JP2007194210A - Conductive fine particle and anisotropic conductive material - Google Patents

Conductive fine particle and anisotropic conductive material Download PDF

Info

Publication number
JP2007194210A
JP2007194210A JP2006344203A JP2006344203A JP2007194210A JP 2007194210 A JP2007194210 A JP 2007194210A JP 2006344203 A JP2006344203 A JP 2006344203A JP 2006344203 A JP2006344203 A JP 2006344203A JP 2007194210 A JP2007194210 A JP 2007194210A
Authority
JP
Japan
Prior art keywords
layer
silver
fine particles
conductive
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344203A
Other languages
Japanese (ja)
Inventor
Xiaoge Wang
▲曉▼舸 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006344203A priority Critical patent/JP2007194210A/en
Publication of JP2007194210A publication Critical patent/JP2007194210A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fine particle having high corrosion resistance and a low resistance value, which is suppressed in separation of a conductive layer during production and thermal compression bonding as well as migration during use; and to provide an anisotropic conductive material obtained by using such a conductive fine particle. <P>SOLUTION: This conductive fine particle is composed of a base fine particle having a conductive layer wherein a nickel layer, a silver layer and a layer of a noble metal nobler than silver are sequentially formed on a surface thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製造時及び熱圧着時の導電層の剥がれや、使用時のマイグレーションを抑制するとともに、耐食性が高く電気抵抗が低い導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料に関する。 The present invention is a conductive fine particle that suppresses peeling of a conductive layer during production and thermocompression bonding and migration during use, and has high corrosion resistance and low electrical resistance, and anisotropy formed using the conductive fine particle The present invention relates to a conductive material.

導電性微粒子は、一般に、バインダー樹脂等に混合され、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、配線回路基板同士を電気的に接続したり、半導体素子等の小型部品を配線回路基板に電気的に接続したりするために、配線回路基板や電極端子の間に挟み込んで使用している。 The conductive fine particles are generally mixed in a binder resin or the like, such as anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, anisotropic conductive sheet, etc. Widely used as an anisotropic conductive material. These anisotropic conductive materials are used to electrically connect wiring circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the wiring circuit board. For example, it is used by being sandwiched between a printed circuit board and electrode terminals.

従来、異方性導電材料に対して好適な導電性微粒子として、粒子径の均一な樹脂微粒子やガラスビーズ等の非導電性微粒子を基材微粒子として用い、基材微粒子の表面にニッケル等の金属によるメッキを形成させた導電性微粒子が報告されていた。しかしながら、ニッケルメッキされた導電性微粒子は経時的にメッキ層が腐食して電気抵抗が増大するという問題があった。 Conventionally, as conductive fine particles suitable for anisotropic conductive materials, resin fine particles having a uniform particle diameter and non-conductive fine particles such as glass beads have been used as substrate fine particles, and a metal such as nickel is used on the surface of the substrate fine particles. Conductive fine particles on which the plating was formed have been reported. However, the nickel-plated conductive fine particles have a problem that the plating layer corrodes with time and the electric resistance increases.

このような問題に対し、ニッケルメッキされた導電性微粒子の表面に、更に金層又は銀層を形成させた導電性微粒子が報告されている。例えば、特許文献1には、実質的に球状な樹脂微粒子の表面に、無電解メッキによりニッケル層を形成させた後、シアン化金を用いて金層を形成させた導電性微粒子が開示されている。また、例えば、特許文献2には、基材微粒子の表面に、無電解メッキによるニッケル層と、ニッケル層を覆う銅層とを形成させ、更に無電解銀メッキによる銅と銀との置換反応により銀層を形成させた導電性微粒子が開示されている。 In order to solve this problem, conductive fine particles in which a gold layer or a silver layer is further formed on the surface of the nickel-plated conductive fine particles have been reported. For example, Patent Document 1 discloses conductive fine particles in which a nickel layer is formed by electroless plating on the surface of substantially spherical resin fine particles, and then a gold layer is formed using gold cyanide. Yes. Further, for example, in Patent Document 2, a nickel layer formed by electroless plating and a copper layer covering the nickel layer are formed on the surface of the substrate fine particles, and further, by a substitution reaction between copper and silver by electroless silver plating. Conductive fine particles having a silver layer formed thereon are disclosed.

しかしながら、ニッケル層の表面に金層を形成させた導電性微粒子は、接続安定性には優れるが、電気抵抗が高いという問題があった。
一方、ニッケル層の表面に銀層を形成させた導電性微粒子は、ニッケル層の表面に金層を形成させた導電性微粒子よりも電気抵抗が低く、基板等の熱圧着には好適に用いられるが、電流を流し使用しているうちにマイグレーションが起こり、断線の原因となるという問題があった。
However, the conductive fine particles having a gold layer formed on the surface of the nickel layer are excellent in connection stability but have a problem of high electrical resistance.
On the other hand, the conductive fine particles in which the silver layer is formed on the surface of the nickel layer have a lower electrical resistance than the conductive fine particles in which the gold layer is formed on the surface of the nickel layer, and are preferably used for thermocompression bonding of a substrate or the like. However, there was a problem that migration occurred while using a current, causing disconnection.

