dropped. The coverage with the first insulating particles was 30%, the coverage with the second insulating particles was 25%, and the coverage with the insulating particles was 55% in total.

得られた絶縁被覆導電粒子を縮合剤とオクタデシルアミンで処理し、洗浄して表面の疎水化を行った。その後80℃で1時間の条件で加熱乾燥させて絶縁被覆導電粒子を作製した。 The obtained insulating coated conductive particles were treated with a condensing agent and octadecylamine and washed to make the surface hydrophobic. Then, it was heated and dried at 80 ° C. for 1 hour to prepare insulating coated conductive particles.

[異方導電性接着剤フィルムの作製]
酢酸エチルとトルエンを質量比1:1で混合した溶媒300gに、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、重量平均分子量:85万)75gとを溶解し、溶液を得た。この溶液にマイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エボキシ当量185、旭化成エポキシ株式会社製、商品名:ノバキュアHX−3941)300gと、液状エポキシ樹脂(油化シェルエポキシ株式会社製、商品名:YL980)400gとを加えて撹拌した。得られた混合液に平均粒径が14nmのシリカを溶剤分散したシリカスラリー(日本アエロジル社製、商品名:R202)を加えて接着剤溶液1を調製した。シリカスラリーは、上記混合液の固形分全量に対してシリカ固形分の含有量が5質量%となるように加えた。
[Preparation of anisotropic conductive adhesive film]
100 g of phenoxy resin (manufactured by Union Carbide, trade name: PKHC) and acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile) are mixed with 300 g of a solvent obtained by mixing ethyl acetate and toluene at a mass ratio of 1: 1. A solution was obtained by dissolving 75 g of a copolymer having 3 parts by mass and 3 parts by mass of glycidyl methacrylate and a weight average molecular weight of 850,000). 300 g of liquid epoxy (Eboxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name: Novacure HX-3941) containing a microcapsule type latent curing agent in this solution, and liquid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., product) Name: YL980) 400 g was added and stirred. An adhesive solution 1 was prepared by adding a silica slurry (manufactured by Nippon Aerosil Co., Ltd., trade name: R202) in which silica having an average particle size of 14 nm was solvent-dispersed to the obtained mixed solution. The silica slurry was added so that the silica solid content was 5% by mass with respect to the total solid content of the mixture.

ビーカーに、酢酸エチルとトルエンとを質量比1:1で混合した分散媒10gと、絶縁被覆導電粒子を入れて超音波分散した。超音波分散の条件は、周波数が38kHZ、エネルギーが400W、体積が20Lの超音波槽(藤本科学、商品名:US107)に上記ビーカーを浸漬して1分間攪拌した。 In a beaker, 10 g of a dispersion medium in which ethyl acetate and toluene were mixed at a mass ratio of 1: 1 and insulating coated conductive particles were placed and ultrasonically dispersed. The conditions for ultrasonic dispersion were that the beaker was immersed in an ultrasonic tank (Fujimoto Kagaku, trade name: US107) having a frequency of 38 kHz, an energy of 400 W, and a volume of 20 L, and stirred for 1 minute.

得られた絶縁被覆導電粒子の分散液を接着剤溶液1中に分散した。得られた分散液をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚さ10μmの接着剤フィルムAを作製した。この接着剤フィルムは単位面積当たり7万個/mmの絶縁被覆導電粒子を有する。また、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚さ3μmの接着剤フィルムBを作製した。更に、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し厚さ10μmの接着剤フィルムCを作製した。次に、接着剤フィルムB、接着剤フィルムA、接着剤フィルムCの順番で各接着剤フィルムをラミネートし、三層からなる異方導電性接着剤フィルムDを作製した。 The obtained dispersion of insulating coated conductive particles was dispersed in the adhesive solution 1. The obtained dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film A having a thickness of 10 μm. This adhesive film has an insulating coating conductive particles per unit area 70,000 pieces / mm 2. Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film B having a thickness of 3 μm. Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film C having a thickness of 10 μm. Next, each adhesive film was laminated in the order of the adhesive film B, the adhesive film A, and the adhesive film C to prepare an anisotropic conductive adhesive film D composed of three layers.

