TW201213347A - Polymeric microparticles, conductive microparticles, and anisotropic conductive material - Google Patents

Polymeric microparticles, conductive microparticles, and anisotropic conductive material Download PDF

Info

Publication number
TW201213347A
TW201213347A TW100128489A TW100128489A TW201213347A TW 201213347 A TW201213347 A TW 201213347A TW 100128489 A TW100128489 A TW 100128489A TW 100128489 A TW100128489 A TW 100128489A TW 201213347 A TW201213347 A TW 201213347A
Authority
TW
Taiwan
Prior art keywords
monomer
fine particles
conductive
polymer
microparticles
Prior art date
Application number
TW100128489A
Other languages
Chinese (zh)
Inventor
Kazuaki Matsumoto
Original Assignee
Nippon Catalytic Chem Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Catalytic Chem Ind filed Critical Nippon Catalytic Chem Ind
Publication of TW201213347A publication Critical patent/TW201213347A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Conductive microparticles with which a broad connection area can be obtained at a low pressure are provided. The purpose of the present invention is to provide an anisotropic conductive material containing conductive microparticles such as those mentioned above. In addition, polymeric microparticles that can be suitably used as cores for such conductive microparticles are provided. These polymeric microparticles are characterized in that the breaking point load is not more than 9.8 mN (1.0 gf). These conductive microparticles are characterized by having a conductive metal layer on the surfaces of the polymeric microparticles. This anisotropic conductive material is characterized by containing the conductive microparticles.

Description

201213347 六、發明說明: 【發明所屬之技術領域】 本發明係關於聚合體微粒子;於該聚合體微粒子的表 面形成導電性金屬層的導電性微粒子;以及含有該導電性 微粒子的異方性導電材料。 【先前技術】201213347 6. Technical Field: The present invention relates to polymer microparticles; electroconductive microparticles forming a conductive metal layer on the surface of the polymer microparticles; and an anisotropic conductive material containing the electroconductive microparticles . [Prior Art]

電子機器,年年小型化、薄型化的同時被謀求高機能 化。因此’例如,於液晶顯示器面板的IT〇(氧化銦錫)電 極與驅動用的 LSKUrge Scale lntegrati〇n)的連接、LSI 晶片與電路基板的連接、細微圖案電極端子之間的連接等 的電子機器類的微小部位之間的電性連接,採用含有導電 性微粒子的異方性導電材料的電性連接。 使用於如此之電性連接之導電性微粒子,有各種提 案。例如,有施加壓縮荷重時,在壓縮變形率5〜4〇%的範 圍,具有壓縮變形率會急劇地增加之變曲點之導電性微粒 子(參照專利文獻1 (申請專利範圍第i項));以丙烯酸樹 脂為主成分之最大壓縮變形率60%以上,60%壓縮變形所需 的負荷為60mN以下的樹脂粒子表面附著導電材料之導電 性粒子(參照專利文獻2(申請專利範圍第13項));壓 縮位移時的壓縮強度在7. 〇kgf/mm2(68. 6N/_2)以下的導 電粒子(參照專利文獻3(申請專利範圍第i項));在於單 獨聚合體的玻璃轉移溫度(1^)為_7〇。(:以上具有由(甲基) 丙烯酸系單體所衍生之反覆單位之(甲基)丙烯酸系(共)聚 201213347 合體所組成的芯材粒子表面形成導電層的導電性粒子(參 照專利文獻4(申請專利範圍第i項))等的提案。 [專利文獻] [專利文獻1]曰本特開平u_7381 7號公報 [專利文獻2]國際公開第2〇〇3/1〇4285號 [專利文獻3]日本特開平9_1 992〇6號公報 [專利文獻4]日本特開平8_31 9467號公報 【發明内容】 [發明所欲解決的課題] 如上所述,導電性微粒子,係使用在成為芯材的聚合 體微粒子表面,形成導電性金屬層者。在此,成為芯材的 粒:為硬質時,將電極等加壓連接時導電性微粒子被擠入 '“體可形成壓痕而增加連接面積。此外,加壓連接 t《排除存在於導電性微粒子與被著體之間膠合樹 疋以如此之硬f的粒子作為芯材的導電性微粒子, 二’更大的連接面積,需要比加麗連接時更大的麼力。 本發明係有鑑於上述情況而完成者,以提供可以很小 、力P可侍到很大的連接面積的導電性微粒子為目標。 =外本發明係以提供含有如上所述之導電性微粒子之異 :導電材料為目標。再者,本發明係以提供,可良好地 =於如上所述之導電性微粒子的芯材之聚合體微粒子為 [用以解決課題的手段] 4 201213347 可解決上述課題之本發明之聚合體微粒子,其特徵在 於.破壞點荷重為9· 8mN(l. 〇gf)以下。以破壞點荷重為 9· 8mN以下的本發明的聚合體微粒子作為芯材的導電性微 粒子,由於可以很小的壓力將芯材破壞而容易向壓縮方向 正父的方向擴張,故可以很小的壓力即可得到很大的連接 面積。 上述聚合體微粒子,1〇%κ值以 7350N/mm2(750kgf/mm2)〜49000N/mm2(5000kgf/mm2)為佳。 聚合體微粒子只要如此地具有高壓縮彈性係數,則可使連 接電阻值更低。 上述聚合體微粒子的平均粒徑以為 佳。上述聚合體微粒子破壞壓縮位移以25%以上為佳。此 外,上述聚合體微粒子的3 〇 %位移時的壓縮荷重以 1. 96mN(〇, 2gf)以上為佳。 於本發明,亦包含在上述聚合體微粒子表面具有導電 性金屬層的導電性微粒子,及含有該導電性微粒子的異方 性導電材料。 [發明效果] 根據本發明,可得到以很小的壓力達到报大的連接面 積之導電性微粒子。此外,藉由使用含有該導電性微粒子 之異方性導電材料,即使以低壓條件連接時,亦可得到連 接電阻值低的連接構造體。 【實施方式】 5 201213347 1.聚合體微粒子 1-1·機械性特性 本發明的聚合體微粒子,盆柱 ”特徵在於:破壞點荷重在 9.8_(1.0以)以下。聚合體斜如7„ $ 口體微粒子係負載壓縮荷重則壓縮 方向縮小,向與I缩方法正交的方向擴張。此時,相較於 聚合體微粒子不被破壞而單僅强w 平1重弹性變形時,聚合體微粒子 被破壞向壓縮方向正交的方向的 J扪擴張較大。即以破壞點荷 重在9. 8 m N以下的本發明的令人μ ,』,, j个I月旳钬合體微粒子作為芯材的導電 性微粒子,由於可以很小的壓力將芯材破壞而容易向壓縮 方向正交的方向擴張’故可以很小的壓力得到报大的連接 面積。 上述破壞點荷重u 7.84inN(〇.8gf)以下為佳’以 6. 86mN(0· 7gf )以下更佳。另 _ 士 & , 尺住另方面,上述破壞點荷重以 〇.98mN(〇.lgf)以上為佳、以! _〇如)以上更 一步以2.94mN(0.3gf)以上為佳。再者 -7丨王丹有,所S胃破壞點荷重, 係將聚合體微粒子壓縮變形時,聚合體微粒子被破壞時的 壓縮荷重值’測定方法將於後述。 本發明之聚合體微粒子,破壞壓縮位移以25%以上為 佳,以30%以上更佳,進—步以超過3〇%為佳以5⑽以下 為佳,以48%以下更佳,進一步以46%以下為佳。只要破壞 壓縮位移在上述範圍内,可將對被著體形成壓痕的壓痕形 成能,與加壓連接時的連接面積均衡地並存。再者,所謂 破壞壓縮位移,係將聚合體微粒子壓縮變形時,聚合體微 粒子被破壞時的壓縮位移,測定方法將於後述。 6 201213347 本發明的聚合體微粒子的10%壓縮荷重以 0. 588mN(G.G6gf)以上為佳,以 G686mN(QG7gf)以上更 佳,進一步以〇.784mN(0.〇8gf)以上為佳,以 1· 96_({)· 2gf )以下為佳,以丨肩⑽邮)以下更佳, 進一步以1.568mN(〇.16gf)以下為佳。只要1〇%壓縮荷重在 上述範_,將聚合體微粒子詩作為導電性微粒子用的 基材粒子時’可對電極等的被連接媒體形成壓痕的同時可 確保沒有實用上的問題的連接面積。 -聚σ體微粒子的1 〇%壓縮荷重,按照所期望的特性適 且調即為佳。例如特別是藉由導電性微粒子所得之連接面 積變大時’使聚合體微粒子10%壓縮荷重以 〇.588mN(0.〇6gf)以上為佳,以。._·〇·〇¥)以上更 佳,進一步以〇.784mN(0.08gf)以上為佳,以 1. 〇78mN(0.11gf)以下為佳,以 〇 98mN(〇 l〇gf)以下更佳, 進一步以0.88mN(0.〇9gf)以下為佳。聚合體微粒子的1〇% 壓縮荷重越小,即使是在不至於被破壞的彈性變形向壓 縮方向正父的方向的擴張越大。因此’由於不被破壞而殘 存的導電性微粒子的變形量亦變大,故全體所得的連接面 積亦變得更大。 另方面,關於導電性微粒子,特別是希望提高壓痕 形成此時,聚合體微粒子的1〇%壓縮荷重超過 l.OMmfKO.ligf)為佳,以 1176inN(〇12gf)a上更佳,進 步以1.274mN(〇.13gf)以上為佳,以i 96〇mN(〇 2以)以 下為佳,以1. 764mN(0. 18gf)以下更佳,進一步以 201213347 1.568mN(0.16gf)以下為佳。聚合體微粒子的ι〇%壓縮荷重 越大,變形初期的抵抗力越大,故對被著體形成壓痕的能 力變大。再者,所謂1〇%壓縮荷重,係將聚合體微粒子虔 縮變形10%所需的荷重。 本發明的聚合體微粒子的30%壓縮荷重,以 1.96mN(G.2()gf)以上為佳,以 2 45mN(Q25gf)以上更佳, 進一步以 2.94mN(0.30gf)以上為佳,卩 7.35mN(〇75gi) 以下為佳,以6. 86mN(0. 70gf)以下更佳,進一步以 5.88mN(0.60gf)以下為佳。只要3〇%壓縮荷重在上述範圍 内,使用聚合體微粒子作^電性微粒子用@基材粒子 時可對電極等的被連接媒體形成壓痕的同時可確保沒有 實用上的問題的連接面積。 此外,本發明的聚合體微粒子的3〇%壓縮荷重,亦與 上述1〇%Μ縮荷重同樣地,按照所期望的特性適宜調節為 佳。例如,特別是藉由導電性微粒子所得之連接面積變大 時,聚合體微粒子30%壓縮荷重以196mN(〇 2〇gf)以上為 佳,以 2· 45_(0. 25gf)以上更佳,進一步以 2 94mN(〇. 3〇gf) 以上為佳,以4.90mN(0.50gf)以下為佳,以4 41mN(〇 45gf) 以下更佳,進一步以3.92mN(0.40gf)以下為佳。 另一方面,關於導電性微粒子,特別是希望提高壓痕 形成能時,聚合體微粒子30%壓縮荷重超過4 9〇mN(〇.5〇gf) 為佳’以5.00mN(0.51gf)以上更佳,進一步以 5.1〇mN(0.52gf)以上為佳,以 7.35mN(〇.75gf)以下為佳, 以 6.86mN(0.70gf)以下更佳,進一步以 5 88mN(〇 6〇gf) 8 201213347 合體微粒子壓 以下為佳。再者’所位30%壓縮荷重係將聚 縮變形30%所需的荷重。 本發明的聚合體微粒子,10%壓縮變形時的壓縮彈性係 數以 7350N/mm2( 750kgf/mm2)以 μ * 从 Μ 上為佳,以 7840N/mm2(800kgf/mm2)以上 f 杜 文隹’進一步以 8036N/mm2( 820kgf/ mm2) 以 先 马佳 , 以 49000N/mm2(5000kgf/mm2)以下 a , 「兩佳 , 以 39200N/mm2(4000kgf/mm2)以下 f 4 . 尺1主’進一步以 29400N/mm2(3000kgf/fflm2)以下為佳,進一步 乂 25480N/minz(2600kgf/min2)以下 s 从 「文佳 , 以 21560N/mm2( 2200kgf/mm2)以下特別佳。 即,在於壓縮變形時,變形初期的壓縮彈性係數較高 為佳。成為芯材的粒子為軟質時’由於加壓連接時以很小 的壓力就會壓縮變形,故比較容易得到較大的連接面積。 但是,由於是軟質,無法對被著體形成壓痕,此外,由於 難以排除存在於導電性微粒子與被著體之間的膠合樹脂, 難以降低連接電阻值。但是,只要聚合體微粒子在變形初 期具有較高的壓縮彈性係數,則以該聚合體微粒子作為芯 材的導電性微粒子,可於加壓連接電極等時被擠入被著 體,而可形成壓痕。此外,加壓連接時,變的容易排除存 在於導電性微粒子與被著體之間的膠合樹脂。因此,可使 連接電阻值更低。 再者’聚合體微粒子的壓縮彈性係數,可基於壓縮變 lt &體微粒子時的壓縮何重、壓縮位移、及粒徑以下式 201213347 求得。再者,在以下,將位移量10%、20%、30%或40%的壓 縮彈性係數(K值)分別稱為ι〇%κ值、20%K值、30%K值、 40%Κ 值。 [式1]The electronic equipment is being miniaturized and thinned every year and is being highly functionalized. Therefore, for example, an electronic device such as a connection between an IT 〇 (indium tin oxide) electrode of a liquid crystal display panel and an LSKUrge Scale lntegrati® for driving, a connection between an LSI wafer and a circuit board, and a connection between fine electrode terminals is performed. The electrical connection between the minute parts of the class is electrically connected by an anisotropic conductive material containing conductive fine particles. There are various proposals for using such electrically conductive fine particles. For example, when there is a compression load, the conductive fine particles having a bending point where the compression deformation rate is sharply increased in the range of the compression deformation ratio of 5 to 4% (refer to Patent Document 1 (application patent item i)) The conductive particles having a maximum compressive deformation ratio of the acrylic resin as a main component of 60% or more and 60% of the compressive deformation required to adhere to the surface of the resin particles of 60 mN or less (refer to Patent Document 2 (Patent No. 13 of the patent application) ()) Conductive particles having a compressive strength at a compression displacement of 7. 〇kgf/mm2 (68. 6N/_2) or less (refer to Patent Document 3 (Patent Document No. i)); in the glass transition temperature of the individual polymer (1^) is _7〇. (The conductive particles in which the conductive layer is formed on the surface of the core material particles composed of the (meth)acrylic (co)polymerized 201213347 compound of the reverse unit derived from the (meth)acrylic monomer (refer to Patent Document 4) (Patent Document No. i)), etc. [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. Hei. No. Hei. No. 2/3/4285 [Patent Document 2] [Patent Document 4] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. 8-31-9467. [Problems to be Solved by the Invention] As described above, the conductive fine particles are used as a core material. When the surface of the polymer fine particles is formed into a conductive metal layer, the particles which become the core material are hard, and when the electrodes or the like are pressure-bonded, the conductive fine particles are extruded into the body to form an indentation and increase the connection area. In addition, the pressurization connection t "excludes the conductive microparticles present in the core between the conductive microparticles and the adherend to bond the tree with such a hard f as the core material, and the second 'larger connection area needs to be connected to the galeri Time The present invention has been made in view of the above circumstances, and aims to provide conductive fine particles which can serve a large connection area with a small force P. In addition, the present invention provides a polymer microparticle of a core material of the conductive microparticles as described above as a means for solving the problem. 201213347 The polymer microparticle of the present invention which solves the above-mentioned problems is characterized in that the breaking point load is 9.8 mN (l. 〇gf) or less, and the polymer microparticle of the present invention having a breaking point load of 9.8 mN or less is used as a core. Since the conductive fine particles of the material can be easily broken in the direction of the positive direction of the compression direction by breaking the core material with a small pressure, a large connection area can be obtained with a small pressure. The above-mentioned polymer fine particles, 1% by mass The κ value is preferably 7350 N/mm 2 (750 kgf/mm 2 ) to 49000 N/mm 2 (5000 kgf/mm 2 ). As long as the polymer microparticles have such a high compressive elastic coefficient, the connection resistance value can be made lower. The average particle diameter of the fine particles is preferably at least 25%, and the compression load at the time of displacement of the polymer fine particles of 3% by volume is preferably 1.96 mN (〇, 2 gf) or more. Further, the present invention also includes conductive fine particles having a conductive metal layer on the surface of the polymer fine particles, and an anisotropic conductive material containing the conductive fine particles. [Effect of the Invention] According to the present invention, a small pressure can be obtained. Conductive fine particles having a large connection area are obtained. Further, by using an anisotropic conductive material containing the conductive fine particles, a connection structure having a low connection resistance value can be obtained even when connected under a low pressure condition. [Embodiment] 5 201213347 1. Polymer fine particles 1-1·Mechanical characteristics The polymer fine particles of the present invention, the basin column, are characterized in that the breaking point load is 9.8 Å (1.0 or less) or less. The polymer body is inclined as 7 „ $ The volume of the capsule microparticles is compressed and the compression direction is reduced, and it expands in a direction orthogonal to the I contraction method. At this time, when the polymer fine particles are not broken and the elastic particles are only elastically deformed, the polymer fine particles are broken and the J扪 expansion in the direction orthogonal to the compression direction is large. That is, the conductive microparticles of the present invention having the breaking point load of 9. 8 m N or less as the core particles of the present invention can destroy the core material with a small pressure. It is easy to expand in the direction orthogonal to the compression direction, so that a large connection area can be obtained with a small pressure. The above-mentioned breaking point load u 7.84 inN (〇.8gf) or less is preferably 'being 6.86 mN (0·7 gf ) or less. Another _士 &, ruler on the other side, the above-mentioned damage point load is better than 98.98mN (〇.lgf), to! _〇如) The above step is preferably 2.94mN (0.3gf) or more. In addition, the method of measuring the compression load value when the polymer microparticles are broken, when the polymer microparticles are compressed and deformed, will be described later. The polymer microparticles of the present invention preferably have a compression displacement of 25% or more, more preferably 30% or more, more preferably more than 3 %, more preferably 5 (10) or less, more preferably 48% or less, and further 46. % below is better. As long as the breaking compression displacement is within the above range, the indentation for forming the indentation by the object can be formed, and the joint area at the time of pressurization connection can be balanced. In addition, the compression displacement is a compression displacement when the polymer microparticles are compressed and deformed, and the measurement method will be described later. 6 201213347 The 10% compression load of the polymer fine particles of the present invention is preferably 588 mN (G.G6gf) or more, more preferably G686mN (QG7gf) or more, further preferably 〇.784mN (0. 〇8gf) or more. It is preferably 1·96_({)· 2gf ) or less, more preferably 丨 shoulder (10), and further preferably 1.568 mN (〇.16 gf) or less. When the 1% by weight compression load is in the above range, and the polymer fine particles are used as the substrate particles for conductive fine particles, it is possible to form an indentation on the connected medium such as an electrode, and to secure a connection area without practical problems. . - The 1 〇% compression load of the poly- sigma microparticles is preferably adjusted according to the desired characteristics. For example, in particular, when the connection area obtained by the conductive fine particles becomes large, it is preferable that the polymer fine particles have a 10% compression load of 588.588 mN (0. 〇 6 gf) or more. ._·〇·〇¥) The above is better, further preferably 〇.784mN (0.08gf) or more, preferably 1. 〇78mN (0.11gf) or less, and 〇98mN (〇l〇gf) or less. Further, it is preferably 0.88 mN (0. 〇 9 gf) or less. The smaller the compression load of the polymer microparticles, the smaller the compression load, and the greater the expansion of the elastic deformation in the direction of the positive direction in the compression direction. Therefore, the amount of deformation of the conductive fine particles remaining without being destroyed is also increased, so that the total connection area is also increased. On the other hand, regarding the conductive fine particles, in particular, it is desired to increase the formation of the indentation, in which the 1% by weight compression load of the polymer fine particles exceeds 1.OMmfKO.ligf), and it is better to use 1176 inN (〇12gf)a. 1.274mN (〇.13gf) or more is preferable, i 96〇mN (〇2 or less) is preferable, and 1.764mN (0. 18gf) or less is more preferable, and further preferably 201213347 1.568mN (0.16gf) or less. . The larger the ι〇% compression load of the polymer fine particles, the greater the resistance at the initial stage of deformation, so that the ability to form an indentation on the object is increased. Further, the 1% by weight compression load is a load required to deform the polymer fine particles by 10%. The 30% compression load of the polymer fine particles of the present invention is preferably 1.96 mN (G.2 () gf) or more, more preferably 2 45 mN (Q25 gf) or more, further preferably 2.94 mN (0.30 gf) or more. 7.35mN (〇75gi) The following is preferred, preferably 6.86mN (0.70gf) or less, and further preferably 5.88mN (0.60gf) or less. When the 3 〇% compression load is within the above range, the use of the polymer fine particles as the electro-microparticles for the @substrate particles can form an indentation on the connected medium such as an electrode, and can secure a connection area without practical problems. Further, the 3〇% compression load of the polymer fine particles of the present invention is preferably adjusted in accordance with the desired characteristics in the same manner as the above-described 1%% shrinkage load. For example, in particular, when the connection area obtained by the conductive fine particles is increased, the 30% compression load of the polymer fine particles is preferably 196 mN (〇2〇gf) or more, more preferably 2·45_(0.25 gf) or more, further. It is preferably 2 94 mN (〇. 3〇gf) or more, preferably 4.90 mN (0.50 gf) or less, more preferably 4 41 mN (〇45 gf) or less, further preferably 3.92 mN (0.40 gf) or less. On the other hand, regarding the conductive fine particles, in particular, when it is desired to increase the indentation forming energy, the 30% compression load of the polymer fine particles is preferably more than 49 μmN (〇.5〇gf), preferably 5.00 mN (0.51 gf) or more. Preferably, it is preferably 5.1〇mN (0.52gf) or more, preferably 7.35mN (〇.75gf) or less, more preferably 6.86mN (0.70gf) or less, further 5 88mN(〇6〇gf) 8 201213347 The combined microparticle pressure is preferably below. Furthermore, the 30% compression load is the load required to deform the condensation by 30%. The polymer microparticles of the present invention have a compressive elastic modulus at 10% compression deformation of 7350 N/mm2 (750 kgf/mm2), preferably μ4 from Μ, to 7840 N/mm2 (800 kgf/mm2) or more, and further to 8036N. /mm2( 820kgf/ mm2) to first Majia, to 49000N/mm2 (5000kgf/mm2) or less a, "two good, to 39200N/mm2 (4000kgf/mm2) or less f 4 . ruler 1 main ' further to 29400N/mm2 (3000kgf/fflm2) is better, and further 乂25480N/minz (2600kgf/min2) or less s from "Wenjia, especially below 21560N/mm2 (2200kgf/mm2). That is, compression compression, initial compression It is preferable that the elastic modulus is high. When the particles of the core material are soft, it is compressed and deformed at a small pressure due to the pressure connection, so that it is easy to obtain a large connection area. However, since it is soft, it cannot be In addition, since the indentation is formed in the body, it is difficult to remove the bonding resin existing between the conductive fine particles and the object, and it is difficult to lower the connection resistance value. However, as long as the polymer microparticles have a high compressive elastic coefficient at the initial stage of deformation, The gathering As the conductive fine particles of the core material, the fine particles can be extruded into the object when the electrode or the like is pressed, and an indentation can be formed. Further, when the pressure is connected, it is easily excluded from the conductive fine particles and being exposed. Gluing resin between the bodies. Therefore, the connection resistance value can be made lower. Further, the compression elastic modulus of the polymer microparticles can be based on the compression, the compression displacement, and the particle diameter below the compression of the granules. Further, in the following, the compressive elastic coefficient (K value) of the displacement amount of 10%, 20%, 30% or 40% is referred to as ι〇%κ value, 20%K value, 30%K, respectively. Value, 40% Κ value. [Formula 1]