そこで、安定した導通性と電気抵抗の低減化を目指した導電性微粒子として、例えば、特許文献3には、基材微粒子の表面に銀層を形成し、更に金層を形成させた導電性微粒子が開示されている。しかしながら、基材微粒子と銀層との密着性が悪いため、製造時及び基板等の熱圧着時に層が剥がれることがあった。
特開平8−311655号公報 特開平11−61424号公報 特開2002−270038号公報
Therefore, as conductive fine particles aiming at stable conduction and reduction in electric resistance, for example, Patent Document 3 discloses conductive fine particles in which a silver layer is formed on the surface of a base fine particle and a gold layer is further formed. Is disclosed. However, since the adhesion between the fine particles of the base material and the silver layer is poor, the layer may be peeled off at the time of manufacturing and thermocompression bonding of the substrate or the like.
JP-A-8-31655 Japanese Patent Laid-Open No. 11-61424 JP 2002-270038 A

本発明は、上記現状に鑑み、製造時及び熱圧着時の導電層の剥がれや、使用時のマイグレーションを抑制するとともに、耐食性が高く電気抵抗が低い導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料を提供することを目的とする。 In view of the above-described situation, the present invention suppresses peeling of a conductive layer during production and thermocompression bonding and migration during use, and uses conductive fine particles having high corrosion resistance and low electrical resistance, and the conductive fine particles. It is an object of the present invention to provide an anisotropic conductive material.

本発明は、表面にニッケル層、銀層、銀より貴な貴金属層が順次形成された導電層を有する基材微粒子からなる導電性微粒子である。
以下に本発明を詳述する。
The present invention is a conductive fine particle comprising substrate fine particles having a conductive layer in which a nickel layer, a silver layer, and a noble metal layer nobler than silver are sequentially formed on the surface.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、基材微粒子の表面に、ニッケル層、銀層、銀より貴な貴金属層(以下、この3層を併せて導電層ともいう)を順次形成させることにより、従来不可能であった、基材微粒子と導電層との高い密着性、低抵抗、高耐食性を兼ね備えることができ、製造時及び熱圧着時の導電層の剥がれや、使用時のマイグレーションを抑制するとともに、接続抵抗が低い導電性微粒子となるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have sequentially formed a nickel layer, a silver layer, and a noble metal layer noble from silver (hereinafter, these three layers are also referred to as a conductive layer) on the surface of the base particle. It is possible to combine high adhesion, low resistance, and high corrosion resistance between the fine particles of the substrate and the conductive layer, which was impossible before, and suppresses peeling of the conductive layer during manufacturing and thermocompression bonding and migration during use. At the same time, the inventors have found that the conductive fine particles have low connection resistance and have completed the present invention.

本発明の導電性微粒子は、基材微粒子と、上記基材微粒子の表面に形成された導電層とからなる。 The conductive fine particles of the present invention comprise substrate fine particles and a conductive layer formed on the surface of the substrate fine particles.

上記基材微粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば、無機材料であっても有機材料であってもよいが、適度な弾性率、弾性変形性及び復元性を制御しやすいため、樹脂からなる樹脂微粒子であることが好ましい。 The substrate fine particles are not particularly limited, and may be an inorganic material or an organic material as long as it has an appropriate elastic modulus, elastic deformability, and restoration property. Since it is easy to control the deformability and the recoverability, resin fine particles made of a resin are preferable.

上記樹脂微粒子としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ジビニルベンゼン重合樹脂;ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体、ジビニルベンゼン−メタクリル酸エステル共重合体等のジビニルベンゼン系共重合樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等からなるものが挙げられる。これらの樹脂微粒子は、単独で用いられてもよく、2種以上が併用されてもよい。 The resin fine particles are not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate Divinylbenzene polymer resin; divinylbenzene-styrene copolymer, divinylbenzene-acrylic acid ester copolymer, divinylbenzene-methacrylic acid ester copolymer and other divinylbenzene copolymer resins; polyalkylene terephthalate, polysulfone, polycarbonate, Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, etc. Thing, and the like. These resin fine particles may be used independently and 2 or more types may be used together.

上記基材微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。より好ましい上限は10μmである。 Although it does not specifically limit as an average particle diameter of the said base material fine particle, A preferable minimum is 1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 20 μm, it exceeds the range used between the substrate electrodes as an anisotropic conductive material. May end up. A more preferable upper limit is 10 μm.

上記導電層は、上記基材微粒子の表面に接するニッケル層を有する。
本発明において、上記ニッケル層は、上記基材微粒子と上記導電層との密着性を高め、製造時及び基板等の熱圧着時に導電層の剥がれが発生するのを抑制する目的で形成される。
The conductive layer has a nickel layer in contact with the surface of the substrate fine particles.
In the present invention, the nickel layer is formed for the purpose of enhancing the adhesion between the substrate fine particles and the conductive layer, and suppressing the peeling of the conductive layer during production and thermocompression bonding of a substrate or the like.

上記ニッケル層の厚さとしては特に限定されないが、好ましい下限は5nm、好ましい上限は2000nmである。5nm未満であると、所望の密着性が得られないことがあり、2000nmを超えると、基材微粒子とニッケル層との熱膨張率の差から、上記ニッケル層が剥離しやすくなることがある。より好ましい下限は10nm、より好ましい上限は500nmであり、更に好ましい下限は50nm、更に好ましい上限は100nmである。
なお、上記ニッケル層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
Although it does not specifically limit as thickness of the said nickel layer, A preferable minimum is 5 nm and a preferable upper limit is 2000 nm. If the thickness is less than 5 nm, desired adhesion may not be obtained. If the thickness exceeds 2000 nm, the nickel layer may be easily peeled off due to the difference in thermal expansion coefficient between the substrate fine particles and the nickel layer. A more preferred lower limit is 10 nm, a more preferred upper limit is 500 nm, a still more preferred lower limit is 50 nm, and a still more preferred upper limit is 100 nm.
The thickness of the nickel layer is a thickness obtained by measuring 10 randomly selected particles and arithmetically averaging them.

