JP5466022B2 - Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body - Google Patents

Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body Download PDF

Info

Publication number
JP5466022B2
JP5466022B2 JP2010008870A JP2010008870A JP5466022B2 JP 5466022 B2 JP5466022 B2 JP 5466022B2 JP 2010008870 A JP2010008870 A JP 2010008870A JP 2010008870 A JP2010008870 A JP 2010008870A JP 5466022 B2 JP5466022 B2 JP 5466022B2
Authority
JP
Japan
Prior art keywords
fine particles
particles
anisotropic conductive
amino resin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010008870A
Other languages
Japanese (ja)
Other versions
JP2011150802A (en
Inventor
令晋 佐々木
修二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010008870A priority Critical patent/JP5466022B2/en
Publication of JP2011150802A publication Critical patent/JP2011150802A/en
Application granted granted Critical
Publication of JP5466022B2 publication Critical patent/JP5466022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性微粒子に関する。本発明は、また、このような導電性微粒子を含む異方性導電接着剤組成物に関する。さらに、本発明は、このような異方性導電接着剤組成物から得られる異方性導電成形体に関する。   The present invention relates to conductive fine particles. The present invention also relates to an anisotropic conductive adhesive composition containing such conductive fine particles. Furthermore, this invention relates to the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition.

液晶ディスプレイ(LCD)に代表されるエレクトロニクス製品において、各種電子部品を基板に電気的に接続したり、基板同士を電気的に接続したりするために、いわゆる異方性導電材料が使用されている。なかでも、導電性微粒子をバインダー樹脂に分散した異方性導電接着剤組成物(あるいは異方性導電フィルム)が広く用いられている。異方性導電接着剤組成物(あるいは異方性導電フィルム)に用いられる導電性微粒子としては、有機系基材粒子や無機系基材粒子の表面に金属めっきを施したものや金属粒子等が挙げられる(特許文献1)。   In an electronic product typified by a liquid crystal display (LCD), a so-called anisotropic conductive material is used to electrically connect various electronic components to the substrates or to electrically connect the substrates to each other. . Among these, anisotropic conductive adhesive compositions (or anisotropic conductive films) in which conductive fine particles are dispersed in a binder resin are widely used. Examples of the conductive fine particles used in the anisotropic conductive adhesive composition (or anisotropic conductive film) include those obtained by subjecting the surface of organic base particles and inorganic base particles to metal plating, metal particles, and the like. (Patent Document 1).

近年では特に、電子機器や電子部品の小型化が進行し、接続信頼性の高い導電性微粒子が要求されている。特に、アルミニウム配線がパターンされた配線基板間を接続する場合においては酸化皮膜が存在しているため、酸化皮膜を破る機能を備えて良好な導電性を得ることができる導電性微粒子として、表面に突起構造を有する導電性微粒子が提案されている。表面に突起構造を有する導電性微粒子を製造する方法としては、例えば、基材粒子の表面に無電解めっきによりニッケルの導電被膜を形成させる際に、ニッケル被膜と突起の核となるニッケルの微小粒子を同時に析出させ、ニッケルの微小粒子を取り込みながらさらにニッケル被膜を形成させることにより、基材粒子の表面に導電性の突起を形成させる方法が開示されている。しかしながら、この方法では、析出させるニッケルの微小粒子の量や大きさを制御することが極めて困難であるため、得られる突起の数や大きさを制御することが難しいという問題がある(特許文献2)。また、重合性液滴の表面に子粒子を付着させた後にこの重合性液滴を重合させる突起粒子の製造方法や、このような製造方法で得られる突起粒子の表面に金属層が形成された突起導電性粒子が開示されているが、突起粒子と基材粒子の密着性が十分ではないため、突起部が脱落したり欠損したりするという問題がある(特許文献3)。   In recent years, in particular, electronic devices and electronic parts have been downsized, and conductive fine particles with high connection reliability have been demanded. In particular, in the case of connecting between wiring boards patterned with aluminum wiring, since an oxide film exists, conductive fine particles having a function of breaking the oxide film and capable of obtaining good conductivity are formed on the surface. Conductive fine particles having a protruding structure have been proposed. As a method for producing conductive fine particles having a protrusion structure on the surface, for example, when a nickel conductive film is formed on the surface of the base particle by electroless plating, the nickel film and nickel fine particles that become the core of the protrusion A method is disclosed in which conductive protrusions are formed on the surface of the substrate particles by simultaneously depositing and forming a nickel coating while taking in nickel fine particles. However, with this method, it is extremely difficult to control the amount and size of the nickel fine particles to be deposited, so that it is difficult to control the number and size of the obtained protrusions (Patent Document 2). ). In addition, a method for producing protruding particles that polymerizes the polymerizable droplets after attaching the child particles to the surface of the polymerizable droplets, and a metal layer was formed on the surface of the protruding particles obtained by such a manufacturing method. Although the projecting conductive particles are disclosed, there is a problem that the projecting portions are dropped or missing because the adhesion between the projecting particles and the base particles is not sufficient (Patent Document 3).

特公平6−96771号公報Japanese Patent Publication No. 6-96771 特開2000−243132号公報JP 2000-243132 A 特開2005−171096号公報JP 2005-171096 A

本発明の課題は、基材粒子の表面と微粒子との密着性が十分に強く、且つ、該微粒子と最表面の導電性金属層との密着性も十分に強く、良好な導通性と接続信頼性とを両立した、表面に突起構造を有する導電性微粒子を提供することにある。また、このような導電性微粒子を含む異方性導電接着剤組成物を提供することにある。さらに、このような異方性導電接着剤組成物から得られる異方性導電成形体を提供することにある。   The problem of the present invention is that the adhesion between the surface of the substrate particles and the fine particles is sufficiently strong, and the adhesion between the fine particles and the conductive metal layer on the outermost surface is also sufficiently strong. The object is to provide conductive fine particles having a protrusion structure on the surface, which are compatible with each other. Another object of the present invention is to provide an anisotropic conductive adhesive composition containing such conductive fine particles. Furthermore, it is providing the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition.

本発明の導電性微粒子は、基材粒子の表面の少なくとも一部にアミノ樹脂微粒子が存在してなる微粒子被覆基材粒子が導電性金属層で被覆されてなる。   The conductive fine particles of the present invention are formed by coating fine particle-coated base particles in which amino resin fine particles are present on at least a part of the surface of the base particles with a conductive metal layer.

本発明の異方性導電接着剤組成物は、本発明の導電性微粒子がバインダー樹脂中に分散してなる。   The anisotropic conductive adhesive composition of the present invention comprises the conductive fine particles of the present invention dispersed in a binder resin.

本発明の異方性導電成形体は、本発明の異方性導電接着剤組成物から得られる。   The anisotropic conductive molded body of the present invention is obtained from the anisotropic conductive adhesive composition of the present invention.

本発明によれば、基材粒子の表面と微粒子との密着性が十分に強く、且つ、該微粒子と最表面の導電性金属層との密着性も十分に強く、良好な導通性と接続信頼性とを両立した、表面に突起構造を有する導電性微粒子を提供することができる。また、このような導電性微粒子を含む異方性導電接着剤組成物を提供することができる。さらに、このような異方性導電接着剤組成物から得られる異方性導電成形体を提供することができる。   According to the present invention, the adhesion between the surface of the substrate particles and the fine particles is sufficiently strong, and the adhesion between the fine particles and the conductive metal layer on the outermost surface is also sufficiently strong. It is possible to provide conductive fine particles having a protrusion structure on the surface that are compatible with the properties. Moreover, the anisotropic conductive adhesive composition containing such conductive fine particles can be provided. Furthermore, the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition can be provided.

≪A.導電性微粒子≫
本発明の導電性微粒子は、基材粒子の表面の少なくとも一部にアミノ樹脂微粒子が存在してなる微粒子被覆基材粒子が導電性金属層で被覆されてなる。
≪A. Conductive fine particles >>
The conductive fine particles of the present invention are formed by coating fine particle-coated base particles in which amino resin fine particles are present on at least a part of the surface of the base particles with a conductive metal layer.

<A−1.微粒子被覆基材粒子>
微粒子被覆基材粒子は、基材粒子の表面の少なくとも一部にアミノ樹脂微粒子が存在してなる。「表面の少なくとも一部」とは、表面の一部であっても良いし全部であっても良いとの意味であり、具体的には、微粒子被覆基材粒子の任意の10個の正投影面において、アミノ樹脂粒子が少なくとも1箇所/微粒子被覆基材粒子1個以上、より好ましくは5箇所/微粒子被覆基材粒子1個以上存在していることである。
<A-1. Fine Particle Coated Base Particle>
The fine particle-coated base particle has amino resin fine particles present on at least a part of the surface of the base particle. “At least part of the surface” means that part or all of the surface may be used. Specifically, any 10 orthographic projections of the fine particle-coated substrate particles may be used. On the surface, the amino resin particles are present at least at one location / one or more particles-coated substrate particles, more preferably at least five sites / one particle-coated substrate particles.

<A−1−1.基材粒子>
基材粒子は、導電性微粒子の基材粒子として用い得るものであれば、任意の適切な基材粒子を採用し得る。このような基材粒子の材料としては、例えば、シリカなどの無機材料;シリコーン樹脂(ポリメチルシルセスキオキサン、フェニルシルセスキオキサン)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリブタジエンなど)、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、ポリスルホン、ポリカーボネート、フェノール樹脂、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、尿素樹脂などの有機材料;有機無機複合材料;などが挙げられる。これらの中でも、適度な弾性率や回復特性を有する点で、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、有機無機複合材料が好ましい。有機無機複合材料としては、任意の適切な有機無機複合材料を採用し得る。好ましくは、後述する、基材粒子の表面に存在するアミノ樹脂微粒子の形態3における有機無機複合微粒子の形態a)〜e)と同様の形態のものを好ましく採用し得る。有機無機複合材料としては、また、特開2003−183337号公報や特開平8−81561号公報などに記載されているものを好ましく採用し得る。
<A-1-1. Base Particle>
Any appropriate base particle may be adopted as the base particle as long as it can be used as the base particle of the conductive fine particles. Examples of the material for the base particles include inorganic materials such as silica; silicone resins (polymethylsilsesquioxane, phenylsilsesquioxane), polyolefin resins (polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride). , Polytetrafluoroethylene, polybutadiene, etc.), vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin etc.), polysulfone, polycarbonate, phenolic resin, amino resin (melamine resin, melamine-benzoguanamine) Resin, benzoguanamine resin, etc.), organic materials such as urea resin; organic-inorganic composite materials; and the like. Among these, vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin, etc.), amino resin (melamine resin, melamine-benzoguanamine resin) in terms of having an appropriate elastic modulus and recovery characteristics. Benzoguanamine resin, etc.) and organic-inorganic composite materials are preferred. Any appropriate organic-inorganic composite material can be adopted as the organic-inorganic composite material. Preferably, those having the same form as the forms a) to e) of the organic-inorganic composite fine particles in the form 3 of the amino resin fine particles present on the surface of the substrate particles, which will be described later, can be preferably used. As the organic-inorganic composite material, those described in JP-A No. 2003-183337 and JP-A No. 8-81561 can be preferably employed.