K = 3xF 2^xS^xR^ 式中’ K .壓縮彈性係數(ν/πππ2),F :壓縮荷重(N),S : 壓縮位移(mm),r :粒子半徑(_)。 此外’本發明的聚合體微粒子’丨〇純值、值、 值的關係,以滿足1〇%Κ值>2〇%κ值為佳,此外,滿足3〇%κ 值>20%Κ值為佳。再者,滿足1〇%κ值>2〇%1(值且3〇%κ值 >20%Κ值為佳,滿足10%Κ值>30%κ值>20%κ值更佳。 本發明的聚合體微粒子的粒徑,以數目平均粒徑以K = 3xF 2^xS^xR^ where K is the compression elastic modulus (ν/πππ2), F: compression load (N), S: compression displacement (mm), r: particle radius (_). Further, the relationship between the pure value, the value, and the value of the polymer microparticles of the present invention is such that the value of 1〇%Κ>2〇%κ is good, and further, the value of 3〇%κ is satisfied>20%Κ The value is good. Furthermore, the value of 1〇%κ is satisfied >2〇%1 (value and 3〇%κ value > 20%Κ value is good, satisfying 10% threshold value > 30% kappa value > 20% k value is more The particle size of the polymer microparticles of the present invention is determined by the number average particle diameter.

粒k較0, 5 // m小,則在表面以導電性金屬層披覆作為導電When the particle k is smaller than 0, 5 // m, the surface is covered with a conductive metal layer as a conductive

少的傾向。 、本發月的聚合體微粒子作為基材的導電性微粒子, 用於異方性導電材料時,Less tendency. When the polymer microparticles of the present month are used as the conductive fine particles of the substrate, when used for an anisotropic conductive material,

’聚合體微粒子的粒徑,以數目平 ,以1. 0 // m以上更佳,進一步 -· 0仁m以上特別佳,以4. 〇 " m以 10 201213347 下為佳,以3.5# m以下更佳,進一步以3. 2/zm以下為佳, 進一步以3. 0 // m以下為佳,以2. 8 “ m以下特別佳,以 2. 5 # m以下最佳。在於伴隨被連接媒體之細間距化、低間 隙化,對導電性微粒子亦要求小粒徑。此外,隨著被著體 或被著體基板的薄膜化要求以低壓連接的低連接電阻。因 此,以低的加壓力即可破壞的本發明的聚合體微粒子的粒 徑在於上述範圍内,則由該聚合體微粒子所得之導電性微 粒子將特财p此外,特別是數目平均粒徑在& 2^以 下,則微小變形時的壓縮彈性係數(10%K值)變高,對被著 體的壓痕形成能更加提升,而容易得到穩定的連接狀能。 此外,粒徑的變動係數以2()%以下為佳,以ιη以下更 佳’進一步以7%以下為佳。再者’粒徑的變動係數因為數 目平均粒徑及標準偏差,採用下式求得。 徑粒徑變動係數徑的標準偏差/數目平均粒 1 - 2 ·構成 本發明的聚合體微粒子,σ 並盔特別卩卩^ ,、要疋具有上述機械特性, 子,由有Μ構成之有機質聚合體微粒 體粒子等。 材枓所組成的有機無機複合 卜2·^·有機質聚合體微粒子 本發明的聚合體微粒子為有 成該聚合體微粒子的單體,於聚。體微粒子時,構 的非架橋性單體,或於i分子中^中具有1個聚合性基 ,、有2個以上的聚合性基 11 201213347 的架橋性單體均可使用。在於本發明「聚人 σ丨王丞」,可舉 如乙烯基等的加成反應型聚合性基(自由基聚合性基) 合反應型聚合性基等。 縮 1 -2-2.有機無機聚合體微粒子 有機無機聚合體微粒子的態樣,可舉(3)二氧化矽— 化鋁、二氧化鈦等的金屬氧化物、金屬氮化物、金屬夕硫: 物、金屬碳化物等的無機質微粒子,分散含於有機質二 態樣;(b)(有機)聚石夕氧⑥、聚欽氧貌等的金屬氧燒(包含 「金屬_氧-金屬」鍵結的分子鏈)及有機分子以分子&級=二 而成的態樣;(c)由包含乙烯基聚合體骨架與聚矽氧烷骨: 的有機無機聚合體微粒子所組成的態樣等。該等之中,以 (c)的態樣為佳。 本發明的聚合體微粒子的較佳的態樣,可舉例如,戈 構成聚合體微粒子(有機f聚合體微粒子'有機無機複合谓 粒子)的單體的至少1種包含後述的特定3官能單體之㈣ ‘…(.))4乍為用於形成聚合體的架橋性矽烷系單體將€ 含乙稀基三燒氧基錢的粒子,以2_以上溫度敎❹ 之態樣(態樣(11)”數目平均粒徑為“…下,㈣ 合體微粒子(有機質聚合體微粒子)的單體的至少i種包^ 4述勺特疋2 g此單體,該特定2官能單體的含量係構力 聚合體微粒子的全1C α 早體中的15質量%以上的態樣(態才i (i i i ) ) 〇 1 - 3.聚合體微粒子的態樣 卜3-1.態樣(i) 12 201213347 ,可舉例如,式(1 )、 上述態樣(i )的特定3 a 特疋d s能單體 式(2)或式(3)所示的單體。 H2C^V/R1'The particle size of the polymer microparticles is equal to 1. 0 // m or more, further -· 0 is more than m, especially 4. 〇" m is 10 201213347 is better, to 3.5# More preferably, it is preferably 3. 2 / zm or less, further preferably 3. 0 / m or less, particularly preferably 2. 8 " m or less, and preferably 2. 5 # m or less. The fineness of the connected medium is reduced, the gap is reduced, and the conductive fine particles are required to have a small particle diameter. In addition, the low connection resistance required to be connected at a low voltage is required for the thinning of the object or the substrate to be used. When the particle diameter of the polymer fine particles of the present invention which can be broken by the pressure is within the above range, the conductive fine particles obtained from the polymer fine particles are further, in particular, the number average particle diameter is & The compression elastic modulus (10% K value) at the time of minute deformation becomes high, and the formation of the indentation of the object is further enhanced, and a stable connection state energy is easily obtained. Further, the coefficient of variation of the particle diameter is 2 (). % is better, and ιη is better than 'more than 7%. Further The coefficient of variation of the particle diameter is obtained by the following formula because of the number average particle diameter and the standard deviation. The standard deviation of the diameter of the diameter of the particle diameter / the number of average particles 1 - 2 · The polymer microparticles constituting the present invention, σ and the helmet are particularly 卩卩^ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The monomer having the polymer microparticles has a non-bridging monomer in the case of the microparticles, or has one polymerizable group in the i molecule, and has two or more polymerizable groups 11 201213347 In the present invention, the addition polymerization type polymerizable group (radical polymerizable group) reaction type polymerizable group, such as a vinyl group, may be used. 1-2-2. Examples of the organic inorganic polymer fine particle organic-inorganic polymer fine particles include (3) a metal oxide such as cerium oxide-aluminum or titanium dioxide, a metal nitride, or a metal sulphide: Inorganic fine particles such as metal carbides are dispersed in an organic two-phase; (b) metal oxygenated (organic-oxygen-metal)-bonded molecules such as (organic) polysulfide oxide 6 The chain and the organic molecule are in the form of a molecule & grade = two; and (c) a layer composed of an organic-inorganic polymer microparticle comprising a vinyl polymer skeleton and a polyoxyalkylene skeleton: Among these, the aspect of (c) is preferred. In a preferred embodiment of the polymer microparticles of the present invention, at least one of the monomers constituting the polymer microparticles (organic f-polymer microparticles 'organic-inorganic composite particles) includes a specific trifunctional monomer to be described later. (4) '...(.)) 4乍 is a bridging decane-based monomer used to form a polymer. The particles containing ethylene-three-oxygenated money are in a state of 22 or higher. (11) "Number average particle diameter is "..., (4) at least i kinds of monomers of the fine particles (organic polymer microparticles), and 2 g of this monomer, the content of the specific bifunctional monomer A state in which all of the 1C α precursors of the structural polymer microparticles are 15% by mass or more (state i (iii ) ) 〇 1 - 3. The state of the polymer microparticles 3-1. Aspect (i) 12 201213347, for example, the specific 3 a characteristic of the above formula (1) can be a monomer represented by the formula (2) or the formula (3). H2C^V/R1

(1) ’氫原子或甲基、R2係 基,含於該炫》二基的 式(1)中’ R】係分別獨立地表示 分別獨立地表示-0-、-Co-或烷二 -CH2- ’亦可以、〇—或_c〇_取代。(1) 'A hydrogen atom or a methyl group, an R2 group group, and 'R' in the formula (1) contained in the dioxin group are independently represented independently of -0-, -Co- or alkane-- CH2- 'can also be replaced by 〇- or _c〇_.

(2) ch2 式(2)中’ R3係分別獨立地表 刀別獨立地表示,、_c〇_或煩 _CH2、’亦可以成-C〇、取代。 氫原子或甲基、R4係 基,含於該烷二基的 13 (3) 201213347(2) ch2 In the formula (2), the 'R3 series are independently expressed independently of each other, and _c〇_ or annoying _CH2' may be replaced by -C〇. Hydrogen atom or methyl group, R4 group, contained in the alkanediyl group 13 (3) 201213347

式(3)中,R5係分別獨立地表示, 分別獨立地表示,單鍵結-〇_、鲁或貌基、“ 基的-CH2-,亦可以-0-或-C0-取代。 3於該烷一 在於式(3),對於苯環的三個RS的 於1位、3位、5位的態樣;鍵結於,位、,,·。位置,以鍵結 樣;鍵結於1位、2位、4位的態樣均可,2位、3位的態 3位、5位的態樣為佳。 以鍵結於1位、 所示的單體為佳。 式(3)所示單體,以式⑷ H2C\ /R5In the formula (3), R5 is independently represented and independently represented, and the single bond - 〇, 鲁, or phenotype, "the group -CH2-, may also be replaced by -0- or -C0-. The alkane is in the formula (3), in the 1-bit, 3-position, and 5-position of the three RSs of the benzene ring; the bond is in the position, the position of the bond, and the bond is bonded; The 1st, 2nd, and 4th positions can be used, and the 2, 3, and 3, 5 positions are preferred. It is preferred to bond the monomer to the 1 position. ) the monomer shown by formula (4) H2C\ /R5

(4) 式(4)中,R5係分別獨立地表示— 分別獨立地表示,單鍵結、 τ,氩原子或甲基、R6係 基的-CH2-,亦可以-〇-或—c〇〜取代或烧二基’含於該烷二 在於上述通式’以r2、卩4 6 甲基、亞乙基、三亞曱基、 表不的烷二基,可舉亞 四亞甲| 备、五亞曱基、六亞甲 14 201213347 基、七亞甲基、八亞曱基、九亞甲基、十亞甲基等的直鏈 烷二基;1-甲基亞乙基、1-甲基三亞曱基、2-甲基三亞甲 基、卜甲基四亞曱基、2-曱基四亞甲基、1-曱基五亞甲基、 2-甲基五亞曱基、3-甲基五亞曱基等的分枝狀烷二基。該 等烷二基以碳數1以上者為佳,以10以下為佳,以5以下 更佳,進一步以3以下為佳,以亞甲基特別為佳。 此外,上述烷二基的-CH2,以-0-或-C0-取代者,可舉 例如-(CH2)2-〇-、_(CH2)5_c〇_〇_、_(〇_(CH2)2)i_〇_c〇_(i 係 卜5的整數)、_(〇_(CH2)5)m_〇_c〇_(in係卜5的整數)等。 以上述式(1)表示的特定單體,可舉三聚氰酸三稀兩 酯、二(甲基)丙烯酸三聚氰酸酯。以上述式(2)表示的特定 單體,可舉二聚異氰酸三烯丙酯、三(甲基)丙烯酸三聚異 氰酸酯、三聚異氰酸環氧乙烷變性三(甲基)丙浠酸酯、乙 氧基化三聚異氰酸三(甲基)丙烯酸酯、£ -己内酯變性三 -(2-丙烯醯氧乙基)三聚異氰酸酯等。以上述式(3)表示之 特定單體,可舉三乙烯基苯、三苯六羧酸三烯丙醋等能。 該等之中,以三聚氰酸三烯丙酯、三聚異氰酸三烯丙酯為 佳。再者,在於本案,所謂(甲基)丙烯酸,係表示丙烯醆、 甲基丙烯酸及該等的混合物,所謂(尹基)㈣酸§旨,係表 示丙烯酸酯、曱基丙烯酸酯及該等的混合物。 上述態樣(i)的聚合體微粒子’作為構成成分亦可包含 上述特定3官能單體以外的其他架橋性單體。作為上述等 架橋性單體’可舉例如,(甲基)丙稀酸烯丙§旨等單(甲基) 丙稀酸(甲基)丙稀酸乙二醇s|、(甲基)丙稀酸二 15 201213347 丁二醇二酯、二(甲基)丙烯酸1,6-己二醇酯、二(曱基)丙 烯酸1,9-壬二醇酯、二(曱基)丙烯酸1, 10-癸二醇酯、二 (曱基)丙烯酸1,3-亞丁基酯等的二(甲基)丙烯酸烷二醇 酯;二(甲基)丙烯酸二乙二醇酯、二(甲基)丙烯酸三乙二 醇酯、二(曱基)丙烯酸癸二醇酯、二(曱基)丙烯酸十五烷 二醇酯、二(甲基)丙烯酸一百五十烷二醇酯、聚二(甲基) 丙烯酸乙二醇酯、聚丙二醇二(甲基)丙烯酸酯、聚1, 4-丁 二醇二(曱基)丙烯酸酯等聚烷二醇二(曱基)丙烯酸酯等的 二(甲基)丙烯酸酯類;三羥甲基丙烷三(曱基)丙烯酸酯、 異戊四醇四(甲基)丙烯酸酯、二異戊四醇六(甲基)丙烯酸 醋等3官能以上的多官能丙烯酸酯類;二乙烯基苯、二乙 稀萘及該等的衍生物等的芳香族二乙烯基化合物;N,1二 乙稀基笨胺、二乙稀基謎、二乙稀基硫化物、二乙烯基硫 酸等的架橋劑;聚丁二烯、聚異戊二烯不飽和聚脂等。該 等架橋性單體,可以單獨使用亦可並用2種以上。該等之 中,以於1分子中具有2以上的乙烯基的架橋性單體為佳, 以於1分子中具有2以上的(甲基)丙烯醯基的架橋性單 體、芳香族二乙稀基化合物更佳。上述i在分子中具有2 以上的(甲基)丙烯醯基的架橋性單體中,以於丨分子中具 有2個甲基丙烯醯基之單體(二甲基丙烯酸醋㈤更佳,進 -步以二甲基丙烯酸烷二醇醋為佳。上述芳香族二乙烯基 化合物之中,α二乙稀基笨為佳。使用二乙埽基苯,則可 得硬度高’耐熱性優良的聚合體微粒子。 亦可包含非架橋 此外,上述態樣(i)的聚合體微粒子 16 201213347 素的苯乙烯類 :對經某芏7 .接埜人士 ft ΛΑ β,,.χ(4) In the formula (4), R5 is independently represented by - independently, a single bond, τ, an argon atom or a methyl group, a -CH2- group of the R6 group, or -〇- or -c〇 ~Substituted or calcined diyl' contained in the alkane is in the above formula ', r2, 卩4 6 methyl, ethylene, triterpene, or an alkanediyl group, which may be referred to as sub-tetramethylene | a linear alkanediyl group such as a sulfhydryl group, a hexamethylene group, a hexamethylene group, an octadecyl group, a ninth methyl group, a decamethylene group, etc.; Trisinyl, 2-methyltrimethylene, methyltetradecyl, 2-mercaptotetramethylene, 1-decylpentamethylene, 2-methylpentenylene, 3-methyl A branched alkanediyl group such as a ruthenium group. The alkanediyl group is preferably a carbon number of 1 or more, more preferably 10 or less, more preferably 5 or less, still more preferably 3 or less, and particularly preferably a methylene group. Further, -CH2 of the above alkanediyl group is substituted by -0- or -C0-, and examples thereof include -(CH2)2-〇-, _(CH2)5_c〇_〇_, _(〇_(CH2). 2) i_〇_c〇_(i is an integer of 5), _(〇_(CH2)5)m_〇_c〇_ (integer of 5), and the like. The specific monomer represented by the above formula (1) may be a trisuccinate or a di(meth)acrylic acid cyanurate. Specific monomers represented by the above formula (2) include triallyl isocyanate, trimeric isocyanate, and triisoisocyanate ethylene oxide-denatured tris(methyl)propyl Phthalate ester, ethoxylated tris(iso)isocyanate tri(meth)acrylate, £-caprolactone denatured tris-(2-propenyloxyethyl)trimeric isocyanate, and the like. The specific monomer represented by the above formula (3) may, for example, be trivinylbenzene or triphenylhexacarboxylate. Among these, it is preferred to use triallyl cyanurate or triallyl isocyanurate. In the present case, the term "(meth)acrylic acid" means acryl oxime, methacrylic acid, and the like, and the term "yinyl" (tetra) acid means acrylate, methacrylate, and the like. mixture. The polymer microparticles ' of the above aspect (i) may contain, as a constituent component, another bridging monomer other than the above specific trifunctional monomer. As the above-mentioned bridging monomer, for example, mono(methyl)acrylic acid (meth) acrylic acid ethylene glycol s|, (meth) propyl, etc. Dilute acid two 15 201213347 butanediol diester, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(indenyl)acrylate, di(indenyl)acrylic acid 1,10 - an alkylene di(meth)acrylate such as decyl glycol ester or 1,3-butylene bis(mercapto)acrylate; diethylene glycol di(meth)acrylate, di(meth)acrylic acid Triethylene glycol ester, bis(indenyl) decyl acrylate, pentadecyl bis(mercapto)acrylate, hexadecyl glycol di(meth)acrylate, polydi(methyl) a di(methyl) group such as a polyalkylene glycol di(indenyl)acrylate such as ethylene glycol acrylate, polypropylene glycol di(meth)acrylate or polytetrabutylene bis(mercapto)acrylate. ) acrylates; trimethylolpropane tris(mercapto) acrylate, isovaerythritol tetra(meth) acrylate, diisopentaerythritol hexa(meth) acrylate vinegar, etc. Polyfunctional acrylates; aromatic divinyl compounds such as divinylbenzene, diethylene naphthalene, and the like; N,1 diphenyl sulfenylamine, diethylene basal, diethylene A bridging agent such as a sulphide or a divinyl sulphate; a polybutadiene, a polyisoprene unsaturated polyester, or the like. These bridging monomers may be used alone or in combination of two or more. Among these, a bridging monomer having 2 or more vinyl groups in one molecule is preferable, and a bridging monomer having 2 or more (meth)acryl fluorenyl groups in one molecule, aromatic diethylene Dilute compounds are preferred. In the above-mentioned bridging monomer having 2 or more (meth)acryl fluorenyl groups in the molecule, a monomer having two methacryl fluorenyl groups in the fluorene molecule (dimethacrylic acid vinegar (five) is more preferable. - The step is preferably an alkylene glycol methacrylate. Among the above aromatic divinyl compounds, α-diethyl is preferred. When diethyldiphenyl is used, high hardness and excellent heat resistance are obtained. Polymeric microparticles. It can also contain non-bridging. In addition, the above-mentioned aspect (i) of the polymer microparticles 16 201213347 styrenes: on a certain 芏7. wilderness ft ΛΑ β,,.χ