上記導電層は、上記ニッケル層の表面に接する銀層を有する。
本発明において、上記銀層は、上記導電層の抵抗値を低下させる目的で形成される。また、従来のニッケル層の表面に金層を施した導電性微粒子よりも、金層の厚さを薄くしても導電性を保つことができるため、コスト面でも優れる。
なお、上記銀層は、銀と、銅、パラジウム、錫、コバルト、鉄、ニッケル、ビスマスからなる群より選択される少なくとも1種の金属とからなる銀の合金層であってもよい。
The conductive layer has a silver layer in contact with the surface of the nickel layer.
In the present invention, the silver layer is formed for the purpose of reducing the resistance value of the conductive layer. In addition, compared to conventional conductive fine particles in which a gold layer is provided on the surface of a nickel layer, the conductivity can be maintained even if the thickness of the gold layer is reduced, so that the cost is also excellent.
The silver layer may be a silver alloy layer composed of silver and at least one metal selected from the group consisting of copper, palladium, tin, cobalt, iron, nickel, and bismuth.

上記銀層の厚さとしては特に限定されないが、好ましい下限は5nm、好ましい上限は1000nmである。5nm未満であると、所望の導電性が得られないことがあり、1000nmを超えると、使用時にマイグレーションが発生しやすくなり、また、コストが高くなる。
なお、上記銀層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
Although it does not specifically limit as thickness of the said silver layer, A preferable minimum is 5 nm and a preferable upper limit is 1000 nm. When the thickness is less than 5 nm, desired conductivity may not be obtained. When the thickness exceeds 1000 nm, migration tends to occur during use, and the cost increases.
The thickness of the silver layer is a thickness obtained by measuring 10 randomly selected particles and arithmetically averaging them.

上記導電層は、上記銀層の表面に接する銀より貴な貴金属層を有する。銀より貴な貴金属としては、具体的には、金、パラジウム、又は、白金等が挙げられる。
本発明において、上記銀より貴な貴金属層は、基板等の熱圧着後、使用とともにマイグレーションが発生するのを抑制するとともに、耐食性を高める目的で形成される。
なお、上記銀より貴な貴金属層は、銀より貴な貴金属と、銅、コバルト、ロジウム、ニッケル、錫、銀からなる群より選択される少なくとも1種の金属とからなる合金層であってもよい。ただし、高い耐酸化効果が必要である場合は、銀より貴な貴金属の純度は99%以上であることが好ましい。
The conductive layer has a noble metal layer nobler than silver in contact with the surface of the silver layer. Specific examples of noble metals that are nobler than silver include gold, palladium, and platinum.
In the present invention, the noble metal layer nobler than silver is formed for the purpose of suppressing the occurrence of migration with use and improving the corrosion resistance after thermocompression bonding of a substrate or the like.
The noble metal layer nobler than silver may be an alloy layer made of noble metal nobler than silver and at least one metal selected from the group consisting of copper, cobalt, rhodium, nickel, tin and silver. Good. However, when a high oxidation resistance is required, the purity of the noble metal nobler than silver is preferably 99% or more.

上記銀より貴な貴金属層の厚さとしては特に限定されないが、好ましい下限は5nm、好ましい上限は50nmである。5nm未満であると、導電層の酸化やマイグレーションの発生を防止することが困難となることがあり、50nmを超えても、それ以上の耐酸化効果が望めず、また、コストが高くなる。
なお、上記銀より貴な貴金属層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
The thickness of the noble metal layer nobler than the silver is not particularly limited, but the preferred lower limit is 5 nm and the preferred upper limit is 50 nm. If the thickness is less than 5 nm, it may be difficult to prevent oxidation or migration of the conductive layer. If the thickness exceeds 50 nm, no further oxidation resistance can be expected, and the cost increases.
In addition, the thickness of the noble metal layer nobler than the silver is a thickness obtained by measuring 10 randomly selected particles and arithmetically averaging them.

上記基材微粒子の表面を被覆している導電層の厚さとしては特に限定されないが、好ましい下限は15nm、好ましい上限は3050nmである。15nm未満であると、所望の導電性が得られないことがあり、3050nmを超えると、基材微粒子と導電層との密着性が悪くなることがあり、また、コストも高くなる。 The thickness of the conductive layer covering the surface of the substrate fine particles is not particularly limited, but a preferred lower limit is 15 nm and a preferred upper limit is 3050 nm. When the thickness is less than 15 nm, desired conductivity may not be obtained. When the thickness exceeds 3050 nm, the adhesion between the base particle and the conductive layer may be deteriorated, and the cost is increased.

本発明の導電性微粒子の製造方法としては特に限定されず、例えば、基材微粒子の表面に無電解ニッケルメッキによりニッケル層を形成する工程と、上記ニッケル層の表面に無電解銀メッキにより銀層を形成する工程と、上記銀層の表面に従来公知の方法により銀より貴な貴金属層を形成する工程とからなる方法が挙げられる。
以下に、各工程の詳細を説明する。
The method for producing conductive fine particles of the present invention is not particularly limited. For example, a step of forming a nickel layer by electroless nickel plating on the surface of the substrate fine particles, and a silver layer by electroless silver plating on the surface of the nickel layer And a step of forming a noble metal layer nobler than silver by a conventionally known method on the surface of the silver layer.
Details of each step will be described below.