上記基材粒子の平均粒子径は、好ましくは1μm以上、より好ましくは1〜100μm、さらに好ましくは1〜50μm、特に好ましくは1〜20μm、最も好ましくは1〜10μmである。上記基材粒子の平均粒子径が1μm未満の場合、無電解めっきなどで導電性金属層を被覆する際に、粒子が凝集し易くなり、均一な導電性金属層を形成できないおそれがある。上記基材粒子の平均粒子径が100μmを超えると、導電性微粒子とした際の用途が限られてしまい、工業上の利用分野が少なくなってしまうおそれがある。平均粒子径の評価方法は後述する。   The average particle diameter of the substrate particles is preferably 1 μm or more, more preferably 1 to 100 μm, still more preferably 1 to 50 μm, particularly preferably 1 to 20 μm, and most preferably 1 to 10 μm. When the average particle diameter of the substrate particles is less than 1 μm, when the conductive metal layer is coated by electroless plating or the like, the particles are likely to aggregate and there is a possibility that a uniform conductive metal layer cannot be formed. When the average particle diameter of the substrate particles exceeds 100 μm, the use of conductive fine particles is limited, and there is a risk that the industrial application field may be reduced. The method for evaluating the average particle size will be described later.

<A−1−2.アミノ樹脂微粒子>
本発明におけるアミノ樹脂微粒子とは、表面にアミノ樹脂を有する微粒子をいう。すなわち、本発明におけるアミノ樹脂微粒子は、均一組成のアミノ樹脂微粒子(微粒子全体が均一なアミノ樹脂の組成から構成されるアミノ樹脂微粒子)(形態1のアミノ樹脂微粒子ともいう)であっても良いし、微粒子表面にアミノ樹脂の成分を有する不均一な組成のアミノ樹脂微粒子(たとえば、後述する形態2、3のアミノ樹脂微粒子を含む)であっても良い。なお、「微粒子全体が均一なアミノ樹脂の組成」とは、用いたアミノ化合物の組成が実質的に同じであることを意味し、アミノ化合物とホルムアルデヒドの比率が僅かに異なっている程度や、コアと表層部とで架橋度が異なる程度は、均一組成のアミノ樹脂微粒子の形態に含める。
<A-1-2. Amino resin fine particles>
The amino resin fine particles in the present invention mean fine particles having an amino resin on the surface. That is, the amino resin fine particles in the present invention may be amino resin fine particles having a uniform composition (amino resin fine particles composed of a uniform amino resin composition) (also referred to as form 1 amino resin fine particles). Alternatively, amino resin fine particles having a non-uniform composition having amino resin components on the surface of the fine particles (for example, including amino resin fine particles of modes 2 and 3 described later) may be used. “Amino resin composition with uniform fine particles” means that the composition of the amino compound used is substantially the same, and the ratio of the amino compound to formaldehyde is slightly different, the core The degree of cross-linking between the surface layer portion and the surface layer portion is included in the form of amino resin fine particles having a uniform composition.

上記アミノ樹脂微粒子の平均粒子径は、好ましくは1μm以下であり、より好ましくは0.01〜1μm、さらに好ましくは0.02〜0.8μm、特に好ましくは0.03〜0.5μmである。上記アミノ樹脂微粒子の平均粒子径が上記範囲内に収まる場合は、該アミノ樹脂微粒子を基材粒子の表面に存在させて微粒子被覆基材粒子とすることにより、絶縁性微粒子が導電性微粒子の表面から脱落し難くすることができる。平均粒子径の評価方法は後述する。   The average particle diameter of the amino resin fine particles is preferably 1 μm or less, more preferably 0.01 to 1 μm, still more preferably 0.02 to 0.8 μm, and particularly preferably 0.03 to 0.5 μm. When the average particle diameter of the amino resin fine particles falls within the above range, the amino resin fine particles are present on the surface of the base material particles to form the fine particle-coated base material particles so that the insulating fine particles are on the surface of the conductive fine particles. It can be difficult to drop off. The method for evaluating the average particle size will be described later.

上記アミノ樹脂微粒子の粒度分布のシャープさは、粒子径の変動係数(CV値)で示すことができる。上記アミノ樹脂微粒子の粒子径の変動係数(CV値)は、具体的には、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、特に好ましくは20%以下である。上記アミノ樹脂微粒子の粒子径の変動係数(CV値)が50%を超えると、本発明の導電性微粒子における突起の大きさのバラツキが大きくなり、導通性、あるいは接続信頼性が不十分となるおそれがある。変動係数(CV値)の評価方法は後述する。   The sharpness of the particle size distribution of the amino resin fine particles can be represented by a variation coefficient (CV value) of the particle diameter. Specifically, the coefficient of variation (CV value) of the amino resin fine particles is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. When the variation coefficient (CV value) of the particle diameter of the amino resin fine particles exceeds 50%, the variation in the size of the protrusions in the conductive fine particles of the present invention becomes large, and the conductivity or connection reliability becomes insufficient. There is a fear. A method for evaluating the coefficient of variation (CV value) will be described later.

上記アミノ樹脂としては、アミノ化合物とホルムアルデヒドとの重縮合物であれば、任意の適切なアミノ樹脂を採用し得る。上記アミノ化合物としては、アミノ基を有する化合物であれば、任意の適切なアミノ化合物を採用し得る。上記アミノ化合物としては、好ましくは、多官能アミノ化合物であり、より好ましくは、トリアジン環構造を有する多官能アミノ化合物である。上記アミノ化合物は、1種のみを用いても良いし、2種以上を併用しても良い。   Any appropriate amino resin can be adopted as the amino resin as long as it is a polycondensate of an amino compound and formaldehyde. Any appropriate amino compound can be adopted as the amino compound as long as it is a compound having an amino group. The amino compound is preferably a polyfunctional amino compound, and more preferably a polyfunctional amino compound having a triazine ring structure. The amino compound may be used alone or in combination of two or more.

上記トリアジン環構造を有する多官能アミノ化合物としては、例えば、メラミン;一般式(1)で表されるアミノ化合物;一般式(2)や一般式(3)などで表されるジアミノトリアジン化合物;ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンなどのグアナミン化合物;などが挙げられる。これらの中でも、メラミン、ベンゾグアナミンが好ましい。   Examples of the polyfunctional amino compound having a triazine ring structure include melamine; an amino compound represented by general formula (1); a diaminotriazine compound represented by general formula (2) and general formula (3); and benzoguanamine. , Guanamine compounds such as cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, spiroguanamine, and the like. Among these, melamine and benzoguanamine are preferable.

Figure 0005466022
Figure 0005466022

Figure 0005466022
Figure 0005466022

Figure 0005466022
Figure 0005466022

一般式(1)中、Rは、同一または異なり、水素原子または置換基があっても良いアルキル基を表し、Rの少なくとも1つは置換基があっても良いアルキル基である。一般式(1)中、Rは、好ましくは、水素原子、ヒドロキシアルキル基である。 Formula (1), R 1, identical or different, represent an alkyl group which may if there is a hydrogen atom or a substituent, at least one of R 1 is an alkyl group which may have a substituent. In general formula (1), R 1 is preferably a hydrogen atom or a hydroxyalkyl group.

一般式(2)中、Rは、同一または異なり、直鎖構造または側鎖を有する構造である炭素原子数1〜2の炭化水素基(−CH−、−CHCH−、−CH(CH)−)である。 In General Formula (2), R 2 is the same or different, and is a hydrocarbon group having 1 to 2 carbon atoms (—CH 2 —, —CH 2 CH 2 —, —, which is a linear structure or a structure having a side chain. CH (CH 3) -) is.

一般式(3)中、Rは、直鎖構造、側鎖を有する構造、置換基があっても良い芳香族環を有する構造、置換基があっても良い脂環を有する構造のいずれかである炭素原子数1〜8の炭化水素基である。なお、芳香族環を有する構造や脂環を有する構造は、側鎖を有する構造であっても良い。 In general formula (3), R 3 is any one of a linear structure, a structure having a side chain, a structure having an aromatic ring which may have a substituent, and a structure having an alicyclic ring which may have a substituent. It is a C1-C8 hydrocarbon group which is. The structure having an aromatic ring or the structure having an alicyclic ring may be a structure having a side chain.

上記アミノ樹脂微粒子の好ましい形態の1つである均一組成のアミノ樹脂微粒子としては、平均粒子径が1μm以下のものであれば、従来一般に知られているアミノ樹脂微粒子を採用し得る。このような均一組成のアミノ樹脂微粒子およびその製造方法としては、例えば、特開2000−256432号公報、特開2002−293854号公報、特開2002−293855号公報、特開2002−293856号公報、特開2002−293857号公報、特開2003−55422号公報、特開2003−82049号公報、特開2003−138023号公報、特開2003−147039号公報、特開2003−171432号公報、特開2003−176330号公報、特開2005−97575号公報、特開2007−186716号公報、特開2008−101040号公報などに記載のアミノ樹脂微粒子およびその製造方法が挙げられる。すなわち、上記均一組成のアミノ樹脂微粒子は、例えば、上記多官能アミノ化合物とホルムアルデヒドを、好ましくは塩基性の水性媒体中で反応(付加縮合反応)させて縮合物オリゴマーを生成させ、該縮合物オリゴマーが溶解または分散する水性媒体にドデシルベンゼンスルホン酸や硫酸などの酸触媒を混合して硬化させることによって、架橋されたアミノ樹脂微粒子を製造することができる。縮合物オリゴマーを生成させる段階、架橋構造のアミノ樹脂微粒子とする段階は、いずれも、50〜100℃の温度で加熱された状態で行うことが好ましい。また、架橋されたアミノ樹脂微粒子の粒子径を制御するために、架橋構造のアミノ樹脂微粒子とする段階は界面活性剤の存在下で行われることが好ましい。また、上記均一組成のアミノ樹脂微粒子として、市販のアミノ樹脂微粒子(例えば、日本触媒社製の「エポスター」シリーズなど)も採用し得る。   As the amino resin fine particles having a uniform composition, which is one of the preferred forms of the amino resin fine particles, conventionally known amino resin fine particles can be adopted as long as the average particle diameter is 1 μm or less. Examples of such amino resin fine particles having a uniform composition and a method for producing the same include, for example, JP 2000-256432 A, JP 2002-293854 A, JP 2002-293855 A, JP 2002-293856 A, JP 2002-293857, JP 2003-55422, JP 2003-82049, JP 2003-138823, JP 2003-147039, JP 2003-171432, JP Examples thereof include amino resin fine particles described in JP-A No. 2003-176330, JP-A No. 2005-97575, JP-A No. 2007-186716, and JP-A No. 2008-101040, and the production method thereof. That is, the amino resin fine particles having a uniform composition are produced by, for example, reacting the polyfunctional amino compound with formaldehyde, preferably in a basic aqueous medium (addition condensation reaction) to form a condensate oligomer. By mixing and curing an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in an aqueous medium in which is dissolved or dispersed, crosslinked amino resin fine particles can be produced. It is preferable that both the step of generating the condensate oligomer and the step of forming the amino resin fine particles having a crosslinked structure are performed in a state of being heated at a temperature of 50 to 100 ° C. In order to control the particle diameter of the crosslinked amino resin fine particles, it is preferable that the step of forming crosslinked amino resin fine particles is performed in the presence of a surfactant. Moreover, as the amino resin fine particles having a uniform composition, commercially available amino resin fine particles (for example, “Eposter” series manufactured by Nippon Shokubai Co., Ltd.) may be employed.