性單體作為構成成分。上述非架橋性單體,可舉例如(曱基) 丙烯酸;(曱基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基) 丙烯酸丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁醋、 (曱基)丙烯酸第三丁酯、(曱基)丙烯酸戊酯、(甲基)丙稀 酸己酯、(甲基)丙烯酸庚酯、(曱基)丙烯酸辛酯、(甲基) 丙烯酸壬酯、(曱基)丙烯酸癸酯、(甲基)丙烯酸十二燒醋、 (曱基)丙烯酸硬脂酯、(甲基)丙烯酸2-乙基已酯等(甲基) 丙烯酸烧醋類;(曱基)丙烯酸環丙酯、(甲基)丙烯酸環戊 醋、(甲基)丙烯酸環已酯、(甲基)丙烯酸環辛酯、(甲基) 丙烯酸環十一烷基酯、(曱基)丙烯酸環十二烷基酯、(甲基) 丙烯酸異冰片酯、(甲基)丙烯酸4-第三丁基環己酯等的 (曱基)丙烯酸環烷酯類;(甲基)丙烯酸2一羥基乙酯、(曱 基)丙烯酸2-羥基丙酯、(曱基)丙烯酸2_羥基丁酯等(甲基 丙烯酸羥基烷酯類;(曱基)丙烯酸苯酯、(甲基)丙烯酸苄 酯、(曱基)丙烯酸曱苯酯、(甲基)丙烯酸乙苯酯等含有芳 香裱的(甲基)丙烯酸酯類等的丙烯系單體;苯乙烯、鄰甲 基苯乙烯、間甲基苯乙烯、對曱基笨乙烯、曱基苯乙烯、 鄰乙基苯乙烯1乙基笨乙烯、冑乙基笨乙烯、對第三丁 基苯乙烯等烷基苯乙烯類;對苯基苯乙烯等芳香環含有笨 乙烯類;_氣苯乙烯、間氣苯乙烯、對氯苯乙烯等含有鹵 ,土%寸3有羥基的乙烯基醚類;2-羥基乙 沒基丁基烯丙醚等含有羥基的烯丙醚類等。 17 201213347 再者,使用(甲基)丙嫌酿你或u、+、μ >巧碲馱作為上述非架橋性單體時亦可 部分以驗性金屬中和。上述非架橋性單體可以單獨使用, 亦可並用2種以上。 上述態樣⑴的聚合體微粒子為有機無機聚合體微粒 子時,構成該聚合體微粒子的單體,可加上上述架橋性單 體,及任意的非架橋性單體,使用石夕院系單體。作為上 石夕燒系單體,只要是可形切氧賴結者,並無特別限定: 例如以下式(5)表示的水解性石夕化合物及其衍生物等。 R?nSiX4-n (5) “式"、表示亦可具有取代基之選自由院基、芳其、 芳烷基及不飽和脂肪族基所組成之 土 上裡I,X传 表不羥基、烷氧基及醯氧基所組成之群之至 ’、 係0〜3的整數。 種基,η 以上述式⑸表示的矽烷系單體’可舉例如 矽院、四乙氧基石夕院等的4官能性石夕燒系單體;甲基_ 氧基梦院、甲基三乙氧基甲石夕烧等& 3官能性石夕貌= 體,二甲基二甲氧基矽烷、二甲基 ’、 丞乙氧矽烷等的2官处 性矽烷系單體,·三甲基甲氧基矽烷、三甲其 S月匕 的1官能性矽烷系單體等。 ▲ $基矽烷等 以上述式(5)表示之矽化合物的衍生物,並| 定,例如X的一部分以減、二幾基等的可_敎別限 合物之基所取代的化合物,或將上述钱化合物= 而得之低縮合物等。 刀水解 上述石夕炫系單體,以具有可形成有機聚合體骨架之聚 18 201213347 合性反應基之石夕院系單體(將該等特別稱為架橋性石夕 单體,包含架橋性單體)為佳。上述架橋性石夕貌系單體:且 有的上述聚合性反應基,可舉例如下式(6)、⑺及⑻所: 之自由基聚合性基、環氧基、羥基、胺基等。 CH2=C(-Ra)-C00Rb- (6) 係表示可具有取代 式中’ Ra係表示氫原子或甲基 基之碳數1〜20之2價有機基。 CH2 = C(-Rc)- (7) 式中,Re係表示氫原子或甲基 CH2 = C(-Rd)-r- (8) c係表示可具有取代 式中’ Rd係表示氫原子或甲基 基之碳數卜20之2價有機基。 以上述式⑷表示的自由基聚合性基,可舉例如,丙烯 酿基及甲基丙烯醯氧基等。上述式⑺的自由基聚合性基, 可舉乙烯基、異丙稀基等。上述式⑻的自由基聚合性基, 可舉例如,乙烯基苯基、異丙烯基苯基等。 上述架橋性石夕烧系單體,可舉例如,3_甲基丙稀酿氧 丙基三甲氧基石夕烧、3-甲基丙烯醯氧丙基三乙氧基石夕烧、 3-甲基丙稀醯氧丙基甲基二甲氧基钱、乙稀基三甲氧基 石夕燒、乙稀基三乙氧基料、對苯乙稀三甲氧基㊉炫、卜 乙浠基三甲氧基㈣、卜乙縣三乙氧基錢等的具有自 由基聚合性基者;3'缩水甘油峻氧丙基三甲氧基价3-縮水甘油峻氧丙基甲基二乙氧石夕烧、3一縮水甘油醚氧丙基 二乙氧基石夕烧等的含有環氧基者;3_經基丙基三甲氧基矽 19 201213347 烧等的含有經基者;3-胺基丙基三甲氧基石夕院、3_胺基丙 ^三乙氧基㈣等的含有胺基者等。能該等架橋性碎院系 早體’可僅以1種使用,亦可並用2種以上。該等架橋性 石:烧系單體之中,以具有自由基聚合性基者為佳。具體而 吕’以3-(甲基)丙稀醯氧兩基三甲氧基石夕烧、乙烯基三甲 氧基石夕焼U3, 4-壤氧環己基)乙基三甲氧基等的3 官能性架橋性石夕统系單體為佳,特別是以具有自由基聚合 性反應基的3-(甲基)丙稀醯氧丙基三甲氧基㈣、乙稀基 三甲氧基石夕院等的3官能性架橋性石夕院系單體為佳。 此外,式⑸所示⑦化合物之中,架橋性錢系單體以 2之較佳的矽烷系單體,可舉例如,甲基”氧基矽烷、 笨基—甲氧基石夕燒等3官能性石夕烧系單體。 再者,作為石夕烧系單體,僅使用上式⑸中W的石夕化 合物及其衍生物’則無法得到聚石夕氧院骨架。因此,欲對 有機粒子導入聚矽氧烷骨架時,需含有上述式⑸之㈣, ’ 2之矽化合物及其衍生物。 構成上述態樣⑴的聚合體微粒子的單體組合 僅由架橋性單濟έ 士 u) ^早體組成之態樣;⑴)並用架橋性單體與非 =單體之態樣均可。在此,在任-的態樣,含二 定3官能單體作為 ,上述特 可嚴…、 時’架橋性單體的組合, =如⑷僅由特定3官能單體組合的態樣;( 二體與架橋切烧系單體之態樣;(C)並用特定3 心㈣甲:)丙稀系架橋性單體之態樣;⑷並用特定 體、架橋切以單體及(甲基)丙埽系架橋性單 20 201213347 體之態樣。 上述特疋3官能單體的使用量,對構成聚合體微粒子 全單請質量部中,以lf量部以上為佳,以5質量部 以上更佳,進一步以1〇質量部以上位佳,以質量部以 下為佳’以6°質量部以下更佳,進-步以55質量部以下 為佳。只要特定3官能單體的使用量在1質量部以上,即 可有效地利用特定3官能單體之特性,可使聚合體微粒子 的破壞點荷重更低。 於上述態樣⑴的聚合體微粒子,容易將i幌縮荷重 ^^〇.588mN(〇.〇6gf).1.〇78mN(〇_llgf)^||a〇jtb^> 容易將壓縮荷重控制在 ^6mN(0.2〇gf)^9〇mN(〇5〇gf)^||s〇#^^^^ 值20/〇Κ值、30%K值的關係,控制在滿足1〇%κ值〉 值、且3瞻值>2晴值。因此,態樣⑴的聚合體微粒子, 使用作為導電性微粒子的基材粒子時成為容易確保特別大 的連接面積者。 卜3-2.態樣(U) ,上述態樣(ii)的聚合體微粒子,係有機無機聚合體微 粒子將包含乙烯基三烷氧基矽烷的粒子作為形成聚合體 的架橋性㈣系單體,以鮮C以上溫度熱處理者。 在此,包含乙婦基三院氧基石夕院的粒子,包含:以單 體狀態包含乙稀基三炫氧基錢的粒子(Ha);包含由包含 乙席基二院氧基梦院的㈣系單體(共)水解.縮合物所組 成之骨架之粒子⑴b),·包含含有乙稀H氧心㈣自 21 201213347 由基聚合性單體(乙烯基系i 系早體、矽烷系單體)之聚合體骨 架之粒子(iic)。該裳夕cb 之中’以上述(iib)或(iic)為佳,進 一步以(llb)且滿足(llc)的粒子,即包含由包含乙烯基三 炫氧基錢^㈣單體⑷水解.縮合物(W氧幻所 組成:骨架’ i包含含有乙烯基三烷氧基矽烷的自由基聚 佳單體(乙烯基系單體、石夕炫系單體)之聚合體骨架之粒 子為佳±述乙烯基二燒氧基石夕燒,以乙稀基三甲氣基石夕 院為佳。 ,態樣(“㈣合體微粒+,作為構成聚合體微粒子的 單體’加上乙烯基三烷氧基矽烷、於態樣⑴所例示之架橋 I·生單體、非架橋性單體、乙稀基三炫氧基錢以外的石夕院 系單體亦可。上述架橋性單體’以於i分子中具有2以上 :乙婦基的架橋性單體為佳,以力i分子中具有2以上的 是有(曱基)丙烯醯氧基的架橋性單體、芳香族二乙烯化合 物於上述1分子中具有2以上的(甲基)丙稀酿氧基的架 橋性早體之中,以於i分子中具有2個甲基丙稀酿氧基的 單體(二甲基丙浠酸類)更佳,進一步乙烷二醇二甲基丙烯 文酉曰為佳於上述芳香族二乙烯基化合物之中亦以二乙烯 基苯為佳。使用二乙烯基苯,則可得硬度高,财熱性優良 的聚合體微粒子。 此時,上述非架橋性單體及架橋性單體的使用量與乙 烯基二烷氧基矽烷的使用量的質量比非架橋性單體+架 橋性單體)/乙烯基三烷氧基矽烷)以〇丨以上為佳,以〇. 2 以上更佳,進一步以〇. 3以上為佳,以2以下為佳,以u 22 201213347 以下更佳,進一步以1以下為佳。 於態樣(i i)的聚合體微粒子,容易將1 〇%壓縮荷重控 制在超過 1. 〇78mN(0· llgf),1. 960mN(0. 2gf)以下的範圍。 此外’容易將30%壓縮荷重控制在超過4. 90mN(0. 5〇gf), 7. 35mN(〇. 75gf)以下的範圍。因此,態樣(ii)的聚合體微 粒子’使用於作為導電性微粒子的基材粒子時將成特別是 壓痕形成能優良者。 上述架橋性單體在於上述態樣(i )、( i i )的聚合 子之使用量(包含架橋性矽烷系單體),對構成聚合體微粒 子全單體100質量部之中,以20質量部以上為佳,以4〇 質量部以上更佳’進—步以6G f量部以上為佳,以質 量部以上特別佳。再者’上述態樣⑴、(⑴的聚合體微粒 子,僅由架橋性單體組成亦係良好的態樣。 上述態樣⑴、的(ii)在的聚合體微粒子使用非架橋性 單體的時候那使用量構成聚合體微粒子全單體100質量部 中10質量部以上以下為佳80質量部為佳,以6〇質量部以 下更佳,進一步以為佳40質量部以下。 此外,上述態樣(i)、( i i)的聚合 聚合體微粒子時,上述矽" ;-有機無機 體㈣;入- 70糸早體的使用量’係構成聚合 體微拉子全早冑100質量 ri 1 η枋曰* 以5質1部以上為佳, 以1。質董部以上更佳,進一步以15 20f量㈣n99# 為佳以 〇/ ,, δ 、 里冲以下為佳,以90質量 ° ’進-步以80質量部以下為佳,以60質量 下特別佳。 負里4以 23 201213347 —u(1)、(11)的聚合體微粒子,粒徑並無特別限 疋’使用作為導電性微粒子時,數目平均粒徑 為佳。再者’將該聚合體微粒子作為基材之導電性微粒子 用於異方性導電連接材料時由容易得到電阻值低的連接構 造體之點’聚合體微粒子的數目平均粒徑以3〇“以下為 佳,以2.bra以下更佳,進一步以2 以下為佳。此 外’於聚合體微粒子形成金屬披覆層日夺,由容易得到抑制 凝聚的導電性微粒子之點,數目平均粒徑以〇 5#m以上為 佳’以1. 0 y m以上更佳。 1 - 3 - 3.態樣(i i i) 上述態樣(iii)的聚合體微粒子,於構成聚合體微粒子 (有機質聚合體微粒子)之單體之至少i種包含後述之特定 2官能單體》 上述特定2官能單體,係於1分子中具有2個乙烯基, 經由該等2個乙嫦基由1〜14個原子所組成的鍵結鏈連接。 上述特定2官能單體,可舉鄰二乙烯基苯[2]、間二乙 烯基苯[3]、對二乙烯基笨[4]等的芳香族二乙烯基;二(甲 基)丙稀酸乙一醇S旨[6]、一(甲基)丙稀酸丙二醇g旨[7"|、_ (曱基)丙烯酸1,4-丁二醇酯[8]、二(曱基)丙烯酸1,5〜戊 二醇酯[9]、二(曱基)丙烯酸1,6 -己二醇酯[1〇]、二(甲基) 丙烯酸1,7-庚二醇酯[U]、二(甲基)丙烯酸1,8-辛二醇酉旨 [12]、二(甲基)丙烯酸1,9-壬二醇酯[13]、二(曱基)丙埽 酸1,10-癸二醇酯[14]等的二(曱基)丙烯酸烷二醇酯;二 二(甲基)丙烯酸乙二醇醋[9]、三二(甲基)丙烯酸乙二醇酉旨 24 201213347 [12]等的聚烷二醇二 值,係表示存在於:個甲基)丙稀酸酉旨。再者,括弧内的數 官能單體,可=獨Γ婦基之間的原子數。該等特定2 、.U早獨使用,'亦可並肖2種以上。 述t、樣(111)的聚合體微粒子,上述特如辦 的含量,係構成 迩特疋2 s遮早體 上,以3。P 之全單體中的15質量^ 篁/以上為佳,以40質量%以上更佳。 特別是上述特定2官 .m ^ 之間的原子數為卜6者 子在於2個乙烯基 之产來。)全 (下,有稱為特定2官能單體(a) 15質量%以上為佳,以4n二“微粒子的全單體中的 為佳以40質量%以上更佳,進-步以60質 量%以上為佳,以陆旦n/ 100 ff%以下為佳,以90質量%以下更 佳’進-步,8〇質量%以下為佳。特定2官能單體⑷,以 乙烯基苯、一(甲基)丙烯酸乙二醇酯為佳。 此外,上述特定2作為官能單體,使用存在於2個乙 稀基之間的原子數為7]4者(以下,有稱為特^官能單 體⑴之情形。)時,其含量於構成聚合體微粒子的全單體 中’以35質量%以上為佳’以4〇質量%以上更佳,進一步 以45質量%以上為佳、以8〇質量%以下為佳,以π質量% 以下更佳’進一步以7〇質量%以下為佳。特定2官能單體 (b),以二(甲基)丙烯酸烧二醇醋、二乙稀基苯、聚烧二醇 一(甲基)丙烯酸酯為佳,特別是以二(甲基)丙烯酸1,6一己 二醇醋、二基)丙烯酸L 9_壬二醇酯為佳。 上述特定2官能單體,係並用特定2官能單體(a)與特 定2官能單體(b)時,該等的質量比(特定2官能單體(a" 25 201213347 特定2官能單體Λ ^ . η )),以〇.5以上為佳,以0.7以上f估 進-步以U以上為佳,以2以下為上更佳, 進-步以"5以下為佳。 以1.5以下更佳, 此外,此時,包含二乙烯基苯作 為佳。二乙烯基笨的人县 勹将疋2吕旎早體(a) 、3量,於特定2官能單體( 50質量%以上為佳, 體(a)之中,以 以70質量%以上更 量%以上為佳。 文佳進—步以90質 態樣(i i i )的聚八舻掷 單體,加±#冑2 j # ’丨為構《合體微粒子的 =二單體,亦可包含非架橋性單體。非 系橋性早體,可舉例如態樣⑴所例示[ 體非 上述非架橋性單體,由 點荷重更小,以具有環狀構、合體微粒子的破壞 Μ 狀構k (月曰肪族環狀構造、芳香斿护 構造)者為佳。如此之非架橋性單體,可舉具 丙烯酸環烷基酯等脂肪族環狀⑼ " 乙稀、乙基苯乙烤等苯乙稀系單體稀、甲基笨 ,乙婦基奈等的多環芳 香族乙稀基化合物等的彡香族王裒狀構造。 :外’具有環狀構造的非架橋性單體’以聚合性基(以 乙烯基、(甲基)丙烯醯氧基為佳) 罝接鍵結於環狀構造者為 佳’以乙烯基直接鍵結於笨環者( 稀)更佳。 …例如,苯乙稀、甲基笨乙 4再者,該等之中,以環狀構造在聚合性基以外不具有 ^數2以上的取代基(例如,碳數為2以上的燒基)者為佳。 :如’苯乙稀由於在聚合性基以外不有高容積的取代基, 所得聚合體微粒子變硬’有可以更低的荷重容易地破壞 26 201213347 的傾向。對此,乙基苯乙稀,由於具有高容積的乙基4 的聚合體微粒子軟質化’有難以低荷重破壞的傾向。因此, 使用具有環狀構造的非架橋性單體時,在聚合性基以外之 具有碳數2以上的取代基的單體的含量,以構絲合體微 粒子的全單體中包含以70質量%以下為佳,以6〇質量%以 下更佳,進一步以5〇質量%以下為隹。再者,市隹的二乙 烯基苯,由於雜質包含乙基苯乙稀,作為特定2官能單體 使用二乙烯基苯時,使用高純度者為佳。 :用具有上述環狀構造之非架橋性單體時,具有該環 狀構4之非架橋性單體與特定2官能單體之合計含量,於 構成聚合體微粒子之全單體中’以5〇質量% 乂 6。質量%以上更佳,進一步以7〇質量%以上為佳: 人田再者,特定2官能軍體、苯乙浠及甲基苯乙稀的合計 於構成聚合體微粒子的全單體中,以Μ質量心上 為佳,以6〇質量%以上更佳,進一步以7〇質量%以上為佳。 特別是使特定2官能單體'及苯乙婦之合計含量,於 構成聚合體微粒子的全單體中,以50 f量% 6°質量%以上更佳,進-步以7"«以上為佳 非二=定二官:,)與具有上述環狀構造* .八有該壌狀構造的非架橋性單體盥特定 2官能翠體⑷的合計含量,於構成聚合體微;單 中,以5〇質量%以上為佳,以6。質量%以上更佳,進: 以質里%以上為佳。再者’特定2官 烯 及甲基苯乙埽之合計含量,於構成聚合體㈣子的全= 201213347 中’以5〇質量%以上為佳,以6。質量%以上更佳,進 :二量%以上為佳。特別是特定2官能單體⑷及苯乙缔 …3里,於構成聚合體微粒子的全單體中,以5 以上為佳,以6 〇暂吾y丨、,l壬 0 f量上更佳,進一步以7〇質量%以上 馬佳。 二特定2官能單體⑷與具有環狀構造的非架橋性 早體的f量比(具有環狀構造的非架橋性單體/特定2官处 單體⑷)超過…下為佳,以。.5以下更佳,: 步以0.1以下為佳。上述質量比在上述範圍内,則可= 所得的聚合體微粒子變的過硬。 制 並用上述特定2官能單體⑻與具有上述環狀構 非—架橋。性單體時’具有該環狀構造的非架橋性單體與=定 2 S能早體(b)的合計含量’於構成聚合體微粒子的全單 中,以5。質量%以上為佳,以6。質量%以上更 二 以7〇質量%以上為佳。再者,特定2官能單體㈦、苯^ =曱基本乙稀之合計含量,於構成聚合體微粒子的全軍體 以50質量%以上為佳,以6〇質量%以上 以:質量%以上為佳。特別是特…能單體⑻及:二 之“十含量,於構成聚合體微粒子的全單體中,以 曰 %以上為佳,以60質量%以上f #% $ 以上更佳進-步以7〇質量%以上 馬佳。 …此時,特定2官能單體⑴與具有環狀構造 早體的質量比(具有環狀構造的非架 單體⑽以0.5以上為佳,以…上更佳二特…能 尺佳,進—步以〇. 8 28 201213347 以上為佳,α 2. 5以下為佳,以2以下更佳, 以下為佳。上述質蚩屮力m ,進一步以1. 5 扎賢里比在上述範圍内,則所 子變硬,可以更低的荷重容易地破壞。 U微粒 此外,態樣(i u )的聚合體微粒子, 效果的程度,加上特定2官能單體,亦可包I及本發明的 單體以外㈣橋性單體作為構成聚合體微體2官能 此時,3官能以上的架橋性單體(惟特定… 外)之:置,於構成聚合體微粒子的全單體中,以5〇質量; :下為佳,以下4。質《更佳’進一步以3〇質 佳’以:質《亦可。藉由使3官能以上架橋性單體的含: 在上述範圍内,可抑制破壞點荷重的增大。 曰此外’特定2官能單體以外的2官能架橋性單體的含 罝,於構成聚合體微粒子的全單體中,以5〇質量%以下為 佳,以40質量%更佳,進―步以3〇質量%以下為佳。藉由 使特定2官能單體以外的2官能架橋性單體的含量在上述 範圍内,可抑制所得聚合體微粒子的軟質化,而可容易地 以低荷重破壞。 構成上述態樣(i i i)的聚合體微粒子的單體組合,可舉 (I)僅以特定2官能單體組成之態樣;(11)並用特定2官能 單體與具有環狀構造的非架橋性單體之態樣;(丨丨丨)並用特 定2官能單體與其以外的架橋性單體之態樣;(IV)並用特 定2官能單體、其以外的架橋性單體及具有環狀構造的非 架橋性單體之態樣。 具體的組合’可舉例如(1)僅含有特定2官能單體(a ) 29 201213347 作為特定2官能單體,包含二乙烯基苯及/或二(曱基)丙稀 酸乙二醇酯作為特定2官能單體(a),包含苯乙烯作為具有 環狀構造之非架橋性單體之組合(構成聚合體微粒子之全 單體中’二乙烯基苯及/或二(曱基)丙烯酸乙二醇酯之含量 為15質量%以上,二乙烯基苯、二(甲基)丙烯酸乙二醇醋 及苯乙烯之合計含量以50質量%以上為佳。);(2)僅含有 特定2官能單體(b)作為特定2官能單體,以二(曱基)丙稀 酸烧一醇自曰及/或聚烧一醇二(甲基)丙烯酸醋作為特定2 官能單體(b),含有苯乙烯作為具有環狀構造之非架橋性單 體之組合(構成聚合體微粒子之全單體中,二(甲基)丙烯酸 院二醇醋及/或聚烷二醇二(曱基)丙烯酸酯之含量為35質 量!%以下,80質量%以下,烷二醇二(曱基)丙烯酸酯、聚烷 二醇二(甲基)丙烯酸酯、二乙烯基苯及苯乙烯之合計含量 以50質量%以上為佳。);包含特定2官能單體(a)與特 定2官能單體(b)作為特定2官能單體之組合(構成聚合體 微粒子之全單體中,特定2官能單體(a)的含量為15質量% 以上,特定2官能單體(b)的含量以35質量%以上為佳)。 再者,在於該等態樣,構成聚合體微粒子之全單體中,3 官能以上的架橋性單體的含量以3〇質量%以下為佳。 上述態樣(i i i )的聚合體微粒子之數目平均粒徑為 3. 0" m以下、以2. 8 " m以下為佳,以2. 5 "出以下更佳, 以〇.5“以上為佳’ w 1〇"ma上更佳。只要數目平均 粒徑在於上述範圍,則以該聚合體微粒子作為基材之導電 性微粒子’用於異方性導電連接材料時,分散性優良,且 30 201213347 谷易得到連接電阻值低的連接構造體。 1-4.聚合體微粒子的製造方法 本發明的聚合體微粒子的製造方法,可採用乳化聚 合、懸浮聚合、分散聚合、種晶聚合、溶膠凝膠種晶聚合 法等,而種晶聚合與溶膠凝膠種晶聚合法可使粒度分佈小 而佳。再者,上述溶膠凝膠種晶聚合法’係種晶聚合的一 態樣,特別是指種晶粒子以溶膠凝膠合成時之意思。可舉 例如,藉由烷氧基矽烷的水解縮合反應所得之聚矽氧烷作 為種晶粒子之情形等。因此’於種晶聚合,存在有種:粒 子由有機質聚合體組成之情形,及複合有機質與無機質之 材料所組成之情形(溶膠凝膠種日日日$合法之情形)。此外, 採用乳化聚合、懸浮聚合、分散聚合時,可藉由濕式分級 荨’減少聚合體微粒子的粒度分佈。 本發明的聚合體微粒子’可舉上述有機質聚合體微粒 子、有機無機複合體粒子等、然後,有機無機複合體粒子, 以包含乙稀基聚合體骨架與聚石夕氧院骨架之有機無機聚合 體微粒子為佳。特別是使聚合性反應基的架橋性錢單體A monomer is used as a constituent component. The above non-bridging monomer may, for example, be (fluorenyl)acrylic acid; (mercapto)methyl acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, ( Isobutyl methacrylate, tert-butyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (mercapto) acrylate Ester, decyl (meth) acrylate, decyl acrylate, glycerol (meth) acrylate, stearyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, etc. Methyl) acrylic vinegar; (fluorenyl) cyclopropyl acrylate, (meth) acrylate cyclopentate, cyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, (meth) acrylate ring (decyl)acrylic acid naphthenic acid such as undecyl ester, cyclodecyl (decyl) acrylate, isobornyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate Ester; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, ( 2-Hydroxybutyl acrylate, etc. (hydroxyalkyl methacrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylate a propylene-based monomer such as phenyl ester or the like containing an aromatic fluorene (meth) acrylate; styrene, o-methyl styrene, m-methyl styrene, p-nonyl styrene, mercapto styrene, o-ethyl Styrene 1 ethyl stupid ethylene, oxime ethyl stupid ethylene, p-tert-butyl styrene and other alkyl styrene; p-phenyl styrene and other aromatic rings containing stupid vinyl; _ styrene, methane styrene And a vinyl ether containing a halogen such as a chlorostyrene, a vinyl group having a hydroxyl group; a hydroxy group-containing allyl ether such as 2-hydroxyethyl butyl allylic ether, etc. 17 201213347 If you are a non-bridging monomer, you can also partially neutralize it with an inert metal. The above non-bridging monomers can be used alone or in combination. When the polymer fine particles of the above aspect (1) are organic inorganic polymer fine particles, The monomer of the polymer fine particles may be added with the above-mentioned bridging monomer and any non-bridging monomer, and the Si Xiyuan monomer may be used. For example, the hydrolyzable compound of the following formula (5) and its derivative, etc. R?nSiX4-n (5) "Formula", which means that the substituent may also be selected from the hospital The group consisting of a group consisting of a base group, an aromatic group, an aralkyl group and an unsaturated aliphatic group, and an alkyl group having a hydroxyl group, an alkoxy group and a decyloxy group, is an integer of '0'. The decane-based monomer represented by the above formula (5) is, for example, a tetrafunctional ceramsite-based monomer such as a brothel or a tetraethoxy zeshi, or a methyl-oxygen compound or a methyl group. Ethoxylated sulphuric acid, etc. & trifunctional sulphate = body, dimethyl methoxy decane, dimethyl ', oxime oxane, etc. Methyl methoxy decane, trimethyl succinyl monofunctional decane monomer, and the like. ▲ $ 矽 矽 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 ▲ 以 以 ▲ ▲ ▲ ▲ The above-mentioned money compound = a low condensate or the like. The knife hydrolyzes the above-mentioned Shi Xixuan monomer, and has a Sixiyuan monomer having a poly 18 201213347 hydrolytic reaction group capable of forming an organic polymer skeleton (these are particularly called bridge bridging monomers, including bridging properties) Monomer) is preferred. Examples of the above-mentioned polymerizable reactive group include the radical polymerizable group, an epoxy group, a hydroxyl group, an amine group, and the like, which are exemplified by the following formulas (6), (7), and (8). CH2=C(-Ra)-C00Rb-(6) represents a divalent organic group having 1 to 20 carbon atoms which may have a hydrogen atom or a methyl group in the formula "Ra". CH2 = C(-Rc)- (7) where Re represents a hydrogen atom or methyl CH2 = C(-Rd)-r- (8) c is a substituent in which the ' Rd system represents a hydrogen atom or The carbon number of the methyl group is a two-valent organic group of 20. The radical polymerizable group represented by the above formula (4) may, for example, be a acryloyl group or a methacryloxy group. The radical polymerizable group of the above formula (7) may, for example, be a vinyl group or an isopropyl group. The radical polymerizable group of the above formula (8) may, for example, be a vinylphenyl group or an isopropenylphenyl group. The above-mentioned bridging-based sinter-fired monomer may, for example, be 3-methyl propylene oxypropyltrimethoxy sulphur, 3-methylpropenyloxypropyltriethoxy sulphur, 3-methyl Propylene methoxypropyl methyl dimethoxy ketone, ethylene trimethoxy sulphate, ethylene triethoxy hydride, p-phenylethylene trimethoxy decyl, ethionyl trimethoxy (four) , Buyi County, three ethoxy money, etc. with free radical polymerizable base; 3 'glycidyl hydroxypropyl trimethoxy valence 3-glycidyl hydroxy propyl methyl diethoxy sulphur, 3 shrink a group containing a epoxide such as glyceryl ether oxypropyl diethoxy sulphide; 3 propyl propyl methoxy hydrazine 19 201213347 or the like containing a base; 3-aminopropyltrimethoxy sylvestre An amine group such as 3-aminopropyl-triethoxy (tetra) or the like. It is possible to use only one type of these bridging system, and it is also possible to use two or more types together. Among these bridging stones: among the calcined monomers, those having a radical polymerizable group are preferred. Specifically, a 3-functional bridge of 3-(methyl) propylene sulfonium oxide, trimethoxy methoxy sulfonium, vinyl trimethoxy fluorene, U3, 4-oxocyclohexyl)ethyltrimethoxy, etc. It is preferable that the monolithic monolithic monomer is a trifunctional group such as 3-(methyl) propylene sulfoxypropyltrimethoxy (tetra) having a radical polymerizable reactive group, and ethylene trimethoxy sulphate. The erected bridge stone courtyard is a good unit. Further, among the compounds represented by the formula (5), a preferred decane-based monomer having a bridging-type monomer is 2, and a trifunctional group such as methyl oxy decane or styrene-methoxy oxysulphate is exemplified. In addition, as the monomer of the Shixi firing system, only the Shishi compound and its derivative of W in the above formula (5) cannot be used to obtain the skeleton of the polystone. When the particles are introduced into the polyoxyalkylene skeleton, it is necessary to contain the compound of the above formula (5), and the derivative of the compound of the above formula (1). The monomer combination of the polymer microparticles constituting the above aspect (1) is only composed of a bridging type of monoclitax. (1)) Both the bridging monomer and the non-monomer may be used together. Here, in the case of any -, a di-functional trifunctional monomer is included, and the above-mentioned specificity is... When the combination of bridging monomers, = (4) only by the combination of specific trifunctional monomers; (the two bodies with the bridging and firing unit monomer; (C) combined with a specific 3 heart (four) A:) C The pattern of a rare bridging monomer; (4) combined with a specific body, bridging, and monomeric (meth) propionate bridging single 20 201213347 The amount of the above-mentioned special trifunctional monomer is preferably in the mass portion of the total mass of the constituent fine particles, and is preferably lf or more, more preferably 5 parts by mass or more, and further 1 part by mass or more. Preferably, it is preferable to use the mass portion or less, and it is more preferably 6 parts by mass or less, and more preferably 55 parts by mass or less. As long as the specific trifunctional monomer is used in an amount of 1 part by mass or more, the specific use can be effectively utilized. The characteristics of the trifunctional monomer can make the particle breakage of the polymer microparticles lower. In the above-mentioned aspect (1), the polymer microparticles are easy to be weighed and loaded into a weight of 588 mN (〇.〇6gf).1. 78mN(〇_llgf)^||a〇jtb^> It is easy to control the compression load at ^6mN(0.2〇gf)^9〇mN(〇5〇gf)^||〇#^^^^ Value 20 The relationship between the 〇Κ value and the value of 30% K is controlled to satisfy the value of 1〇%κ> and the value of 3 is >2. Therefore, the polymer microparticles of the aspect (1) are used as the basis of the conductive microparticles. In the case of the material particles, it is easy to ensure a particularly large connection area. Bu 3-2. Aspect (U), the polymer microparticles of the above aspect (ii), the organic inorganic polymer microparticles will be packaged The particles of the vinyl trialkoxy decane are heat-treated at a temperature of not less than C as a bridging (tetra)-based monomer forming a polymer. Here, the particles of the ethoxylates of the Emergence III are contained: a particle containing the ethylene-triosyloxy money (Ha); and a particle (1)b) comprising a skeleton composed of a (tetra)-based monomer (co)hydrolyzed condensate comprising a thiophene A particle (iic) containing a polymer skeleton of a vinyl-containing monomer (tetra) from a polymerizable monomer (vinyl-based i-type precursor, a decane-based monomer) from 21 201213347. (iib) or (iic) is preferred, further comprising (llb) and satisfying (llc) of the particles, that is, consisting of a hydrolyzed condensate comprising a vinyl trioxyloxyl (4) monomer (4): The skeleton 'i contains a polymer skeleton of a radical polymerizable monomer (vinylic monomer, Shih-Xing monomer) containing a vinyl trialkoxy decane, which is a good Burning, preferably based on the ethylene-based trimethyl gas base stone court. , the state ("(four) composite microparticles +, as a monomer constituting the polymer microparticles" plus vinyl trialkoxy decane, bridging I. raw monomer exemplified in the aspect (1), non-bridging monomer, B It is also possible that the above-mentioned bridging monomer is more than 2 in the i molecule: the bridging monomer of the ethyl group is preferable, and 2 or more is a bridging type monomer having a (fluorenyl) acryloxy group-containing olefinic group and an aromatic divinyl compound having at least 2 (meth) acryloxy groups in one molecule; It is preferable that a monomer having two methyl propylene oxide oxy groups in the i molecule (dimethyl propyl phthalic acid) is preferable, and further, the ethane diol dimethyl hydrazine is better than the above aromatic divinyl hydride. Among the compounds, divinylbenzene is also preferred. When divinylbenzene is used, polymer microparticles having high hardness and excellent heat retention can be obtained. In this case, the amount of the above-mentioned non-bridging monomer and bridging monomer is The amount of vinyl dialkoxy decane used is lower than that of non-bridging monomer + bridging monomer) / ethylene The trialkoxy decane is preferably 〇丨 or more, more preferably 〇. 2 or more, further preferably 〇. 3 or more, preferably 2 or less, more preferably u 22 201213347 or less, further preferably 1 or less. In the case of the polymer microparticles of the aspect (ii), it is easy to control the 1 〇% compression load to be more than 1. 〇78 mN (0· llgf), 1. 960 mN (0.2 gf) or less. The compression load is controlled to be in the range of more than 4.90 mN (0.5 〇gf), 7.35 mN (〇. 75 gf) or less. Therefore, the polymer microparticles of the aspect (ii) are used for the substrate particles as the conductive fine particles. In particular, the indentation formation ability is excellent. The bridging element is the amount of the polymerizer used in the above aspects (i) and (ii) (including the bridging decane-based monomer), and constitutes the polymer microparticles. Among the mass parts of the monomer 100, it is preferably 20 parts by mass or more, more preferably 4 parts by mass or more, and more preferably 6 parts by mass or more, more preferably more than the mass portion. (1) The polymer microparticles of (1) are also composed of a bridging monomer alone. When the non-bridging monomer is used as the polymer microparticles in the above (1) and (ii), the amount of the polymer microparticles is 100 mass parts or more, preferably 10 mass parts or less, preferably 80 mass parts. The mass portion is more preferably 5% or less. Further, in the case of polymerizing the polymer microparticles of the above aspects (i) and (ii), the above-mentioned 矽";-organic inorganic body (four); into -70糸 early body The amount of use 'constitutes the polymer micro-pulse all the early 胄100 mass ri 1 η枋曰* is preferably 5 or more, more preferably 1. The quality of the Dong or above is better, and further 15 20f (four) n99# is better. It is preferable to use 〇 / , , δ , and 里冲 , and to use 90 mass ° 'step - step to 80 mass parts or less, preferably 60 masses. In the case of the polymer fine particles of 23 201213347 - u(1), (11), the particle diameter is not particularly limited. When the conductive fine particles are used, the number average particle diameter is preferably used. In addition, when the conductive fine particles having the polymer fine particles as the base material are used for the anisotropic conductive connecting material, the number of the polymer fine particles having a low resistance value is easily obtained, and the number average particle diameter of the polymer fine particles is 3 〇 or less. Preferably, it is more preferably 2.bra or less, and further preferably 2 or less. In addition, the formation of a metal coating layer in the form of a polymer fine particle is obtained by easily obtaining a conductive fine particle which suppresses aggregation, and the number average particle diameter is 〇 Preferably, 5#m or more is preferably 1. 0 ym or more. 1 - 3 - 3. Aspect (iii) The polymer microparticles of the above aspect (iii) are constituting the polymer microparticles (organic polymer microparticles) At least one of the monomers includes a specific bifunctional monomer described later. The specific bifunctional monomer has two vinyl groups in one molecule and one to 14 atoms through the two ethyl thio groups. The above-mentioned specific bifunctional monomer may be an aromatic divinyl group such as o-divinylbenzene [2], m-divinylbenzene [3] or p-divinyl strepene [4]; Methyl) acetoxyacetate S [6], mono(methyl) acrylate Glycol g is intended to be [7"|, _(mercapto)acrylic acid 1,4-butanediol ester [8], bis(indenyl)acrylic acid 1,5-pentanediol ester [9], di(indenyl) 1,6-hexanediol [1], 1,7-heptanediol di(meth)acrylate [U], 1,8-octanediol di(meth)acrylate [12] Alkane bis(mercapto)acrylate such as 1,9-nonanediol di(meth)acrylate [13] or 1,10-decanediol diester (14) ; Diethylene glycol vinegar [9], tris (meth) acrylate glycol 24 24 201213347 [12] and other polyalkylene glycol binary values, which are expressed in: methyl In addition, the number of functional monomers in the parentheses can be = the number of atoms between the individual women's bases. These specific 2, .U are used alone, 'can also be more than two kinds. In the case of the polymer microparticles of the sample (111), the content of the above-mentioned special composition is on the 迩 2 s opaque body, and it is preferable to use 15 mass 篁 / or more of the total monomer of 3. P. More preferably, it is 40% by mass or more. In particular, the number of atoms between the above specific 2 um.m ^ is 2 The production is all. (Under, there is a specific bifunctional monomer (a), preferably 15% by mass or more, and 4% of the total amount of the "microparticles" is preferably 40% by mass or more. The step is preferably 60% by mass or more, preferably less than or equal to 5% by weight, more preferably 90% by mass or less, and more preferably 8% by mass or less. Specific 2-functional monomer (4) to ethylene Preferably, the specific 2 is used as a functional monomer, and the number of atoms existing between the two ethylene groups is 7] 4 (hereinafter, it is called The case of the monofunctional monomer (1). In the case of the total monomer constituting the fine particles of the polymer, it is preferably 35% by mass or more, more preferably 4% by mass or more, more preferably 45% by mass or more, and most preferably 8% by mass or less. It is more preferable to be π mass% or less 'more preferably 7 〇 mass% or less. Specific bifunctional monomer (b), preferably bis(meth)acrylic acid diol vinegar, terephthalic benzene, polyalkylene glycol mono(meth) acrylate, especially di(meth)acrylic acid It is preferred that 1,6-hexanediol vinegar or diyl)acrylic acid L 9-decanediol ester. When the specific bifunctional monomer is used in combination with the specific bifunctional monomer (a) and the specific bifunctional monomer (b), the mass ratio (specific bifunctional monomer (a" 25 201213347 specific bifunctional monomer Λ ^ . η )), preferably 〇.5 or more, and 0.7 or more f is estimated to be more than U, preferably less than 2, and the following is better than "5 or less. It is more preferably 1.5 or less, and further, in this case, divinylbenzene is preferably contained. Divinyl stupid people, 勹2 旎2 旎 旎 early (a), 3, in a specific bifunctional monomer (50% by mass or more is preferable, and in the body (a), 70% by mass or more The amount of % or more is better. Wen Jiajin-step is a 90-state (iii) poly-octagonal throwing monomer, plus ±#胄2 j # '丨 as the structure of the combined microparticles = two monomers, can also contain Non-bridging monomer. Non-bridged early body, for example, as exemplified in the aspect (1) [body is not the above-mentioned non-bridging monomer, and has a smaller point load, and has a ring structure and a structure of the fine particles. k (Moon 曰 aliphatic ring structure, aromatic 斿 structure) is better. Such a non-bridging monomer, such as cycloalkyl acrylate and other aliphatic ring (9) " Ethylene, ethyl benzene Baked sulphur-like monomer, such as styrene monomer, methyl stupid, polycyclic aromatic vinyl compound, etc., such as a polycyclic aromatic vinyl compound, etc.: a 'non-bridging monomer having a cyclic structure' It is preferred to use a polymerizable group (preferably a vinyl group or a (meth) acryloxy group) to bond to a ring structure. In addition, in the case of styrene, methyl phenyl bromide, and the like, in the case of a ring structure, a substituent having no number of 2 or more in addition to the polymerizable group (for example, a carbon number) It is preferable that it is a base of 2 or more. If the styrene has no high-volume substituent other than the polymerizable group, the obtained polymer fine particles become harder, and the load can be easily destroyed by a lower load 26 201213347 In this case, since ethyl styrene is softened by the polymer microparticles having a high volume of ethyl 4, it tends to be less likely to be damaged by low load. Therefore, when a non-bridging monomer having a cyclic structure is used, The content of the monomer having a substituent having a carbon number of 2 or more other than the polymerizable group is preferably 70% by mass or less, more preferably 6% by mass or less, and further preferably 5% by weight of the total monomer of the conjugated fine particles. The amount of 〇% by mass or less is 隹. In addition, since the divinylbenzene of the market is containing ethyl styrene as an impurity and divinylbenzene as a specific bifunctional monomer, it is preferable to use high purity. When the above-mentioned annular structure is a non-bridging monomer, The total content of the non-bridging monomer and the specific bifunctional monomer having the cyclic structure 4 is preferably 5% by mass or more by mass based on 5% by mass of the total monomer constituting the fine particles of the polymer, and further preferably 7 〇% by mass or more is better: In addition to the human body, the total of the two-membered military, phenethyl hydrazine, and methyl styrene is in the total monomer constituting the fine particles of the polymer, and it is preferable to use Μ mass, 6 The amount of 〇% by mass or more is more preferably 7% by mass or more. In particular, the total content of the specific bifunctional monomer' and styrene is 50% by weight of the total monomer constituting the polymer fine particles. 6°% by mass or more is better, and the step-by-step is 7"«The above is the best non-two = fixed two-dimensional:,) and has the above-mentioned annular structure *. Eight has the braided structure of the non-bridging monomer 盥 specific 2 The total content of the functional green body (4) is preferably 5% by mass or more, and is preferably 5% by mass or more. More than % by mass, and more: % or more in quality. Further, the total content of the specific 2 urethane and the methyl phenyl hydrazine is preferably 5% by mass or more in the total of = 201213347 constituting the polymer (4), and is preferably 6. It is better to have a mass % or more, and it is preferable to use two or more. In particular, the specific bifunctional monomer (4) and the benzoic acid (3) are preferably 5 or more in the total monomer constituting the polymer fine particles, and more preferably 6 〇 吾 , , , , , , , , , Further, 7% by mass or more of Majia. It is preferable that the ratio of the amount of the specific bifunctional monomer (4) to the non-bridging precursor having a cyclic structure (the non-bridging monomer having a cyclic structure/specific monomer (4)) exceeds. More preferably .5 or less, the step is preferably 0.1 or less. When the mass ratio is within the above range, the obtained polymer fine particles can be made too hard. The above specific bifunctional monomer (8) is used in combination with the above cyclic structure non-bridge. In the case of a monomer, the total content of the non-bridging monomer having the cyclic structure and the =2 S energy (b) is 5 in the entire single sheet constituting the polymer fine particles. The mass % or more is better, to 6. More than or equal to 7% by mass or more. In addition, the total content of the specific bifunctional monomer (7) and benzene = 曱 basic ethylene is preferably 50% by mass or more, and 6% by mass or more by mass or more of the entire military body constituting the polymer fine particles. good. In particular, the "10" content of the monomer (8) and the "second" content is preferably 曰% or more in the total monomer constituting the polymer fine particles, and more preferably 60% by mass or more f #% $ or more. 7〇质量质量以上马佳. In this case, the mass ratio of the specific bifunctional monomer (1) to the ring structure precursor (the non-frame monomer (10) having a ring structure is preferably 0.5 or more, more preferably 2 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In the above range, Zhaxianli is harder and can be easily destroyed by a lower load. U-particles, in addition, the state (iu) of polymer microparticles, the degree of effect, plus specific bifunctional monomers, Further, in addition to the monomer of the present invention and the monomer of the present invention, (4) a bridging monomer may be used as a constituent of the polymer microbody. In this case, a trifunctional or higher bridging monomer (except for a specific one) may be used to form a polymer microparticle. In the whole monomer, the mass is 5〇; : the next is better, the following 4. The quality is better, further 3 is better than the quality: In addition, the content of the trifunctional or higher bridging monomer is such that the increase in the breaking point load can be suppressed within the above range. In addition, the yttrium of the bifunctional bridging monomer other than the specific bifunctional monomer In the total monomer constituting the fine particles of the polymer, it is preferably 5% by mass or less, more preferably 40% by mass, more preferably 3% by mass or less, and more preferably a specific 2-functional monomer. When the content of the bifunctional bridging monomer is within the above range, the softening of the obtained polymer fine particles can be suppressed, and the low molecular weight can be easily broken. The monomer combination of the polymer fine particles constituting the above aspect (iii) can be mentioned. (I) a composition consisting only of a specific bifunctional monomer; (11) using a specific bifunctional monomer in combination with a non-bridging monomer having a cyclic structure; (丨丨丨) combining a specific bifunctional monomer The aspect of the bridging monomer other than the above; (IV) the combination of a specific bifunctional monomer, a bridging monomer other than the bridging monomer, and a non-bridging monomer having a cyclic structure. (1) Containing only specific 2-functional monomers (a) 29 201213347 a specific bifunctional monomer comprising divinylbenzene and/or bis(indenyl)acrylic acid ethylene glycol ester as a specific bifunctional monomer (a), comprising styrene as a non-bridging single having a cyclic structure Combination of bodies (the content of 'divinylbenzene and/or bis(indenyl))ethylene glycol acrylate in the whole monomer constituting the polymer fine particles is 15% by mass or more, divinylbenzene, di(meth)acrylic acid The total content of ethylene glycol vinegar and styrene is preferably 50% by mass or more.); (2) contains only a specific bifunctional monomer (b) as a specific bifunctional monomer, and is bis(indenyl)acrylic acid. Monohydric alcohol and/or polyalkylene di(meth)acrylate vinegar as a specific bifunctional monomer (b), containing styrene as a combination of non-bridging monomers having a cyclic structure (constituting polymer microparticles) In the all monomer, the content of the di(meth)acrylic acid diol vinegar and/or the polyalkylene glycol bis(indenyl) acrylate is 35 mass % or less, 80 mass % or less, and the alkanediol bis (indenyl group) Acrylate, polyalkylene glycol di(meth)acrylate, divinylbenzene and styrene Preferably in a total content of more than 50% by mass. a combination comprising a specific bifunctional monomer (a) and a specific bifunctional monomer (b) as a specific bifunctional monomer (in the all monomer constituting the polymer microparticles, the content of the specific bifunctional monomer (a) is 15% by mass or more, the content of the specific bifunctional monomer (b) is preferably 35% by mass or more. In addition, in the all-cell constituting the fine particles of the polymer, the content of the trifunctional or higher bridging monomer is preferably 3% by mass or less. The above-mentioned aspect (iii) has a number average particle diameter of 3. 0" m or less, preferably 2. 8 " m or less, with 2. 5 " the following is better, 〇.5" It is more preferable that the above is better than the 'w 1 〇 " ma. When the number average particle diameter is in the above range, the conductive fine particles having the polymer fine particles as a base material are excellent in dispersibility when used for an anisotropic conductive connecting material. And 30 201213347 谷 易. The connection structure with low connection resistance value is obtained. 1-4. Method for producing polymer microparticles The method for producing the polymer microparticles of the present invention may be emulsion polymerization, suspension polymerization, dispersion polymerization, or seed polymerization. The sol-gel seed crystal polymerization method, etc., and the seed crystal polymerization and the sol-gel seed crystal polymerization method can make the particle size distribution small and good. Furthermore, the sol-gel seed crystal polymerization method is a kind of seed crystal polymerization. In particular, it means that the crystal grains are synthesized by a sol-gel. For example, a polysiloxane obtained by a hydrolysis condensation reaction of an alkoxydecane is used as a seed crystal, etc. There are species: The case where the sub-composite is composed of an organic polymer and the composition of the composite organic matter and the inorganic material (the case where the sol-gel species is legal and legal). In addition, when emulsion polymerization, suspension polymerization, or dispersion polymerization is used, Wet classification 荨 'reducing the particle size distribution of the polymer microparticles. The polymer microparticles of the present invention include the above-described organic polymer microparticles, organic-inorganic composite particles, and the like, and then the organic-inorganic composite particles to contain the ethylene-based polymer. It is preferable that the skeleton and the organic inorganic polymer microparticles of the skeleton of the polystone compound are preferable, and in particular, the bridging money monomer of the polymerizable reactive group