上記ニッケル層を形成する方法としては特に限定されず、例えば、触媒付与された基材微粒子を、還元剤の存在下でニッケルイオンを含有する溶液中に浸漬し、触媒を起点として基材微粒子の表面にニッケルを析出させる方法等が挙げられる。
ここで、上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材微粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
The method for forming the nickel layer is not particularly limited. For example, the catalyst-provided substrate fine particles are immersed in a solution containing nickel ions in the presence of a reducing agent, and the catalyst is used as a starting point for the substrate fine particles. Examples include a method of depositing nickel on the surface.
Here, as the method for applying the catalyst, for example, the substrate fine particles etched with an alkali solution are subjected to acid neutralization and sensitizing in a tin dichloride (SnCl 2 ) solution to obtain palladium dichloride (PdCl 2 ) A method of performing an electroless plating pretreatment step for activating in solution.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

上記無電解銀メッキにより銀層を形成する方法としては特に限定されず、上記ニッケル層の表面に銀層が形成される方法であれば特に限定されないが、ニッケル層と銀層との密着性が優れたものとなるため、例えば、下地触媒型の還元型無電解銀メッキによる方法が好適に用いられる。また、下地触媒型の還元型無電解銀メッキによる方法に加えて、例えば、自己触媒型の還元型無電解銀メッキによる方法、及び、置換型無電解銀メッキによる方法等を併用してもよい。 The method for forming the silver layer by electroless silver plating is not particularly limited as long as the silver layer is formed on the surface of the nickel layer, but the adhesion between the nickel layer and the silver layer is not particularly limited. Since it becomes excellent, for example, a base catalyst type reduction electroless silver plating method is preferably used. Further, in addition to the method based on the base catalyst type reduced electroless silver plating, for example, the method based on the autocatalytic type reduced electroless silver plating and the method based on the substitutional type electroless silver plating may be used in combination. .

上記下地触媒型の還元型無電解銀メッキによる方法は、ニッケル層のニッケルを触媒として銀層を析出させる方法である。
下地触媒型の還元型無電解銀メッキによる方法では、ニッケル層の表面で酸化反応を起こし析出金属である銀の表面では酸化反応を起こさない還元剤をニッケル層の表面に存在させ、無電解銀メッキ液中の銀塩を還元させて銀を析出させることにより銀メッキ被膜を形成することができる。
The base catalyst type reduction electroless silver plating is a method of depositing a silver layer using nickel of the nickel layer as a catalyst.
In the method using the base catalyst type reduced electroless silver plating, a reducing agent that causes an oxidation reaction on the surface of the nickel layer and does not cause an oxidation reaction on the surface of the deposited metal silver is present on the surface of the nickel layer. A silver plating film can be formed by reducing the silver salt in the plating solution and precipitating silver.

上記無電解銀メッキに用いる無電解銀メッキ液としては特に限定されず、一般の無電解銀メッキ液と同様に、銀イオン源として水溶性銀塩と、銀イオンを安定して溶解させるための錯化剤とを含むものが挙げられる。 The electroless silver plating solution used for the electroless silver plating is not particularly limited, and in the same way as a general electroless silver plating solution, a water-soluble silver salt as a silver ion source, and for stably dissolving silver ions. The thing containing a complexing agent is mentioned.

上記水溶性銀塩としては、水溶性を示すものであれば特に限定されず、例えば、硝酸銀、硫酸銀等のノーシアン銀塩;シアン化銀等のシアン系銀塩等が挙げられる。なかでも、環境問題等の観点よりノーシアン銀塩が好ましい。
上記ノーシアン銀塩を用いることにより、ノーシアン無電解銀メッキを行うことができ、シアン浴のように強アルカリで用いられることがないため基材微粒子等への浸食がなく、環境にも配慮したものとなる。上記ノーシアン銀塩のなかでも、水への溶解性を考慮すると硝酸銀が好ましい。
The water-soluble silver salt is not particularly limited as long as it is water-soluble, and examples thereof include non-cyanide silver salts such as silver nitrate and silver sulfate; cyan-based silver salts such as silver cyanide. Of these, a norcian silver salt is preferable from the viewpoint of environmental problems.
By using the above cyanogen silver salt, it is possible to perform nocyanide electroless silver plating, and since it is not used as a strong alkali like a cyan bath, there is no erosion to substrate fine particles, etc. It becomes. Among the above-mentioned nocyan silver salts, silver nitrate is preferable in consideration of solubility in water.

上記銀より貴な貴金属層を形成する方法としては特に限定されず、例えば、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the noble metal layer nobler than silver is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

本発明の導電性微粒子は、上記構成からなることにより、製造時及び熱圧着時のメッキ剥がれや、使用時のマイグレーションを抑制するとともに、抵抗値が低いものとなる。 The conductive fine particles of the present invention have the above-described configuration, thereby suppressing plating peeling at the time of production and thermocompression bonding and migration at the time of use and having a low resistance value.