[接続サンプルの作製]
作製した異方導電性接着剤フィルムDを用いて、実施例6と同様の、銅/ニッケル/パラジウム/金バンプ(面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362)[無電解ニッケルめっき(膜厚:0.5μm)、無電解パラジウムめっき(膜厚:0.1μm)、置換金めっき(膜厚:0.05μm)]付きチップ(1.7×1.7mm、厚さ:0.5mm)と、実施例1(工程e)と同様の、IZO回路付きガラス基板(厚さ:0.7mm)との接続を、以下に示すように行った。
[Preparation of connection sample]
Using the produced anisotropic conductive adhesive film D, copper / nickel / palladium / gold bumps (area 15 μm × 30 μm, space 10 μm, height: 10 μm, number of bumps 362) [electroless electroless Chip with nickel plating (thickness: 0.5 μm), electroless palladium plating (thickness: 0.1 μm), replacement gold plating (thickness: 0.05 μm)] (1.7 × 1.7 mm, thickness: The connection between (0.5 mm) and the glass substrate with IZO circuit (thickness: 0.7 mm) similar to that in Example 1 (step e) was performed as shown below.

異方導電性接着剤フィルムDを、IZO回路付きガラス基板に温度が80℃、圧力が0.98MPa(10kgf/cm)の条件で貼り付けた後、セパレータを剥離し、チップに備えている銅/ニッケル/パラジウム/金バンプと電極を備えているガラス基板の位置合わせを行った。次いで、温度が190℃、圧力が39N/バンプ(40gf/バンプ)の条件でチップ上方から10秒間加熱及び加圧を行い、本接続を行った。なお、異方導電性接着剤フィルムDは、接着剤フィルムBがガラス基板側に、接着剤フィルムCが金属バンプ側になるように配置された。 The anisotropic conductive adhesive film D is attached to a glass substrate with an IZO circuit under the conditions of a temperature of 80 ° C. and a pressure of 0.98 MPa (10 kgf / cm 2 ), and then the separator is peeled off to prepare the chip. A glass substrate with copper / nickel / palladium / gold bumps and electrodes was aligned. Next, the main connection was made by heating and pressurizing from above the chip for 10 seconds under the conditions of a temperature of 190 ° C. and a pressure of 39 N / bump (40 gf / bump). The anisotropic conductive adhesive film D was arranged so that the adhesive film B was on the glass substrate side and the adhesive film C was on the metal bump side.

導電粒子の金属層の厚さ及び成分の評価、導通抵抗試験および絶縁抵抗試験を実施例1と同様に行った。作製した導電粒子等の条件を表5に示した。また評価結果を表4に示した。 Evaluation of the thickness and composition of the metal layer of the conductive particles, conduction resistance test and insulation resistance test were carried out in the same manner as in Example 1. Table 5 shows the conditions of the produced conductive particles and the like. The evaluation results are shown in Table 4.

Figure 0006897038
Figure 0006897038

Figure 0006897038
Figure 0006897038

Figure 0006897038
Figure 0006897038

Figure 0006897038
Figure 0006897038

Figure 0006897038
Figure 0006897038

1…基材粒子、3…金属層、5…電解めっき層(めっき層)、6…被覆層(第二のめっき層)、10…導電粒子、30…第一の回路部材、32…第一の電極、35,36…端子付き電極、40…第二の回路部材、42…第二の電極、50…接続構造体、55…絶縁樹脂層、60…転写型、60a…表面、62…凹部(開口部)、62a…底部。 1 ... Base particle, 3 ... Metal layer, 5 ... Electroplating layer (plating layer), 6 ... Coating layer (second plating layer), 10 ... Conductive particles, 30 ... First circuit member, 32 ... First Electrodes, 35, 36 ... Electrodes with terminals, 40 ... Second circuit members, 42 ... Second electrodes, 50 ... Connection structures, 55 ... Insulating resin layers, 60 ... Transfer type, 60a ... Surfaces, 62 ... Recesses (Opening), 62a ... Bottom.

Claims (33)

第一の基板と、前記第一の基板に設けられた第一の電極とを有する第一の回路部材を準備すること;
前記第一の電極と電気的に接続される第二の電極を有する第二の回路部材を準備すること;
粒径が2.0〜40μmである複数の導電粒子を準備すること;
前記第一の電極の表面に前記複数の導電粒子を配置すること;
前記第一の電極と、前記第一の電極の表面に配置された前記複数の導電粒子とを覆う電解めっき層を形成すること;
前記第一の回路部材の一方の面であって前記導電粒子とともに前記電解めっき層によって覆われている前記第一の電極を有する面と、前記第二の回路部材の一方の面であって前記第二の電極を有する面との間に絶縁樹脂層を形成すること;
前記第一の回路部材と前記絶縁樹脂層と前記第二の回路部材と含む積層体を前記積層体の厚さ方向の押圧した状態で加熱することによって前記第一の電極と前記第二の電極とを電気的に接続し且つ前記第一の回路部材と前記第二の回路部材と接着すること;
を含む接続構造体の製造方法。
Preparing a first circuit member having a first substrate and a first electrode provided on the first substrate;
Preparing a second circuit member having a second electrode that is electrically connected to the first electrode;
Preparing a plurality of conductive particles having a particle size of 2.0 to 40 μm;
Placing the plurality of conductive particles on the surface of the first electrode;
Forming an electroplating layer that covers the first electrode and the plurality of conductive particles arranged on the surface of the first electrode;
One surface of the first circuit member having the first electrode covered with the conductive particles and the electrolytic plating layer, and one surface of the second circuit member. Forming an insulating resin layer with the surface having the second electrode;
The first electrode and the second electrode are formed by heating a laminate including the first circuit member, the insulating resin layer, and the second circuit member in a pressed state in the thickness direction of the laminate. To electrically connect and bond the first circuit member to the second circuit member;
A method of manufacturing a connection structure including.
前記導電粒子は、基材粒子と、前記基材粒子の表面に形成された単層構造又は多層構造の金属層とを備える、請求項1に記載の接続構造体の製造方法。 The method for producing a connecting structure according to claim 1, wherein the conductive particles include base particles and a metal layer having a single-layer structure or a multi-layer structure formed on the surface of the base particles. 前記基材粒子の粒径は1.5〜10μmである、請求項2に記載の接続構造体の製造方法。 The method for producing a connecting structure according to claim 2, wherein the substrate particles have a particle size of 1.5 to 10 μm. 前記基材粒子は樹脂からなる、請求項2又は3に記載の接続構造体の製造方法。 The method for producing a connecting structure according to claim 2 or 3, wherein the base particle is made of a resin. 前記金属層は、無電解めっきによって形成されたニッケル又はニッケル合金を含む第一金属層を少なくとも含む、請求項2〜4のいずれか一項に記載の接続構造体の製造方法。 The method for producing a connecting structure according to any one of claims 2 to 4, wherein the metal layer includes at least a first metal layer containing nickel or a nickel alloy formed by electroless plating. 前記第一金属層はリン及びホウ素の少なくとも一方を含む、請求項5に記載の接続構造体の製造方法。 The method for producing a connecting structure according to claim 5, wherein the first metal layer contains at least one of phosphorus and boron. 前記第一金属層のニッケル含有率が85〜98質量%である、請求項5又は6に記載の接続構造体の製造方法。 The method for producing a connecting structure according to claim 5 or 6, wherein the nickel content of the first metal layer is 85 to 98% by mass. 前記電解めっき層は電解ニッケルめっき層又は電解パラジウムめっき層である、請求項1〜7のいずれか一項に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to any one of claims 1 to 7, wherein the electrolytic plating layer is an electrolytic nickel plating layer or an electrolytic palladium plating layer. 前記電解めっき層の表面を覆う無電解めっき層を形成することを更に含む、請求項1〜8のいずれか一項に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to any one of claims 1 to 8, further comprising forming an electroless plating layer that covers the surface of the electroplating layer. 前記無電解めっき層は無電解ニッケルめっき層又は無電解パラジウムめっき層である、請求項9に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to claim 9, wherein the electroless plating layer is an electroless nickel plating layer or an electroless palladium plating layer. 前記第一の電極は、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物からなる、請求項1〜10のいずれか一項に記載の接続構造体の製造方法。 The method for producing a connecting structure according to any one of claims 1 to 10, wherein the first electrode is made of copper, nickel, palladium, gold, silver, an alloy thereof, and indium tin oxide. 前記第一の電極における前記複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型を準備すること;
前記複数の開口部に前記導電粒子を収容すること;
を更に含み、
前記第一の回路部材と前記転写型とを重ね合せることにより、前記第一の電極の表面に前記転写型の前記開口部にそれぞれ収容されている前記導電粒子を配置し、
前記第一の回路部材と前記転写型とを重ね合せた状態において、前記第一の電極と前記第一の電極の表面に配置された前記複数の導電粒子とを覆う電解めっき層を形成する、請求項1〜11のいずれか一項に記載の接続構造体の製造方法。
To prepare a transfer mold having a plurality of openings at positions corresponding to the positions where the plurality of conductive particles are arranged on the first electrode;
Accommodating the conductive particles in the plurality of openings;
Including
By superimposing the first circuit member and the transfer mold, the conductive particles housed in the openings of the transfer mold are arranged on the surface of the first electrode.
In a state where the first circuit member and the transfer mold are overlapped with each other, an electroplating layer covering the first electrode and the plurality of conductive particles arranged on the surface of the first electrode is formed. The method for manufacturing a connecting structure according to any one of claims 1 to 11.
前記開口部は当該開口部の奥側から前記転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項12に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to claim 12, wherein the opening is formed in a tapered shape in which the opening area expands from the back side of the opening toward the surface side of the transfer mold. 前記転写型は可撓性を有する樹脂材料からなる、請求項12又は13に記載の接続構造体の製造方法。 The method for producing a connecting structure according to claim 12 or 13, wherein the transfer type is made of a flexible resin material. 基板と、前記基板に設けられた電極とを有する回路部材を準備すること;
粒径が2.0〜40μmである複数の導電粒子を準備すること;
前記電極の表面に前記複数の導電粒子を配置すること;
記電極と前記電極の表面に配置された前記複数の導電粒子とを覆う電解めっき層を形成すること;
を含む端子付き電極の製造方法。
Preparing a circuit member having a substrate and electrodes provided on the substrate;
Preparing a plurality of conductive particles having a particle size of 2.0 to 40 μm;
Placing the plurality of conductive particles on the surface of the electrode;
Forming an electrolytic plating layer covering the plurality of conductive particles disposed in front Symbol electrodes and the surface of the front Symbol electrodes;
A method for manufacturing an electrode with a terminal including.
前記導電粒子は、基材粒子と、前記基材粒子の表面に形成された単層構造又は多層構造の金属層とを備える、請求項15に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 15, wherein the conductive particles include base particles and a metal layer having a single-layer structure or a multi-layer structure formed on the surface of the base particles. 前記基材粒子の粒径は1.5〜10μmである、請求項16に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 16, wherein the substrate particles have a particle size of 1.5 to 10 μm. 前記基材粒子は樹脂からなる、請求項16又は17に記載の端子付き電極の製造方法。 The method for producing an electrode with a terminal according to claim 16 or 17, wherein the base particle is made of a resin. 前記金属層は、無電解めっきによって形成されたニッケル又はニッケル合金を含む第一金属層を少なくとも含む、請求項16〜18のいずれか一項に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to any one of claims 16 to 18, wherein the metal layer includes at least a first metal layer containing nickel or a nickel alloy formed by electroless plating. 前記第一金属層はリン及びホウ素の少なくとも一方を含む、請求項19に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 19, wherein the first metal layer contains at least one of phosphorus and boron. 前記第一金属層のニッケル含有率が85〜98質量%である、請求項19又は20に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 19 or 20, wherein the nickel content of the first metal layer is 85 to 98% by mass. 前記電解めっき層は電解ニッケルめっき層又は電解パラジウムめっき層である、請求項15〜21のいずれか一項に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to any one of claims 15 to 21, wherein the electrolytic plating layer is an electrolytic nickel plating layer or an electrolytic palladium plating layer. 前記電解めっき層の表面を覆う無電解めっき層を形成することを更に含む、請求項15〜22のいずれか一項に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to any one of claims 15 to 22, further comprising forming an electroless plating layer covering the surface of the electroplating layer. 前記無電解めっき層は無電解ニッケルめっき層又は無電解パラジウムめっき層である、請求項23に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 23, wherein the electroless plating layer is an electroless nickel plating layer or an electroless palladium plating layer. 前記電極は、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウム錫酸化物からなる、請求項15〜24のいずれか一項に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to any one of claims 15 to 24, wherein the electrode is made of copper, nickel, palladium, gold, silver, an alloy thereof, and indium tin oxide. 前記電極における前記複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型を準備すること;
前記複数の開口部に前記導電粒子を収容すること;
を更に含み、
前記回路部材と前記転写型とを重ね合せることにより、前記電極の表面に前記転写型の前記開口部にそれぞれ収容されている前記導電粒子を配置し、
前記回路部材と前記転写型とを重ね合せた状態で前記電極と前記電極の表面に配置された前記複数の導電粒子とを覆う電解めっき層を形成する、請求項15〜25のいずれか一項に記載の端子付き電極の製造方法。
To prepare a transfer mold having a plurality of openings at positions corresponding to the positions where the plurality of conductive particles are arranged on the electrode;
Accommodating the conductive particles in the plurality of openings;
Including
By superimposing the circuit member and the transfer mold, the conductive particles housed in the openings of the transfer mold are arranged on the surface of the electrode.
Any one of claims 15 to 25, wherein an electrolytic plating layer covering the electrode and the plurality of conductive particles arranged on the surface of the electrode is formed in a state where the circuit member and the transfer mold are overlapped with each other. The method for manufacturing an electrode with a terminal described in 1.
前記開口部は当該開口部の奥側から前記転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項26に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 26, wherein the opening is formed in a tapered shape in which the opening area expands from the back side of the opening toward the surface side of the transfer mold. 前記転写型は可撓性を有する樹脂材料からなる、請求項26又は27に記載の端子付き電極の製造方法。 The method for manufacturing an electrode with a terminal according to claim 26 or 27, wherein the transfer type is made of a flexible resin material. 第一の基板と前記第一の基板に設けられた第一の電極とを有する第一の回路部材と、
前記第一の電極と電気的に接続されている第二の電極を有する第二の回路部材と、
前記第一の電極と前記第二の電極との間に介在する複数の導電粒子と、
前記第一の電極と複数の前記導電粒子とを覆う電解めっき層と、
前記第一の回路部材と前記第二の回路部材との間に設けられ、前記第一の回路部材と前記第二の回路部材と接着している絶縁樹脂層と、
を備え
前記導電粒子の粒径が2.0〜40μmである、接続構造体。
A first circuit member having a first substrate and a first electrode provided on the first substrate,
A second circuit member having a second electrode electrically connected to the first electrode,
A plurality of conductive particles interposed between the first electrode and the second electrode,
An electrolytic plating layer covering the first electrode and the plurality of conductive particles,
An insulating resin layer provided between the first circuit member and the second circuit member and adhered to the first circuit member and the second circuit member.
Equipped with a,
Particle size Ru 2.0~40μm der, the connection structure of the conductive particles.
粒径2.0〜40μmの複数の導電粒子と、
一種又は二種以上の電解めっき液と、
電極表面における複数の前記導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型と、
を備える端子付き電極製造用キット。
With a plurality of conductive particles having a particle size of 2.0 to 40 μm,
With one or more types of electrolytic plating solution,
A transfer type having a plurality of openings at positions corresponding to positions on the electrode surface where the plurality of conductive particles are arranged,
Kit for manufacturing electrodes with terminals.
前記一種又は二種以上の電解めっき液は、電解ニッケルめっき液及び電解パラジウムめっき液の少なくとも一方を含む、請求項30に記載の端子付き電極製造用キット。 The kit for manufacturing an electrode with a terminal according to claim 30 , wherein the one or more kinds of electrolytic plating solutions include at least one of an electrolytic nickel plating solution and an electrolytic palladium plating solution. 前記開口部は当該開口部の奥側から前記転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項30又は31に記載の端子付き電極製造用キット。 The kit for manufacturing an electrode with a terminal according to claim 30 or 31 , wherein the opening is formed in a tapered shape in which the opening area expands from the back side of the opening toward the surface side of the transfer mold. 前記転写型は可撓性を有する樹脂材料からなる、請求項3032のいずれか一項に記載の端子付き電極製造用キット。 The kit for manufacturing an electrode with a terminal according to any one of claims 30 to 32 , wherein the transfer type is made of a flexible resin material.
JP2016181813A 2016-09-16 2016-09-16 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this Active JP6897038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016181813A JP6897038B2 (en) 2016-09-16 2016-09-16 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181813A JP6897038B2 (en) 2016-09-16 2016-09-16 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this

Publications (2)

Publication Number Publication Date
JP2018046238A JP2018046238A (en) 2018-03-22
JP6897038B2 true JP6897038B2 (en) 2021-06-30

Family

ID=61695243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181813A Active JP6897038B2 (en) 2016-09-16 2016-09-16 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this

Country Status (1)

Country Link
JP (1) JP6897038B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286299A (en) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Method for connecting semiconductor device
JP5750342B2 (en) * 2011-09-12 2015-07-22 株式会社日本触媒 Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
KR101987917B1 (en) * 2013-07-31 2019-06-11 데쿠세리아루즈 가부시키가이샤 Anisotropically conductive film and manufacturing method therefor
WO2015053356A1 (en) * 2013-10-09 2015-04-16 学校法人早稲田大学 Electrode connection method and electrode connection structure

Also Published As

Publication number Publication date
JP2018046238A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4991666B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP4052832B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4804596B1 (en) Conductive particle, method for producing conductive particle, anisotropic conductive material, and connection structure
JP5395482B2 (en) Coated conductive fine particles, anisotropic conductive material, and conductive connection structure
TW201239909A (en) Conductive particle, conductive particle manufacturing method, anisotropic conductive material, and connective structure
JP2007035573A (en) Conductive particulate and anisotropic conductive material
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP2012004034A (en) Conductive particles, anisotropic conductive material and connection structure
JP4772490B2 (en) Method for producing conductive particles
JP6897038B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
JP7000685B2 (en) A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method.
JP2009032397A (en) Conductive fine particle
JP2006199833A (en) Anisotropic conductive adhesive
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP6907490B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
JP2012004033A (en) Conductive particles, anisotropic conductive material and connection structure
JP4714719B2 (en) Method for producing conductive fine particles
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP7077963B2 (en) Insulation coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure and method for manufacturing connection structure
JP6411194B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP2007242731A (en) Connection structure
JPH0633248A (en) Metal coating novolac-epoxide spherical resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350