上記アミノ樹脂微粒子の好ましい形態の別の1つである、微粒子表面にアミノ樹脂の成分を有する不均一な組成のアミノ樹脂微粒子としては、例えば、コア部と表層部とでそれぞれ異なるアミノ化合物が用いられたアミノ樹脂微粒子(形態2のアミノ樹脂微粒子ともいう)が挙げられる。より好ましくは、トリアジン環構造を有する多官能アミノ化合物から選ばれる異なる2種であり、具体的には、例えば、メラミン;上記一般式(1)で表されるアミノ化合物;上記一般式(2)や上記一般式(3)などで表されるジアミノトリアジン化合物;ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンなどのグアナミン化合物;から選ばれる異なる2種である。さらに好ましくは、メラミンまたは上記一般式(1)で表されるアミノ化合物と上記グアナミン化合物との組み合わせ、すなわち、コア部にメラミンまたは上記一般式(1)で表されるアミノ化合物が用いられて表層部に上記グアナミン化合物が用いられる場合、または、コア部に上記グアナミン化合物が用いられて表層部にメラミンまたは上記一般式(1)で表されるアミノ化合物が用いられる場合である。特に好ましくは、コア部にメラミンまたは上記一般式(1)で表されるアミノ化合物が用いられて表層部に上記グアナミン化合物が用いられる場合であり、最も好ましくは、コア部にメラミンが用いられて表層部にベンゾグアナミンが用いられる場合である。上記の特に好ましい形態の場合、コア部に用いられるアミノ化合物中のメラミンまたは上記一般式(1)で表されるアミノ化合物の含有割合は、好ましくは1〜100質量%、より好ましくは80〜100質量%、さらに好ましくは90〜100質量%、特に好ましくは95〜100質量%、最も好ましくは100質量%である。上記の特に好ましい形態の場合、表層部に用いられるアミノ化合物中の上記グアナミン化合物の含有割合は、好ましくは10〜100質量%、より好ましくは60〜100質量%、さらに好ましくは80〜100質量%、さらに好ましくは85〜100質量%、さらに好ましくは90〜100質量%、特に好ましくは95〜100質量%、最も好ましくは100質量%である。このような微粒子表面にアミノ樹脂の成分を有する不均一な組成のアミノ樹脂微粒子は、上述した均一組成のアミノ樹脂微粒子およびその製造方法が記載された公知文献に記載された方法と同様の方法を、コアとなる微粒子の存在下で行うことにより得られる。すなわち、水性媒体中でコアとなる微粒子が分散された状態で、アミノ化合物とホルムアルデヒドを反応(付加縮合反応)させることによりアミノ樹脂からなる表層を形成する。通常、この反応は加熱下(50〜100℃)で行い、架橋度を高めるために、ドデシルベンゼンスルホン酸や硫酸などの酸触媒の存在下で行われる。コアがアミノ樹脂微粒子である場合、コアを前述のアミノ樹脂微粒子の製法に従って製造した後、得られたアミノ樹脂微粒子が分散含有された水性媒体を用いて、上記の表層のアミノ樹脂層の形成反応を適用すればよい。   As amino resin fine particles having a heterogeneous composition having amino resin components on the surface of fine particles, which is another preferred form of the above-mentioned amino resin fine particles, for example, different amino compounds are used for the core portion and the surface layer portion, respectively. And the resulting amino resin fine particles (also referred to as form 2 amino resin fine particles). More preferably, they are two different types selected from polyfunctional amino compounds having a triazine ring structure. Specifically, for example, melamine; an amino compound represented by the above general formula (1); and the above general formula (2) And diaminotriazine compounds represented by the above general formula (3) and the like; guanamine compounds such as benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, and spiroguanamine; More preferably, melamine or a combination of the amino compound represented by the above general formula (1) and the above guanamine compound, that is, the melamine or the amino compound represented by the above general formula (1) is used in the core portion to form a surface layer. The case where the guanamine compound is used for the part, or the case where the guanamine compound is used for the core part and the melamine or the amino compound represented by the general formula (1) is used for the surface layer part. Particularly preferred is the case where melamine or the amino compound represented by the above general formula (1) is used for the core part and the guanamine compound is used for the surface part, most preferably melamine is used for the core part. This is a case where benzoguanamine is used for the surface layer. In the case of the above particularly preferred form, the content of the melamine in the amino compound used for the core part or the amino compound represented by the general formula (1) is preferably 1 to 100% by mass, more preferably 80 to 100%. % By mass, more preferably 90-100% by mass, particularly preferably 95-100% by mass, and most preferably 100% by mass. In the case of the above particularly preferred form, the content ratio of the guanamine compound in the amino compound used for the surface layer is preferably 10 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 80 to 100% by mass. More preferably, it is 85-100 mass%, More preferably, it is 90-100 mass%, Most preferably, it is 95-100 mass%, Most preferably, it is 100 mass%. The amino resin fine particles having a heterogeneous composition having amino resin components on the surface of such fine particles are obtained by the same method as described in the publicly known literature in which the amino resin fine particles having the uniform composition and the production method thereof are described. It is obtained by performing in the presence of fine particles as a core. That is, a surface layer made of an amino resin is formed by reacting an amino compound with formaldehyde (addition condensation reaction) in a state where the core fine particles are dispersed in an aqueous medium. Usually, this reaction is performed under heating (50 to 100 ° C.), and is performed in the presence of an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in order to increase the degree of crosslinking. When the core is amino resin fine particles, the core is produced according to the above-mentioned method for producing amino resin fine particles, and then the reaction for forming the amino resin layer on the surface layer is performed using an aqueous medium in which the obtained amino resin fine particles are dispersed and contained. Should be applied.

上記アミノ樹脂微粒子の好ましい形態の別の1つである、表面にアミノ樹脂成分を有する微粒子において、アミノ樹脂成分以外の粒子部分としては、任意の適切な粒子を採用し得る。このような微粒子を形態3のアミノ樹脂微粒子ともいう。上記粒子の製造方法については、無機粒子、有機粒子、有機無機複合粒子などの粒子を製造する方法であれば、任意の適切な製造方法を採用し得る。形態2のアミノ樹脂微粒子の製法においてコアとなる微粒子をアミノ樹脂成分以外の粒子に代える以外は同様の方法を採用し得る。上記粒子の材料としては、例えば、ビニル重合体微粒子、シリカ微粒子、有機無機複合微粒子などが挙げられる。形態2、形態3における表層部のアミノ樹脂層の厚みは、任意の適切な厚みを採用し得る。形態2、形態3における表層部のアミノ樹脂層の厚みは、例えば、導電層を構成する金属との密着性、基材粒子との密着性を十分とするために、好ましくは0.01μm以上であり、より好ましくは0.05μm以上である。形態2、形態3における表層部のアミノ樹脂層の厚みの上限は、好ましくは1μm未満であり、より好ましくは0.5μm以下である。コアとなる部分の直径は、上述したアミノ樹脂微粒子における好適な粒子径の範囲となるよう、表層部の厚みに応じて制御されていればよい。   In the fine particles having an amino resin component on the surface, which is another preferred form of the amino resin fine particles, any appropriate particles can be adopted as the particle portion other than the amino resin component. Such fine particles are also referred to as form 3 amino resin fine particles. About the manufacturing method of the said particle | grain, arbitrary appropriate manufacturing methods can be employ | adopted if it is a method of manufacturing particles, such as an inorganic particle, an organic particle, and an organic inorganic composite particle. A similar method can be adopted except that the fine particles serving as the core are replaced with particles other than the amino resin component in the production method of the amino resin fine particles of Form 2. Examples of the material of the particles include vinyl polymer fine particles, silica fine particles, and organic / inorganic composite fine particles. Arbitrary appropriate thickness can be employ | adopted for the thickness of the amino resin layer of the surface layer part in the form 2 and the form 3. The thickness of the amino resin layer of the surface layer part in the form 2 and form 3 is preferably 0.01 μm or more in order to ensure, for example, sufficient adhesion to the metal constituting the conductive layer and adhesion to the base particles. More preferably, it is 0.05 μm or more. The upper limit of the thickness of the amino resin layer of the surface layer part in Form 2 and Form 3 is preferably less than 1 μm, and more preferably 0.5 μm or less. The diameter of the core portion may be controlled in accordance with the thickness of the surface layer portion so as to be within a suitable particle diameter range of the amino resin fine particles described above.

上記ビニル重合体微粒子としては、任意の適切な重合性モノマーおよび必要に応じて任意の適切な架橋性モノマーを用いて得られる重合体微粒子を採用し得る。   As said vinyl polymer microparticles | fine-particles, the polymer microparticles | fine-particles obtained using arbitrary appropriate polymerizable monomers and arbitrary appropriate crosslinkable monomers as needed can be employ | adopted.

上記重合性モノマーとしては、分子内に少なくとも1個以上のエチレン性不飽和基を含有する化合物であればよい。具体的には、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキプロピル(メタ)アクリレート、2−ヒドロキブチル(メタ)アクリレート等の水酸基を有する単量体類;メトキシポリエチレングリコール(メタ)アクリレート、等のポリエチレングリコール成分を有する単量体類;(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリル酸イソアミル、(メタ)アクリル酸ラウリル、メタクリル酸ベンジル、メタクリル酸テトラヒドロフルフリル等のアルキル(メタ)アクリレート類;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタンフルオロプロピル(メタ)アクリレート、オクタフルオロアミル(メタ)アクリレート等のフッ素原子含有(メタ)アクリレート類;スチレン、α−メチルスチレン、ビニルトルマン、α−クロロスチレン、0−クロロスチレン、m−クロロスチレン、p−クロロスチレン、p−エチルスチレン等の芳香族ビニル化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸;(メタ)アクリルアミド;(メタ)アクリロニトリル;等が挙げられる。上記重合性モノマーは、単独で用いても良いし、2種以上を併用しても良い。   The polymerizable monomer may be a compound containing at least one ethylenically unsaturated group in the molecule. Specifically, for example, monomers having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate; methoxypolyethylene glycol (meth) acrylate Monomers having a polyethylene glycol component such as, butyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isoamyl acrylate, lauryl (meth) acrylate, benzyl methacrylate, methacryl Alkyl (meth) acrylates such as tetrahydrofurfuryl acid; trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, pentanefluoropropyl (meth) acrylate, octafluoroamyl (meth) acrylate, etc. Elemental atom-containing (meth) acrylates; aromatic vinyl compounds such as styrene, α-methylstyrene, vinyl tolman, α-chlorostyrene, 0-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-ethylstyrene; glycidyl (Meth) acrylate; (meth) acrylic acid; (meth) acrylamide; (meth) acrylonitrile; The said polymerizable monomer may be used independently and may use 2 or more types together.

上記架橋性モノマーとしては、例えば、ジビニルベンゼン、(ポリ)エチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、ジアリルフタレートおよびその異性体、トリアリルイソシアヌレートおよびその誘導体、等が挙げられる。上記架橋性モノマーは、単独で用いても良いし、2種以上を併用しても良い。   Examples of the crosslinkable monomer include divinylbenzene, (poly) ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meta) ) Acrylate, tetramethylol methane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, dipentaerythritol hexaacrylate, diallyl phthalate and isomers thereof, triallyl isocyanurate and derivatives thereof, and the like. The said crosslinkable monomer may be used independently and may use 2 or more types together.

上記シリカ微粒子としては、任意の適切なシリカ微粒子を採用し得る。上記シリカ微粒子としては、具体的には、例えば、シリコンアルコキシドの加水分解縮合物の微粒子、ケイ酸ナトリウムの加水分解縮合物の微粒子などが挙げられる。   Arbitrary appropriate silica fine particles can be adopted as the silica fine particles. Specific examples of the silica fine particles include fine particles of hydrolytic condensate of silicon alkoxide, fine particles of hydrolyzed condensate of sodium silicate, and the like.

上記有機無機複合微粒子は、無機質成分であるポリシロキサンと有機質成分であるビニル系重合体とを必須としてなる複合体微粒子である。上記無機質成分であるポリシロキサンは、好ましくは、(メタ)アクリロキシ基を有するシリコン化合物を必須とする無機化合物原料を加水分解・縮合して得られるポリシロキサン骨格である。   The organic-inorganic composite fine particles are composite fine particles which essentially comprise polysiloxane as an inorganic component and a vinyl polymer as an organic component. The polysiloxane as the inorganic component is preferably a polysiloxane skeleton obtained by hydrolysis / condensation of an inorganic compound raw material essentially containing a silicon compound having a (meth) acryloxy group.

上記有機無機複合微粒子の形態としては、無機質成分であるポリシロキサンと有機質成分であるビニル系重合体とを必須としてなるものであれば、任意の適切な形態を採用し得る。具体的には、例えば、
a)無機質成分であるポリシロキサンが微粒子であって、有機質成分であるビニル系重合体中に分散している形態、
b)無機質成分であるポリシロキサンが微粒子のコア粒子であって、該コア粒子表面に、有機質成分であるビニル系重合体からなるシェルが形成されている、コアシェル構造の形態、
c)有機質成分であるビニル系重合体が微粒子のコア粒子であって、該コア粒子表面に、無機質成分であるポリシロキサンからなるシェルが形成されている、コアシェル構造の形態、
d)無機質成分であるポリシロキサンと有機質成分であるビニル系重合体が分子レベルで複合または混合されている形態、
e)上記d)の状態の微粒子がコア粒子となり、該コア粒子表面に、無機質成分であるポリシロキサンからなるシェルが形成されている、コアシェル構造の形態、
などが挙げられる。
As the form of the organic-inorganic composite fine particles, any suitable form can be adopted as long as it contains polysiloxane as an inorganic component and a vinyl polymer as an organic component. Specifically, for example,
a) A form in which polysiloxane, which is an inorganic component, is fine particles and dispersed in a vinyl polymer that is an organic component,
b) Form of core-shell structure in which polysiloxane as an inorganic component is a fine core particle, and a shell made of a vinyl polymer as an organic component is formed on the surface of the core particle;
c) a form of a core-shell structure in which a vinyl polymer as an organic component is a fine core particle, and a shell made of polysiloxane as an inorganic component is formed on the surface of the core particle;
d) A form in which polysiloxane as an inorganic component and vinyl polymer as an organic component are combined or mixed at a molecular level,
e) The form of the core-shell structure in which the fine particles in the state of d) become core particles, and a shell made of polysiloxane as an inorganic component is formed on the surface of the core particles.
Etc.

上記有機無機複合微粒子の好ましい製造方法としては、例えば、特開平9−197706号公報、有機質−無機質複合体粒子の製造方法。特開平8−81561号公報や特開2003−183327号公報に記載の方法が挙げられる。   As a preferable method for producing the organic-inorganic composite fine particles, for example, JP-A-9-197706, a method for producing organic-inorganic composite particles. Examples thereof include methods described in JP-A-8-81561 and JP-A-2003-183327.

上記有機無機複合微粒子の形状は、特に限定されるわけではなく、具体的には、例えば、球状、針状、板状、鱗片状、粉砕状、偏状、まゆ状、こんぺい糖状などの形状を挙げることができる。   The shape of the organic-inorganic composite fine particles is not particularly limited, and specifically, for example, spherical, needle-like, plate-like, scale-like, crushed, uneven, eyebrows, candy sugar, etc. The shape can be mentioned.

<A−1−3.微粒子被覆基材粒子の製造方法>
上記基材粒子の表面に上記アミノ樹脂微粒子を被覆する方法としては、任意の適切な被覆方法を採用し得る。例えば、基材粒子およびアミノ樹脂微粒子を有機溶媒あるいは水性媒体などの液体中に分散させた後にスプレードライを行う方法、有機溶媒あるいは水性媒体などの液体中で基材粒子の表面にアミノ樹脂微粒子を付着させた後に基材粒子とアミノ樹脂微粒子を化学結合させる方法、基材粒子の粉体とアミノ樹脂微粒子の粉体の共存下で高速撹拌機による撹拌やハイブリダイゼーション処理を行う方法、アミノ樹脂微粒子を有機溶媒あるいは水性媒体などの液体中に分散させた分散液中に基材粒子を添加して均一に分散させた後に分散媒をエバポレーター等で除去する方法、などが挙げられる。
<A-1-3. Method for producing fine particle-coated substrate particles>
Any appropriate coating method can be adopted as a method of coating the surface of the substrate particles with the amino resin fine particles. For example, a method of performing spray drying after dispersing the base particles and amino resin fine particles in a liquid such as an organic solvent or an aqueous medium, and the amino resin fine particles on the surface of the base particles in a liquid such as an organic solvent or an aqueous medium. A method of chemically bonding base particles and amino resin fine particles after adhering, a method of performing stirring or hybridization treatment with a high-speed stirrer in the coexistence of powder of base particles and amino resin fine particles, amino resin fine particles And a method of removing the dispersion medium with an evaporator and the like after adding the base particles to a dispersion liquid in which the liquid is dispersed in a liquid such as an organic solvent or an aqueous medium.

<A−2.導電性金属層>
導電性金属層を構成する金属としては、任意の適切な金属を採用し得る。このような金属としては、例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ニッケル、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム、ニッケル−リン、ニッケル−ホウ素などの金属や金属化合物、および、これらの合金などが挙げられる。これらの中でも、導電性に優れ、工業的に安価である点で、金、銀、銅、ニッケルが好ましい。
<A-2. Conductive metal layer>
Arbitrary appropriate metals can be employ | adopted as a metal which comprises an electroconductive metal layer. Examples of such metals include gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, nickel, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt, indium, nickel-phosphorus, nickel. -Metals and metal compounds such as boron, and alloys thereof. Among these, gold, silver, copper, and nickel are preferable because they are excellent in conductivity and industrially inexpensive.

上記導電性金属層の厚みは、好ましくは10〜500nm、より好ましくは20〜400nm、さらに好ましくは50〜300nmである。上記導電性金属層の厚みが10nm未満の場合、導電性微粒子として異方性導電接着剤組成物に用いた場合に、安定した電気的接続を維持し難くなるおそれがある。上記導電性金属層の厚みが500nmを超える場合、導電性微粒子としたときの表面の硬度が高くなりすぎ、回復率等の機械的特性を十分に発揮できないおそれがある。   The thickness of the conductive metal layer is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm. When the conductive metal layer has a thickness of less than 10 nm, it may be difficult to maintain a stable electrical connection when used as an anisotropic conductive adhesive composition as conductive fine particles. When the thickness of the conductive metal layer exceeds 500 nm, the surface hardness when the conductive fine particles are formed becomes too high, and there is a possibility that the mechanical properties such as the recovery rate cannot be sufficiently exhibited.

上記導電性金属層は、その表面に、実質的な割れや、導電性金属層が形成されていない面が存在しないものであることが好ましい。ここで、「実質的な割れや、導電性金属層が形成されていない面」とは、電子顕微鏡(倍率1000倍)を用いて任意の10000個の導電性微粒子の表面を観察した場合に、導電性金属層の割れ、および、基材粒子表面やアミノ樹脂微粒子の露出が、実質的に目視で観察されないことを意味する。   The conductive metal layer preferably has no substantial cracks or a surface on which no conductive metal layer is formed on the surface. Here, “substantially cracked or a surface on which the conductive metal layer is not formed” means that when the surface of any 10,000 conductive fine particles is observed using an electron microscope (magnification 1000 times), It means that the crack of the conductive metal layer and the exposure of the surface of the base particle and the amino resin fine particles are not substantially visually observed.

上記微粒子被覆基材粒子の表面に導電性金属層を被覆する方法は、任意の適切な方法を採用し得る。例えば、無電解めっき法、置換めっき法などによるめっき方法;金属微粉を単独またはバインダーに混ぜ合わせて得られるペーストを微粒子被覆基材粒子にコーティングする方法;真空蒸着、イオンプレーティング、イオンスパッタリングなどの物理的蒸着方法;などが挙げられる。これらの中でも、大掛かりな装置を必要とせず、容易に導電性金属層を形成できる点で、無電解めっき法が好ましい。   Any appropriate method can be adopted as a method of coating the surface of the fine particle-coated substrate particles with the conductive metal layer. For example, plating method by electroless plating method, displacement plating method, etc .; method of coating fine particle-coated substrate particles with metal fine powder alone or mixed with binder; vacuum deposition, ion plating, ion sputtering, etc. Physical vapor deposition method; and the like. Among these, the electroless plating method is preferable because a conductive metal layer can be easily formed without requiring a large-scale apparatus.

通常、無電解めっき法は、(1)親水化工程(エッチング)、(2)触媒化工程、(3)無電解めっき工程、の3工程からなる。親水化工程(エッチング)は、微粒子被覆基材粒子の種類に応じて、省略することができる。   In general, the electroless plating method includes three steps: (1) a hydrophilization step (etching), (2) a catalyst step, and (3) an electroless plating step. The hydrophilization step (etching) can be omitted depending on the type of the fine particle-coated substrate particles.

上記親水化工程(エッチング)は、微粒子被覆基材粒子の表面に微小な凹凸を形成して、導電性金属層の密着を良くするために行われる。上記親水化工程(エッチング)は、例えば、クロム酸、硫酸−クロム酸混液、過マンガン酸溶液等の酸化剤;塩酸、硫酸等の強酸;水酸化ナトリウム、水酸化カリウム等の強アルカリ溶液;などを用いて、微粒子被覆基材粒子の表面に微小な凹凸を形成する。   The hydrophilization step (etching) is performed to form minute irregularities on the surface of the fine particle-coated substrate particles and improve the adhesion of the conductive metal layer. The hydrophilization step (etching) includes, for example, an oxidizing agent such as chromic acid, sulfuric acid-chromic acid mixed solution, permanganic acid solution; strong acid such as hydrochloric acid and sulfuric acid; strong alkaline solution such as sodium hydroxide and potassium hydroxide; Is used to form minute irregularities on the surface of the fine particle-coated substrate particles.

上記触媒化工程は、微粒子被覆基材粒子の表面に無電解めっき工程の起点となり得る触媒層を形成するために行われる。触媒層を形成する方法としては、任意の適切な方法を採用し得る。例えば、無電解めっき用として市販されている触媒化試薬などを用いて行うことができる。このような市販されている触媒化試薬としては、例えば、ピンクシューマー(日本カニゼン株式会社製)、レッドシューマー(日本カニゼン株式会社製)などが挙げられる。触媒層を形成する方法としては、具体的には、例えば、塩化パラジウムと塩化スズとからなる溶液に微粒子被覆基材粒子を浸漬した後、硫酸、塩酸等の強酸や水酸化ナトリウム等の強アルカリ溶液で活性化してパラジウムを微粒子被覆基材粒子表面に析出させる方法;硫酸パラジウム溶液に基材粒子を浸漬した後、ジメチルアミンボラン等の還元剤を含む溶液で活性化してパラジウムを微粒子被覆基材粒子表面に析出させる方法;などが挙げられる。   The catalyzing step is performed to form a catalyst layer that can serve as a starting point for the electroless plating step on the surface of the fine particle-coated substrate particles. Any appropriate method can be adopted as a method of forming the catalyst layer. For example, it can be carried out using a catalytic reagent etc. commercially available for electroless plating. Examples of such commercially available catalyzing reagents include pink summers (manufactured by Nippon Kanisen Co., Ltd.) and red summers (manufactured by Nippon Kanisen Co., Ltd.). As a method for forming the catalyst layer, specifically, for example, after immersing the fine particle-coated substrate particles in a solution composed of palladium chloride and tin chloride, a strong acid such as sulfuric acid or hydrochloric acid or a strong alkali such as sodium hydroxide is used. Method of activating with solution to deposit palladium on the surface of fine particle-coated substrate particles; after immersing the substrate particles in a palladium sulfate solution, activation with a solution containing a reducing agent such as dimethylamine borane to activate palladium with a fine particle-coated substrate And a method of precipitating on the particle surface.