また、本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 Further, an anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, apply to the release treatment surface of the release material such as release paper or release film so that it has a predetermined film thickness, and dry and cool as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明によれば、製造時及び熱圧着時の導電層の剥がれや、使用時のマイグレーションを抑制するとともに、耐食性が高く抵抗値が低い導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料を提供することができる。 According to the present invention, it is possible to suppress peeling of the conductive layer during manufacturing and thermocompression bonding and migration during use, and to provide conductive fine particles with high corrosion resistance and low resistance, and different types of conductive fine particles. An isotropic conductive material can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(無電解ニッケルメッキ)
粒径4μmのジビニルベンゼン樹脂粒子を、イオン吸着剤の10%溶液で5分間処理し、その後、硫酸パラジウム0.01%水溶液で5分間処理し、更にジメチルアミンボランを加えて還元処理を施し、ろ過、洗浄することにより、パラジウムを担持した基材微粒子を得た。
次に、コハク酸ナトリウム1%とイオン交換水500mLとを含む溶液を調製し、基材微粒子10gと混合してスラリーを調製し、更に硫酸を添加してスラリーのpHを5に調整した。一方、ニッケルメッキ液として、硫酸ニッケル10%、次亜リン酸ナトリウム10%、水酸化ナトリウム4%及びコハク酸ナトリウム20%を含む前期ニッケル溶液を調製した。スラリーを80℃にし、これに作製した前期ニッケル溶液を連続的に滴下し、20分間攪拌することによりメッキ反応させた。このメッキ反応中に、著しい凝集はなく、水素の発生がなくなることを確認してメッキ反応を終了させた。
次に、硫酸ニッケル20%、ジメチルアミンボラン5%、水酸化ナトリウム5%を含む後期ニッケル溶液を調製し、後期ニッケル液を調製した。その後、前期ニッケル液反応終了後の溶液に作製した後期ニッケル液を連続的に滴下し、1時間攪拌することによりメッキ反応させた。
Example 1
(Electroless nickel plating)
Divinylbenzene resin particles having a particle size of 4 μm were treated with a 10% solution of an ion adsorbent for 5 minutes, then treated with a 0.01% palladium sulfate aqueous solution for 5 minutes, and further subjected to a reduction treatment by adding dimethylamine borane. By filtering and washing, substrate fine particles carrying palladium were obtained.
Next, a solution containing 1% sodium succinate and 500 mL of ion-exchanged water was prepared, mixed with 10 g of substrate fine particles to prepare a slurry, and sulfuric acid was further added to adjust the pH of the slurry to 5. On the other hand, a nickel solution containing nickel sulfate 10%, sodium hypophosphite 10%, sodium hydroxide 4% and sodium succinate 20% was prepared as a nickel plating solution. The slurry was brought to 80 ° C., and the prepared nickel solution was continuously added dropwise thereto and stirred for 20 minutes to cause a plating reaction. During the plating reaction, it was confirmed that there was no significant aggregation and generation of hydrogen disappeared, and the plating reaction was terminated.
Next, a late nickel solution containing 20% nickel sulfate, 5% dimethylamine borane, and 5% sodium hydroxide was prepared, and a late nickel solution was prepared. Thereafter, the late nickel solution prepared in the solution after completion of the early nickel solution reaction was continuously dropped and stirred for 1 hour to cause a plating reaction.

(無電解銀メッキ)
次に、銀塩として硝酸銀4.25gを純水1180mLに室温で溶解した溶液に、還元剤としてベンズイミダゾール15gを加えて溶解し、当初生成した沈殿が完全に溶解したのを確認した後、錯化剤としてアンモニア6g、クエン酸1水和物6gを溶解し、その後、結晶調整剤としてグリオキシル酸10gを投入し完全溶解させ無電解銀メッキ液を調製した。
次に、得られたニッケルメッキ被膜が形成された粒子10gを無電解銀メッキ液に投入し、この溶液を攪拌しながら加熱して温度を50℃に保った。その後、ブフナー漏斗で濾別して粒子を分離し、銀メッキ被膜が形成された粒子を得た。
(Electroless silver plating)
Next, 15 g of benzimidazole was added as a reducing agent to a solution obtained by dissolving 4.25 g of silver nitrate as a silver salt in 1180 mL of pure water at room temperature, and after confirming that the initially formed precipitate was completely dissolved, As an agent, 6 g of ammonia and 6 g of citric acid monohydrate were dissolved, and then 10 g of glyoxylic acid was added as a crystal modifier and completely dissolved to prepare an electroless silver plating solution.
Next, 10 g of the particles on which the obtained nickel plating film was formed were put into an electroless silver plating solution, and this solution was heated with stirring to keep the temperature at 50 ° C. Thereafter, the particles were separated by filtration with a Buchner funnel to obtain particles on which a silver plating film was formed.

(無電解金メッキ)
次に、塩化金酸ナトリウム10gとイオン交換水1000mLとを含む溶液を調製し、得られたニッケルメッキ被膜及び銀メッキ被膜が順次形成された粒子15gを混合して水性懸濁液を調製した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及び、リン酸水素アンモニウム40gを投入しメッキ液を調製した。得られたメッキ液にヒドロキシルアミン4gを投入後、アンモニアを用いpHを9に合わせ、浴温を60℃にし、15〜20分程度反応させることにより最外層に金メッキ被膜が形成された導電性微粒子を得た。
(Electroless gold plating)
Next, a solution containing 10 g of sodium chloroaurate and 1000 mL of ion-exchanged water was prepared, and 15 g of particles obtained by sequentially forming the nickel plating film and the silver plating film were mixed to prepare an aqueous suspension. A plating solution was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. 4 g of hydroxylamine is added to the obtained plating solution, and then the pH is adjusted to 9 using ammonia, the bath temperature is set to 60 ° C., and the reaction is performed for about 15 to 20 minutes. Got.

(実施例2)
実施例1と同様にしてニッケルメッキ被膜及び銀メッキ被膜が順次形成された粒子を作製した。
(Example 2)
In the same manner as in Example 1, particles in which a nickel plating film and a silver plating film were sequentially formed were produced.