進行水解.縮合反應調製聚合性㈣心粒子之後H 聚合性聚錢院粒子,吸收上述特定單體、上述特定單體 ^卜之架橋性單體(以(甲基)丙稀系單體為佳)、上述非架 橋性單體(以苯乙稀系單體為佳)聚合而成者為佳。 此外,包含上述乙烯某枣人 聚0體@架與聚矽氧烷骨架之 =嶋合體微粒子之情形,使具有聚合性反應基的架 橋性石夕院單體進行水解.給人=& ^ 應調製聚合性聚碎氧烧粒 201213347 子之後,於該聚合性聚石夕氧烧粒子,吸收上述特定單體以 外的架橋性單體(以(甲基)丙稀系單體為佳)、上述非架橋 性早體(以本乙烯系單體為佳)聚合之後,進行熱處理而成 者為佳。上述熱處理於空氣中、惰性氣體中進行為佳於 氮氣中進行更佳。上述熱處理的溫度以2〇〇。匚(以更 佳進一步以27(TC為佳)以上為佳,熱分解溫度(以4〇〇=更 佳,進-步以37(TC為佳)以下為佳。上述熱處理的時間以 〇_3小時(以〇·5小時更佳’進-步以〇.7小時為佳)以上 為佳,以1〇小時(以5.0小時更佳,進-步以3.0小時為 佳)以下為佳。上述孰處理夕於杜从作μ a…、蜒理之奴佳的態樣,係於得到態樣(丨土) 的聚合體微粒子之上特別有用的條件。 2.導電性微粒子 一 η μ丄必承,s、媸微粒子 表面披覆導電性金屬層。因此太 此本發明的導電性微粒子 係具備上述聚合體微粒子之料,降 心符性者。構成上述導電性金 層的金屬並無特別限定,可礬你 J举例如’金、銀、銅、鉑、錫 錯、紹、鉻 '把、鎳、鍺、对、錄、叙、錯、錫、始、 及錄,、錄-硼等的金屬或金屬化合物及㈣的合金等 該等之中,以金、鎳、鈀,相 銀 '銅、錫導電性優良而佳 此外’以廉價之點,以鎳、鎳人八 ^ 螺合金、鋼、銅合金、銀、 合金、錫、錫合金為佳,其中 兵甲以鎳、鎳合金(Ni-P、Ni-]Hydrolysis. Condensation reaction to prepare polymerizable (4) core particles, H polymerizable poly-bank particles, absorbing the above-mentioned specific monomer, the specific monomer of the above-mentioned bridging monomer (preferably (meth) propyl monomer It is preferred that the above-mentioned non-bridging monomer (preferably a styrene monomer) is polymerized. In addition, in the case of the above-mentioned ethylene-polyurethane-polymer and polyoxyalkylene skeleton = fused-incorporated microparticles, the bridging Shixiyuan monomer having a polymerizable reactive group is hydrolyzed. After the polymerizable polyaerobic granules 201213347 are prepared, the polymerizable polyoxo oxy-fired particles absorb the bridging monomer other than the specific monomer (preferably (meth) propyl monomer), It is preferred that the above-mentioned non-bridging precursor (preferably, the present vinyl monomer) is polymerized and then heat-treated. The above heat treatment is preferably carried out in air or in an inert gas, preferably in a nitrogen gas. The temperature of the above heat treatment was 2 Torr.匚 (more preferably 27 (TC is better) or more, thermal decomposition temperature (4 〇〇 = better, step - 37 to TC is better). The above heat treatment time is 〇 _ 3 hours (better than 5 hours, 'in step-step to 〇. 7 hours is better) above, preferably 1 hour (5 hours is better, 3.0 steps is better). The above-mentioned treatment is based on the fact that Du Cong Zuo a..., 蜒理的奴佳, is particularly useful for obtaining the fine particles of the morphology (alumina). 2. Conductive microparticles η μ丄It is assumed that the surface of the s and fine particles is coated with a conductive metal layer. Therefore, the conductive fine particles of the present invention are provided with the above-mentioned polymer fine particles, and the properties of the fine particles are reduced. The metal constituting the conductive gold layer is not particularly Restricted, you can slap, for example, 'gold, silver, copper, platinum, tin, sho, chrome', nickel, bismuth, pair, record, Syria, wrong, tin, start, and record, record - boron, etc. Among the metals, metal compounds, and alloys of (4), gold, nickel, and palladium, and the phase silver 'copper and tin are excellent in electrical conductivity. Point of cheap, nickel, a nickel alloy spiro ^ eight people, steel, copper alloy, silver alloy, tin, a tin alloy, preferably wherein Bingjia nickel, a nickel alloy (Ni-P, Ni-]

Ni-Zn、Ni-Sn、Ni-W、Ni-C〇、Ni_Tim土 11)等為佳。此外,導 性金屬層可以單層,亦可為複數 瓦数層馒數層時,可舉例 鎳/金、鎳/鈀、鎳/鈀/金、鉾/ 辣/銀專的組合為佳。 32 201213347 上述導電性金屬層的厚度α 0. 〇u m以上為佳,以 0.03…上更佳,以0.2。…下為佳,以〇 15㈣以 下更佳。只要導電性金屬層的厚度在上述範圍β, 電性微粒子作為異方性導電材料時’可維持穩定的電性連 接,並且,可充分地有效地利用破壞點荷重等的聚 粒子的機械特性❶ 微 本發明的導電性微粒子,可係於導電性金屬層的表面 上,進-步具有絕緣性樹脂層者。上述絕緣性樹脂層,只 要是可確保在於導電性微粒子的粒子間的絕緣性,可藉由、 -定的壓力及/或加熱容易地使絕緣性樹脂層崩潰或剝離 者,並無特別限定,可舉❹聚乙缔等的聚烯烴類;聚(甲 基)丙稀酸甲醋等的(甲基)㈣酸醋聚合體及共聚合體;聚 苯乙稀等的熱塑性樹脂或特別是其架橋物;環氧樹脂、紛 樹脂、三聚氰胺樹脂等熱硬化性樹脂;聚乙料等水溶性 樹脂及該等的混合物等。 惟,絕緣性樹脂層相較於成為基材的聚合體微粒子過 硬時,在破壞絕緣性樹脂層之前有聚合體微粒子本身被破 裏之虞因此,於絕緣性樹脂層,使用未架橋或架橋度相 對較低的樹脂為佳。 上述絕緣性樹脂層’可以單層,亦可由複數層所組成 了為例如單一或複數的披膜狀的層;於導電性微粒 子的表面附著具有絕緣性的粒狀、球狀、塊狀、鱗片狀、 其他形狀的粒子之層;再者,藉由將電性微粒子的表面化 學修飾所形成之層。上述樹脂絕緣層的厚度以G· Gin〆m 33 201213347 為佳,以0. 1 #〜〇· 5 # m更佳。只要樹脂絕緣層的厚度在於 上述範圍内,可良好地維持以導電性微粒子的導通特性, 且粒子間的電絕緣性良好。 本發明的導電性微粒子的數目平均粒徑,以丨.丨# m以 上為佳,以1.2//m以上更佳,進一步以h 3以m以上為佳, 以1. 4 y m以上特別佳,以& 5 # m以下為佳以3· 3 #出以 下更佳,進一步以3. 〇 # m以下為佳,以2. 8 " m以下特別 佳〃要數目平均粒徑在該範圍内,則可成為壓痕形成能 優良的導電性微粒子。 2-1.導電性微粒子的製造方法 本發明的導電性微粒子,係藉由在上述聚合體微粒子 的表面上形成導電性金屬層而得。於聚合體微粒子表面披 覆導電性金屬層的方法並無特別限定,可舉例如,以無電 電鍍,取代電鍍等鍍敷方法;將金屬微粉單獨或與膠合劑 混合所得之糊料塗層於聚合體微粒子之方法;真空蒸鐘, 離子鍍、離子濺鍍等的物理蒸鍍方法。該等之中,無電電 鍍法由於無需大規模的裝置,即可容易地形成導電性金屬 層而佳。 本發明的導電性微粒子係具有絕緣性樹脂層時,於上 述無電電鍍步驟之後,於導電性金屬層的表面以樹脂進行 絕緣處理。形成絕緣性樹脂層的方法並無特別限定,可舉 例如於無電電鍍處理後的導電性微粒子的存在下,進行絕 緣性樹脂層的原料的界面聚合、懸濁聚合、乳化聚合,以 絕緣性樹脂將導電性微粒子微膠囊化的方法;將導電性微 34 201213347 中之後,解絕緣性樹脂於有機溶劑之絕緣性樹脂溶液 先前習知Γ之浸潰法;噴霧乾燥法、藉由雜合之方法等, 先刚、知之方法均可使用。 3.異方性導電材料 發月的導電性微粒子’亦可良好地作為異方性導電 材料的構虚铋粗 々开刀丨王导電 性… 本發明的導電性微粒子而成之異方 導電材料’亦係本發明的較佳實施隸之―。上述 =導電材料,只要是使用本發明的導電性微粒子而成者’ 其形態並特BP — …、限疋,可舉例如異方性導電膜、里方性導 電糊料、里t W·、#森 ' τ王等 ,/、方性導電接著劑、異方性導電墨水等,各式各 樣的形態。即,藉由將該等異方性導電材料設於相對的基 材和電極端子之間,可電性地連接。再者,在使用本發明 的導電性微粒子之異方法性導電材料,包含液晶表示元件 用導通材料(導通隔片及其組成物)。 上述異方性導電材料,係將本發明的導電性微粒子分 散於絕緣性的踢合樹脂令,作成所期望的形態而製造,當 亦可为別使用絕緣性膠合樹脂與導電性微粒子,連接 基=間或電極端子之間亦無#。上述膠合樹月旨,並無特別 限疋可舉例如丙烯酸樹脂、乙烯-醋酸乙烯酯樹脂、苯乙 烯-丁 —烯嵌段共聚體等的熱塑性樹脂;具有縮水甘油基的 單體或寡聚物與異氰酸酯等的硬化劑之反應而硬化之硬化 性樹脂組成物、或以光或熱硬化之硬化性樹脂組成物等。Ni-Zn, Ni-Sn, Ni-W, Ni-C〇, Ni_Tim soil 11) and the like are preferred. Further, when the conductive metal layer may be a single layer or a plurality of wattage layers, a combination of nickel/gold, nickel/palladium, nickel/palladium/gold, rhodium/spicy/silver may be exemplified. 32 201213347 The thickness of the above conductive metal layer is preferably α 0. 〇u m or more, more preferably 0.03. ...the next is better, and the best is 〇 15 (four). When the thickness of the conductive metal layer is in the above-described range β and the electrical microparticles are used as the anisotropic conductive material, a stable electrical connection can be maintained, and the mechanical properties of the polyparticles such as the breaking point load can be sufficiently effectively utilized. The conductive fine particles of the present invention may be attached to the surface of the conductive metal layer and further have an insulating resin layer. The insulating resin layer is not particularly limited as long as it can ensure the insulation between the particles of the conductive fine particles, and the insulating resin layer can be easily collapsed or peeled off by a predetermined pressure and/or heating. Examples thereof include polyolefins such as polyethyl amide; (meth) (tetra) vinegar polymers and copolymers such as poly(methyl) acrylate methyl vinegar; and thermoplastic resins such as polystyrene or the like. A thermosetting resin such as an epoxy resin, a resin or a melamine resin; a water-soluble resin such as a polyethylene material; and a mixture thereof. However, when the insulating resin layer is too hard compared to the polymer fine particles to be the substrate, the polymer fine particles themselves are broken before the insulating resin layer is broken. Therefore, the unsealed or bridge degree is used for the insulating resin layer. A relatively low resin is preferred. The insulating resin layer ' may be a single layer, or may be composed of a plurality of layers, for example, a single or plural film-like layer; and an insulating granular, spherical, massive, or scale-like layer may be adhered to the surface of the conductive fine particles. a layer of particles of other shapes; further, a layer formed by chemically modifying the surface of the electrical microparticles. The thickness of the above-mentioned resin insulating layer is preferably G·Gin〆m 33 201213347, and more preferably 0.1 1 to 〇· 5 # m. When the thickness of the resin insulating layer is within the above range, the conduction characteristics of the conductive fine particles can be favorably maintained, and the electrical insulation between the particles is good. The number average particle diameter of the conductive fine particles of the present invention is preferably 丨.丨m or more, more preferably 1.2/m or more, further preferably h 3 is m or more, and particularly preferably 1.4 ym or more. It is better to use & 5 #m below to be 3·3 #出以下以下, further to 3. 〇# m below, preferably to 2. 8 " m below, the number average particle size is within this range In addition, it can be an electrically conductive fine particle excellent in indentation formation. 2-1. Method for producing conductive fine particles The conductive fine particles of the present invention are obtained by forming a conductive metal layer on the surface of the above-mentioned polymer fine particles. The method of coating the surface of the polymer fine particles with the conductive metal layer is not particularly limited, and examples thereof include electroless plating instead of plating such as electroplating; and paste coating obtained by mixing the metal fine powder alone or with a binder. Method of bulk microparticles; vacuum evaporation clock, physical vapor deposition method such as ion plating, ion sputtering, and the like. Among these, the electroless plating method is preferable because a large-scale device is not required, and a conductive metal layer can be easily formed. When the conductive fine particles of the present invention have an insulating resin layer, the surface of the conductive metal layer is subjected to an insulating treatment with a resin after the electroless plating step. The method of forming the insulating resin layer is not particularly limited, and for example, interfacial polymerization, suspension polymerization, emulsion polymerization, and insulating resin of the raw material of the insulating resin layer are carried out in the presence of the conductive fine particles after the electroless plating treatment. A method of microencapsulating conductive fine particles; after the conductive micro 34 201213347, an insulating resin solution for dissolving an insulating resin in an organic solvent is previously known as a dipping method; a spray drying method, by a hybrid method Wait, the method of first and foremost can be used. 3. The conductive microparticles of the anisotropic conductive material can also be used as a structure of the anisotropic conductive material, and the conductive conductive particles are made of the conductive fine particles of the present invention. 'Also is a preferred embodiment of the invention. The above-mentioned conductive material is a conductive material which is obtained by using the conductive fine particles of the present invention. The shape of the conductive fine particles is, for example, an anisotropic conductive film, a lithium conductive paste, and a conductive material. #森' τ王等, /, a square conductive adhesive, an anisotropic conductive ink, etc., various forms. That is, the anisotropic conductive material can be electrically connected by being provided between the opposing substrate and the electrode terminal. Further, the method-specific conductive material using the conductive fine particles of the present invention includes a conductive material for a liquid crystal display element (a conductive spacer and a composition thereof). The anisotropic conductive material is produced by dispersing the conductive fine particles of the present invention in an insulating kneading resin to form a desired form, and it is also possible to use an insulating adhesive resin and conductive fine particles, and a linking group. There is also no # between the or the electrode terminals. The above-mentioned gluing tree is not particularly limited, and may be, for example, a thermoplastic resin such as an acrylic resin, an ethylene-vinyl acetate resin, or a styrene-butene-alkyl block copolymer; or a monomer or oligomer having a glycidyl group; A curable resin composition which is cured by a reaction with a curing agent such as an isocyanate, or a curable resin composition which is cured by light or heat.

[貫施例J 以下舉出實施例更具體地說明本發明,惟本發明並非 35 201213347 受限於下述實施例,可在匹配前後述的趣旨的範圍實施適 宜變更,該等均包含於本發明的技術性範圍。再者,於以 下,若無特別提及,「部」係指質量部,Γ %」係指質量0/〇 的意思。 1.評估方法 1 -1.平均粒徑 聚合體微粒子的平均粒徑,係以C〇ulter Multisizer 111 型(Beckman Coulter Inc 製),測定 300 00 個粒子的粒 徑,求以數目基準的平均粒徑,將該值作為數目平均粒徑。 1 - 2.機械特性 使用微小壓縮試驗機(島津製造所公司製, MCT W500」)’在於室溫(25〇c),對散佈於試料台(材質: sks材平板)上之i個粒子,使用直徑5〇“的圓形平板壓 子(材質:鑽石)’向粒子的中心方向以一定的負荷速度 (2.2295mN/秒)施加荷重。然後,測定壓縮位移成粒徑的 1(U、20%、30%及4Q%時的荷重。粒子被破壞時的荷重為「破 裒點何重(mN)」’此時的位移量為「破壞壓縮位移("心」、 「破壞壓縮位移(%)」。再者,測定係對各試料,對不同的 1〇㈣子進行’將平均值作為測定值。此外,由測定之壓 縮荷重、粒子的壓縮位移及粒徑,算出K值。 卜3.異方性導電材料的評估 將導電性接著糊料〇1呢,以形成有紹電極之 璃基板夾住,以i 8(rc進行 接合劑硬化物s ⑨付以式驗片(由導電性 物組成的異方性導電薄片被夹在電極間的構造 36 201213347 之連接構造體)。 對於所得試驗片,以四端子 凌/則疋連接電阻值(Ω ), 將此作為初期電阻值。 此外’將試驗片,以顯微鏡Γ 々慨蜆(倍率:1 000倍)觀察與異 方性導電薄片側之電極表面’ —、 f估有無壓痕。確認到壓痕 者評估為〇,未確認到壓痕者評佑為x。 2.製造聚合體微粒子 製造例1 於具有冷凝管,溫度計、滴入口的四個口燒瓶,放入 去離子水804部、25%氨水1. 2部、甲醇336. 6部,於搜拌 下由滴入口添加3_曱基丙稀酿氧丙基三甲氧基石夕烧(信 越化干工業a司製的「KBM503」)80部以甲醇59. 4部的混 合液’進行3—甲基丙烯醯氧丙基三曱氧基矽烷的水解縮 -反應„周製具有甲基丙稀醯氧基的聚石夕氧烧粒子(聚合性 聚夕氧燒粒子)的乳濁液。由反應開始2小時後,對所得聚 矽氧烷粒子的乳濁液取樣,測定粒徑,數目平均粒徑為 2. 25 # m。 接著,對作為乳化劑之聚氧乙烯苯乙烯化苯基醚硫酸 —録孤(第工業製藥公司製·· 「High Tenor(註冊商 祐)NF 08」)之20%水溶液2部以去離子水8〇部溶解的溶 液,加入溶解三聚氰酸三烯丙酯(TAC)80部、2, 2,-偶氮 又(2,4 —甲基戊腈)(和光純藥工業公司製:「V-65」)1.6 邛之/谷液,乳化分散調製單體成分的乳化液。 將所得乳化液,添加於聚合性聚矽氧烷粒子的乳濁液 3? 201213347 中’進一步進行攪拌。由添加乳化液1小時後,取樣混合 液以顯微鏡觀察’確認聚合性聚石夕氧院粒子吸收單體而肥 大化。 接著’加入聚氧乙烯苯乙烯化苯基醚硫酸酯銨鹽的20% 水溶液8部、去離子水20. 6部’於氮氣氣氛下使反應液升 溫至65°C,以65°C保持2小時,進行單體成分的自由基聚 合。將自由基聚合後的乳濁液固液分離,將所得濾餅以去 離子水、曱醇清洗之後,以i 2〇 t真空乾燥2小時得到聚 合體微粒子No. 1。 製造例2 關於單體成分,將三聚氰酸三烯丙酯的使用量變更為 56部以外,以與製造例1同樣地,得到聚合體微粒子No. 2。 製造例3 關於單體成分’將三聚氰酸三烯丙酯80部變更為異三 聚氰酸三烯丙酯(TAIC)56部以外,以與製造例】同樣地得 到聚合體微粒子No. 3。 製造例4 關於單體成分,將三聚氰酸三烯丙酯8〇部變更為三聚 氰酸三烯丙酯40部與DVB960C新日鐵化學公司製,二乙烯 基笨含罝96質量%)40部以外,以與製造例1同樣地得到 聚合體微粒子N〇.〇 製造例5 關於單體成分,將三聚氰酸三烯丙酯8〇部變更為三聚 氰酸三烯Μ 48部、苯乙稀(s〇96部及二曱基丙缚酸 38 201213347 己二醇酯(16HX)96部分以外 合體微粒子N 〇. 5。 製造例6 以與製造例1同樣地得到聚 將製作聚合性聚;5夕氧烧粒子時 時放入四口燒瓶中的配方 k更為去離子水1800部、25%氨次9/1加 風水24部、甲醇510部,於 攪拌下’由滴入口投入的3_甲其 T基丙烯醯氧丙基三曱氧基矽 烧及曱醇的配方變更為3_甲基而 丙烯醯氧丙基三曱氧基矽烷 80部分及曱醇90部分以外以盥製 〃衣le例5同樣地得到聚合 性微粒子No. 6。 製造例7 關於單體成分,將三聚氰酸三烯丙酯8〇部分變更為二 乙烯基笨56部分以外’以與製造例i同樣地得到聚合體: 粒子No. 7。 製造例8 關於單體成分,將三聚氰酸三烯丙酯8〇部分變更為苯 乙烯120部分及二(甲基)丙稀酸丨,6—己二醇酿12〇部分以 外,以與製造例1同樣地得到聚合體微粒子N〇. 8。 製造例9 將甲基丙烯酸甲酯(MMA)90部、三經曱基丙院三甲美 丙烯酸酯(TMPTMA)IO部所組成的單體混合物懸浮聚合2 後’分級得到聚合體微粒子N〇. 9。 製造例1 〇 將曱基丙烯酸甲酯95部、二甲基丙烯酸乙二醇酯5部 所組成的單體混合物懸濁聚合之後,分級得到聚合體微粒 39 201213347 子 No. 10 〇 裂造例11 將異三聚氰酸三烯丙酯(ΤΑIC)15部、鄰苯二甲酸二稀 丙醋35部所組成的單體混合物懸浮聚合之後,分級得到聚 合體微粒子No. 11。 製造例1 2 於具有冷凝管、溫度計、滴入口的四口燒瓶放入去離 子水720部、25%氨水1· 2部、甲醇480部保持於25°C。 對其滴入架橋性硬貌系單體乙稀基三甲氧基碎院(信越化 學工業么司製「KBM1GG3」)6G部,將内溫以25t保持15 刀鐘之後’添加聚氧乙烯苯乙烯化苯基醚硫酸酯銨鹽(第一 工業製樂公司製’「High Ten〇r NF-08」)20%水溶液32部, 藉由進—步攪# 15分鐘’進行乙稀基三甲氧基碎烧的水 解縮合反應’製作具有乙稀基之聚石夕氧烧粒子(聚合性聚 石夕氧烧粒子)的乳濁液。 對所侍聚矽氧烷粒子的乳濁液取 樣’測疋粒徑’數目平均粒徑為2.25”。 接著,對作為乳化南丨夕取# ^ r敍豳(第一 "聚氧乙烯苯乙烯化苯基醚硫酸 曰- 製藥公司製「High Tenor NF,) 水溶液ι·〇部以去離子水42部溶 )之20/。 则960(新日鐵化學公0^液’加入溶解 部、聚合起起始劑2 2,偶s稀基本含量96質卿 藥工業公司製^^^雙⑻二甲基戊腈办光純 殊機化工業公司製二::之溶液’以㈣質混和 J表)以母分鐘8〇〇〇轉 單體乳膠。將該單體乳 刀政5分鐘調製 …於聚石夕氧院粒子的乳濁液 40 201213347 中’進一步進行攪拌。由單體乳膠添加1小時後,取樣反 應液以顯微鏡觀察’確認特定聚矽氧烷粒子吸收單體組成 物而肥大化。 接著,於氮氣氣氛下升溫至65°c,藉由以65t:保持2 小時進行自由基聚合。將反應液冷卻後,將所得乳濁液固 液分離,將濾餅以去離子水、接著以曱醇清洗後,以i2(Γ(: 乾燥2時間’進一步於氮氣氣氛下以280°C進行加熱處理1 小時,得到聚合體微粒子No. 1 2。 製造例13 沒有在氮氣氛下以2 8 0。(:進行熱處理1小時以外,以 與製造例1 2同樣地得到聚合體微粒子N〇. J 3 ^ 製造例14 將放入四口燒瓶的配方,變更為去離子水68〇部、 氨水1 · 2部、甲醇5 2 0部以外,以與製造例丨2同樣地製作 聚合性聚矽氧烷粒子。接著,關於使之吸收之單體成分, 變更為DVB960(新日鐵化學公司製、二乙烯基苯含量⑽質 量/〇 2 4部以外,以與製造例12同樣地進行吸收單體成分, 進行自由基聚合。 將反應液冷卻後,將所得乳濁液固液分離,將濾餅以 去離子水、接著以甲醇清洗後’以12〇t乾燥2時間,進 步於氮氣氣氛下以3 5 0 C進行加熱處理3小時,得到聚 合體微_粒子N 〇 14。 製造例15 對作為乳化劑之聚氧乙稀笨乙稀化笨基趟硫酸醋錄鹽 41 201213347 (第一工業製藥公司製「υ· . 技HighTenor(註冊商標)NF_08 )之 20%水溶液1〇部以本 」^ < 龙離子水300部溶解的溶液,加入溶解二 曱基丙烯酸1,9-壬 〜醇酯50部、苯乙烯50部、2, 2,-偶氮 雙(2、4-二甲基戊腌、 婿)(和光純藥工業公司製:「V-65」)2.0 部之溶液,乳化分私 欺調製單體成分之乳化液。將所得乳化 液’放入具備冷凝螯 、▲度計、滴入口之四口燒瓶,加入去 離子水500部稀釋, 於氮氣氣氛下將反應液升溫至6 5 °C,以 65 C保持2小時,淮a . 運仃單體成分的自由基聚合。將所得乳濁 液固液分離,將滹钮 斯M去離子水、曱醇清洗後,反覆濕式分 級’以12(TC乾焯>。士 6 ~ 2時間得到聚合體微粒子N〇. 15。 製造例16 關於單體成分 取刀,將二甲基丙烯酸U 9_壬二醇酯5〇部 與苯乙烤50部變承班 X尺為二甲基丙烯酸1,9-壬二醇酯1〇〇部 以外以與製造例η 1 5问樣地得到聚合體微粒子No. 1 6。 製造例17 關於單體成分’將二甲基丙烯酸1,9-壬二醇酯50部 苯烯50 變更為DVB960 (新日鐵化學公司製,二乙烯 基苯3里96質量1 〇〇部以外以與製造例15同樣地得到 聚合體微粒子N〇.丨了。 製造例1 8 關於單體成分,將二甲基丙烯酸1,9-壬二醇酯50部 與=乙稀5G部變更為DVB57q(新日鐵化學公司製,二乙稀 基本含量57質量%)1()()部以外以與製造例15同樣地得到 5^合體微粒子N〇. n 42 201213347 製造例1 9 關於單體成分,將二甲基丙烯酸1,9-壬二醇醋50部 與苯乙烯50部變更為三羥甲基丙烷三丙烯酸酯25部分、 DVB960(新日鐵化學公司製,二乙烯基笨含量96質量%)75 部以外以與製造例1 5同樣地得到聚合體微粒子N〇.丨9。 製造例2 0 關於單體成分,將二曱基丙烯酸1,9-壬二醇酯50部 與苯乙烯50部變更為三羥甲基丙烷三丙烯酸酯75部分、 DVB960(新曰鐵化學公司製,二乙烯基苯含量96質量%)以 外以與製造例15同樣地得到聚合體微粒子No. 20。 製造例21 關於單體成分,將二曱基丙烯酸1,9 -壬二醇酯50部 與苯乙烯50部變更為二(甲基)丙烯酸1,6_己二醇酯50部 分、DVB9 60 (新日鐵化學公司製,二乙烯基苯含量96質量 %)50部以外以與製造例15同樣地得到聚合體微粒子 No. 2:1。 製造例22 關於單體成分,將二曱基丙烯酸1, 9_壬二醇酯50部 與苯乙烯50部變更為二甲基丙烯酸乙二醇酯40部分、苯 乙稀40部分、甲基丙烯酸第三丁酯20部以外以與製造例 1 5同樣地得到聚合體微粒子N〇. 22。 製造例23 將製作聚合性聚矽氧烷粒子時放入四口燒瓶中的配 方’變更為去離子水1 000部、25%氨水24部、甲醇500部 43 201213347 以外以與製造例2同樣地得到聚合性微粒子No. 23。 製造例24 將製作聚合性聚矽氧烷粒子時放入四口燒瓶中的配 方,變更為去離子水750部' 25%氨水1. 2部、曱醇360部 以外以與製造例2同樣地得到聚合性微粒子No. 24。 3. 導電性微粒子之製造 以氫氧化鈉對聚合體微粒子進行蝕刻處理之後,以二 氣化錫溶液進行敏化。再者,以二氣化鈀溶液進行活化, 形成鈀核。接著,將形成鈀核的聚合體微粒子,浸潰於無 電電鍍鎳浴’形成鎳鍍敷層直到膜後成為0.1“ m之後,進 行金取代鍵敷形成0.02//m的金層。之後,以去離子水清 洗之後,以酒精進行置換,進行真空乾燥,得到導電性微 粒子。 4. 製造異方性導電材料 將上述獲得的導電性微粒子2g混入環氧樹脂(三井化 學製:「STRUCTBOND(註冊商標)XN_5A」)1〇〇g使之分散, 製作導電性接著糊料。 關於上述所得聚合體微粒子Nol〜24,測定平均粒徑, 評估機械特性。結果示於表卜3。再者,表i、2中,:聚 合體微粒子N〇9~U、13的破壞點荷重評估表示為「不明二 此係即使將荷重施加到49fl]N(5gf)仍無法確㈣破壞點」之 意思。此外,將聚合體微粒子Ν〇·2、5、7、8、12、Μ的 位移-荷重曲線圖示於圖卜3。此外將關於含有上述所得 之導電性微粒子之異方性導電材料’將評估結果一併表示 44 201213347 於表1〜3。 [表1 ] c? 〇 卜’ OJ 不明 1 CT> 05 CO CD 卜 CM LO 1 1 CO 3757 1637 1008 Τ"Η ς〇 卜 CNI Τ"* ο CO C<1 X ◦ o LO 卜 CO 不明 1 Η 卜 〇 1. 18 2· 16 4. 90 29751 17531 17495 25825 OJ ο 0¾ ο οα 〇 Οϊ o 〇 (NJ o 不明 1 0. 89 1. 96 5. 39 oo in o CO 21148 1 16190 24422 90562 <ΝΙ Ο OJ (ΝΙ 〇 οο o 〇 CO CO CO 00 LO (NI 卜 LO CO CO 〇 ο CM C5 T—H 1—^ CO 6794 3800 3825 5577 (Γνί « _ι Ο 卜 eg X 卜 o 〇 CO oo 〇·〇 〇 〇 LO ' Η 〇 2. 08 OJ CO 7. 86 1 0690 7779 1 8808 10404 (ΝΙ C3 »—« CO 〇 ς〇 LO 05 o CO 4. 69 却 LO CO UO OO 〇 卜 3. 60 破壞 1 21337 15434 1 7322 1 οα Τ~Η Ο CO cn 〇 LO lo 00 C^I oo csi CO OO CO to LO 卜 CD 〇 1.12 CO ,·< OJ 00 CO 8233 i 4880 5126 6765 CSJ Ο oo oo 〇 呀 LO oa CO CSI CD CO 〇 ΙΛ 00 ο Csl CD 1-H CO CO CO 5. 98 8695 5830 6540 7621 CN3 1—^ Ο 寸 oo 〇 CO CO CN1 CN3 CO LO 卜 CO CO CO ο 卜 ο to (Nl 2. 60 破壞 9653 6201 6934 1 (ΝΙ Τ—Η Ο 卜 0¾ 〇 CM ο CO (=5 CO 4. 90 呀 CO CO oo oo ο CO oo 3. 79 破壞 9297 「 :6830 7694 1 CN1 C5 卜 oo 〇 T—^ S r—Η CO CD CO 1—Η CNI OO 寸· CO CM oo o LO 1—^ CO CO 破壞 8286 5476 6056 1 οα 1—^ ο LO 05 〇 導電性微粒子No. 特定單體比例(質量%) 平均粒徑(//m) , 粒徑的變動係數(%) 破壞點荷重(mN) 破壞壓縮位移(%) 10%位移 20¾位移 30%位移 40%位移 10%K 1 ! 20%Κ 30%Κ 40%Κ 金屬層膜厚(// m) 接著電阻值(Ω ) 壓痕 壓縮荷重值 (mN) \ 基材粒子 評估 45 201213347 [表2 ] 導電性微粒子No. 12 13 14 基材粒子 DVB960/KBM1003C 質量比) 0. 7 0. 7 0. 4 熱處理溫度(°C) 280 - 350 平均粒徑("m) 2. 9 3. 0 2. 8 粒徑的變動係數(%) 2. 8 2. 9 3. 0 破壞點荷重(mN) 6. 53 不明 7. 60 破壞壓縮位移(%) 39. 5 - 41. 7 壓縮荷重值 (mN) 10%位移 1. 33 0. 76 1. 40 20%位移 2. 80 1. 29 3. 10 30%位移 5. 14 2. 12 5. 79 40%位移 破壞 3. 22 7. 55 K值 (N/mm2) 10%K 14544 8305 17554 20%Κ 10869 4939 13705 30°/〇Κ 10836 4434 13945 40°/〇Κ - 4368 11805 評估 金屬層膜厚m) 0. 12 0. 12 0. 12 接著電阻值(Ω) 8. 7 13. 0 8. 5 壓痕 〇 X 〇 46 201213347 [表3 ][Comparative Example J] Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples. The following examples are intended to be appropriately modified, and these are all included in the scope of the present invention. The technical scope of the invention. Furthermore, unless otherwise mentioned, "part" means quality, and Γ% means mass 0/〇. 1. Evaluation method 1 - 1. Average particle diameter The average particle diameter of the polymer microparticles was measured by a C〇ulter Multisizer 111 type (manufactured by Beckman Coulter Inc.), and the particle diameter of 300 00 particles was measured to obtain an average particle based on the number. The diameter is taken as the number average particle diameter. 1 - 2. Mechanical characteristics: Using a micro-compression tester (MCT W500, manufactured by Shimadzu Corporation), at room temperature (25〇c), i particles scattered on a sample table (material: sks plate) The load was applied to the center of the particle at a constant load speed (2.2295 mN/sec) using a circular plate press (material: diamond) having a diameter of 5 。. Then, the compression displacement was measured to be 1 (U, 20). The load at %, 30%, and 4Q%. The load when the particle is destroyed is "when the break point (mN)". The displacement at this time is "breaking the compression displacement ("heart", "destroying the compression displacement ( In addition, in the measurement system, the average value is used as the measured value for each of the different samples (four), and the K value is calculated from the measured compression load, the compression displacement of the particles, and the particle diameter. 3. Evaluation of the anisotropic conductive material, the conductivity is followed by the paste, and the glass substrate is formed by sandwiching the electrode, and the adhesive is cured by i 8 (rc). Structure of an anisotropic conductive sheet composed of a substance sandwiched between electrodes 36 201213347 Connect the structure.) For the obtained test piece, connect the resistance value (Ω) with a four-terminal Ling/疋, and use this as the initial resistance value. In addition, the test piece is magnified by a microscope (magnification: 1 000 times) Observe that there is no indentation on the surface of the electrode on the side of the anisotropic conductive sheet. It is confirmed that the indenter is evaluated as 〇, and the indentation is not confirmed as x. 2. Manufacturing of the polymer microparticle manufacturing example 1 The four-necked flask of the condenser, the thermometer and the drip inlet was placed in 804 parts of deionized water, 1.2% of ammonia water, and 336. 6 parts of methanol. The mixture was added with 3_mercapto propylene by the drip inlet. Propyl trimethoxy zeshi shochu ("KBM503" manufactured by Shin-Etsu Chemical Co., Ltd.) 80 parts of a mixture of methanol 59.4 parts was used to hydrolyze 3-methyl propylene oxypropyl tridecyl decane. - Reaction „Essence of a polyoxanthene-fired particle (polymerizable polyoxo-fired particle) having a methyl propyl decyloxy group by a week. After the reaction is started for 2 hours, the obtained polyoxyxane particle is milk. The turbid liquid was sampled and the particle size was determined, and the number average particle diameter was 2.25 # m. Polyoxyethylene styrene phenyl ether sulphate as an emulsifier - Recording of a 20% aqueous solution of "High Tenor" ("High Tenor") is dissolved in 8 parts of deionized water. The solution was added to dissolve 80 parts of triallyl cyanurate (TAC), 2, 2,-azo (2,4-methylvaleronitrile) ("V-65" manufactured by Wako Pure Chemical Industries, Ltd.) 1.6 邛 / 谷 谷 谷 , , 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 One hour after the addition of the emulsion, the mixture was sampled and observed under a microscope to confirm that the polymerizable polychlorinated particles absorbed the monomer and was enlarged. Then, '8 parts of 20% aqueous solution of polyoxyethylene styrene phenyl ether sulfate ammonium salt and 20. 6 parts of deionized water were added to raise the temperature of the reaction liquid to 65 ° C under nitrogen atmosphere, and kept at 65 ° C 2 The radical polymerization of the monomer component was carried out in an hour. The emulsion obtained by radical polymerization was subjected to solid-liquid separation, and the obtained cake was washed with deionized water and decyl alcohol, and then vacuum-dried at i 2 Torr for 2 hours to obtain a polymer fine particle No. 1. Production Example 2 Polymer microparticles No. 2 was obtained in the same manner as in Production Example 1 except that the amount of the trially reacted cyanuric cyanurate was changed to 56. Production Example 3 A monomer fine particle was obtained in the same manner as in the production example except that 80 parts of triallyl cyanurate was changed to 56 parts of triallyl cyanurate (TAIC). 3. Production Example 4 With respect to the monomer component, 40 parts of triallyl cyanurate was changed to 40 parts of triallyl cyanurate and DVB960C manufactured by Nippon Steel Chemical Co., Ltd., and divinyl stupid was contained in 96% by mass. In the same manner as in Production Example 1, the polymer fine particles were obtained in the same manner as in Production Example 1. The production example 5 was changed to the trimeric cyanuric acid triene sulfonate in the monomer component. Part, styrene (the 〇 96 part and the dimercaptopropyl acid 38 201213347 hexanediol ester (16HX) 96 part of the combined fine particles N 〇. 5. Production Example 6 In the same manner as in Production Example 1, the polymerization was obtained. Polymeric poly; 5 oxime oxygenated particles into the four-necked flask from time to time, the formula k is more than 1800 deionized water, 25% ammonia, 9/1 plus feng shui 24, methanol 510, under stirring The formulation of 3_A, its T-based propylene oxypropyltrimethoxy oxime and decyl alcohol was changed to 3-methyl and propylene oxypropyltrimethoxy decane 80 and sterol 90 The polymerizable fine particle No. 6 was obtained in the same manner as in the case of the 〃 le 例 5 5 5 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The polymer was obtained in the same manner as in Production Example i except for the portion of the divinyl group 56. Particle No. 7. Production Example 8 The monomer component was changed to the styrene 120 portion of the triallyl cyanurate. Polymeric fine particles N〇. 8 were obtained in the same manner as in Production Example 1 except that the fluorene was partially di(methyl) acrylate or 6-hexanediol. The production example 9 methyl methacrylate (MMA) 90. The monomer mixture consisting of 90 parts of ternary methacrylate (TMPTMA) IO is suspended and polymerized 2 to obtain polymer microparticles N. 9. Production example 1 曱Methyl methacrylate The monomer mixture of 95 parts and 5 parts of ethylene glycol dimethacrylate was suspended and polymerized, and then fractionated to obtain polymer fine particles 39 201213347 Sub No. 10 Splitting Example 11 Isocyanuric isocyanurate (ΤΑIC) 15 parts and a monomer mixture composed of 35 parts of diisopropyl acetonate were suspended and polymerized, and then polymerized fine particles No. 11 were obtained by classification. Production Example 1 2 Four layers having a condenser tube, a thermometer, and a drip inlet The flask is filled with 720 parts of deionized water and 2% of 25% ammonia water. 480 parts of methanol were kept at 25 ° C. The bridged hard surface was dropped into the 6G part of the monomeric ethylene triacetate (KBM1GG3), and the internal temperature was kept at 25t for 15 knives. After the clock, add 32 parts of 20% aqueous solution of polyoxyethylene styrene phenyl ether sulfate ammonium salt ("High Ten〇r NF-08" manufactured by Daiichi Kogyo Co., Ltd.). Minute 'hydrolysis condensation reaction of ethylene triacetate calcination' to prepare an emulsion of a group of polychlorinated particles (polymeric polyoxo-fired particles) having an ethylene group. The emulsion of the polyoxyalkylene particles was sampled and the average particle size of the particle size was 2.25". Next, as the emulsification of the 丨 丨 取 ^ ^ 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一Ethylene vinyl ether bismuth sulphate - "High Tenor NF," manufactured by Pharmaceutical Co., Ltd.) 20% of the aqueous solution of 水溶液·〇 parts in 42 parts of deionized water. Then 960 (Nippon Steel Chemical Co., Ltd.) is added to the dissolution section. Polymerization starting agent 2 2, even s thin basic content 96 quality medicine industry company ^ ^ ^ double (8) dimethyl valeronitrile run light pure machine chemical industry company two:: solution 'to (four) quality mixed J table The monomer emulsion was transferred to the mother's minute 8 rpm. The monomer nipple was prepared for 5 minutes...the mixture was further stirred in the emulsion 40 201213347. The monomer latex was added for 1 hour. Then, the sampled reaction liquid was observed by a microscope to confirm that the specific polysiloxane particles absorbed the monomer composition and was enlarged. Next, the temperature was raised to 65 ° C in a nitrogen atmosphere, and radical polymerization was carried out by holding at 65 t: for 2 hours. After cooling the reaction solution, the obtained emulsion is solid-liquid separated, and the filter cake is deionized water and connected. After washing with decyl alcohol, heat treatment was carried out at 280 ° C for 1 hour under i 2 (drying at 2 hours' to obtain a polymer fine particle No. 1 2 . Production Example 13 was not subjected to a nitrogen atmosphere at 2 80. (: The polymer fine particles were obtained in the same manner as in Production Example 1 2 except that the heat treatment was performed for 1 hour. J 3 ^ Production Example 14 The formulation of the four-necked flask was changed to 68 parts of deionized water, In the same manner as in Production Example 2, the polymerized polyoxoxane particles were produced in the same manner as in Production Example 2, except that the ammonia water was used in the second portion and the methanol portion was changed to DVB 960 (Nippon Steel Chemical Co., Ltd. The monomer component was absorbed and the radical polymerization was carried out in the same manner as in Production Example 12 except that the content of the divinylbenzene (10) mass/〇2 was changed. After the reaction liquid was cooled, the obtained emulsion was subjected to solid-liquid separation. The filter cake was deionized water, followed by washing with methanol, and then dried at 12 Torr for 2 hours, and heat-treated at 350 ° C for 3 hours under a nitrogen atmosphere to obtain a polymer microparticle N 〇 14. Production Example 15 As an emulsifier, polyoxyethylene stupidated ethylene Acid and vinegar salt 41 201213347 (The first industrial pharmaceutical company, "υ· . Technology HighTenor (registered trademark) NF_08) 20% aqueous solution 1 part of the "^ < Long ion water 300 dissolved solution, added to dissolve two 50 parts of mercaptoacrylic acid 1,9-nonanyl alcohol ester, 50 parts of styrene, 2, 2,-azobis (2, 4-dimethyl valerate, hydrazine) (manufactured by Wako Pure Chemical Industries, Ltd.: "V -65") A solution of 2.0 parts, emulsifying and emulsifying the emulsion of the monomer component. The obtained emulsion was placed in a four-necked flask equipped with a condensation chelate, a ▲ meter, and a drip inlet, and diluted with 500 parts of deionized water. The reaction solution was heated to 65 ° C under a nitrogen atmosphere and kept at 65 C for 2 hours to carry out radical polymerization of the monomer component. The obtained emulsion was subjected to solid-liquid separation, and the mixture was washed with deuterated M deionized water and decyl alcohol, and then subjected to wet classification to obtain a polymer microparticle N. 15 by TC dry 焯. Production Example 16 Regarding the monomer component, a U 9 壬 壬 壬 二 与 与 与 与 与 50 50 50 50 50 50 50 X X X X X X X X X X X X X X The polymer fine particle No. 16 was obtained in the same manner as in the production example η 1 5 except for the first portion. Production Example 17 About the monomer component '1,9-nonanediol dimethacrylate 50 phenylene 50 In the same manner as in Production Example 15, the polymer microparticles were obtained in the same manner as in Production Example 15 except that the product was changed to DVB960 (manufactured by Nippon Steel Chemical Co., Ltd., divinylbenzene 3, 96 mass%). The 50 parts of the 1,9-nonanediol dimethacrylate and the 5G part of the ethylene group were changed to DVB57q (manufactured by Nippon Steel Chemical Co., Ltd., the basic content of diethyl ether was 57% by mass), and the other part was In the same manner as in Production Example 15, 5 μM fine particles N〇 were obtained. n 42 201213347 Production Example 1 9 Regarding the monomer component, 50 parts of 1,9-nonanediol methacrylate and phenylethyl group were used. The polymer microparticles N〇 were obtained in the same manner as in Production Example 15 except that 50 parts were changed to 25 parts of trimethylolpropane triacrylate and DVB960 (manufactured by Nippon Steel Chemical Co., Ltd., having a divinyl stear content of 96% by mass).丨9. Production Example 2 0 For the monomer component, 50 parts of 1,9-nonanediol dimercaptoacrylate and 50 parts of styrene were changed to 75 parts of trimethylolpropane triacrylate, DVB960 (New 曰The polymer fine particle No. 20 was obtained in the same manner as in Production Example 15 except that the content of the divinylbenzene was 96% by mass. The production example 21 gave 1,9-nonanediol dimercapto acrylate. 50 parts of the ester and 50 parts of styrene were changed to 50 parts of 1,6-hexanediol di(meth)acrylate, and 50 parts of DVB9 60 (manufactured by Nippon Steel Chemical Co., Ltd., divinylbenzene content: 96% by mass) The polymer fine particle No. 2:1 was obtained in the same manner as in Production Example 15. Production Example 22 The monomer component was changed to 50 parts of 1,9-nonanediol dimercaptoacrylate and 50 parts of styrene to dimethacrylic acid. 40 parts of ethylene glycol ester, 40 parts of styrene, and 20 parts of butyl methacrylate Example 1 5 The polymer fine particles N〇. 22 were obtained in the same manner. Production Example 23 The formulation in which a polymerized polysiloxane atom was placed in a four-necked flask was changed to 1 part of deionized water and 24 parts of 25% ammonia water. In the same manner as in Production Example 2, the polymerizable fine particles No. 23 were obtained in the same manner as in Production Example 2. Production Example 24 A formulation in which a polymerized polysiloxane atom was placed in a four-necked flask was changed to deionized water 750. The polymerizable fine particles No. 24 were obtained in the same manner as in Production Example 2 except that the portion was 25% aqueous ammonia and 2. 3. Production of Conductive Fine Particles After the polymer fine particles were etched with sodium hydroxide, they were sensitized with a dithigenated tin solution. Further, activation is carried out with a digastric palladium solution to form a palladium core. Next, the polymer fine particles forming the palladium core were immersed in an electroless nickel plating bath to form a nickel plating layer until the film became 0.1 μm, and then a gold substitution bond was applied to form a gold layer of 0.02//m. After washing with deionized water, it was replaced with alcohol and vacuum-dried to obtain conductive fine particles. 4. Production of an anisotropic conductive material 2 g of the conductive fine particles obtained above was mixed in an epoxy resin (manufactured by Mitsui Chemicals Co., Ltd.: "STRUCTBOND (registered) Trademark) XN_5A") 1〇〇g is dispersed to produce a conductive paste. With respect to the polymer fine particles No1 to 24 obtained above, the average particle diameter was measured, and the mechanical properties were evaluated. The results are shown in Table 3. Furthermore, in Tables i and 2, the evaluation of the breaking point load of the polymer microparticles N〇9~U, 13 is expressed as "unknown", even if the load is applied to 49fl]N (5gf), the damage point cannot be confirmed (4). The meaning. Further, the displacement-load curve of the polymer fine particles Ν〇·2, 5, 7, 8, 12, Μ is shown in Fig. 3. Further, the evaluation results of the anisotropic conductive material containing the conductive fine particles obtained above are collectively shown. 44 201213347 in Tables 1 to 3. [Table 1] c? 〇卜' OJ unknown 1 CT> 05 CO CD CM LO 1 1 CO 3757 1637 1008 Τ"Η CCNI Τ"* ο CO C<1 X ◦ o LO Bu CO Unknown 1 Η 〇 〇 1. 18 2· 16 4. 90 29751 17531 17495 25825 OJ ο 03⁄4 ο οα 〇Οϊ o 〇 (NJ o Unknown 1 0. 89 1. 96 5. 39 oo in o CO 21148 1 16190 24422 90562 <ΝΙ Ο OJ (ΝΙ 〇οο o 〇CO CO CO 00 LO (NI 卜 LO CO CO 〇ο CM C5 T—H 1—^ CO 6794 3800 3825 5577 (Γνί « _ι Ο 卜 eg X 卜 o 〇CO oo 〇·〇 〇〇LO ' Η 〇 2. 08 OJ CO 7. 86 1 0690 7779 1 8808 10404 (ΝΙ C3 »—« CO 〇ς〇LO 05 o CO 4. 69 but LO CO UO OO 〇 3.60 Destruction 1 21337 15434 1 7322 1 οα Τ~Η Ο CO cn 〇LO lo 00 C^I oo csi CO OO CO to LO CD 〇1.12 CO ,··< OJ 00 CO 8233 i 4880 5126 6765 CSJ Ο oo oo Oops LO oa CO CSI CD CO 〇ΙΛ 00 ο Csl CD 1-H CO CO CO 5. 98 8695 5830 6540 7621 CN3 1—^ Ο oo 〇 CO CO CN1 CN3 CO LO 卜 CO CO CO ο οο (Nl 2. 60 Destruction 9653 6201 6934 1 (ΝΙ Τ-Η Ο Bu 03⁄4 〇CM ο CO (=5 CO 4. 90 呀CO CO oo oo ο CO oo 3. 79 Destruction 9297 ”:6830 7694 1 CN1 C5 oo 〇T—^ S r—Η CO CD CO 1—Η CNI OO 寸 · CO CM oo o LO 1—^ CO CO Destruction 8286 5476 6056 1 οα 1—^ ο LO 05 〇 Conductive granules No. Specific monomer ratio (% by mass) Average particle size (//m), granules Variation coefficient of the diameter (%) Breaking point load (mN) Breaking compression displacement (%) 10% displacement 203⁄4 displacement 30% displacement 40% displacement 10% K 1 ! 20% Κ 30% Κ 40% Κ Metal layer film thickness (/ / m) Next resistance value (Ω) Indentation compression load value (mN) \ Substrate particle evaluation 45 201213347 [Table 2] Conductive fine particles No. 12 13 14 Substrate particles DVB960/KBM1003C mass ratio) 0. 7 0. 7 0. 4 Heat treatment temperature (°C) 280 - 350 Average particle size ("m) 2. 9 3. 0 2. 8 Particle size variation coefficient (%) 2. 8 2. 9 3. 0 Break point load (mN) 6. 53 Unknown 7. 60 Destructive compression displacement (%) 39. 5 - 41. 7 Compressed load value (mN) 10% displacement 1. 33 0. 76 1. 40 20% displacement 2. 80 1. 29 3. 10 30% displacement 5. 14 2. 12 5. 79 40% displacement damage 3. 22 7. 55 K value (N/mm2) 10%K 14544 8305 17554 20%Κ 10869 4939 13705 30°/〇Κ 10836 4434 13945 40°/〇Κ - 4368 11805 Evaluation of metal film thickness m) 0. 12 0 12 0. 12 Then the resistance value (Ω) 8. 7 13. 0 8. 5 Indentation 〇X 〇46 201213347 [Table 3]

Cvl 1 CO <>J 卜 (M 3. 40 CO CO 1—^ oo o 卜 1—^ 3. 54 破壞 10442 7795 8714 1 CNJ o LO 卜 〇 CO οα 1 寸· 03 Τ~Η LT> 05 呀 in 呀 oo o 2. 08 CO 寸 OJ 卜 oo 6235 4248 4963 6306 Cv3 〇> Ο Τ**Η 〇 <ΝΙ <Nl c=> 05 r—1 OO OJ 5. 10 CO D- CO oo 卜 o LO 3. 16 破壞 19967 13590 15467 I Cv3 o 05 OO 〇 100 05 oo (N1 7. 16 LO LO oo o CO LO 1—— CD OJ CO 7. 06 21715 14031 1 5995 22462 Csl <=> CD OO 〇 s 〇> o 1—^ m r^H OJ CO 卜 Cvl CO LO CO 却 05 o 1. 80 00 卜 co LO CM LO 1 36319 25549 29126 26244 (N1 —h 〇 LO σ> 〇 05 C5 <o ^ < LO o CO 3. 24 LO CO 呀 卜 <=> CO (N1 2. 00 3. 20 29793 ! 17325 15391 16024 OJ o LO OO 〇 oo 卜 LO LO CNI oo OJ 卜 co ς〇 CO 卜 卜 o o 2. 91 CNI LO 11752 7521 8502 9706 oa o σ> 〇 卜 CO CT> LO (N1 c— CNI 5. 39 o CM 呀 CM oo o oo 2. 96 5. 18 ! 12495 7941 8646 9836 CNI C5 卜 oo 〇 CO 〇> 〇 LO T~H T—H CO CS3 CO 0¾ o CO 卜 00 o 00 卜 3. 43 CO LO CD 34890 25225 26405 32635 <N1 〇 LO CD 〇 LO o LO LO 1—H CO 卜 ς〇 f-< CNI CO in o 2. 58 5. 59 破壞 41946 36452 43003 1 (N1 〇 卜 oo 〇 導電性微粒子No. 架橋劑比例(¾) 平均粒徑(ym) 粒徑的變動係數(%) 破壞點荷重(mN) 破壞壓縮位移(%) 10%位移 20%位移 30%位移 40%位移 1- ! 10%K 20%K 30%K 40%K 金屬層膜厚(μ m) 接著電阻值(Ω ) 壓痕 壓縮荷重值 (mN) 基材粒子 評估 47 201213347 如表卜3所不,於基材粒子使用破壞點荷重為9. 8mN 以下的聚合體微粒子之導電性微粒子N〇.卜6、12、14、 1 5〜24 ’均得到很低的連接電阻值。相對於此於基材粒子使 用破壞點荷重超過9· 8mN之聚合體微粒子之導電性微粒子 Νο·7、8、13及於基材使用無法明確地確認破壞點荷重之 聚合體微粒子之導電性微粒子Ν〇·9、1〇、u、13,連接電 阻值較高。 此外,於基材粒子使用10%κ值為735〇N/mm2以上的聚 合體微粒子的導電性微粒子肋.卜7、9、1〇、12、14、15~24, 於作為被著體的鋁電極上確認到壓痕。再者,比較導電性 微粒子No. 2、23、24,則可知平均粒徑越小,連接電阻值 變的越低。 [產業上的利用可能性] .本發明之聚合體微粒子,係可以9.W以下的很低的 壓力即可破壞。因& ’使用以本發明的聚合體微粒子作為 基材粒子之導電性微粒子’則將電極等加輯接時,可以 ::::力传到报大的連接面積。本發明的導電性微粒子 方性導電材料。 專膜異方性導電_等_ 【圖式簡單說明】 圖1係表示聚合體微粒子 圖2係表示聚合體微粒子 圖3係表示聚合體微粒子Cvl 1 CO <>J Bu (M 3. 40 CO CO 1—^ oo o Bu 1—^ 3. 54 Destruction 10442 7795 8714 1 CNJ o LO Buddy CO οα 1 inch · 03 Τ~Η LT> 05呀 in 呀 oo o 2. 08 CO inch OJ oo 6235 4248 4963 6306 Cv3 〇> Ο Τ**Η 〇<ΝΙ <Nl c=> 05 r-1 OO OJ 5. 10 CO D- CO Oo 卜 o LO 3. 16 destruction 19967 13590 15467 I Cv3 o 05 OO 〇100 05 oo (N1 7. 16 LO LO oo o CO LO 1 - CD OJ CO 7. 06 21715 14031 1 5995 22462 Csl <=&gt CD OO 〇s 〇> o 1—^ mr^H OJ CO Bu Cvl CO LO CO but 05 o 1. 80 00 Bu co LO CM LO 1 36319 25549 29126 26244 (N1 —h 〇LO σ> 〇05 C5 <o ^ < LO o CO 3. 24 LO CO 呀<=> CO (N1 2. 00 3. 20 29793 ! 17325 15391 16024 OJ o LO OO 〇oo 卜 LO LO CNI oo OJ 卜co ς 〇CO 卜卜oo 2. 91 CNI LO 11752 7521 8502 9706 oa o σ> CO卜CO CT> LO (N1 c- CNI 5. 39 o CM CM oo oo o oo 2. 96 5. 18 ! 12495 7941 8646 9836 CNI C5 oo 〇CO 〇> 〇LO T~HT-H CO CS3 CO 03⁄4 o CO 00 o 00 卜 3. 43 CO LO CD 34 890 25225 26405 32635 <N1 〇LO CD 〇LO o LO LO 1—H CO ς〇f-< CNI CO in o 2. 58 5. 59 Destruction 41946 36452 43003 1 (N1 oo oo 〇 conductive microparticles No. Bridge agent ratio (3⁄4) Average particle size (ym) Particle size variation coefficient (%) Break point load (mN) Destruction compression displacement (%) 10% displacement 20% displacement 30% displacement 40% displacement 1-! 10 %K 20%K 30%K 40%K Metal layer film thickness (μ m) Next resistance value (Ω) Indentation compression load value (mN) Substrate particle evaluation 47 201213347 As shown in Table 3, in the substrate particles The conductive fine particles N?. 6, 12, 14, and 1 5 to 24' of the polymer fine particles having a breaking point load of 9.8 mN or less were used to obtain a very low connection resistance value. In contrast, in the case where the substrate particles are used, the conductive fine particles of the polymer fine particles having a breaking point load of more than 9.8 mN are used, and the conductive fine particles of the polymer fine particles which cannot clearly confirm the breaking point load are used for the substrate. Ν〇·9, 1〇, u, 13, the connection resistance value is high. Further, in the substrate particles, conductive microparticle ribs of 7, 10, ≤, 12, 14, and 15 to 24, which are polymer microparticles having a κ value of 735 〇N/mm 2 or more, are used as the object. An indentation was confirmed on the aluminum electrode. Further, when the conductive fine particles No. 2, 23, and 24 were compared, it was found that the smaller the average particle diameter, the lower the connection resistance value. [Industrial Applicability] The polymer fine particles of the present invention can be destroyed at a very low pressure of 9. W or less. When <' uses the polymer fine particles of the present invention as the conductive fine particles of the substrate particles, when the electrodes and the like are added together, the :::: force can be transmitted to the large connection area. The conductive fine particle-shaped conductive material of the present invention. Special film anisotropy conduction _ etc. _ [Simple diagram of the diagram] Fig. 1 shows the polymer microparticles. Fig. 2 shows the polymer microparticles. Fig. 3 shows the polymer microparticles.

No. 2、7的位移之負荷曲線。 N〇. 5、8的位移之負荷曲線。 ⑽· 12、13的位移之負荷曲 48 201213347 線。 【主要元件符號說明 無No. 2, 7 displacement load curve. N〇. 5, 8 displacement load curve. (10)· 12, 13 displacement load 48 201213347 line. [Main component symbol description

Claims (1)

201213347 七、申請專利範圍: 1. —種聚合體微粒子,其特徵在於:破壞點荷重為 9. 8mN(l. 〇gf)以下。 2. 如申請專利範圍帛i項所述的聚合體微粒子其中 10°/〇K ^^N/nnnHTSOkgf/mm^^gooON/m^csoookgf/ mm2) 〇 3. 如申請專利範圍第i或2項所述的聚合體微粒子 其中平均粒徑為〇. 5/i m~12v m。 4. 如申請專利範圍第1或2項所述的聚合體微粒子 其中破壞壓縮位移為2 5 %以上。 5. 如申請專利範圍第!或2項所述的聚合體微粒子 其中30%位移時的壓縮荷重為丨.96mN(〇. 2gf)以上。 6. 如申請專利範圍第!或2項所述的聚合體微粒子 其中平均粒徑4 G.5#m〜12^m,破壞i缩位移為25%』 上,30%位移時壓縮荷重為196mN(〇2gf)以上。 7. 一種導電性微粒子,其特徵在於:於申請專利範β 第1或2項所述的聚合體微粒子的表面具有導電性金』 層 〇 8. —種異方性導電材料,其特徵在於··包含申請專利 範圍第7項所述的導電性微粒子。 50201213347 VII. Patent application scope: 1. A kind of polymer microparticles, characterized in that the load at the breaking point is 9.8 mN (l. 〇gf) or less. 2. For example, the polymer microparticles described in the scope of patent application 帛i are 10°/〇K ^^N/nnnHTSOkgf/mm^^gooON/m^csoookgf/ mm2) 〇3. If the application scope is i or 2 The average particle diameter of the polymer microparticles is 〇. 5/im~12v m. 4. The polymer microparticles according to claim 1 or 2, wherein the breaking compression displacement is 25% or more. 5. If you apply for a patent scope! Or the polymer microparticles according to item 2, wherein the compression load at 30% displacement is 丨.96 mN (〇. 2gf) or more. 6. If you apply for a patent scope! Or the polymer microparticles according to item 2, wherein the average particle diameter is 4 G.5#m to 12^m, and the deformation shrinkage is 25%", and the compression load at 30% displacement is 196mN (〇2gf) or more. A conductive microparticle having a conductive gold layer on the surface of the polymer microparticles according to claim 1 or 2, wherein the anisotropic conductive material is characterized by - The conductive fine particles described in claim 7 of the patent application. 50
TW100128489A 2010-08-11 2011-08-10 Polymeric microparticles, conductive microparticles, and anisotropic conductive material TW201213347A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010180616 2010-08-11
JP2011025438 2011-02-08

Publications (1)

Publication Number Publication Date
TW201213347A true TW201213347A (en) 2012-04-01

Family

ID=45567761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128489A TW201213347A (en) 2010-08-11 2011-08-10 Polymeric microparticles, conductive microparticles, and anisotropic conductive material

Country Status (5)

Country Link
JP (1) JP5245011B2 (en)
KR (1) KR101469004B1 (en)
CN (1) CN103097421B (en)
TW (1) TW201213347A (en)
WO (1) WO2012020799A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956906B2 (en) * 2012-10-29 2016-07-27 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same
JP2014159549A (en) * 2012-12-06 2014-09-04 Sekisui Chem Co Ltd Method of producing organic inorganic hybrid particle, conductive particle, conductive material and connection structure
CN104718241B (en) * 2012-12-06 2016-11-23 积水化学工业株式会社 Organic inorganic hybridization particle, electroconductive particle, conductive material and connection structural bodies
JP6231374B2 (en) * 2012-12-31 2017-11-15 株式会社ドクサンハイメタル Conductive particles for touch screen panel and conductive material containing the same
JP6438194B2 (en) * 2013-01-24 2018-12-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP6306876B2 (en) * 2013-01-24 2018-04-04 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP2014207193A (en) * 2013-04-15 2014-10-30 株式会社日本触媒 Electroconductive particulates and anisotropic electroconductive material using the same
JP6357413B2 (en) * 2013-12-24 2018-07-11 積水化学工業株式会社 Conductive material and connection structure
JP6737566B2 (en) * 2014-01-14 2020-08-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
WO2015174195A1 (en) 2014-05-12 2015-11-19 積水化学工業株式会社 Electroconductive particles, conductive material, and connection structure
JP6737572B2 (en) * 2014-08-14 2020-08-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP6734159B2 (en) * 2015-09-30 2020-08-05 積水化学工業株式会社 Conductive particles, conductive material and connection structure
CN107849428B (en) * 2015-11-20 2021-09-28 积水化学工业株式会社 Particle, connecting material, and connecting structure
EP3378915A4 (en) 2015-11-20 2019-07-03 Sekisui Chemical Co., Ltd. Connecting material and connection structure
WO2017086455A1 (en) * 2015-11-20 2017-05-26 積水化学工業株式会社 Particles, connecting material and connection structure
JP7453738B2 (en) 2016-11-04 2024-03-21 積水化学工業株式会社 Base material particles, conductive particles, conductive materials, connection materials and connection structures
WO2018181694A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
JP6446514B2 (en) * 2017-08-28 2018-12-26 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same
JP6755991B2 (en) * 2019-03-11 2020-09-16 宇部エクシモ株式会社 Method for producing hydrophilic particles
CN114730645A (en) * 2019-11-15 2022-07-08 日本化学工业株式会社 Conductive particle, method for producing same, and conductive material containing conductive particle
CN113881084B (en) * 2020-07-03 2024-02-06 宇部爱科喜模株式会社 Method for producing hydrophilic particles, and hydrophilic particles
WO2023136204A1 (en) * 2022-01-12 2023-07-20 積水化学工業株式会社 Substrate particles, conductive particles, conductive material, and connection structure
WO2023145664A1 (en) * 2022-01-27 2023-08-03 積水化学工業株式会社 Conductive particles, conductive material, and connection structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
JP3088069B2 (en) * 1994-07-12 2000-09-18 株式会社日本触媒 Method for producing organic-inorganic composite particles
JP3294146B2 (en) * 1997-03-21 2002-06-24 早川ゴム株式会社 Metal-coated fine particles and conductive materials
JP2003308728A (en) * 1998-07-16 2003-10-31 Sony Chem Corp Conductive particle for anisotropic conductive adhesive
JP5367931B2 (en) * 2001-09-11 2013-12-11 株式会社日本触媒 Vinyl-based crosslinked resin particles, production method thereof and use thereof
JP4527495B2 (en) * 2004-10-22 2010-08-18 株式会社日本触媒 Polymer fine particles and method for producing the same, conductive fine particles
KR100667374B1 (en) * 2004-12-16 2007-01-10 제일모직주식회사 Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
WO2006109556A1 (en) * 2005-03-31 2006-10-19 Nisshinbo Industries, Inc. Spherical polymer fine particles and process for production thereof
JP5466022B2 (en) * 2010-01-19 2014-04-09 株式会社日本触媒 Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Also Published As

Publication number Publication date
WO2012020799A1 (en) 2012-02-16
CN103097421B (en) 2015-05-20
JP5245011B2 (en) 2013-07-24
CN103097421A (en) 2013-05-08
JPWO2012020799A1 (en) 2013-10-28
KR101469004B1 (en) 2014-12-04
KR20130054324A (en) 2013-05-24

Similar Documents

Publication Publication Date Title
TW201213347A (en) Polymeric microparticles, conductive microparticles, and anisotropic conductive material
KR101454194B1 (en) Conductive microparticle, resinparticle, and anisotropic conductive material using same
JP6215403B2 (en) Organic-inorganic composite particles, dispersion containing the same, and resin composition
JP2012036335A (en) Polymer fine particle and conductive fine particle
JP5583647B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
TWI577727B (en) Anisotropic conductive film, composition included in the anisotropic conductive film and device including the anisotropic conductive film
CN115516002A (en) Compound, method for producing compound, adhesive composition, and adhesive tape
JP5498907B2 (en) Resin particles, insulated conductive particles and anisotropic conductive materials using the same
JP2014192051A (en) Electroconductive particulates and anisotropic electroconductive material using the same
TW201437310A (en) Anisotropic conductive film and semiconductor device
JP5998048B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2006117850A (en) Polymer fine particles and production process thereof, conductive fine particles
TWI587761B (en) Adhesive composition, film-like adhesive, adhesive sheet, circuit-connected body, method for connecting circuit component, use of adhesive composition, use of film-like adhesive and use of adhesive sheet
TW201226195A (en) Optical member comprising anisotropic conductive film
JP5956906B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6002026B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014116112A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP5567458B2 (en) Polymer particles, and conductive fine particles and anisotropic conductive materials using the same
JP5583714B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5583654B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5998018B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014080485A (en) Crosslinked polymer particle, conductive particle, anisotropic conductive material and connection structure for circuit member
JP6136182B2 (en) Crosslinked polymer particle, conductive particle, anisotropic conductive material, and connection structure of circuit member