上記無電解めっき工程においては、好ましくは、微粒子被覆基材粒子を水性媒体に十分に分散させ、水性スラリーを調製する。ここで、微粒子被覆基材粒子は水性媒体に十分に分散させておくことが好ましい。微粒子被覆基材粒子が凝集した状態で導電性金属層が形成すると、未処理面が露出するおそれがある。微粒子被覆基材粒子の分散は、任意の適切な分散方法を採用し得る。例えば、通常撹拌、高速撹拌、コロイドミルやホモジナイザーのようなせん断分散装置を用いた分散、などが挙げられる。分散の際に、超音波照射を併用しても良い。また、分散の際に、界面活性剤などの分散剤を用いても良い。   In the electroless plating step, preferably, the fine particle-coated base material particles are sufficiently dispersed in an aqueous medium to prepare an aqueous slurry. Here, it is preferable that the fine particle-coated substrate particles are sufficiently dispersed in an aqueous medium. If the conductive metal layer is formed in a state where the fine particle-coated substrate particles are aggregated, the untreated surface may be exposed. Any appropriate dispersion method can be adopted for the dispersion of the fine particle-coated substrate particles. For example, normal stirring, high speed stirring, dispersion using a shearing dispersion device such as a colloid mill or a homogenizer, and the like can be mentioned. When dispersing, ultrasonic irradiation may be used in combination. Moreover, you may use dispersing agents, such as surfactant, in the case of dispersion | distribution.

次いで、金属塩、還元剤、錯化剤などを含んだ無電解めっき浴に、上記分散処理した微粒子被覆基材粒子スラリーを添加し、無電解めっきを行う。   Next, the dispersion-treated fine particle-coated substrate particle slurry is added to an electroless plating bath containing a metal salt, a reducing agent, a complexing agent, etc., and electroless plating is performed.

上記金属塩としては、例えば、導電性金属層を構成する金属として上述した金属の塩が挙げられる。例えば、ニッケル塩を用いる場合、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられる。無電解めっき浴中における上記金属塩の濃度は、所望の厚みの導電性金属層が形成されるように、微粒子被覆基材粒子のサイズ(表面積)に応じて適宜設定すれば良い。   As said metal salt, the salt of the metal mentioned above as a metal which comprises a conductive metal layer is mentioned, for example. For example, when nickel salt is used, nickel chloride, nickel sulfate, nickel acetate and the like can be mentioned. What is necessary is just to set the density | concentration of the said metal salt in an electroless-plating bath suitably according to the size (surface area) of microparticles | fine-particles covering base-material particle | grains so that the electroconductive metal layer of desired thickness may be formed.

上記還元剤としては、次亜燐酸ナトリウム、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジンなどが挙げられる。   Examples of the reducing agent include sodium hypophosphite, dimethylamine borane, sodium borohydride, potassium borohydride, hydrazine and the like.

上記錯化剤としては、例えば、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸、またはそれらのアルカリ金属塩やアンモニウム塩などのカルボン酸塩、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、アンモニウム化合物、EDTA、ピロリン酸(塩)などが挙げられる。上記錯化剤は、1種のみを用いても良いし、2種以上を併用しても良い。   Examples of the complexing agent include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid, carboxylates such as alkali metal salts and ammonium salts thereof, amino acids such as glycine, ethylenediamine, alkylamine, and the like. Aminic acid, ammonium compound, EDTA, pyrophosphoric acid (salt) and the like. Only 1 type may be used for the said complexing agent and it may use 2 or more types together.

上記無電解めっき法における無電解めっき浴のpHは、好ましくは4〜14である。   The pH of the electroless plating bath in the electroless plating method is preferably 4-14.

無電解めっき法においては、微粒子被覆基材粒子のスラリーを添加すると、速やかに反応が始まり、水素ガスの発生を伴う。無電解めっき法における、無電解めっき工程の終了は、その水素ガスの発生が完全に認められなくなった時点をもって終了とする。反応終了後、反応系内から導電性微粒子を取り出し、必要に応じて洗浄、乾燥を行う。   In the electroless plating method, when a slurry of fine particle-coated substrate particles is added, the reaction starts quickly and is accompanied by generation of hydrogen gas. The end of the electroless plating process in the electroless plating method ends when the generation of hydrogen gas is no longer recognized. After completion of the reaction, the conductive fine particles are taken out from the reaction system, and washed and dried as necessary.

上記無電解めっき工程は、複数回繰り返しても良い。このようにすることで、微粒子被覆基材粒子に複層の導電性金属層を被覆することができる。例えば、微粒子被覆基材粒子にニッケルめっきを施してニッケル被覆粒子を得た後に、無電解金めっき浴に該ニッケル被覆粒子を投入して金めっきを施すことにより、最外層に金の被覆層を有する導電性微粒子が得られる。   The electroless plating process may be repeated a plurality of times. By doing in this way, the multi-layered conductive metal layer can be coated on the fine particle-coated substrate particles. For example, after nickel-coated particles are coated on the fine-particle-coated substrate particles to obtain nickel-coated particles, the nickel-coated particles are placed in an electroless gold plating bath and gold-plated to form a gold coating layer on the outermost layer. Conductive fine particles are obtained.

<A−3.用途等>
本発明の導電性微粒子は、異方性導電材料の構成材料として好適である。上記異方性導電材料とは、さまざまな形態により相対向する基板同士や電極端子同士を電気的に接続するものである。
<A-3. Applications>
The conductive fine particles of the present invention are suitable as a constituent material of an anisotropic conductive material. The anisotropic conductive material is used to electrically connect opposing substrates and electrode terminals in various forms.

上記異方性導電材料を用いて電極同士を電気的に接続する方法としては、任意の適切な方法を採用し得る。例えば、絶縁性のバインダー樹脂中に本発明の導電性微粒子を分散させて異方性導電接着剤組成物を作製したうえで、この異方性導電接着剤組成物により接続する方法;絶縁性のバインダー樹脂と本発明の導電性微粒子とを別々に使用して接続する方法;等が挙げられる。   Any appropriate method can be adopted as a method of electrically connecting the electrodes using the anisotropic conductive material. For example, a method for producing an anisotropic conductive adhesive composition by dispersing the conductive fine particles of the present invention in an insulating binder resin and then connecting the anisotropic conductive adhesive composition; And a method of connecting the binder resin and the conductive fine particles of the present invention separately.

≪B.異方性導電接着剤組成物≫
本発明の異方性導電接着剤組成物は、本発明の導電性微粒子がバインダー樹脂中に分散してなる。
≪B. Anisotropic conductive adhesive composition >>
The anisotropic conductive adhesive composition of the present invention comprises the conductive fine particles of the present invention dispersed in a binder resin.

上記バインダー樹脂としては、任意の適切なバインダー樹脂を採用し得る。例えば、アクリレート樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体等の熱可塑性樹脂;グリシジル基を有するモノマーやオリゴマー及びイソシアネート等の硬化剤との反応により得られる硬化性樹脂組成物等の光や熱による硬化性樹脂組成物;等が挙げられる。   Any appropriate binder resin can be adopted as the binder resin. For example, thermoplastic resins such as acrylate resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers; curable resin compositions obtained by reaction with curing agents such as monomers and oligomers having glycidyl groups and isocyanate Examples thereof include curable resin compositions by light and heat.

上記異方性導電接着剤組成物としては、任意の適切な用途に適用し得る。例えば、異方性導電ペースト、異方性導電インク、異方性導電接着剤、液晶表示素子(LCD)のシール剤に含有される導電性スペーサ等が挙げられる。   As said anisotropic conductive adhesive composition, it can apply to arbitrary appropriate uses. Examples thereof include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, and conductive spacers contained in a liquid crystal display element (LCD) sealant.

上記異方性導電ペーストは、例えば、異方性導電接着剤組成物をペースト状にすることにより得られる。得られた異方性導電ペーストは、例えば、適当なディスペンサーに入れられ、接続すべき電極上に所望の厚さに塗工され、塗工された異方性導電ペースト上に対向電極を重ね合わせ、加熱するとともに加圧して樹脂を硬化させることにより、電極間の接続に使用される。   The anisotropic conductive paste is obtained, for example, by making an anisotropic conductive adhesive composition into a paste. The obtained anisotropic conductive paste is put in, for example, a suitable dispenser, applied to a desired thickness on the electrode to be connected, and the counter electrode is superimposed on the coated anisotropic conductive paste. It is used for connection between electrodes by heating and pressurizing to cure the resin.

上記異方性導電インクは、例えば、異方性導電接着剤組成物に溶媒を加えて印刷に適した粘度にすることにより得られる。得られた異方性導電インクは、例えば、接着すべき電極上にスクリーン印刷し、その溶媒を蒸発させた後、印刷された異方性導電インクの上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive ink is obtained, for example, by adding a solvent to the anisotropic conductive adhesive composition to obtain a viscosity suitable for printing. The obtained anisotropic conductive ink is, for example, screen-printed on the electrode to be bonded, the solvent is evaporated, the counter electrode is superimposed on the printed anisotropic conductive ink, and the resultant is heated and compressed. Therefore, it is used for the connection between the electrodes.

≪C.異方性導電成形体≫
本発明の異方性導電成形体は、本発明の異方性導電接着剤組成物から得られる。本発明の異方性導電成形体の具体例としては、例えば、異方性導電膜、異方性導電フィルム、異方性導電シートなどが挙げられる。
≪C. Anisotropic conductive compact >>
The anisotropic conductive molded body of the present invention is obtained from the anisotropic conductive adhesive composition of the present invention. Specific examples of the anisotropic conductive molded body of the present invention include an anisotropic conductive film, an anisotropic conductive film, and an anisotropic conductive sheet.

本発明の異方性導電成形体は、例えば、本発明の異方性導電接着剤組成物に溶媒を加えて溶液状にし、この溶液を離型フィルム上に流し込んだ後、溶媒を蒸発させて異方性導電接着剤組成物を被膜状にすることにより得られる。   The anisotropic conductive molded body of the present invention is prepared by, for example, adding a solvent to the anisotropic conductive adhesive composition of the present invention to form a solution, pouring the solution onto a release film, and then evaporating the solvent. It is obtained by forming an anisotropic conductive adhesive composition into a film.

本発明の異方性導電成形体は、例えば、接着すべき電極上に配置され、配置された異方性導電成形体上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive molded body of the present invention is disposed, for example, on electrodes to be bonded, and is used for connection between electrodes by superposing a counter electrode on the disposed anisotropic conductive molded body and compressing by heating. Is done.

上記異方性導電成形体における膜厚、塗工膜厚及び印刷膜厚は、含有する絶縁性微粒子被覆導電性微粒子の平均粒子径と接続すべき電極の仕様とから計算し、接続すべき電極間に導電性微粒子が挟持され、接続すべき電極が形成された接合基板同士の空隙がバインダー樹脂層により充分に満たされるよう設定することが好ましい。   The film thickness, coating film thickness and printed film thickness in the anisotropic conductive molded body are calculated from the average particle diameter of the conductive fine particles covered with the insulating fine particles and the specifications of the electrodes to be connected, and the electrodes to be connected It is preferable to set so that the gap between the bonding substrates on which the conductive fine particles are sandwiched and the electrodes to be connected are formed is sufficiently filled with the binder resin layer.

本発明の導電性微粒子を用いた異方性導電成形体は、高い導電性を示すばかりでなく、加重圧縮した際にも金属層が剥離、破壊されず、相対向する電極基板間の電気的な接続を確保することができる。また、経時安定性にも優れるので、長期間の使用においてもメッキ割れ等による導電性の低下を来すことなく、電極基板間の電気的な接続を堅持し信頼性の向上を図ることができる。   The anisotropic conductive molded body using the conductive fine particles of the present invention not only shows high conductivity, but also the metal layer is not peeled or broken even when subjected to weight compression, and the electrical conductivity between the opposing electrode substrates is Secure connection. In addition, since it is excellent in stability over time, it is possible to maintain electrical connection between electrode substrates and improve reliability without causing deterioration in conductivity due to plating cracking or the like even during long-term use. .

以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」と記すことがある。また、「質量%」を「wt%」と記すことがある。また、本明細書において、「質量」とあるのは、「重量」と読み替えても良い。なお、平均粒子径および変動係数(CV値)の評価は下記のように行った。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”. In addition, “mass%” may be described as “wt%”. In this specification, “mass” may be read as “weight”. The average particle size and coefficient of variation (CV value) were evaluated as follows.

〔ノギス法による平均粒子径および変動係数(CV値)の測定〕
粒子総個数が200個前後になるようにSEM写真を撮影し、その写真より無作為に選んだ100個の粒子の直径(撮影された粒子(断面)の最大長)をノギスにて計測し、その算術平均径を平均粒子径Dとした。また、平均粒子径Dに対する粒子径の標準偏差の百分率(%)として、平均粒子径Dの変動係数(CV値)を算出した。
[Measurement of average particle size and coefficient of variation (CV value) by caliper method]
SEM photographs were taken so that the total number of particles was around 200, and the diameter of 100 particles randomly selected from the photograph (maximum length of photographed particles (cross section)) was measured with calipers. The arithmetic average diameter was defined as the average particle diameter D. Further, the coefficient of variation (CV value) of the average particle diameter D was calculated as a percentage (%) of the standard deviation of the particle diameter with respect to the average particle diameter D.

〔実施例1〕
(基材粒子の合成)
冷却管、温度計、滴下口を備えた四つ口フラスコに、界面活性剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製、ハイテノール(登録商標)NF−08)2部をイオン交換水で溶解した水溶液150部を仕込んだ。そこへ、予め準備しておいた、スチレン50部、ジビニルベンゼン960(新日鉄化学社製)50部、重合開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製、V−65)2部を仕込み、TKホモミキサー(特殊機化工業社製)により5000rpmで5分間乳化分散させて、懸濁液を調製した。この懸濁液に、イオン交換水250部を加え、窒素雰囲気下で65℃に昇温し、65℃で2時間保持し、ラジカル重合を行った。ラジカル重合の後、生成した乳濁液を固液分離し、得られたケーキをイオン交換水、次いで、メタノールで洗浄した。その後、分級を行い、窒素雰囲気下で40℃で2時間真空乾燥を行い、基材粒子(1)を得た。基材粒子(1)の粒子径をコールターマルチサイザーIII型(ベックマンコールター社製)により測定したところ、平均粒子径は3.5μm、変動係数(CV)は4.7%であった。
(微粒子被覆基材粒子の合成)
メラミンとホルムアルデヒドの縮合物からなるアミノ樹脂微粒子(日本触媒社製、「エポスターS」、ノギス法による平均粒子径=0.20μm、変動係数(CV)=8.0%)を、アミノ樹脂微粒子濃度が5.0質量%になるように、メタノールに分散させた。得られたエポスターS分散液100部に、上記で得られた基材粒子(1)50部を加え、均一に分散させた後、エバポレーターでメタノールを留去し、基材粒子(1)の表面にアミノ樹脂微粒子が存在してなる微粒子被覆基材粒子(1)を得た。微粒子被覆基材粒子(1)の任意の10個を電子顕微鏡(SEM、倍率10000倍)で観察したところ、微粒子被覆基材粒子(1)の正投影面において、アミノ樹脂微粒子は12箇所/微粒子被覆基材粒子1個存在していた。
(導電性微粒子の合成)
ビーカーに「ピンクシューマー」(日本カニゼン株式会社製)10部とイオン交換水70部を入れ、混合して混合液を得た。別途、イオン交換水10部に微粒子被覆基材粒子(1)2部を加えて超音波分散を行ったものを準備し、上記混合液に投入し、30℃で10分間撹拌して懸濁液とし、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
次に、ビーカーに「レッドシューマー」(日本カニゼン株式会社製)20部とイオン交換水70部を入れ、混合して混合液を得た。別途、イオン交換水10部に上記で得られた乾燥粒子2部を加えて超音波分散を行ったものを準備し、上記混合液に投入し、30℃で10分間撹拌して懸濁液とした後、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
以上の操作により、微粒子被覆基材粒子(1)の表面にパラジウムが吸着されたパラジウム活性重合体微粒子(1)を得た。
ビーカーにパラジウム活性重合体微粒子(1)2部とイオン交換水80部を入れて懸濁させ、70℃に調温した。また、別途、無電解めっき液「シューマーS680」(日本カニゼン株式会社製)60部を別のビーカーに入れ、70℃に調温した。70℃に調温した上記パラジウム活性重合体微粒子(1)の懸濁液を撹拌子で300rpmで撹拌させながら、70℃に調温した上記無電解めっき液を投入した。投入から10秒後、水素ガスの発泡が始まり、溶液の色が緑色から黒褐色に変化した。水素ガスの発生が終了した時点を反応終点と判断し、そこから30分間、70℃で撹拌を行った。室温まで冷却後、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
以上の操作により、導電性微粒子(1)を得た。
(異方性導電接着剤組成物(1)の合成)
エポキシ樹脂(YL980、ジャパンエポキシレジン社製)65部、エポキシ硬化剤(ノバキュアHX3941HP、旭化成工業社製)35部、導電性微粒子(1)20部、1mmφのジルコニアビーズ200部を混合し、30分間ビーズミル分散を行い、異方性導電接着剤組成物(1)を得た。
(異方性導電成形体(1)の合成)
剥離処理済みポリエチレンテレフタレートフィルムに、乾燥厚みで25μmとなるように異方性導電接着剤組成物(1)を塗布して接着層を形成し、異方性導電シートである異方性導電成形体(1)を作製した。
<導通性、絶縁性の評価>
異方性導電成形体(1)を、150μm幅のパターンを有するITO付きガラス基板2枚の間に挟み、200℃で15秒間加熱加圧して、導電接続構造体を得た。得られた導電接続構造体について、下記の基準にしたがい、導通性および絶縁性の評価を行った。結果を表1に示した。
(導通性の評価)
対向する電極間の導通抵抗を測定し、抵抗値が20Ω以下の場合を○、20Ωを超える場合を×とした。
(絶縁性の評価)
対向する電極間の絶縁抵抗を測定し、抵抗値が100MΩ以上の場合を○、100MΩ未満の場合を×とした。
<導電性微粒子の被覆状態の評価>
異方性導電接着剤組成物を酢酸エチルに希釈した後に濾過して、導電性微粒子を取り出し、下記の基準にしたがい、SEMにて導電性金属層の被覆状態を評価した。結果を表1に示した。
○:均一な被覆状態を保持している。
×:被覆が不均一である。
[Example 1]
(Synthesis of substrate particles)
Polyoxyethylene styrenated phenyl ether sulfate ammonium salt (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Hightenol (registered trademark) NF-08) as a surfactant in a four-necked flask equipped with a condenser, thermometer, and dropping port 150 parts of an aqueous solution prepared by dissolving 2 parts with ion-exchanged water was charged. There were prepared 50 parts of styrene, 50 parts of divinylbenzene 960 (manufactured by Nippon Steel Chemical Co., Ltd.), 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd.) as a polymerization initiator. A suspension was prepared by charging 2 parts of V-65 (manufactured by Kogyo Co., Ltd.) and emulsifying and dispersing at 5000 rpm for 5 minutes with a TK homomixer (manufactured by Tokushu Kika Kogyo). To this suspension, 250 parts of ion-exchanged water was added, the temperature was raised to 65 ° C. under a nitrogen atmosphere, and the mixture was held at 65 ° C. for 2 hours to perform radical polymerization. After radical polymerization, the produced emulsion was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and then with methanol. Thereafter, classification was performed, and vacuum drying was performed at 40 ° C. for 2 hours in a nitrogen atmosphere to obtain base material particles (1). When the particle diameter of the substrate particles (1) was measured by Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.), the average particle diameter was 3.5 μm and the coefficient of variation (CV) was 4.7%.
(Synthesis of fine particle-coated substrate particles)
Amino resin fine particles composed of a condensate of melamine and formaldehyde (Nippon Shokubai Co., Ltd., “Eposter S”, average particle size by caliper method = 0.20 μm, coefficient of variation (CV) = 8.0%) The solution was dispersed in methanol so that the amount was 5.0% by mass. After adding 50 parts of the base particle (1) obtained above to 100 parts of the obtained Eposter S dispersion and dispersing it uniformly, methanol is distilled off by an evaporator, and the surface of the base particle (1) A fine particle-coated substrate particle (1) in which amino resin fine particles were present was obtained. When 10 arbitrary particles of the fine particle-coated substrate particles (1) were observed with an electron microscope (SEM, magnification 10,000 times), the amino resin fine particles were found at 12 locations / fine particles on the orthographic projection surface of the fine particle-coated substrate particles (1). One coated substrate particle was present.
(Synthesis of conductive fine particles)
In a beaker, 10 parts of “Pink Summer” (manufactured by Nippon Kanisen Co., Ltd.) and 70 parts of ion-exchanged water were mixed to obtain a mixed solution. Separately, 10 parts of ion-exchanged water and 2 parts of fine particle-coated substrate particles (1) were added and subjected to ultrasonic dispersion, and the mixture was put into the above mixed solution and stirred for 10 minutes at 30 ° C. The suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then vacuum-dried at 100 ° C. for 2 hours in a nitrogen atmosphere.
Next, 20 parts of “Red Schumer” (manufactured by Nippon Kanisen Co., Ltd.) and 70 parts of ion-exchanged water were mixed in a beaker to obtain a mixed solution. Separately, 2 parts of the dry particles obtained above were added to 10 parts of ion-exchanged water to prepare an ultrasonic dispersion, and the mixture was put into the above mixed solution and stirred at 30 ° C. for 10 minutes. Then, this suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then vacuum-dried at 100 ° C. for 2 hours in a nitrogen atmosphere.
By the above operation, palladium activated polymer fine particles (1) having palladium adsorbed on the surface of the fine particle-coated base particles (1) were obtained.
In a beaker, 2 parts of palladium-activated polymer fine particles (1) and 80 parts of ion-exchanged water were suspended, and the temperature was adjusted to 70 ° C. Separately, 60 parts of electroless plating solution “Schuma S680” (manufactured by Nippon Kanisen Co., Ltd.) was placed in another beaker, and the temperature was adjusted to 70 ° C. The electroless plating solution adjusted to 70 ° C. was charged while stirring the suspension of the palladium active polymer fine particles (1) adjusted to 70 ° C. with a stirrer at 300 rpm. Ten seconds after the charging, hydrogen gas bubbling started and the color of the solution changed from green to blackish brown. The time point at which the generation of hydrogen gas was completed was judged as the reaction end point, and stirring was carried out at 70 ° C. for 30 minutes therefrom. After cooling to room temperature, this suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then dried in a vacuum at 100 ° C. for 2 hours.
Conductive fine particles (1) were obtained by the above operation.
(Synthesis of anisotropic conductive adhesive composition (1))
65 parts of epoxy resin (YL980, manufactured by Japan Epoxy Resin Co., Ltd.), 35 parts of epoxy curing agent (Novacure HX3941HP, manufactured by Asahi Kasei Kogyo Co., Ltd.), 20 parts of conductive fine particles (1), and 200 parts of 1 mmφ zirconia beads are mixed for 30 minutes. Bead mill dispersion was performed to obtain an anisotropic conductive adhesive composition (1).
(Synthesis of anisotropic conductive molded body (1))
An anisotropic conductive molded body that is an anisotropic conductive sheet is formed by applying an anisotropic conductive adhesive composition (1) to a release-treated polyethylene terephthalate film to a dry thickness of 25 μm to form an adhesive layer. (1) was produced.
<Evaluation of conductivity and insulation>
The anisotropic conductive molded body (1) was sandwiched between two glass substrates with ITO having a 150 μm width pattern and heated and pressurized at 200 ° C. for 15 seconds to obtain a conductive connection structure. The obtained conductive connection structure was evaluated for conductivity and insulation according to the following criteria. The results are shown in Table 1.
(Evaluation of conductivity)
The conduction resistance between the electrodes facing each other was measured, and the case where the resistance value was 20Ω or less was evaluated as “◯”, and the case where the resistance value exceeded 20Ω was evaluated as “X”.
(Insulation evaluation)
The insulation resistance between the electrodes facing each other was measured, and the case where the resistance value was 100 MΩ or more was marked as “◯”, and the case where the resistance value was less than 100 MΩ was marked as “X”.
<Evaluation of coating state of conductive fine particles>
The anisotropic conductive adhesive composition was diluted with ethyl acetate and then filtered to take out conductive fine particles, and the coating state of the conductive metal layer was evaluated by SEM according to the following criteria. The results are shown in Table 1.
○: A uniform covering state is maintained.
X: Coating is not uniform.

〔実施例2〕
<アミノ樹脂微粒子(2)の合成>
攪拌機、還流冷却管及び温度計を備えた四つ口フラスコにメラミン100部、37%ホルマリン193部、25%アンモニア水3.5部を仕込み、攪拌しながら70℃に昇温し、70℃で30分間保持した。かかる操作によりアミノ樹脂前駆体含有液(2)296.5部を得た。
別に、攪拌機、還流冷却管、および温度計を備えたフラスコに、固形分濃度65質量%ドデシルベンゼンスルホン酸ソーダ(花王株式会社製、ネオペレックスG65)(65質量%DBSNa)6.2部と純水1400部を攪拌しながら入れ、90℃に昇温し、均一な界面活性剤水溶液を調製した。
上記の90℃の攪拌状態下にある界面活性剤水溶液にアミノ樹脂前駆体含有液(1)296.5部を投入して、90℃で5分間保持し、次いで10質量%ドデシルベンゼンスルホン酸水溶液50部を加えた。この状態で90℃にて5時間保持して、メラミン樹脂粒子を含有する液1750部(固形分10質量%)を得た。
ベンゾグアナミン100部、37%ホルマリン130部、65%DBSNa6.2部、ドデシルベンゼンスルホン酸5.0部、イオン交換水350部を均一に分散混合し、ベンゾグアナミン分散液を得た。上記の90℃に保持されたメラミン樹脂粒子含有液1752部中に上記のベンゾグアナミン分散液を2時間かけて滴下した。滴下後、さらに90℃で5時間保持し、その後30℃まで冷却して、メラミン樹脂粒子の表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(2)を含有する分散液を得た。
上記アミノ樹脂微粒子の分散液を遠心分離機により固液分離し、得られたケーキをメタノールで洗浄後、180℃で2時間真空乾燥を行い、アミノ樹脂微粒子(2)の粉体を得た。
得られたアミノ樹脂微粒子(2)の平均粒子径をノギス法により測定したところ、平均粒子径は0.24μm、変動係数は8.2%であった。
<微粒子被覆基材粒子(2)の合成>
実施例1において、アミノ樹脂微粒子(エポスターS)に代えてアミノ樹脂微粒子(2)を用いた以外は実施例1と同様にして、微粒子被覆基材粒子(2)を得た。微粒子被覆基材粒子(2)の任意の10個を電子顕微鏡(SEM、倍率10000倍)で観察したところ、微粒子被覆基材粒子(2)の正投影面において、アミノ樹脂微粒子は7箇所/微粒子被覆基材粒子1個存在していた。
<導電性微粒子(2)、異方性導電接着剤組成物(2)、異方性導電成形体(2)の合成>
さらに、実施例1と同様にして、導電性微粒子(2)、異方性導電接着剤組成物(2)、異方性導電成形体(2)を得た。
評価結果を表1に示した。
[Example 2]
<Synthesis of amino resin fine particles (2)>
A four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer was charged with 100 parts of melamine, 193 parts of 37% formalin, and 3.5 parts of 25% aqueous ammonia, and the temperature was raised to 70 ° C. while stirring. Hold for 30 minutes. By this operation, 296.5 parts of amino resin precursor containing liquid (2) was obtained.
Separately, in a flask equipped with a stirrer, a reflux condenser, and a thermometer, a solid content concentration of 65% by mass sodium dodecylbenzenesulfonate (manufactured by Kao Corporation, Neoperex G65) (65% by mass DBSNa) and pure 1400 parts of water was added with stirring and the temperature was raised to 90 ° C. to prepare a uniform aqueous surfactant solution.
296.5 parts of the amino resin precursor-containing liquid (1) is added to the above surfactant aqueous solution under stirring at 90 ° C., and held at 90 ° C. for 5 minutes, and then 10 mass% dodecylbenzenesulfonic acid aqueous solution. 50 parts were added. This state was maintained at 90 ° C. for 5 hours to obtain 1750 parts of liquid containing melamine resin particles (solid content: 10% by mass).
100 parts of benzoguanamine, 130 parts of 37% formalin, 6.2 parts of 65% DBSNa, 5.0 parts of dodecylbenzenesulfonic acid and 350 parts of ion-exchanged water were uniformly dispersed and mixed to obtain a benzoguanamine dispersion. The above benzoguanamine dispersion was dropped into 1752 parts of the melamine resin particle-containing liquid maintained at 90 ° C. over 2 hours. After dropping, the mixture is further maintained at 90 ° C. for 5 hours and then cooled to 30 ° C. to obtain a dispersion containing amino resin fine particles (2) in which the surface of the melamine resin particles is coated with a condensate of benzoguanamine and formaldehyde. It was.
The amino resin fine particle dispersion was subjected to solid-liquid separation using a centrifuge, and the resulting cake was washed with methanol and vacuum dried at 180 ° C. for 2 hours to obtain amino resin fine particle (2) powder.
When the average particle size of the resulting amino resin fine particles (2) was measured by a caliper method, the average particle size was 0.24 μm and the coefficient of variation was 8.2%.
<Synthesis of fine particle-coated substrate particles (2)>
In Example 1, fine particle-coated substrate particles (2) were obtained in the same manner as in Example 1, except that amino resin fine particles (2) were used in place of amino resin fine particles (Eposter S). Arbitrary 10 of the fine particle-coated substrate particles (2) were observed with an electron microscope (SEM, magnification: 10,000 times). One coated substrate particle was present.
<Synthesis of Conductive Fine Particle (2), Anisotropic Conductive Adhesive Composition (2), Anisotropic Conductive Molded Body (2)>
Furthermore, it carried out similarly to Example 1, and obtained the electroconductive fine particles (2), the anisotropic conductive adhesive composition (2), and the anisotropic conductive molded object (2).
The evaluation results are shown in Table 1.

〔実施例3〕
アモルファスシリカ微粒子(日本触媒社製、「シーホスターKE−P30」、平均粒子径0.28μm)175部をビーカーに入れ、ここにイオン交換水1575部を添加し超音波分散させた後、攪拌機、還流冷却管及び温度計を備えた四つ口フラスコに移し替え、90℃に昇温した。別途、ベンゾグアナミン100部、37%ホルマリン130部、65%DBSNa6.2部、ドデシルベンゼンスルホン酸5.0部、イオン交換水350部を均一に分散混合し、ベンゾグアナミン分散液を得た。上記の90℃に保持されたアモルファスシリカ微粒子含有液1750部中に上記のベンゾグアナミン分散液を2時間かけて滴下した。滴下後、さらに90℃で5時間保持し、その後30℃まで冷却して、アモルファスシリカ微粒子の表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(3)(平均粒子径0.36μm)を含有する分散液を得た後、アミノ樹脂微粒子(3)の粉体を得た。
得られたアミノ樹脂微粒子(3)の粉体を用いて、実施例2と同様にして、微粒子被覆基材粒子(3)を得た後、導電性微粒子(3)、異方性導電接着剤組成物(3)、異方性導電成形体(3)を得た。微粒子被覆基材粒子(3)の任意の10個を電子顕微鏡(SEM、倍率10000倍)で観察したところ、微粒子被覆基材粒子(3)の正投影面において、アミノ樹脂微粒子は10箇所/微粒子被覆基材粒子1個存在していた。
評価結果を表1に示した。
Example 3
175 parts of amorphous silica fine particles (manufactured by Nippon Shokubai Co., Ltd., “Seahoster KE-P30”, average particle diameter 0.28 μm) are placed in a beaker, and 1575 parts of ion-exchanged water are added and ultrasonically dispersed therein. The mixture was transferred to a four-necked flask equipped with a condenser and a thermometer, and the temperature was raised to 90 ° C. Separately, 100 parts of benzoguanamine, 130 parts of 37% formalin, 6.2 parts of 65% DBSNa, 5.0 parts of dodecylbenzenesulfonic acid and 350 parts of ion-exchanged water were uniformly dispersed and mixed to obtain a benzoguanamine dispersion. The above benzoguanamine dispersion was dropped into 1750 parts of the above-mentioned amorphous silica fine particle-containing liquid maintained at 90 ° C. over 2 hours. After the dropping, the mixture was further maintained at 90 ° C. for 5 hours, and then cooled to 30 ° C., and the amino resin fine particles (3) (average particle size 0.36 μm) whose amorphous silica fine particles were coated with the condensation product of benzoguanamine and formaldehyde. ), And then a powder of amino resin fine particles (3) was obtained.
Using the obtained powder of amino resin fine particles (3), after obtaining fine particle-coated substrate particles (3) in the same manner as in Example 2, conductive fine particles (3), anisotropic conductive adhesive A composition (3) and an anisotropic conductive molded body (3) were obtained. When any 10 of the fine particle-coated substrate particles (3) were observed with an electron microscope (SEM, magnification 10,000 times), the amino resin fine particles were found at 10 locations / fine particles on the orthographic projection surface of the fine particle-coated substrate particles (3). One coated substrate particle was present.
The evaluation results are shown in Table 1.

〔実施例4〕
実施例3におけるアミノ樹脂微粒子(3)の合成において、アモルファスシリカ微粒子の代わりにポリメタクリル酸メチル架橋物(日本触媒社製、「エポスターMX100W」、平均粒子径0.20μm)を用いた以外は実施例3と同様にして、ポリメタクリル酸メチル架橋物表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(4)(平均粒子径0.24μm)を含有する分散液を得た後、アミノ樹脂微粒子(4)の粉体を得た。
得られたアミノ樹脂微粒子(4)の粉体を用いて、実施例2と同様にして、微粒子被覆基材粒子(4)を得た後、導電性微粒子(4)、異方性導電接着剤組成物(4)、異方性導電成形体(4)を得た。微粒子被覆基材粒子(4)の任意の10個を電子顕微鏡(SEM、倍率10000倍)で観察したところ、微粒子被覆基材粒子(4)の正投影面において、アミノ樹脂微粒子は15箇所/微粒子被覆基材粒子1個存在していた。
評価結果を表1に示した。
Example 4
The synthesis of the amino resin fine particles (3) in Example 3 was carried out except that polymethyl methacrylate cross-linked product (manufactured by Nippon Shokubai Co., Ltd., “Eposter MX100W”, average particle size 0.20 μm) was used instead of amorphous silica fine particles. In the same manner as in Example 3, after obtaining a dispersion containing amino resin fine particles (4) (average particle size 0.24 μm) whose polymethyl methacrylate cross-linked surface was coated with a condensate of benzoguanamine and formaldehyde, Amino resin fine particle (4) powder was obtained.
After using the obtained amino resin fine particle (4) powder to obtain fine particle-coated substrate particles (4) in the same manner as in Example 2, conductive fine particles (4), anisotropic conductive adhesive A composition (4) and an anisotropic conductive molded body (4) were obtained. When any 10 of the fine particle-coated substrate particles (4) were observed with an electron microscope (SEM, magnification 10,000 times), 15 amino resin particles / fine particles were observed on the orthographic surface of the fine particle-coated substrate particles (4). One coated substrate particle was present.
The evaluation results are shown in Table 1.

〔実施例5〕
γ−メタクリロキシプロピルトリメトキシシラン27部を、0.15%ドデシルベンゼンスルホン酸水溶液54部と混合し、50℃に加熱して、γ−メタクリロキシプロピルトリメトキシシランを加水分解し、透明な溶液とした。冷却後、該溶液にメタノール10部、アゾビス(2,4−ジメチルバレロニトリル)0.14部を混合して、B液とした。
一方、水141部、25質量%アンモニア溶液9部を混合してA液を別途調製した。
A液を攪拌しながら、B液を10分間かけて滴下して、重縮合反応を行った。撹拌を継続しながら、1時間後、窒素雰囲気中で70℃に昇温し、70℃で2時間加熱保持することにより、ラジカル重合反応を行った。その後、室温まで冷却し、懸濁体を得た。得られた懸濁体を瀘過により固液分離し、得られたケーキに対し、水による洗浄と瀘過を3回繰返した後、150℃で2時間真空乾燥して、有機無機複合粒子(5)(平均粒子径0.80μm)を得た。
実施例3におけるアミノ樹脂微粒子(3)の合成において、アモルファスシリカ微粒子の代わりに有機無機複合粒子(5)を用いた以外は実施例2と同様にして、有機無機複合粒子(5)表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(5)(平均粒子径0.97μm)を含有する分散液を得た後、アミノ樹脂微粒子(5)の粉体を得た。
得られたアミノ樹脂微粒子(5)の粉体を用いて、実施例2と同様にして、微粒子被覆基材粒子(5)を得た後、導電性微粒子(5)、異方性導電接着剤組成物(5)、異方性導電成形体(5)を得た。微粒子被覆基材粒子(5)の任意の10個を電子顕微鏡(SEM、倍率10000倍)で観察したところ、微粒子被覆基材粒子(5)の正投影面において、アミノ樹脂微粒子は9箇所/微粒子被覆基材粒子1個存在していた。
評価結果を表1に示した。
Example 5
27 parts of γ-methacryloxypropyltrimethoxysilane was mixed with 54 parts of a 0.15% aqueous dodecylbenzenesulfonic acid solution and heated to 50 ° C. to hydrolyze γ-methacryloxypropyltrimethoxysilane to produce a transparent solution. It was. After cooling, 10 parts of methanol and 0.14 part of azobis (2,4-dimethylvaleronitrile) were mixed with the solution to obtain a liquid B.
On the other hand, 141 parts of water and 9 parts of a 25 mass% ammonia solution were mixed to prepare liquid A separately.
While stirring the liquid A, the liquid B was added dropwise over 10 minutes to carry out a polycondensation reaction. One hour later, while continuing stirring, the temperature was raised to 70 ° C. in a nitrogen atmosphere, and the mixture was heated and held at 70 ° C. for 2 hours to carry out a radical polymerization reaction. Then, it cooled to room temperature and obtained the suspension. The obtained suspension was subjected to solid-liquid separation by filtration, and the obtained cake was repeatedly washed with water and filtered three times, and then vacuum-dried at 150 ° C. for 2 hours to obtain organic-inorganic composite particles ( 5) (average particle diameter 0.80 micrometer) was obtained.
In the synthesis of the amino resin fine particles (3) in Example 3, the surface of the organic / inorganic composite particles (5) is benzoguanamine in the same manner as in Example 2 except that the organic / inorganic composite particles (5) are used instead of the amorphous silica fine particles. After obtaining a dispersion containing amino resin fine particles (5) (average particle size 0.97 μm) coated with a condensate of aldehyde and formaldehyde, amino resin fine particles (5) were obtained.
Using the resulting powder of amino resin fine particles (5), fine particle-coated substrate particles (5) were obtained in the same manner as in Example 2, and then conductive fine particles (5), anisotropic conductive adhesive. A composition (5) and an anisotropic conductive molded body (5) were obtained. When any 10 of the fine particle-coated substrate particles (5) were observed with an electron microscope (SEM, magnification 10,000 times), 9 amino resin particles / fine particles were observed on the orthographic surface of the fine particle-coated substrate particles (5). One coated substrate particle was present.
The evaluation results are shown in Table 1.

〔比較例1〕
「エポスターS」に代えて、アモルファスシリカ微粒子(日本触媒社製、「シーホスターKE−P30」、平均粒子径0.28μm)を用いた以外は、実施例1と同様に行い、微粒子被覆基材粒子(C1)、導電性微粒子(C1)、異方性導電接着剤組成物(C1)、異方性導電成形体(C1)を得た。
評価結果を表1に示した。
[Comparative Example 1]
The same procedure as in Example 1 was carried out except that amorphous silica fine particles (manufactured by Nippon Shokubai Co., Ltd., “Seahoster KE-P30”, average particle size 0.28 μm) were used instead of “Eposter S”. (C1), conductive fine particles (C1), anisotropic conductive adhesive composition (C1), and anisotropic conductive molded body (C1) were obtained.
The evaluation results are shown in Table 1.

〔比較例2〕
「エポスターS」に代えて、ポリメタクリル酸メチル架橋物(日本触媒社製、「エポスターMX100W」、平均粒子径0.20μm)を用いた以外は、実施例1と同様に行い、微粒子被覆基材粒子(C2)、導電性微粒子(C2)、異方性導電接着剤組成物(C2)、異方性導電成形体(C2)を得た。
評価結果を表1に示した。
[Comparative Example 2]
The same procedure as in Example 1 was repeated except that polymethyl methacrylate cross-linked product (Nippon Shokubai Co., Ltd., “Eposter MX100W”, average particle size 0.20 μm) was used instead of “Eposter S”, and a fine particle-coated substrate Particles (C2), conductive fine particles (C2), anisotropic conductive adhesive composition (C2), and anisotropic conductive molded body (C2) were obtained.
The evaluation results are shown in Table 1.

Figure 0005466022
Figure 0005466022

表1に示すように、本発明の導電性微粒子を用いた実施例1〜5においては、導電接続構造体における導通性および絶縁性が優れていることが判る。また、本発明の導電性微粒子を用いた実施例1〜5においては、導電性微粒子の被覆状態が良好であることが判る。一方、アミノ樹脂微粒子の代わりにアモルファスシリカ微粒子、ポリメタクリル酸メチル架橋物を用いた比較例1、比較例2では、導電接続構造体における導通性および絶縁性が劣っていること、導電性微粒子の被覆状態が悪いことが判る。   As shown in Table 1, in Examples 1 to 5 using the conductive fine particles of the present invention, it can be seen that the conductive connection structure is excellent in conductivity and insulation. Moreover, in Examples 1-5 using the electroconductive fine particles of this invention, it turns out that the coating state of electroconductive fine particles is favorable. On the other hand, in Comparative Example 1 and Comparative Example 2 using amorphous silica fine particles and polymethyl methacrylate cross-linked products instead of amino resin fine particles, the conductivity and insulating properties of the conductive connection structure are inferior. It can be seen that the covering condition is poor.

本発明の導電性微粒子は、電気接続用異方導電材料として好適に用いることができる。   The conductive fine particles of the present invention can be suitably used as an anisotropic conductive material for electrical connection.

Claims (3)

基材粒子の表面の少なくとも一部にアミノ樹脂微粒子が存在してなる微粒子被覆基材粒子が導電性金属層で被覆されてなり、表面に突起構造を有する、導電性微粒子。 At least a portion of the surface of the base particle Ri name particulate coated substrate particles amino resin particles is present is coated with a conductive metal layer, that having a protrusion structure on the surface, the conductive fine particles. 請求項1に記載の導電性微粒子がバインダー樹脂中に分散してなる、異方性導電接着剤組成物。   An anisotropic conductive adhesive composition comprising the conductive fine particles according to claim 1 dispersed in a binder resin. 請求項2に記載の異方性導電接着剤組成物から得られる、異方性導電成形体。
An anisotropic conductive molding obtained from the anisotropic conductive adhesive composition according to claim 2.
JP2010008870A 2010-01-19 2010-01-19 Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body Active JP5466022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008870A JP5466022B2 (en) 2010-01-19 2010-01-19 Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008870A JP5466022B2 (en) 2010-01-19 2010-01-19 Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Publications (2)

Publication Number Publication Date
JP2011150802A JP2011150802A (en) 2011-08-04
JP5466022B2 true JP5466022B2 (en) 2014-04-09

Family

ID=44537631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008870A Active JP5466022B2 (en) 2010-01-19 2010-01-19 Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Country Status (1)

Country Link
JP (1) JP5466022B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201213347A (en) * 2010-08-11 2012-04-01 Nippon Catalytic Chem Ind Polymeric microparticles, conductive microparticles, and anisotropic conductive material
JP6438194B2 (en) * 2013-01-24 2018-12-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP6306876B2 (en) * 2013-01-24 2018-04-04 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP6333624B2 (en) * 2013-05-22 2018-05-30 積水化学工業株式会社 Connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662748B2 (en) * 2004-10-04 2011-03-30 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP5210236B2 (en) * 2009-04-24 2013-06-12 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure

Also Published As

Publication number Publication date
JP2011150802A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP5902717B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5245021B1 (en) Conductive fine particles and anisotropic conductive material containing the same
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP2010229303A (en) Method for producing core shell type organic/inorganic composite material particle, core shell type organic/inorganic composite material particle, and electroconductive fine particle
WO2012102199A1 (en) Conductive microparticle, resin particle, and anisotropic conductive material using same
JP2009259804A (en) Coated conductive particulate, anisotropic conductive material, and conductive connection structure
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5466022B2 (en) Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
TWI574283B (en) Organic and inorganic mixed particles, conductive particles, conductive materials and connecting structures
JP5340686B2 (en) Polymer fine particles, method for producing polymer fine particles, and conductive fine particles
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP5750342B2 (en) Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5667557B2 (en) Conductive fine particles and anisotropic conductive materials
JP5554077B2 (en) Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5711105B2 (en) Conductive fine particles and anisotropic conductive materials
JP5951977B2 (en) Conductive fine particles
JP2011065750A (en) Insulating fine particle-coated conductive particle, anisotropic conductive adhesive composition, and anisotropic conductive molding
JP2013120658A (en) Conductive fine particle and anisotropic conductive material including the same
JP2015176823A (en) Conductive fine particle
JP5917318B2 (en) Conductive fine particles
JP2012221952A (en) Conductive particulate and anisotropic conductive material using the same
JP5883283B2 (en) Conductive particles and anisotropic conductive materials
JP5970178B2 (en) Conductive fine particles
JP5670133B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5466022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150