(無電解パラジウムメッキ)
次に、テトラクロロパラジウム9g、エチレンジアミン10.1g、アミノピリジン5.3g、次亜リン酸ナトリウム17.8g、ポリエチレングリコール20g、及び、イオン交換水1000mLを含む溶液を調製し、得られたニッケルメッキ被膜及び銀メッキ被膜が順次形成された粒子15gを混合してメッキ液を調製した。得られたメッキ液にアンモニアを加えpHを7.5に合わせ、浴温を65℃にし、15〜20分程度反応させることにより、最外層にパラジウムメッキ被膜が形成された導電性微粒子を得た。
(Electroless palladium plating)
Next, a nickel plating obtained by preparing a solution containing 9 g of tetrachloropalladium, 10.1 g of ethylenediamine, 5.3 g of aminopyridine, 17.8 g of sodium hypophosphite, 20 g of polyethylene glycol, and 1000 mL of ion-exchanged water was obtained. A plating solution was prepared by mixing 15 g of particles on which a coating and a silver plating coating were sequentially formed. Ammonia was added to the obtained plating solution, the pH was adjusted to 7.5, the bath temperature was 65 ° C., and the reaction was carried out for about 15 to 20 minutes to obtain conductive fine particles having a palladium plating film formed on the outermost layer. .

(比較例1)
(Ni/Auからなる導電層を有する導電性微粒子)
塩化金酸ナトリウム10gとイオン交換水1000mLとを含む溶液を調製し、実施例1と同様のニッケルメッキ被膜が形成された粒子12gを混合して水性懸濁液を調製した。得られた水性懸濁液に、チオ硫酸アンモニウム30g、亜硫酸アンモニウム80g、及び、リン酸水素アンモニウム40gを投入しメッキ液を調製した。得られたメッキ液にヒドロキシルアミン10gを投入後、アンモニアを用いpHを10に合わせ、浴温を60℃にし、15〜20分程度反応させることにより、最外層に金メッキ被膜が形成された導電性微粒子を得た。
(Comparative Example 1)
(Conductive fine particles having a conductive layer made of Ni / Au)
An aqueous suspension was prepared by preparing a solution containing 10 g of sodium chloroaurate and 1000 mL of ion-exchanged water, and mixing 12 g of particles having the same nickel plating film as in Example 1. To the obtained aqueous suspension, 30 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate were added to prepare a plating solution. After adding 10 g of hydroxylamine to the resulting plating solution, the pH is adjusted to 10 using ammonia, the bath temperature is set to 60 ° C., and the reaction is performed for 15 to 20 minutes, whereby a gold plating film is formed on the outermost layer. Fine particles were obtained.

(比較例2)
(Ni/Agからなる導電層を有する導電性微粒子)
実施例1と同様にして、無電解ニッケルメッキを行い、ニッケルメッキ被膜が形成された粒子を得た。
次に、銀塩として硝酸銀4.25gを純水1180mLに室温で溶解した溶液に、還元剤としてベンズイミダゾール15gを加えて溶解し、当初生成した沈殿が完全に溶解したのを確認した後、錯化剤としてアンモニア6g、クエン酸1水和物6gを溶解し、その後、結晶調整剤としてグリオキシル酸10gを投入し完全溶解させ無電解銀メッキ液を調製した。次に、得られたニッケルメッキ被膜が形成された粒子を無電解銀メッキ液に投入し、この溶液を攪拌しながら加熱して温度を50℃に保った。その後、ブフナー漏斗で濾別して粒子を分離し、分離した粒子に純水約1000mLを振り掛け洗浄した。その後、アルコール置換を行い、真空乾燥機で80℃2時間乾燥し、最外層に銀メッキ被膜が形成された導電性微粒子を得た。
(Comparative Example 2)
(Conductive fine particles having a conductive layer made of Ni / Ag)
In the same manner as in Example 1, electroless nickel plating was performed to obtain particles on which a nickel plating film was formed.
Next, 15 g of benzimidazole was added as a reducing agent to a solution obtained by dissolving 4.25 g of silver nitrate as a silver salt in 1180 mL of pure water at room temperature, and after confirming that the initially formed precipitate was completely dissolved, As an agent, 6 g of ammonia and 6 g of citric acid monohydrate were dissolved, and then 10 g of glyoxylic acid was added as a crystal modifier and completely dissolved to prepare an electroless silver plating solution. Next, the obtained particles on which the nickel plating film was formed were put into an electroless silver plating solution, and this solution was heated with stirring to keep the temperature at 50 ° C. Thereafter, the particles were separated by filtration with a Buchner funnel, and about 1000 mL of pure water was sprinkled and washed on the separated particles. Then, alcohol substitution was performed, and it dried at 80 degreeC with the vacuum dryer for 2 hours, and obtained the electroconductive fine particles in which the silver plating film was formed in the outermost layer.

(比較例3)
(Ag/Auからなる導電層を有する導電性微粒子)
粒径4μmのジビニルベンゼン樹脂粒子を、イオン吸着剤の10%溶液で5分間処理し、その後、硫酸パラジウム0.01%水溶液で5分間処理し、更にジメチルアミンボランを加えて還元処理を施し、ろ過、洗浄することにより、パラジウムを担持した基材微粒子を得た。次に、コハク酸ナトリウム1%とイオン交換水500mL含む溶液を調製し、基材微粒子10gとを混合してスラリーを調製し、更に硫酸を添加してスラリーのpH6.5に調整した。
次に、銀塩として硝酸銀8.5gを純水2360mLに室温で溶解した溶液に、還元剤としてベンズイミダゾール30gを加えて溶解し、当初生成した沈殿が完全に溶解したのを確認した後、錯化剤としてアンモニア12g、クエン酸1水和物12gを溶解し、その後、結晶調整剤としてグリオキシル酸20gを投入し完全溶解させ無電解銀メッキ液を調製した。この溶液を基材微粒子を含むスラリーに連続的に滴下し、1時間攪拌することによりメッキ反応させた。
次に、塩化金酸ナトリウム10gとイオン交換水1000mLとを含む溶液を調製し、得られた銀メッキ被膜が形成された粒子15gを混合して水性懸濁液を調製した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及び、リン酸水素アンモニウム40gを投入しメッキ液を調製した。得られたメッキ液にヒドロキシルアミン4gを投入後、アンモニアを用いpHを9に合わせ、浴温を60℃にし、15〜20分程度反応させることにより、最外層に金メッキ被膜が形成された導電性微粒子を得た。
(Comparative Example 3)
(Conductive fine particles having a conductive layer made of Ag / Au)
Divinylbenzene resin particles having a particle size of 4 μm were treated with a 10% solution of an ion adsorbent for 5 minutes, then treated with a 0.01% palladium sulfate aqueous solution for 5 minutes, and further subjected to a reduction treatment by adding dimethylamine borane. By filtering and washing, substrate fine particles carrying palladium were obtained. Next, a solution containing 1% sodium succinate and 500 mL of ion-exchanged water was prepared, 10 g of base material fine particles were mixed to prepare a slurry, and sulfuric acid was further added to adjust the pH of the slurry to 6.5.
Next, 30 g of benzimidazole was added as a reducing agent to a solution obtained by dissolving 8.5 g of silver nitrate as a silver salt in 2360 mL of pure water at room temperature, and after confirming that the initially formed precipitate was completely dissolved, As an agent, 12 g of ammonia and 12 g of citric acid monohydrate were dissolved, and then 20 g of glyoxylic acid was added as a crystal adjusting agent and completely dissolved to prepare an electroless silver plating solution. This solution was continuously dropped into the slurry containing the substrate fine particles and stirred for 1 hour to cause a plating reaction.
Next, a solution containing 10 g of sodium chloroaurate and 1000 mL of ion-exchanged water was prepared, and 15 g of the particles on which the obtained silver plating film was formed were mixed to prepare an aqueous suspension. A plating solution was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After putting 4 g of hydroxylamine into the obtained plating solution, adjusting the pH to 9 using ammonia, setting the bath temperature to 60 ° C., and reacting for about 15 to 20 minutes, the gold plating film was formed on the outermost layer. Fine particles were obtained.

<評価>
実施例1〜2及び比較例1〜3で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive fine particles obtained in Examples 1-2 and Comparative Examples 1-3. The results are shown in Table 1.

(1)導電性微粒子の密着性評価
実施例1〜2及び比較例1〜3で得られたそれぞれの導電性微粒子について、100mLのビーカーに、導電性微粒子1g、直径1mmのジルコニアボール40g、及び、エタノール20mLを投入し、ステンレス製の4枚攪拌羽根により400rpmで2分間攪拌し、ろ過乾燥を行い、導電性微粒子の解砕を行った。
解砕を行った導電性微粒子について、走査電子顕微鏡(SEM)写真(1000倍)にて5枚撮影し、1000個観察中の割れた粒子数をカウントして、基材微粒子とメッキ被膜との密着性の評価を行った。なお、割れた粒子数は、導電性微粒子の直径の1/2以上のひびや剥がれをおこしたものをカウントした。
(1) Adhesive evaluation of conductive fine particles About each of the conductive fine particles obtained in Examples 1-2 and Comparative Examples 1-3, in a 100 mL beaker, 1 g of conductive fine particles, 40 g of zirconia balls having a diameter of 1 mm, and Then, 20 mL of ethanol was added, and the mixture was stirred for 2 minutes at 400 rpm with four stainless steel stirring blades, filtered and dried, and the conductive fine particles were crushed.
About the electroconductive fine particles which crushed, 5 sheets are image | photographed with the scanning electron microscope (SEM) photograph (1000 times), the number of the cracking particles in 1000 observation is counted, and base material microparticles | fine-particles and plating film The adhesion was evaluated. In addition, the number of cracked particles was counted as those having cracks or peeling of 1/2 or more of the diameter of the conductive fine particles.

(2)抵抗評価
L/S100μm/100μmの銅パターンを持つ基板2枚の交差部を導電性微粒子と樹脂との混合ペーストで接続し、加熱硬化後、抵抗を四端子法にて測定し、評価した。
(2) Resistance evaluation L / S 100 μm / 100 μm copper pattern crossing of two substrates is connected with a mixed paste of conductive fine particles and resin, and after heat curing, resistance is measured by a four-terminal method and evaluated. did.

(3)耐食性評価
表面にNi/Au無電解メッキを施したL/S100μm/100μmの銅パターンを持つ基板2枚の交差部を導電性微粒子と樹脂との混合ペーストで接続し、加熱硬化させ、85℃85%RH環境で1000h放置した。放置前後の抵抗を四端子法にて測定し、耐食性を評価した。
(3) Corrosion resistance evaluation The crossing part of two board | substrates with the copper pattern of L / S100micrometer / 100micrometer which gave Ni / Au electroless plating on the surface was connected with the mixed paste of electroconductive fine particles and resin, and it heat-hardened, The sample was left in an environment of 85 ° C. and 85% RH for 1000 hours. The resistance before and after being left was measured by the four probe method to evaluate the corrosion resistance.

(4)マイグレーション評価
図1に示すような表面にNi/Au無電解メッキを施した最小L/S20μm/20μmの櫛型銅パターンの表面に導電性微粒子と樹脂との混合ペーストを塗布し、導電性微粒子を電極に確実に接触させるためにペーストの上からアルカリフリーガラス板を圧着し、加熱硬化させ、電極間5Vのバイアスを印加しながら85℃85%RH環境で1000h放置した。放置前後の電極間の絶縁抵抗を測定し、かつ、電極表面の外観変化(マイナス電極表面でのデントライト発生の有無)を観察することでマイグレーション耐性を評価した。
(4) Migration Evaluation A mixed paste of conductive fine particles and resin is applied to the surface of a comb-shaped copper pattern with a minimum L / S of 20 μm / 20 μm with Ni / Au electroless plating on the surface as shown in FIG. In order to make sure that the fine particles contact the electrode, an alkali-free glass plate was pressure-bonded from above the paste, cured by heating, and allowed to stand in an environment of 85 ° C. and 85% RH for 1000 hours while applying a bias of 5 V between the electrodes. The migration resistance was evaluated by measuring the insulation resistance between the electrodes before and after being left and observing changes in the appearance of the electrode surface (whether or not dent light was generated on the negative electrode surface).

Figure 2007194210
Figure 2007194210

本発明によれば、製造時及び熱圧着時の導電層の剥がれや、使用時のマイグレーションを抑制するとともに、耐食性が高く抵抗値が低い導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料を提供することができる。 According to the present invention, it is possible to suppress peeling of the conductive layer during manufacturing and thermocompression bonding and migration during use, and to provide conductive fine particles with high corrosion resistance and low resistance, and different types of conductive fine particles. An isotropic conductive material can be provided.

表面にNi/Au無電解メッキを施した最小L/S20μm/20μmの櫛型銅パターンの一例を示す模式図である。It is a schematic diagram which shows an example of the comb-shaped copper pattern of minimum L / S20micrometer / 20micrometer which gave Ni / Au electroless plating on the surface.

Claims (3)

表面にニッケル層、銀層、銀より貴な貴金属層が順次形成された導電層を有する基材微粒子からなることを特徴とする導電性微粒子。 Conductive fine particles comprising substrate fine particles having a conductive layer in which a nickel layer, a silver layer, and a noble metal layer nobler than silver are sequentially formed on the surface. 銀より貴な貴金属は、金、パラジウム、又は、白金であることを特徴とする請求項1記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein the noble metal nobler than silver is gold, palladium, or platinum. 請求項1又は2記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive fine particles according to claim 1 or 2 are dispersed in a resin binder.
JP2006344203A 2005-12-22 2006-12-21 Conductive fine particle and anisotropic conductive material Pending JP2007194210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344203A JP2007194210A (en) 2005-12-22 2006-12-21 Conductive fine particle and anisotropic conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005369780 2005-12-22
JP2006344203A JP2007194210A (en) 2005-12-22 2006-12-21 Conductive fine particle and anisotropic conductive material

Publications (1)

Publication Number Publication Date
JP2007194210A true JP2007194210A (en) 2007-08-02

Family

ID=38449713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344203A Pending JP2007194210A (en) 2005-12-22 2006-12-21 Conductive fine particle and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP2007194210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073578A (en) * 2008-09-19 2010-04-02 Sekisui Chem Co Ltd Conducting particles, anisotropic conducting material and connecting structure
JP2016006764A (en) * 2014-05-27 2016-01-14 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
KR20160084331A (en) 2010-01-29 2016-07-13 니폰 가가쿠 고교 가부시키가이샤 Conductive powder and conductive material comprising thereof and method for preparing conductive particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073578A (en) * 2008-09-19 2010-04-02 Sekisui Chem Co Ltd Conducting particles, anisotropic conducting material and connecting structure
KR20160084331A (en) 2010-01-29 2016-07-13 니폰 가가쿠 고교 가부시키가이샤 Conductive powder and conductive material comprising thereof and method for preparing conductive particle
KR20160121486A (en) 2010-01-29 2016-10-19 니폰 가가쿠 고교 가부시키가이샤 Conductive powder and conductive material comprising thereof and method for preparing conductive particle
KR20170087068A (en) 2010-01-29 2017-07-27 니폰 가가쿠 고교 가부시키가이샤 Conductive powder and conductive material comprising thereof and method for preparing conductive particle
JP2016006764A (en) * 2014-05-27 2016-01-14 積水化学工業株式会社 Conductive particle, conductive material, and connection structure

Similar Documents

Publication Publication Date Title
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4728665B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
WO2006018995A1 (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
JP4740137B2 (en) Method for producing conductive fine particles
JP2010073578A (en) Conducting particles, anisotropic conducting material and connecting structure
JP2007035573A (en) Conductive particulate and anisotropic conductive material
JP6089462B2 (en) Conductive particles, manufacturing method thereof, and conductive material including the same
JP5406544B2 (en) Method for producing conductive fine particles, and conductive fine particles
JP5844219B2 (en) Method for producing conductive particles
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP2006351508A (en) Conductive particle, manufacturing method for conductive particle and anisotropic conductive material
JP2009032397A (en) Conductive fine particle
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
WO2007072912A1 (en) Conductive fine particle and anisotropic conductive material
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials