JP5554077B2 - Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body - Google Patents

Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body Download PDF

Info

Publication number
JP5554077B2
JP5554077B2 JP2010008868A JP2010008868A JP5554077B2 JP 5554077 B2 JP5554077 B2 JP 5554077B2 JP 2010008868 A JP2010008868 A JP 2010008868A JP 2010008868 A JP2010008868 A JP 2010008868A JP 5554077 B2 JP5554077 B2 JP 5554077B2
Authority
JP
Japan
Prior art keywords
fine particles
anisotropic conductive
amino resin
conductive
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010008868A
Other languages
Japanese (ja)
Other versions
JP2011086598A (en
Inventor
令晋 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010008868A priority Critical patent/JP5554077B2/en
Publication of JP2011086598A publication Critical patent/JP2011086598A/en
Application granted granted Critical
Publication of JP5554077B2 publication Critical patent/JP5554077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁性微粒子被覆導電性微粒子に関する。より詳細には、本発明は、導電性微粒子の表面に有機無機複合微粒子が存在してなる絶縁性微粒子被覆導電性微粒子に関する。本発明は、また、このような絶縁性微粒子被覆導電性微粒子を含む異方性導電接着剤組成物に関する。さらに、本発明は、このような異方性導電接着剤組成物から得られる異方性導電成形体に関する。   The present invention relates to conductive fine particles coated with insulating fine particles. More specifically, the present invention relates to insulating fine particle-coated conductive fine particles in which organic-inorganic composite fine particles are present on the surface of conductive fine particles. The present invention also relates to an anisotropic conductive adhesive composition containing such insulating fine particle-coated conductive fine particles. Furthermore, this invention relates to the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition.

導電性粒子の表面を絶縁層で被覆した絶縁被覆導電性粒子は、電気接続用異方導電材料として電極間に配置させた場合、該電極間に圧力または熱および圧力を作用させることで、電極間を結ぶ方向に導電性を生じさせる。さらに、このような絶縁被覆導電性粒子においては、該粒子間には必ず絶縁層が存在するので、目的としない横方向の導通の発生に起因する横方向の短絡を効果的に抑制することができる。   Insulating coated conductive particles whose surfaces are coated with an insulating layer are arranged between electrodes as an anisotropic conductive material for electrical connection. By applying pressure or heat and pressure between the electrodes, Conductivity is generated in the connecting direction. Further, in such insulating coated conductive particles, since an insulating layer always exists between the particles, it is possible to effectively suppress a lateral short circuit due to the occurrence of undesired lateral conduction. it can.

例えば、導電性材料からなる微粒子を電気絶縁性物質の皮膜で被覆した電気接続用異方導電性粒子が提案されている(特許文献1、特に、図2参照)。また、特許文献1に記載の発明の応用として、導電性微粒子の表面に圧力により破れる絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献2)、導電性微粒子の表面に加熱により流動性が増加する絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献3)、導電性微粒子の表面に少なくとも2層の絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献4)、導電性微粒子の表面に所定の被覆状態に制御した絶縁性樹脂被覆層が形成された絶縁被覆導電性微粒子(特許文献5)、導電性粒子の表面に特定の表面処理を施した絶縁性樹脂被覆層が形成された絶縁被覆導電粒子(特許文献6、7)が提案されている。   For example, anisotropic conductive particles for electrical connection in which fine particles made of a conductive material are covered with a film of an electrically insulating substance have been proposed (see Patent Document 1, particularly FIG. 2). In addition, as an application of the invention described in Patent Document 1, insulating coated conductive fine particles (Patent Document 2) in which an insulating resin coating layer that is torn by pressure is formed on the surface of the conductive fine particles, the surface of the conductive fine particles is heated. Insulating coated conductive fine particles (Patent Document 3) in which an insulating resin coating layer having increased fluidity is formed, and insulating coated conductive fine particles (in which at least two insulating resin coating layers are formed on the surface of the conductive fine particles ( Patent Document 4), insulating coated conductive fine particles (Patent Document 5) in which an insulating resin coating layer controlled to a predetermined covering state is formed on the surface of the conductive fine particles, and the surface of the conductive particles is subjected to a specific surface treatment. Insulating coated conductive particles (Patent Documents 6 and 7) on which an insulating resin coating layer is formed have been proposed.

他方、導電性微粒子の外周に絶縁性材料を微粒子の形で設けて絶縁被覆導電性微粒子とする形態が知られている。このような形態で用いられる絶縁性微粒子としては、例えば、エポキシ樹脂、ポリオレフィン樹脂、アクリル樹脂、スチレン樹脂等を材質とする絶縁性微粒子(特許文献8、特に、実施例では架橋アクリル樹脂を使用)、水酸基を表面に有する無機酸化物微粒子(特許文献9、特に、実施例ではシリカ微粒子を使用)、無機酸化物(特許文献10、特に実施例ではシリカ微粒子)が報告されている。   On the other hand, a form in which an insulating material is provided in the form of fine particles on the outer periphery of the conductive fine particles to form insulating coated conductive fine particles is known. As the insulating fine particles used in such a form, for example, insulating fine particles made of an epoxy resin, a polyolefin resin, an acrylic resin, a styrene resin or the like (Patent Document 8, in particular, a crosslinked acrylic resin is used in Examples) Further, inorganic oxide fine particles having a hydroxyl group on the surface (Patent Document 9, particularly using silica fine particles in Examples) and inorganic oxides (Patent Document 10, particularly silica fine particles in Examples) have been reported.

しかし、従来公知の絶縁性微粒子(例えば、架橋アクリル樹脂微粒子、架橋アクリルスチレン樹脂微粒子、シリカ微粒子など)を導電性微粒子の外周に設けた場合、絶縁性微粒子の導電性微粒子に対する密着性が不十分であるため、異方性導電接着剤組成物を作製する際に、絶縁性微粒子が導電性微粒子表面から脱落しやすいという問題がある。そのため、最終的に異方性導電成形体として使用した場合に、導通性は問題ないものの、絶縁信頼性に劣るという問題がある。   However, when conventionally known insulating fine particles (for example, crosslinked acrylic resin fine particles, crosslinked acrylic styrene resin fine particles, silica fine particles, etc.) are provided on the outer periphery of the conductive fine particles, the adhesion of the insulating fine particles to the conductive fine particles is insufficient. Therefore, when producing an anisotropic conductive adhesive composition, there is a problem that the insulating fine particles are easily dropped from the surface of the conductive fine particles. Therefore, when finally used as an anisotropic conductive molded article, although there is no problem in conductivity, there is a problem that the insulation reliability is inferior.

特許第2794009号公報Japanese Patent No. 2779409 特開2000−67647号公報JP 2000-67647 A 特開2000−100249号公報Japanese Patent Laid-Open No. 2000-100239 特開2000−129157号公報JP 2000-129157 A 特開2004−146261号公報JP 2004-146261 A 特開2005−63904号公報JP 2005-63904 A 特開2006−236759号公報JP 2006-236759 A 特開2006−59721号公報JP 2006-59721 A 特開2009−170414号公報JP 2009-170414 A 特開2009−102731号公報JP 2009-102731 A

本発明の課題は、導電性微粒子の表面に絶縁性微粒子が存在してなる絶縁性微粒子被覆導電性微粒子であって、絶縁性微粒子が導電性微粒子の表面から脱落し難い、絶縁性微粒子被覆導電性微粒子を提供することにある。また、このような絶縁性微粒子被覆導電性微粒子を含む異方性導電接着剤組成物を提供することにある。さらに、このような異方性導電接着剤組成物から得られる異方性導電成形体を提供することにある。   An object of the present invention is an insulating fine particle-coated conductive fine particle in which an insulating fine particle exists on the surface of the conductive fine particle, and the insulating fine particle is difficult to fall off from the surface of the conductive fine particle. Providing fine particles. Another object of the present invention is to provide an anisotropic conductive adhesive composition containing such insulating fine particle-coated conductive fine particles. Furthermore, it is providing the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition.

本発明の絶縁性微粒子被覆導電性微粒子は、導電性微粒子の表面に平均粒子径1μm以下のアミノ樹脂微粒子が存在してなる。   The insulating fine particle-coated conductive fine particles of the present invention comprise amino resin fine particles having an average particle diameter of 1 μm or less on the surface of the conductive fine particles.

本発明の異方性導電接着剤組成物は、本発明の絶縁性微粒子被覆導電性微粒子がバインダー樹脂中に分散してなる。   The anisotropic conductive adhesive composition of the present invention is obtained by dispersing the insulating fine particle-coated conductive fine particles of the present invention in a binder resin.

本発明の異方性導電成形体は、本発明の異方性導電接着剤組成物から得られる。   The anisotropic conductive molded body of the present invention is obtained from the anisotropic conductive adhesive composition of the present invention.

本発明によれば、導電性微粒子の表面に絶縁性微粒子が存在してなる絶縁性微粒子被覆導電性微粒子であって、絶縁性微粒子が導電性微粒子の表面から脱落し難い、絶縁性微粒子被覆導電性微粒子を提供することができる。また、このような絶縁性微粒子被覆導電性微粒子を含む異方性導電接着剤組成物を提供することができる。さらに、このような異方性導電接着剤組成物から得られる異方性導電成形体を提供することができる。   According to the present invention, insulating fine particle-coated conductive fine particles in which insulating fine particles are present on the surface of the conductive fine particles, the insulating fine particles are unlikely to fall off from the surface of the conductive fine particles, Fine particles can be provided. Moreover, an anisotropic conductive adhesive composition containing such insulating fine particle-coated conductive fine particles can be provided. Furthermore, the anisotropic conductive molded object obtained from such an anisotropic conductive adhesive composition can be provided.

≪A.絶縁性微粒子被覆導電性微粒子≫
本発明の絶縁性微粒子被覆導電性微粒子は、導電性微粒子の表面に平均粒子径1μm以下のアミノ樹脂微粒子が存在してなる。
≪A. Conductive fine particles coated with insulating fine particles >>
The insulating fine particle-coated conductive fine particles of the present invention comprise amino resin fine particles having an average particle diameter of 1 μm or less on the surface of the conductive fine particles.

本発明の絶縁性微粒子被覆導電性微粒子は、絶縁性微粒子として平均粒子径1μm以下のアミノ樹脂微粒子を有しているので、絶縁性微粒子が導電性微粒子の表面から脱落し難い。   The insulating fine particle-coated conductive fine particles of the present invention have amino resin fine particles having an average particle diameter of 1 μm or less as the insulating fine particles, so that the insulating fine particles are difficult to drop off from the surface of the conductive fine particles.

<A−1.導電性微粒子>
上記導電性微粒子は、基材粒子と該基材粒子表面を被覆する導電性金属層を有する。
<A-1. Conductive fine particles>
The conductive fine particles have substrate particles and a conductive metal layer that covers the surface of the substrate particles.

上記基材粒子は、導電性微粒子の基材粒子として用い得るものであれば、任意の適切な基材粒子を採用し得る。このような基材粒子の材料としては、例えば、シリカなどの無機材料;シリコーン樹脂(ポリメチルシルセスキオキサン、フェニルシルセスキオキサン)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリブタジエンなど)、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、ポリスルホン、ポリカーボネート、フェノール樹脂、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、尿素樹脂などの有機材料;有機無機複合材料;などが挙げられる。これらの中でも、適度な弾性率や回復特性を有する点で、ビニル重合体樹脂((メタ)アクリル樹脂、スチレン樹脂、(メタ)アクリル−スチレン樹脂など)、アミノ樹脂(メラミン樹脂、メラミン−ベンゾグアナミン樹脂、ベンゾグアナミン樹脂など)、有機無機複合材料が好ましい。有機無機複合材料としては、任意の適切な有機無機複合材料を採用し得る。好ましくは、後述する、絶縁性微粒子として用いるアミノ樹脂微粒子の形態3における有機無機複合微粒子の形態a)〜e)と同様の形態のものを採用し得る。有機無機複合材料としては、また、特開2003−183337号公報や特開平8−81561号公報などに記載されているものを好ましく採用し得る。   Any appropriate base material particle can be adopted as the base material particle as long as it can be used as the base material particle of the conductive fine particles. Examples of the material for the base particles include inorganic materials such as silica; silicone resins (polymethylsilsesquioxane, phenylsilsesquioxane), polyolefin resins (polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride). , Polytetrafluoroethylene, polybutadiene, etc.), vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin etc.), polysulfone, polycarbonate, phenolic resin, amino resin (melamine resin, melamine-benzoguanamine) Resin, benzoguanamine resin, etc.), organic materials such as urea resin; organic-inorganic composite materials; and the like. Among these, vinyl polymer resin ((meth) acrylic resin, styrene resin, (meth) acrylic-styrene resin, etc.), amino resin (melamine resin, melamine-benzoguanamine resin) in terms of having an appropriate elastic modulus and recovery characteristics. Benzoguanamine resin, etc.) and organic-inorganic composite materials are preferred. Any appropriate organic-inorganic composite material can be adopted as the organic-inorganic composite material. Preferably, those having the same form as the forms a) to e) of the organic-inorganic composite fine particles in the form 3 of the amino resin fine particles used as insulating fine particles, which will be described later, can be employed. As the organic-inorganic composite material, those described in JP-A No. 2003-183337 and JP-A No. 8-81561 can be preferably employed.

上記基材粒子の平均粒子径は、好ましくは1μm以上、より好ましくは1〜100μm、さらに好ましくは1〜50μm、特に好ましくは1〜20μm、最も好ましくは1〜10μmである。上記基材粒子の平均粒子径が1μm未満の場合、無電解めっきなどで導電性金属層を被覆する際に、粒子が凝集し易くなり、均一な導電性金属層を形成できないおそれがある。上記基材粒子の平均粒子径が100μmを超えると、導電性微粒子とした際の用途が限られてしまい、工業上の利用分野が少なくなってしまうおそれがある。平均粒子径の評価方法は後述する。   The average particle diameter of the substrate particles is preferably 1 μm or more, more preferably 1 to 100 μm, still more preferably 1 to 50 μm, particularly preferably 1 to 20 μm, and most preferably 1 to 10 μm. When the average particle diameter of the substrate particles is less than 1 μm, when the conductive metal layer is coated by electroless plating or the like, the particles are likely to aggregate and there is a possibility that a uniform conductive metal layer cannot be formed. When the average particle diameter of the substrate particles exceeds 100 μm, the use of conductive fine particles is limited, and there is a risk that the industrial application field may be reduced. The method for evaluating the average particle size will be described later.

上記導電性金属層を構成する金属としては、任意の適切な金属を採用し得る。このような金属としては、例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ニッケル、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム、ニッケル−リン、ニッケル−ホウ素などの金属や金属化合物、および、これらの合金などが挙げられる。これらの中でも、導電性に優れ、工業的に安価である点で、金、銀、銅、ニッケルが好ましい。   Any appropriate metal can be adopted as the metal constituting the conductive metal layer. Examples of such metals include gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, nickel, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt, indium, nickel-phosphorus, nickel. -Metals and metal compounds such as boron, and alloys thereof. Among these, gold, silver, copper, and nickel are preferable because they are excellent in conductivity and industrially inexpensive.

上記導電性金属層の厚みは、好ましくは10〜500nm、より好ましくは20〜400nm、さらに好ましくは50〜300nmである。上記導電性金属層の厚みが10nm未満の場合、導電性微粒子として異方性導電接着剤組成物に用いた場合に、安定した電気的接続を維持し難くなるおそれがある。上記導電性金属層の厚みが500nmを超える場合、導電性微粒子としたときの表面の硬度が高くなりすぎ、回復率等の機械的特性を十分に発揮できないおそれがある。   The thickness of the conductive metal layer is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm. When the conductive metal layer has a thickness of less than 10 nm, it may be difficult to maintain a stable electrical connection when used as an anisotropic conductive adhesive composition as conductive fine particles. When the thickness of the conductive metal layer exceeds 500 nm, the surface hardness when the conductive fine particles are formed becomes too high, and there is a possibility that the mechanical properties such as the recovery rate cannot be sufficiently exhibited.

上記導電性金属層は、その表面に、実質的な割れや、導電性金属層が形成されていない面が存在しないものであることが好ましい。ここで、「実質的な割れや、導電性金属層が形成されていない面」とは、電子顕微鏡(倍率1000倍)を用いて任意の10000個の導電性微粒子の表面を観察した場合に、導電性金属層の割れ、および、基材粒子表面の露出が、実質的に目視で観察されないことを意味する。   The conductive metal layer preferably has no substantial cracks or a surface on which no conductive metal layer is formed on the surface. Here, “substantially cracked or a surface on which the conductive metal layer is not formed” means that when the surface of any 10,000 conductive fine particles is observed using an electron microscope (magnification 1000 times), It means that the crack of the conductive metal layer and the exposure of the surface of the base material particles are not substantially visually observed.

上記基材粒子の表面に導電性金属層を被覆する方法は、任意の適切な方法を採用し得る。例えば、無電解めっき法、置換めっき法などによるめっき方法;金属微粉を単独またはバインダーに混ぜ合わせて得られるペーストを基材粒子にコーティングする方法;真空蒸着、イオンプレーティング、イオンスパッタリングなどの物理的蒸着方法;などが挙げられる。これらの中でも、大掛かりな装置を必要とせず、容易に導電性金属層を形成できる点で、無電解めっき法が好ましい。   Arbitrary appropriate methods can be employ | adopted for the method of coat | covering the electroconductive metal layer on the surface of the said base particle. For example, plating method by electroless plating method, displacement plating method, etc .; method of coating a base particle with a paste obtained by mixing metal fine powder alone or in a binder; physical such as vacuum deposition, ion plating, ion sputtering Vapor deposition method; and the like. Among these, the electroless plating method is preferable because a conductive metal layer can be easily formed without requiring a large-scale apparatus.

通常、無電解めっき法は、(1)親水化工程(エッチング)、(2)触媒化工程、(3)無電解めっき工程、の3工程からなる。親水化工程(エッチング)は、基材粒子の種類に応じて、省略することができる。   In general, the electroless plating method includes three steps: (1) a hydrophilization step (etching), (2) a catalyst step, and (3) an electroless plating step. The hydrophilization step (etching) can be omitted depending on the type of the base particle.

上記親水化工程(エッチング)は、基材粒子の表面に微小な凹凸を形成して、導電性金属層の密着を良くするために行われる。上記親水化工程(エッチング)は、例えば、クロム酸、硫酸−クロム酸混液、過マンガン酸溶液等の酸化剤;塩酸、硫酸等の強酸;水酸化ナトリウム、水酸化カリウム等の強アルカリ溶液;などを用いて、基材粒子の表面に微小な凹凸を形成する。   The hydrophilization step (etching) is performed in order to improve the adhesion of the conductive metal layer by forming minute irregularities on the surface of the substrate particles. The hydrophilization step (etching) includes, for example, an oxidizing agent such as chromic acid, sulfuric acid-chromic acid mixed solution, permanganic acid solution; strong acid such as hydrochloric acid and sulfuric acid; strong alkaline solution such as sodium hydroxide and potassium hydroxide; Is used to form minute irregularities on the surface of the substrate particles.

上記触媒化工程は、基材粒子の表面に無電解めっき工程の起点となり得る触媒層を形成するために行われる。触媒層を形成する方法としては、任意の適切な方法を採用し得る。例えば、無電解めっき用として市販されている触媒化試薬などを用いて行うことができる。このような市販されている触媒化試薬としては、例えば、ピンクシューマー(日本カニゼン株式会社製)、レッドシューマー(日本カニゼン株式会社製)などが挙げられる。触媒層を形成する方法としては、具体的には、例えば、塩化パラジウムと塩化スズとからなる溶液に基材粒子を浸漬した後、硫酸、塩酸等の強酸や水酸化ナトリウム等の強アルカリ溶液で活性化してパラジウムを基材粒子表面に析出させる方法;硫酸パラジウム溶液に基材粒子を浸漬した後、ジメチルアミンボラン等の還元剤を含む溶液で活性化してパラジウムを基材粒子表面に析出させる方法;などが挙げられる。   The catalyzing step is performed in order to form a catalyst layer that can serve as a starting point for the electroless plating step on the surface of the substrate particles. Any appropriate method can be adopted as a method of forming the catalyst layer. For example, it can be carried out using a catalytic reagent etc. commercially available for electroless plating. Examples of such commercially available catalyzing reagents include pink summers (manufactured by Nippon Kanisen Co., Ltd.) and red summers (manufactured by Nippon Kanisen Co., Ltd.). As a method for forming the catalyst layer, specifically, for example, after immersing the substrate particles in a solution composed of palladium chloride and tin chloride, a strong acid such as sulfuric acid or hydrochloric acid or a strong alkali solution such as sodium hydroxide is used. Method of activating and precipitating palladium on the surface of the base particle; Method of activating palladium with a solution containing a reducing agent such as dimethylamine borane after immersing the base particle in a palladium sulfate solution and precipitating palladium on the surface of the base particle And so on.

上記無電解めっき工程においては、好ましくは、基材粒子を水性媒体に十分に分散させ、水性スラリーを調製する。ここで、基材粒子は水性媒体に十分に分散させておくことが好ましい。基材粒子が凝集した状態で導電性金属層が形成すると、未処理面が露出するおそれがある。基材粒子の分散は、任意の適切な分散方法を採用し得る。例えば、通常撹拌、高速撹拌、コロイドミルやホモジナイザーのようなせん断分散装置を用いた分散、などが挙げられる。分散の際に、超音波照射を併用しても良い。また、分散の際に、界面活性剤などの分散剤を用いても良い。   In the electroless plating step, preferably, the base particles are sufficiently dispersed in an aqueous medium to prepare an aqueous slurry. Here, the base particles are preferably sufficiently dispersed in an aqueous medium. If the conductive metal layer is formed in a state where the base particles are aggregated, the untreated surface may be exposed. Arbitrary appropriate dispersion methods can be employ | adopted for dispersion | distribution of a base particle. For example, normal stirring, high speed stirring, dispersion using a shearing dispersion device such as a colloid mill or a homogenizer, and the like can be mentioned. When dispersing, ultrasonic irradiation may be used in combination. Moreover, you may use dispersing agents, such as surfactant, in the case of dispersion | distribution.

次いで、金属塩、還元剤、錯化剤などを含んだ無電解めっき浴に、上記分散処理した基材粒子スラリーを添加し、無電解めっきを行う。   Next, the dispersion-treated substrate particle slurry is added to an electroless plating bath containing a metal salt, a reducing agent, a complexing agent, etc., and electroless plating is performed.

上記金属塩としては、例えば、導電性金属層を構成する金属として上述した金属の塩が挙げられる。例えば、ニッケル塩を用いる場合、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられる。無電解めっき浴中における上記金属塩の濃度は、所望の厚みの導電性金属層が形成されるように、基材粒子のサイズ(表面積)に応じて適宜設定すれば良い。   As said metal salt, the salt of the metal mentioned above as a metal which comprises a conductive metal layer is mentioned, for example. For example, when nickel salt is used, nickel chloride, nickel sulfate, nickel acetate and the like can be mentioned. What is necessary is just to set the density | concentration of the said metal salt in an electroless-plating bath suitably according to the size (surface area) of a base particle so that the electroconductive metal layer of desired thickness may be formed.

上記還元剤としては、次亜燐酸ナトリウム、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジンなどが挙げられる。   Examples of the reducing agent include sodium hypophosphite, dimethylamine borane, sodium borohydride, potassium borohydride, hydrazine and the like.

上記錯化剤としては、例えば、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸、またはそれらのアルカリ金属塩やアンモニウム塩などのカルボン酸塩、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、アンモニウム化合物、EDTA、ピロリン酸(塩)などが挙げられる。上記錯化剤は、1種のみを用いても良いし、2種以上を併用しても良い。   Examples of the complexing agent include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid, carboxylates such as alkali metal salts and ammonium salts thereof, amino acids such as glycine, ethylenediamine, alkylamine, and the like. Aminic acid, ammonium compound, EDTA, pyrophosphoric acid (salt) and the like. Only 1 type may be used for the said complexing agent and it may use 2 or more types together.

上記無電解めっき法における無電解めっき浴のpHは、好ましくは4〜14である。   The pH of the electroless plating bath in the electroless plating method is preferably 4-14.

無電解めっき法においては、基材粒子のスラリーを添加すると、速やかに反応が始まり、水素ガスの発生を伴う。無電解めっき法における、無電解めっき工程の終了は、その水素ガスの発生が完全に認められなくなった時点をもって終了とする。反応終了後、反応系内から導電性微粒子を取り出し、必要に応じて洗浄、乾燥を行う。   In the electroless plating method, when a slurry of base material particles is added, the reaction starts quickly and is accompanied by generation of hydrogen gas. The end of the electroless plating process in the electroless plating method ends when the generation of hydrogen gas is no longer recognized. After completion of the reaction, the conductive fine particles are taken out from the reaction system, and washed and dried as necessary.

上記無電解めっき工程は、複数回繰り返しても良い。このようにすることで、基材粒子に複層の導電性金属層を被覆することができる。例えば、基材粒子にニッケルめっきを施してニッケル被覆粒子を得た後に、無電解金めっき浴に該ニッケル被覆粒子を投入して金めっきを施すことにより、最外層に金の被覆層を有する導電性微粒子が得られる。   The electroless plating process may be repeated a plurality of times. By doing in this way, a base metal particle can be coat | covered with a multilayer conductive metal layer. For example, after obtaining nickel-coated particles by performing nickel plating on the substrate particles, the nickel-coated particles are put into an electroless gold plating bath and gold-plated, so that the outermost layer has a gold coating layer. Fine particles are obtained.

<A−2.アミノ樹脂微粒子>
本発明におけるアミノ樹脂微粒子とは、表面にアミノ樹脂を有する微粒子をいう。すなわち、本発明におけるアミノ樹脂微粒子は、均一組成のアミノ樹脂微粒子(微粒子全体が均一なアミノ樹脂の組成から構成されるアミノ樹脂微粒子)(形態1のアミノ樹脂微粒子ともいう)であっても良いし、微粒子表面にアミノ樹脂の成分を有する不均一な組成のアミノ樹脂微粒子(たとえば、後述する形態2、3のアミノ樹脂微粒子を含む)であっても良い。なお、「微粒子全体が均一なアミノ樹脂の組成」とは、用いたアミノ化合物の組成が実質的に同じであることを意味し、アミノ化合物とホルムアルデヒドの比率が僅かに異なっている程度や、コアと表層部とで架橋度が異なる程度は、均一組成のアミノ樹脂微粒子の形態に含める。
<A-2. Amino resin fine particles>
The amino resin fine particles in the present invention mean fine particles having an amino resin on the surface. That is, the amino resin fine particles in the present invention may be amino resin fine particles having a uniform composition (amino resin fine particles composed of a uniform amino resin composition) (also referred to as form 1 amino resin fine particles). Alternatively, amino resin fine particles having a non-uniform composition having amino resin components on the surface of the fine particles (for example, including amino resin fine particles of modes 2 and 3 described later) may be used. “Amino resin composition with uniform fine particles” means that the composition of the amino compound used is substantially the same, and the ratio of the amino compound to formaldehyde is slightly different, the core The degree of cross-linking between the surface layer portion and the surface layer portion is included in the form of amino resin fine particles having a uniform composition.

上記アミノ樹脂微粒子の平均粒子径は、1μm以下であり、好ましくは0.01〜1μm、より好ましくは0.05〜0.8μm、さらに好ましくは0.1〜0.5μmである。上記アミノ樹脂微粒子の平均粒子径が上記範囲内に収まる場合は、該アミノ樹脂微粒子を導電性微粒子の表面に存在させて絶縁性微粒子被覆導電性微粒子とすることにより、絶縁性微粒子が導電性微粒子の表面から脱落し難くすることができる。平均粒子径の評価方法は後述する。   The average particle diameter of the amino resin fine particles is 1 μm or less, preferably 0.01 to 1 μm, more preferably 0.05 to 0.8 μm, and still more preferably 0.1 to 0.5 μm. When the average particle diameter of the amino resin fine particles is within the above range, the amino resin fine particles are present on the surface of the conductive fine particles to form insulating fine particle-coated conductive fine particles. It can be made difficult to fall off from the surface. The method for evaluating the average particle size will be described later.

上記アミノ樹脂微粒子の粒度分布のシャープさは、粒子径の変動係数(CV値)で示すことができる。上記アミノ樹脂微粒子の粒子径の変動係数(CV値)は、具体的には、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、特に好ましくは20%以下である。上記アミノ樹脂微粒子の粒子径の変動係数(CV値)が50%を超えると、本発明の絶縁性微粒子被覆導電性微粒子の表面におけるアミノ樹脂微粒子の被覆状態のバラツキが大きくなり、絶縁性が不十分となるおそれがある。変動係数(CV値)の評価方法は後述する。   The sharpness of the particle size distribution of the amino resin fine particles can be represented by a variation coefficient (CV value) of the particle diameter. Specifically, the coefficient of variation (CV value) of the amino resin fine particles is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. When the coefficient of variation (CV value) of the particle diameter of the amino resin fine particles exceeds 50%, the variation in the coating state of the amino resin fine particles on the surface of the conductive fine particle-coated conductive fine particles of the present invention becomes large, resulting in poor insulation. May be sufficient. A method for evaluating the coefficient of variation (CV value) will be described later.

上記アミノ樹脂としては、アミノ化合物とホルムアルデヒドとの重縮合物であれば、任意の適切なアミノ樹脂を採用し得る。上記アミノ化合物としては、アミノ基を有する化合物であれば、任意の適切なアミノ化合物を採用し得る。上記アミノ化合物としては、好ましくは、多官能アミノ化合物であり、より好ましくは、トリアジン環構造を有する多官能アミノ化合物である。上記アミノ化合物は、1種のみを用いても良いし、2種以上を併用しても良い。   Any appropriate amino resin can be adopted as the amino resin as long as it is a polycondensate of an amino compound and formaldehyde. Any appropriate amino compound can be adopted as the amino compound as long as it is a compound having an amino group. The amino compound is preferably a polyfunctional amino compound, and more preferably a polyfunctional amino compound having a triazine ring structure. The amino compound may be used alone or in combination of two or more.

上記トリアジン環構造を有する多官能アミノ化合物としては、例えば、メラミン;一般式(1)で表されるアミノ化合物;一般式(2)や一般式(3)などで表されるジアミノトリアジン化合物;ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンなどのグアナミン化合物;などが挙げられる。これらの中でも、メラミン、ベンゾグアナミンが好ましい。   Examples of the polyfunctional amino compound having a triazine ring structure include melamine; an amino compound represented by general formula (1); a diaminotriazine compound represented by general formula (2) and general formula (3); and benzoguanamine. , Guanamine compounds such as cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, spiroguanamine, and the like. Among these, melamine and benzoguanamine are preferable.

Figure 0005554077
Figure 0005554077

Figure 0005554077
Figure 0005554077

Figure 0005554077
Figure 0005554077

一般式(1)中、Rは、同一または異なり、水素原子または置換基があっても良いアルキル基を表し、Rの少なくとも1つは置換基があっても良いアルキル基である。一般式(1)中、Rは、好ましくは、水素原子、ヒドロキシアルキル基である。 Formula (1), R 1, identical or different, represent an alkyl group which may if there is a hydrogen atom or a substituent, at least one of R 1 is an alkyl group which may have a substituent. In general formula (1), R 1 is preferably a hydrogen atom or a hydroxyalkyl group.

一般式(2)中、Rは、同一または異なり、直鎖構造または側鎖を有する構造である炭素原子数1〜2の炭化水素基(−CH−、−CHCH−、−CH(CH)−)である。 In General Formula (2), R 2 is the same or different, and is a hydrocarbon group having 1 to 2 carbon atoms (—CH 2 —, —CH 2 CH 2 —, —, which is a linear structure or a structure having a side chain. CH (CH 3) -) is.

一般式(3)中、Rは、直鎖構造、側鎖を有する構造、置換基があっても良い芳香族環を有する構造、置換基があっても良い脂環を有する構造のいずれかである炭素原子数1〜8の炭化水素基である。なお、芳香族環を有する構造や脂環を有する構造は、側鎖を有する構造であっても良い。 In general formula (3), R 3 is any one of a linear structure, a structure having a side chain, a structure having an aromatic ring which may have a substituent, and a structure having an alicyclic ring which may have a substituent. It is a C1-C8 hydrocarbon group which is. The structure having an aromatic ring or the structure having an alicyclic ring may be a structure having a side chain.

上記アミノ樹脂微粒子の好ましい形態の1つである均一組成のアミノ樹脂微粒子としては、平均粒子径が1μm以下のものであれば、従来一般に知られているアミノ樹脂微粒子を採用し得る。このような均一組成のアミノ樹脂微粒子およびその製造方法としては、例えば、特開2000−256432号公報、特開2002−293854号公報、特開2002−293855号公報、特開2002−293856号公報、特開2002−293857号公報、特開2003−55422号公報、特開2003−82049号公報、特開2003−138023号公報、特開2003−147039号公報、特開2003−171432号公報、特開2003−176330号公報、特開2005−97575号公報、特開2007−186716号公報、特開2008−101040号公報などに記載のアミノ樹脂微粒子およびその製造方法が挙げられる。すなわち、上記均一組成のアミノ樹脂微粒子は、例えば、上記多官能アミノ化合物とホルムアルデヒドを、好ましくは塩基性の水性媒体中で反応(付加縮合反応)させて縮合物オリゴマーを生成させ、該縮合物オリゴマーが溶解または分散する水性媒体にドデシルベンゼンスルホン酸や硫酸などの酸触媒を混合して硬化させることによって、架橋されたアミノ樹脂微粒子を製造することができる。縮合物オリゴマーを生成させる段階、架橋構造のアミノ樹脂微粒子とする段階は、いずれも、50〜100℃の温度で加熱された状態で行うことが好ましい。また、架橋されたアミノ樹脂微粒子の粒子径を制御するために、架橋構造のアミノ樹脂微粒子とする段階は界面活性剤の存在下で行われることが好ましい。また、上記均一組成のアミノ樹脂微粒子として、市販のアミノ樹脂微粒子(例えば、日本触媒社製の「エポスター」シリーズなど)も採用し得る。   As the amino resin fine particles having a uniform composition, which is one of the preferred forms of the amino resin fine particles, conventionally known amino resin fine particles can be adopted as long as the average particle diameter is 1 μm or less. Examples of such amino resin fine particles having a uniform composition and a method for producing the same include, for example, JP 2000-256432 A, JP 2002-293854 A, JP 2002-293855 A, JP 2002-293856 A, JP 2002-293857, JP 2003-55422, JP 2003-82049, JP 2003-138823, JP 2003-147039, JP 2003-171432, JP Examples thereof include amino resin fine particles described in JP-A No. 2003-176330, JP-A No. 2005-97575, JP-A No. 2007-186716, and JP-A No. 2008-101040, and the production method thereof. That is, the amino resin fine particles having a uniform composition are produced by, for example, reacting the polyfunctional amino compound with formaldehyde, preferably in a basic aqueous medium (addition condensation reaction) to form a condensate oligomer. By mixing and curing an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in an aqueous medium in which is dissolved or dispersed, crosslinked amino resin fine particles can be produced. It is preferable that both the step of generating the condensate oligomer and the step of forming the amino resin fine particles having a crosslinked structure are performed in a state of being heated at a temperature of 50 to 100 ° C. In order to control the particle diameter of the crosslinked amino resin fine particles, it is preferable that the step of forming crosslinked amino resin fine particles is performed in the presence of a surfactant. Moreover, as the amino resin fine particles having a uniform composition, commercially available amino resin fine particles (for example, “Eposter” series manufactured by Nippon Shokubai Co., Ltd.) may be employed.

上記アミノ樹脂微粒子の好ましい形態の別の1つである、微粒子表面にアミノ樹脂の成分を有する不均一な組成のアミノ樹脂微粒子としては、例えば、コア部と表層部とでそれぞれ異なるアミノ化合物が用いられたアミノ樹脂微粒子(形態2のアミノ樹脂微粒子ともいう)が挙げられる。より好ましくは、トリアジン環構造を有する多官能アミノ化合物から選ばれる異なる2種であり、具体的には、例えば、メラミン;上記一般式(1)で表されるアミノ化合物;上記一般式(2)や上記一般式(3)などで表されるジアミノトリアジン化合物;ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンなどのグアナミン化合物;から選ばれる異なる2種である。さらに好ましくは、メラミンまたは上記一般式(1)で表されるアミノ化合物と上記グアナミン化合物との組み合わせ、すなわち、コア部にメラミンまたは上記一般式(1)で表されるアミノ化合物が用いられて表層部に上記グアナミン化合物が用いられる場合、または、コア部に上記グアナミン化合物が用いられて表層部にメラミンまたは上記一般式(1)で表されるアミノ化合物が用いられる場合である。特に好ましくは、コア部にメラミンまたは上記一般式(1)で表されるアミノ化合物が用いられて表層部に上記グアナミン化合物が用いられる場合であり、最も好ましくは、コア部にメラミンが用いられて表層部にベンゾグアナミンが用いられる場合である。上記の特に好ましい形態の場合、コア部に用いられるアミノ化合物中のメラミンまたは上記一般式(1)で表されるアミノ化合物の含有割合は、好ましくは1〜100質量%、より好ましくは80〜100質量%、さらに好ましくは90〜100質量%、特に好ましくは95〜100質量%、最も好ましくは100質量%である。上記の特に好ましい形態の場合、表層部に用いられるアミノ化合物中の上記グアナミン化合物の含有割合は、好ましくは10〜100質量%、より好ましくは60〜100質量%、さらに好ましくは80〜100質量%、さらに好ましくは85〜100質量%、さらに好ましくは90〜100質量%、特に好ましくは95〜100質量%、最も好ましくは100質量%である。このような微粒子表面にアミノ樹脂の成分を有する不均一な組成のアミノ樹脂微粒子は、上述した均一組成のアミノ樹脂微粒子およびその製造方法が記載された公知文献に記載された方法と同様の方法を、コアとなる微粒子の存在下で行うことにより得られる。すなわち、水性媒体中でコアとなる微粒子が分散された状態で、アミノ化合物とホルムアルデヒドを反応(付加縮合反応)させることによりアミノ樹脂からなる表層を形成する。通常、この反応は加熱下(50〜100℃)で行い、架橋度を高めるために、ドデシルベンゼンスルホン酸や硫酸などの酸触媒の存在下で行われる。コアがアミノ樹脂微粒子である場合、コアを前述のアミノ樹脂微粒子の製法に従って製造した後、得られたアミノ樹脂微粒子が分散含有された水性媒体を用いて、上記の表層のアミノ樹脂層の形成反応を適用すればよい。   As amino resin fine particles having a heterogeneous composition having amino resin components on the surface of fine particles, which is another preferred form of the above-mentioned amino resin fine particles, for example, different amino compounds are used for the core portion and the surface layer portion, respectively. And the resulting amino resin fine particles (also referred to as form 2 amino resin fine particles). More preferably, they are two different types selected from polyfunctional amino compounds having a triazine ring structure. Specifically, for example, melamine; an amino compound represented by the above general formula (1); and the above general formula (2) And diaminotriazine compounds represented by the above general formula (3) and the like; guanamine compounds such as benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, and spiroguanamine; More preferably, melamine or a combination of the amino compound represented by the above general formula (1) and the above guanamine compound, that is, the melamine or the amino compound represented by the above general formula (1) is used in the core portion to form a surface layer. The case where the guanamine compound is used for the part, or the case where the guanamine compound is used for the core part and the melamine or the amino compound represented by the general formula (1) is used for the surface layer part. Particularly preferred is the case where melamine or the amino compound represented by the above general formula (1) is used for the core part and the guanamine compound is used for the surface part, most preferably melamine is used for the core part. This is a case where benzoguanamine is used for the surface layer. In the case of the above particularly preferred form, the content of the melamine in the amino compound used for the core part or the amino compound represented by the general formula (1) is preferably 1 to 100% by mass, more preferably 80 to 100%. % By mass, more preferably 90-100% by mass, particularly preferably 95-100% by mass, and most preferably 100% by mass. In the case of the above particularly preferred form, the content ratio of the guanamine compound in the amino compound used for the surface layer is preferably 10 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 80 to 100% by mass. More preferably, it is 85-100 mass%, More preferably, it is 90-100 mass%, Most preferably, it is 95-100 mass%, Most preferably, it is 100 mass%. The amino resin fine particles having a heterogeneous composition having amino resin components on the surface of such fine particles are obtained by the same method as described in the publicly known literature in which the amino resin fine particles having the uniform composition and the production method thereof are described. It is obtained by performing in the presence of fine particles as a core. That is, a surface layer made of an amino resin is formed by reacting an amino compound with formaldehyde (addition condensation reaction) in a state where the core fine particles are dispersed in an aqueous medium. Usually, this reaction is performed under heating (50 to 100 ° C.), and is performed in the presence of an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in order to increase the degree of crosslinking. When the core is amino resin fine particles, the core is produced according to the above-mentioned method for producing amino resin fine particles, and then the reaction for forming the amino resin layer on the surface layer is performed using an aqueous medium in which the obtained amino resin fine particles are dispersed and contained. Should be applied.

上記アミノ樹脂微粒子の好ましい形態の別の1つである、表面にアミノ樹脂成分を有する微粒子において、アミノ樹脂成分以外の粒子部分としては、任意の適切な粒子を採用し得る。このような微粒子を形態3のアミノ樹脂微粒子ともいう。上記粒子の製造方法については、無機粒子、有機粒子、有機無機複合粒子などの粒子を製造する方法であれば、任意の適切な製造方法を採用し得る。形態2のアミノ樹脂微粒子の製法においてコアとなる微粒子をアミノ樹脂成分以外の粒子に代える以外は同様の方法を採用し得る。上記粒子の材料としては、例えば、ビニル重合体微粒子、シリカ微粒子、有機無機複合微粒子などが挙げられる。形態2、形態3における表層部のアミノ樹脂層の厚みは、任意の適切な厚みを採用し得る。形態2、形態3における表層部のアミノ樹脂層の厚みは、例えば、導電層を構成する金属との密着性、基材粒子との密着性を十分とするために、好ましくは0.01μm以上であり、より好ましくは0.05μm以上である。形態2、形態3における表層部のアミノ樹脂層の厚みの上限は、好ましくは1μm未満であり、より好ましくは0.5μm以下である。コアとなる部分の直径は、上述したアミノ樹脂微粒子における好適な粒子径の範囲となるよう、表層部の厚みに応じて制御されていればよい。   In the fine particles having an amino resin component on the surface, which is another preferred form of the amino resin fine particles, any appropriate particles can be adopted as the particle portion other than the amino resin component. Such fine particles are also referred to as form 3 amino resin fine particles. About the manufacturing method of the said particle | grain, arbitrary appropriate manufacturing methods can be employ | adopted if it is a method of manufacturing particles, such as an inorganic particle, an organic particle, and an organic inorganic composite particle. A similar method can be adopted except that the fine particles serving as the core are replaced with particles other than the amino resin component in the production method of the amino resin fine particles of Form 2. Examples of the material of the particles include vinyl polymer fine particles, silica fine particles, and organic / inorganic composite fine particles. Arbitrary appropriate thickness can be employ | adopted for the thickness of the amino resin layer of the surface layer part in the form 2 and the form 3. The thickness of the amino resin layer of the surface layer part in the form 2 and form 3 is preferably 0.01 μm or more in order to ensure, for example, sufficient adhesion to the metal constituting the conductive layer and adhesion to the base particles. More preferably, it is 0.05 μm or more. The upper limit of the thickness of the amino resin layer of the surface layer part in Form 2 and Form 3 is preferably less than 1 μm, and more preferably 0.5 μm or less. The diameter of the core portion may be controlled in accordance with the thickness of the surface layer portion so as to be within a suitable particle diameter range of the amino resin fine particles described above.

上記ビニル重合体微粒子としては、任意の適切な重合性モノマーおよび必要に応じて任意の適切な架橋性モノマーを用いて得られる重合体微粒子を採用し得る。   As said vinyl polymer microparticles | fine-particles, the polymer microparticles | fine-particles obtained using arbitrary appropriate polymerizable monomers and arbitrary appropriate crosslinkable monomers as needed can be employ | adopted.

上記重合性モノマーとしては、分子内に少なくとも1個以上のエチレン性不飽和基を含有する化合物であればよい。具体的には、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキプロピル(メタ)アクリレート、2−ヒドロキブチル(メタ)アクリレート等の水酸基を有する単量体類;メトキシポリエチレングリコール(メタ)アクリレート、等のポリエチレングリコール成分を有する単量体類;(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリル酸イソアミル、(メタ)アクリル酸ラウリル、メタクリル酸ベンジル、メタクリル酸テトラヒドロフルフリル等のアルキル(メタ)アクリレート類;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタンフルオロプロピル(メタ)アクリレート、オクタフルオロアミル(メタ)アクリレート等のフッ素原子含有(メタ)アクリレート類;スチレン、α−メチルスチレン、ビニルトルマン、α−クロロスチレン、0−クロロスチレン、m−クロロスチレン、p−クロロスチレン、p−エチルスチレン等の芳香族ビニル化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸;(メタ)アクリルアミド;(メタ)アクリロニトリル;等が挙げられる。上記重合性モノマーは、単独で用いても良いし、2種以上を併用しても良い。   The polymerizable monomer may be a compound containing at least one ethylenically unsaturated group in the molecule. Specifically, for example, monomers having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate; methoxypolyethylene glycol (meth) acrylate Monomers having a polyethylene glycol component such as, butyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isoamyl acrylate, lauryl (meth) acrylate, benzyl methacrylate, methacryl Alkyl (meth) acrylates such as tetrahydrofurfuryl acid; trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, pentanefluoropropyl (meth) acrylate, octafluoroamyl (meth) acrylate, etc. Elemental atom-containing (meth) acrylates; aromatic vinyl compounds such as styrene, α-methylstyrene, vinyl tolman, α-chlorostyrene, 0-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-ethylstyrene; glycidyl (Meth) acrylate; (meth) acrylic acid; (meth) acrylamide; (meth) acrylonitrile; The said polymerizable monomer may be used independently and may use 2 or more types together.

上記架橋性モノマーとしては、例えば、ジビニルベンゼン、(ポリ)エチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、ジアリルフタレートおよびその異性体、トリアリルイソシアヌレートおよびその誘導体、等が挙げられる。上記架橋性モノマーは、単独で用いても良いし、2種以上を併用しても良い。   Examples of the crosslinkable monomer include divinylbenzene, (poly) ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meta) ) Acrylate, tetramethylol methane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, dipentaerythritol hexaacrylate, diallyl phthalate and isomers thereof, triallyl isocyanurate and derivatives thereof, and the like. The said crosslinkable monomer may be used independently and may use 2 or more types together.

上記シリカ微粒子としては、任意の適切なシリカ微粒子を採用し得る。上記シリカ微粒子としては、具体的には、例えば、シリコンアルコキシドの加水分解縮合物の微粒子、ケイ酸ナトリウムの加水分解縮合物の微粒子などが挙げられる。   Arbitrary appropriate silica fine particles can be adopted as the silica fine particles. Specific examples of the silica fine particles include fine particles of hydrolytic condensate of silicon alkoxide, fine particles of hydrolyzed condensate of sodium silicate, and the like.

上記有機無機複合微粒子は、無機質成分であるポリシロキサンと有機質成分であるビニル系重合体とを必須としてなる複合体微粒子である。上記無機質成分であるポリシロキサンは、好ましくは、(メタ)アクリロキシ基を有するシリコン化合物を必須とする無機化合物原料を加水分解・縮合して得られるポリシロキサン骨格である。   The organic-inorganic composite fine particles are composite fine particles which essentially comprise polysiloxane as an inorganic component and a vinyl polymer as an organic component. The polysiloxane as the inorganic component is preferably a polysiloxane skeleton obtained by hydrolysis / condensation of an inorganic compound raw material essentially containing a silicon compound having a (meth) acryloxy group.

上記有機無機複合微粒子の形態としては、無機質成分であるポリシロキサンと有機質成分であるビニル系重合体とを必須としてなるものであれば、任意の適切な形態を採用し得る。具体的には、例えば、
a)無機質成分であるポリシロキサンが微粒子であって、有機質成分であるビニル系重合体中に分散している形態、
b)無機質成分であるポリシロキサンが微粒子のコア粒子であって、該コア粒子表面に、有機質成分であるビニル系重合体からなるシェルが形成されている、コアシェル構造の形態、
c)有機質成分であるビニル系重合体が微粒子のコア粒子であって、該コア粒子表面に、無機質成分であるポリシロキサンからなるシェルが形成されている、コアシェル構造の形態、
d)無機質成分であるポリシロキサンと有機質成分であるビニル系重合体が分子レベルで複合または混合されている形態、
e)上記d)の状態の微粒子がコア粒子となり、該コア粒子表面に、無機質成分であるポリシロキサンからなるシェルが形成されている、コアシェル構造の形態、
などが挙げられる。
As the form of the organic-inorganic composite fine particles, any suitable form can be adopted as long as it contains polysiloxane as an inorganic component and a vinyl polymer as an organic component. Specifically, for example,
a) A form in which polysiloxane, which is an inorganic component, is fine particles and dispersed in a vinyl polymer that is an organic component,
b) Form of core-shell structure in which polysiloxane as an inorganic component is a fine core particle, and a shell made of a vinyl polymer as an organic component is formed on the surface of the core particle;
c) a form of a core-shell structure in which a vinyl polymer as an organic component is a fine core particle, and a shell made of polysiloxane as an inorganic component is formed on the surface of the core particle;
d) A form in which polysiloxane as an inorganic component and vinyl polymer as an organic component are combined or mixed at a molecular level,
e) The form of the core-shell structure in which the fine particles in the state of d) become core particles, and a shell made of polysiloxane as an inorganic component is formed on the surface of the core particles.
Etc.

上記有機無機複合微粒子の好ましい製造方法としては、例えば、特開平9−197706号公報、特開平8−81561号公報、特開2003−183327号公報に記載の方法が挙げられる。   Preferable methods for producing the organic / inorganic composite fine particles include, for example, methods described in JP-A-9-197706, JP-A-8-81561, and JP-A-2003-183327.

上記有機無機複合微粒子の形状は、特に限定されるわけではなく、具体的には、例えば、球状、針状、板状、鱗片状、粉砕状、偏状、まゆ状、こんぺい糖状などの形状を挙げることができる。   The shape of the organic-inorganic composite fine particles is not particularly limited, and specifically, for example, spherical, needle-like, plate-like, scale-like, crushed, uneven, eyebrows, candy sugar, etc. The shape can be mentioned.

<A−3.絶縁性微粒子被覆導電性微粒子>
本発明の絶縁性微粒子被覆導電性微粒子は、上記導電性微粒子の表面に平均粒子径1μm以下の上記アミノ樹脂微粒子が存在してなる。
<A-3. Conductive fine particles coated with insulating fine particles>
The insulating fine particle-coated conductive fine particles of the present invention comprise the amino resin fine particles having an average particle diameter of 1 μm or less on the surface of the conductive fine particles.

上記導電性微粒子の表面に上記アミノ樹脂微粒子を被覆する方法としては、任意の適切な被覆方法を採用し得る。例えば、無電解めっき処理後の導電性微粒子およびアミノ樹脂微粒子を有機溶媒あるいは水性媒体などの液体中に分散させた後にスプレードライを行う方法、有機溶媒あるいは水性媒体などの液体中で導電性微粒子の表面にアミノ樹脂微粒子を付着させた後に導電性微粒子とアミノ樹脂微粒子を化学結合させる方法、導電性微粒子の粉体とアミノ樹脂微粒子の粉体の共存下で高速撹拌機による撹拌やハイブリダイゼーション処理を行う方法、などが挙げられる。   Any appropriate coating method can be adopted as a method of coating the surface of the conductive fine particles with the amino resin fine particles. For example, a method in which the conductive fine particles and amino resin fine particles after the electroless plating treatment are dispersed in a liquid such as an organic solvent or an aqueous medium and then spray-dried, or the conductive fine particles in a liquid such as an organic solvent or an aqueous medium. A method of chemically bonding conductive fine particles and amino resin fine particles after attaching amino resin fine particles to the surface, stirring with a high-speed stirrer and hybridization treatment in the presence of conductive fine particle powder and amino resin fine particle powder The method of performing, etc. are mentioned.

本発明の絶縁性微粒子被覆導電性微粒子において、アミノ樹脂微粒子による導電性微粒子の被覆率は、好ましくは1〜70%、より好ましくは5〜60%、さらに好ましくは10〜40%である。アミノ樹脂微粒子による導電性微粒子の被覆率が1%未満の場合、隣接する絶縁性微粒子被覆導電性微粒子間での絶縁性を確保できないおそれがある。アミノ樹脂微粒子による導電性微粒子の被覆率が70%を超えると、十分な導通性が得られないおそれがある。   In the conductive fine particle-coated conductive fine particles of the present invention, the coverage of the conductive fine particles with amino resin fine particles is preferably 1 to 70%, more preferably 5 to 60%, and still more preferably 10 to 40%. When the coverage of the conductive fine particles by amino resin fine particles is less than 1%, there is a possibility that the insulation between the adjacent conductive fine particle-coated conductive fine particles cannot be ensured. If the coverage of the conductive fine particles by the amino resin fine particles exceeds 70%, sufficient conductivity may not be obtained.

本発明の絶縁性微粒子被覆導電性微粒子は、異方性導電材料の構成材料として好適である。上記異方性導電材料とは、さまざまな形態により相対向する基板同士や電極端子同士を電気的に接続するものである。   The insulating fine particle-coated conductive fine particles of the present invention are suitable as a constituent material of an anisotropic conductive material. The anisotropic conductive material is used to electrically connect opposing substrates and electrode terminals in various forms.

上記異方性導電材料を用いて電極同士を電気的に接続する方法としては、任意の適切な方法を採用し得る。例えば、絶縁性のバインダー樹脂中に本発明の絶縁性微粒子被覆導電性微粒子を分散させて異方性導電接着剤組成物を作製したうえで、この異方性導電接着剤組成物により接続する方法;絶縁性のバインダー樹脂と本発明の絶縁性微粒子被覆導電性微粒子とを別々に使用して接続する方法;等が挙げられる。   Any appropriate method can be adopted as a method of electrically connecting the electrodes using the anisotropic conductive material. For example, a method of producing an anisotropic conductive adhesive composition by dispersing the insulating fine particle-coated conductive fine particles of the present invention in an insulating binder resin and then connecting with the anisotropic conductive adhesive composition A method in which the insulating binder resin and the insulating fine particle-coated conductive fine particles of the present invention are separately used for connection; and the like.

≪B.異方性導電接着剤組成物≫
本発明の異方性導電接着剤組成物は、本発明の絶縁性微粒子被覆導電性微粒子がバインダー樹脂中に分散してなる。
≪B. Anisotropic conductive adhesive composition >>
The anisotropic conductive adhesive composition of the present invention is obtained by dispersing the insulating fine particle-coated conductive fine particles of the present invention in a binder resin.

上記バインダー樹脂としては、任意の適切なバインダー樹脂を採用し得る。例えば、アクリレート樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体等の熱可塑性樹脂;グリシジル基を有するモノマーやオリゴマー及びイソシアネート等の硬化剤との反応により得られる硬化性樹脂組成物等の光や熱による硬化性樹脂組成物;等が挙げられる。   Any appropriate binder resin can be adopted as the binder resin. For example, thermoplastic resins such as acrylate resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers; curable resin compositions obtained by reaction with curing agents such as monomers and oligomers having glycidyl groups and isocyanate Examples thereof include curable resin compositions by light and heat.

上記異方性導電接着剤組成物としては、任意の適切な用途に適用し得る。例えば、異方性導電ペースト、異方性導電インク、異方性導電接着剤、液晶表示素子(LCD)のシール剤に含有される導電性スペーサ等が挙げられる。   As said anisotropic conductive adhesive composition, it can apply to arbitrary appropriate uses. Examples thereof include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, and conductive spacers contained in a liquid crystal display element (LCD) sealant.

上記異方性導電ペーストは、例えば、異方性導電接着剤組成物をペースト状にすることにより得られる。得られた異方性導電ペーストは、例えば、適当なディスペンサーに入れられ、接続すべき電極上に所望の厚さに塗工され、塗工された異方性導電ペースト上に対向電極を重ね合わせ、加熱するとともに加圧して樹脂を硬化させることにより、電極間の接続に使用される。   The anisotropic conductive paste is obtained, for example, by making an anisotropic conductive adhesive composition into a paste. The obtained anisotropic conductive paste is put in, for example, a suitable dispenser, applied to a desired thickness on the electrode to be connected, and the counter electrode is superimposed on the coated anisotropic conductive paste. It is used for connection between electrodes by heating and pressurizing to cure the resin.

上記異方性導電インクは、例えば、異方性導電接着剤組成物に溶媒を加えて印刷に適した粘度にすることにより得られる。得られた異方性導電インクは、例えば、接着すべき電極上にスクリーン印刷し、その溶媒を蒸発させた後、印刷された異方性導電インクの上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive ink is obtained, for example, by adding a solvent to the anisotropic conductive adhesive composition to obtain a viscosity suitable for printing. The obtained anisotropic conductive ink is, for example, screen-printed on the electrode to be bonded, the solvent is evaporated, the counter electrode is superimposed on the printed anisotropic conductive ink, and the resultant is heated and compressed. Therefore, it is used for the connection between the electrodes.

≪C.異方性導電成形体≫
本発明の異方性導電成形体は、本発明の異方性導電接着剤組成物から得られる。本発明の異方性導電成形体の具体例としては、例えば、異方性導電膜、異方性導電フィルム、異方性導電シートなどが挙げられる。
≪C. Anisotropic conductive compact >>
The anisotropic conductive molded body of the present invention is obtained from the anisotropic conductive adhesive composition of the present invention. Specific examples of the anisotropic conductive molded body of the present invention include an anisotropic conductive film, an anisotropic conductive film, and an anisotropic conductive sheet.

本発明の異方性導電成形体は、例えば、本発明の異方性導電接着剤組成物に溶媒を加えて溶液状にし、この溶液を離型フィルム上に流し込んだ後、溶媒を蒸発させて異方性導電接着剤組成物を被膜状にすることにより得られる。   The anisotropic conductive molded body of the present invention is prepared by, for example, adding a solvent to the anisotropic conductive adhesive composition of the present invention to form a solution, pouring the solution onto a release film, and then evaporating the solvent. It is obtained by forming an anisotropic conductive adhesive composition into a film.

本発明の異方性導電成形体は、例えば、接着すべき電極上に配置され、配置された異方性導電成形体上に対向電極を重ね合わせ、加熱圧縮することにより電極間の接続に使用される。   The anisotropic conductive molded body of the present invention is disposed, for example, on electrodes to be bonded, and is used for connection between electrodes by superposing a counter electrode on the disposed anisotropic conductive molded body and compressing by heating. Is done.

上記異方性導電成形体における膜厚、塗工膜厚及び印刷膜厚は、含有する絶縁性微粒子被覆導電性微粒子の平均粒子径と接続すべき電極の仕様とから計算し、接続すべき電極間に絶縁性微粒子被覆導電性微粒子が挟持され、接続すべき電極が形成された接合基板同士の空隙がバインダー樹脂層により充分に満たされるよう設定することが好ましい。   The film thickness, coating film thickness and printed film thickness in the anisotropic conductive molded body are calculated from the average particle diameter of the conductive fine particles covered with the insulating fine particles and the specifications of the electrodes to be connected, and the electrodes to be connected It is preferable to set so that the gap between the bonding substrates on which the insulating fine particle-coated conductive fine particles are sandwiched and the electrodes to be connected are formed is sufficiently filled with the binder resin layer.

本発明の絶縁性微粒子被覆導電性微粒子を用いた異方性導電成形体は、高い導電性を示すばかりでなく、加重圧縮した際にも金属層が剥離、破壊されず、相対向する電極基板間の電気的な接続を確保することができる。また、経時安定性にも優れるので、長期間の使用においてもメッキ割れ等による導電性の低下を来すことなく、電極基板間の電気的な接続を堅持し信頼性の向上を図ることができる。   The anisotropic conductive molded body using the conductive fine particles coated with the insulating fine particles of the present invention not only exhibits high conductivity, but also the electrode substrate opposed to each other without peeling or breaking the metal layer when subjected to load compression. An electrical connection between them can be ensured. In addition, since it is excellent in stability over time, it is possible to maintain electrical connection between electrode substrates and improve reliability without causing deterioration in conductivity due to plating cracking or the like even during long-term use. .

以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」と記すことがある。また、「質量%」を「wt%」と記すことがある。また、本明細書において、「質量」とあるのは、「重量」と読み替えても良い。なお、平均粒子径および変動係数(CV値)の評価は下記のように行った。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”. In addition, “mass%” may be described as “wt%”. In this specification, “mass” may be read as “weight”. The average particle size and coefficient of variation (CV value) were evaluated as follows.

〔ノギス法による平均粒子径および変動係数(CV値)の測定〕
粒子総個数が200個前後になるようにSEM写真を撮影し、その写真より無作為に選んだ100個の粒子の直径(撮影された粒子(断面)の最大長)をノギスにて計測し、その算術平均径を平均粒子径Dとした。また、平均粒子径Dに対する粒子径の標準偏差の百分率(%)として、平均粒子径Dの変動係数(CV値)を算出した。
[Measurement of average particle size and coefficient of variation (CV value) by caliper method]
SEM photographs were taken so that the total number of particles was around 200, and the diameter of 100 particles randomly selected from the photograph (maximum length of photographed particles (cross section)) was measured with calipers. The arithmetic average diameter was defined as the average particle diameter D. Further, the coefficient of variation (CV value) of the average particle diameter D was calculated as a percentage (%) of the standard deviation of the particle diameter with respect to the average particle diameter D.

〔合成例1〕:導電性微粒子(1)の合成
冷却管、温度計、滴下口を備えた四つ口フラスコに、界面活性剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製、ハイテノール(登録商標)NF−08)2部をイオン交換水で溶解した水溶液150部を仕込んだ。そこへ、予め準備しておいた、スチレン50部、ジビニルベンゼン960(新日鉄化学社製)50部、重合開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製、V−65)2部を仕込み、TKホモミキサー(特殊機化工業社製)により5000rpmで5分間乳化分散させて、懸濁液を調製した。この懸濁液に、イオン交換水250部を加え、窒素雰囲気下で65℃に昇温し、65℃で2時間保持し、ラジカル重合を行った。ラジカル重合の後、生成した乳濁液を固液分離し、得られたケーキをイオン交換水、次いで、メタノールで洗浄した。その後、分級を行い、窒素雰囲気下で40℃で2時間真空乾燥を行い、重合体微粒子(1)を得た。重合体微粒子(1)の粒子径をコールターマルチサイザーIII型(ベックマンコールター社製)により測定したところ、平均粒子径は3.5μm、変動係数(CV)は4.7%であった。
ビーカーに「ピンクシューマー」(日本カニゼン株式会社製)50部とイオン交換水400部を入れ、混合して混合液を得た。別途、イオン交換水50部に重合体微粒子(1)10部を加えて超音波分散を行ったものを準備し、上記混合液に投入し、30℃で10分間撹拌して懸濁液とし、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
次に、「レッドシューマー」(日本カニゼン株式会社製)100部とイオン交換水350部を入れ、混合して混合液を得た。別途、イオン交換水50部に上記で得られた乾燥粒子10部を加えて超音波分散を行ったものを準備し、上記混合液に投入し、30℃で10分間撹拌して懸濁液とした後、この懸濁液を固液分離し、得られたケーキを、イオン交換水、メタノールの順で洗浄した後、窒素雰囲気下100℃で2時間真空乾燥した。
以上の操作により、重合体微粒子(1)の表面にパラジウムが吸着されたパラジウム活性重合体微粒子(1)を得た。
パラジウム活性重合体微粒子(1)をイオン交換水500部に添加し、超音波分散処理を30分間行い、粒子を十分に分散させて微粒子懸濁液を得た。この微粒子懸濁液を50℃で撹拌しながら、硫酸ニッケル6水和物50g/L、次亜リン酸ナトリウム1水和物20g/L、ジメチルアミンボラン2.5g/L、クエン酸50g/Lからなる無電解めっき液(pH=7.5)を徐々に微粒子懸濁液に添加して、無電解ニッケルめっきを行った。得られた微粒子を濾別し、イオン交換水で洗浄した後、さらにメタノールで洗浄し、60℃で12時間真空乾燥を行い、導電性微粒子(1)を得た。
[Synthesis Example 1]: Synthesis of conductive fine particles (1) A polyoxyethylene styrenated phenyl ether sulfate ammonium salt (Daiichi Kogyo Co., Ltd.) as a surfactant in a four-necked flask equipped with a cooling tube, a thermometer, and a dropping port. 150 parts of an aqueous solution prepared by dissolving 2 parts of Hytenol (registered trademark) NF-08) manufactured by Pharmaceutical Co., Ltd. with ion-exchanged water was charged. There were prepared 50 parts of styrene, 50 parts of divinylbenzene 960 (manufactured by Nippon Steel Chemical Co., Ltd.), 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd.) as a polymerization initiator. A suspension was prepared by charging 2 parts of V-65 (manufactured by Kogyo Co., Ltd.) and emulsifying and dispersing at 5000 rpm for 5 minutes with a TK homomixer (manufactured by Tokushu Kika Kogyo). To this suspension, 250 parts of ion-exchanged water was added, the temperature was raised to 65 ° C. under a nitrogen atmosphere, and the mixture was held at 65 ° C. for 2 hours to perform radical polymerization. After radical polymerization, the produced emulsion was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and then with methanol. Thereafter, classification was performed, and vacuum drying was performed at 40 ° C. for 2 hours under a nitrogen atmosphere to obtain polymer fine particles (1). When the particle size of the polymer fine particles (1) was measured by Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.), the average particle size was 3.5 μm and the coefficient of variation (CV) was 4.7%.
In a beaker, 50 parts of “Pink Summer” (manufactured by Nippon Kanisen Co., Ltd.) and 400 parts of ion-exchanged water were mixed to obtain a mixed solution. Separately, 10 parts of the polymer fine particles (1) were added to 50 parts of ion-exchanged water, and prepared by ultrasonic dispersion. The mixture was added to the above mixture and stirred at 30 ° C. for 10 minutes to form a suspension. This suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then vacuum-dried at 100 ° C. for 2 hours in a nitrogen atmosphere.
Next, 100 parts of “Red Schumer” (manufactured by Nippon Kanisen Co., Ltd.) and 350 parts of ion-exchanged water were added and mixed to obtain a mixed solution. Separately, 10 parts of the dry particles obtained above were added to 50 parts of ion-exchanged water to prepare an ultrasonic dispersion, and the mixture was put into the mixed solution and stirred at 30 ° C. for 10 minutes. Then, this suspension was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol in this order, and then vacuum-dried at 100 ° C. for 2 hours in a nitrogen atmosphere.
By the above operation, palladium active polymer fine particles (1) having palladium adsorbed on the surface of the polymer fine particles (1) were obtained.
Palladium activated polymer fine particles (1) were added to 500 parts of ion exchange water, and ultrasonic dispersion treatment was performed for 30 minutes to sufficiently disperse the particles, thereby obtaining a fine particle suspension. While stirring this fine particle suspension at 50 ° C., nickel sulfate hexahydrate 50 g / L, sodium hypophosphite monohydrate 20 g / L, dimethylamine borane 2.5 g / L, citric acid 50 g / L The electroless plating solution (pH = 7.5) consisting of was gradually added to the fine particle suspension to perform electroless nickel plating. The obtained fine particles were separated by filtration, washed with ion exchange water, further washed with methanol, and vacuum dried at 60 ° C. for 12 hours to obtain conductive fine particles (1).

〔実施例1〕
<絶縁性微粒子被覆導電性微粒子(1)の製造>
メラミンとホルムアルデヒドの縮合物からなるアミノ樹脂粒子(日本触媒社製、「エポスターS」、ノギス法による平均粒子径=0.20μm、変動係数(CV)=8.0%)を、アミノ樹脂粒子濃度が5.0質量%になるように、メタノールに分散させた。得られたエポスターS分散液100部に、合成例1で得られた導電性微粒子(1)50部を加え、均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面をアミノ樹脂微粒子で被覆し、絶縁性微粒子被覆導電性微粒子(1)を得た。
<異方性導電接着剤組成物(1)の製造>
エポキシ樹脂(YL980、ジャパンエポキシレジン社製)65部、エポキシ硬化剤(ノバキュアHX3941HP、旭化成工業社製)35部、絶縁性微粒子被覆導電性微粒子(1)20部、1mmφのジルコニアビーズ200部を混合し、30分間ビーズミル分散を行い、異方性導電接着剤組成物(1)を得た。
<異方性導電成形体(1)の製造>
剥離処理済みポリエチレンテレフタレートフィルムに、乾燥厚みで25μmとなるように異方性導電接着剤組成物(1)を塗布して接着層を形成し、異方性導電シートである異方性導電成形体(1)を作製した。
<導通性、絶縁性の評価>
異方性導電成形体(1)を、150μm幅のパターンを有するITO付きガラス基板2枚の間に挟み、200℃で15秒間加熱加圧して、導電接続構造体を得た。得られた導電接続構造体について、下記の基準にしたがい、導通性および絶縁性の評価を行った。結果を表1に示した。
(導通性の評価)
対向する電極間の導通抵抗を測定し、抵抗値が20Ω以下の場合を○、20Ωを超える場合を×とした。
(絶縁性の評価)
対向する電極間の絶縁抵抗を測定し、抵抗値が100MΩ以上の場合を○、100MΩ未満の場合を×とした。
<絶縁性微粒子の被覆状態の評価>
異方性導電接着剤組成物を酢酸エチルに希釈した後に濾過して、絶縁性微粒子被覆導電性微粒子を取り出し、下記の基準にしたがい、SEMにて絶縁性微粒子の被覆状態を評価した。結果を表1に示した。
○:均一な被覆状態を保持している。
×:絶縁性微粒子が剥離し、導電性微粒子表面の被覆が不均一である。
[Example 1]
<Manufacture of insulating fine particle-coated conductive fine particles (1)>
Amino resin particles composed of a condensate of melamine and formaldehyde (Nippon Shokubai Co., Ltd., “Eposter S”, average particle diameter by caliper method = 0.20 μm, coefficient of variation (CV) = 8.0%), amino resin particle concentration The solution was dispersed in methanol so that the amount was 5.0% by mass. 50 parts of the conductive fine particles (1) obtained in Synthesis Example 1 were added to 100 parts of the obtained Eposter S dispersion, and the mixture was uniformly dispersed, and then the methanol was distilled off with an evaporator to obtain the conductive fine particles (1). Was coated with amino resin fine particles to obtain insulating fine particle-coated conductive fine particles (1).
<Manufacture of anisotropic conductive adhesive composition (1)>
Mix 65 parts of epoxy resin (YL980, manufactured by Japan Epoxy Resin Co., Ltd.), 35 parts of epoxy curing agent (Novacure HX3941HP, manufactured by Asahi Kasei Kogyo Co., Ltd.), 20 parts of insulating fine particle coated conductive fine particles (1), and 200 parts of 1 mmφ zirconia beads. Then, bead mill dispersion was performed for 30 minutes to obtain an anisotropic conductive adhesive composition (1).
<Manufacture of anisotropic conductive molded body (1)>
An anisotropic conductive molded body that is an anisotropic conductive sheet is formed by applying an anisotropic conductive adhesive composition (1) to a release-treated polyethylene terephthalate film to a dry thickness of 25 μm to form an adhesive layer. (1) was produced.
<Evaluation of conductivity and insulation>
The anisotropic conductive molded body (1) was sandwiched between two glass substrates with ITO having a 150 μm width pattern and heated and pressurized at 200 ° C. for 15 seconds to obtain a conductive connection structure. The obtained conductive connection structure was evaluated for conductivity and insulation according to the following criteria. The results are shown in Table 1.
(Evaluation of conductivity)
The conduction resistance between the electrodes facing each other was measured, and the case where the resistance value was 20Ω or less was evaluated as “◯”, and the case where the resistance value exceeded 20Ω was evaluated as “X”.
(Insulation evaluation)
The insulation resistance between the electrodes facing each other was measured, and the case where the resistance value was 100 MΩ or more was marked as “◯”, and the case where the resistance value was less than 100 MΩ was marked as “X”.
<Evaluation of coating state of insulating fine particles>
The anisotropic conductive adhesive composition was diluted with ethyl acetate and then filtered to take out the insulating fine particle-coated conductive fine particles, and the coating state of the insulating fine particles was evaluated by SEM according to the following criteria. The results are shown in Table 1.
○: A uniform covering state is maintained.
X: The insulating fine particles are peeled off and the surface of the conductive fine particles is not uniform.

〔実施例2〕
<アミノ樹脂微粒子(2)の合成>
攪拌機、還流冷却管及び温度計を備えた四つ口フラスコにメラミン100部、37%ホルマリン193部、25%アンモニア水3.5部を仕込み、攪拌しながら70℃に昇温し、70℃で30分間保持した。かかる操作によりアミノ樹脂前駆体含有液(2)296.5部を得た。
別に、攪拌機、還流冷却管、および温度計を備えたフラスコに、固形分濃度65質量%ドデシルベンゼンスルホン酸ソーダ(花王株式会社製、ネオペレックスG65)(65質量%DBSNa)6.2部と純水1400部を攪拌しながら入れ、90℃に昇温し、均一な界面活性剤水溶液を調製した。
上記の90℃の攪拌状態下にある界面活性剤水溶液にアミノ樹脂前駆体含有液(1)296.5部を投入して、90℃で5分間保持し、次いで10質量%ドデシルベンゼンスルホン酸水溶液50部を加えた。この状態で90℃にて5時間保持して、メラミン樹脂粒子を含有する液1750部を得た。
ベンゾグアナミン100部、37%ホルマリン130部、65%DBSNa6.2部、ドデシルベンゼンスルホン酸5.0部、イオン交換水350部を均一に分散混合し、ベンゾグアナミン分散液を得た。上記の90℃に保持されたメラミン樹脂粒子含有液1752部中に上記のベンゾグアナミン分散液を2時間かけて滴下した。滴下後、さらに90℃で5時間保持し、その後30℃まで冷却して、メラミン樹脂粒子の表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(2)を含有する分散液を得た。
上記アミノ樹脂微粒子の分散液を遠心分離機により固液分離し、得られたケーキをメタノールで洗浄後、180℃で2時間真空乾燥を行い、アミノ樹脂微粒子(2)の粉体を得た。
得られたアミノ樹脂微粒子(2)の平均粒子径をノギス法により測定したところ、平均粒子径は0.24μm、変動係数は8.2%であった。
<絶縁性微粒子被覆導電性微粒子(2)の製造>
上記メラミン樹脂粒子の表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(2)の濃度(固形分)が5%となるように、メタノール中に分散させ、得られたアミノ樹脂微粒子(2)のメタノール分散液に、合成例1で得られた導電性微粒子(1)50部を加えて均一に分散させた後、エバポレーターでメタノールを留去し、導電性微粒子(1)の表面をアミノ樹脂微粒子(2)で被覆して、絶縁性微粒子被覆導電性微粒子(2)を得た。
<異方性導電接着剤組成物(2)の製造>
実施例1における絶縁性微粒子被覆導電性微粒子(1)を絶縁性微粒子被覆導電性微粒子(2)に変更したこと以外は実施例1と同様に行い、異方性導電接着剤組成物(2)を得た。
<異方性導電成形体(2)>
実施例1における絶縁性微粒子被覆導電性微粒子(1)を絶縁性微粒子被覆導電性微粒子(2)に変更したこと以外は実施例1と同様に行い、異方性導電成形体(2)を得た。
評価結果を表1に示した。
[Example 2]
<Synthesis of amino resin fine particles (2)>
A four-necked flask equipped with a stirrer, a reflux condenser, and a thermometer was charged with 100 parts of melamine, 193 parts of 37% formalin, and 3.5 parts of 25% aqueous ammonia, and the temperature was raised to 70 ° C. while stirring. Hold for 30 minutes. By this operation, 296.5 parts of amino resin precursor containing liquid (2) was obtained.
Separately, in a flask equipped with a stirrer, a reflux condenser, and a thermometer, a solid content concentration of 65% by mass sodium dodecylbenzenesulfonate (manufactured by Kao Corporation, Neoperex G65) (65% by mass DBSNa) and pure 1400 parts of water was added with stirring and the temperature was raised to 90 ° C. to prepare a uniform aqueous surfactant solution.
296.5 parts of the amino resin precursor-containing liquid (1) is added to the above surfactant aqueous solution under stirring at 90 ° C., and held at 90 ° C. for 5 minutes, and then 10 mass% dodecylbenzenesulfonic acid aqueous solution. 50 parts were added. This state was maintained at 90 ° C. for 5 hours to obtain 1750 parts of a liquid containing melamine resin particles.
100 parts of benzoguanamine, 130 parts of 37% formalin, 6.2 parts of 65% DBSNa, 5.0 parts of dodecylbenzenesulfonic acid and 350 parts of ion-exchanged water were uniformly dispersed and mixed to obtain a benzoguanamine dispersion. The above benzoguanamine dispersion was dropped into 1752 parts of the melamine resin particle-containing liquid maintained at 90 ° C. over 2 hours. After dropping, the mixture is further maintained at 90 ° C. for 5 hours and then cooled to 30 ° C. to obtain a dispersion containing amino resin fine particles (2) in which the surface of the melamine resin particles is coated with a condensate of benzoguanamine and formaldehyde. It was.
The amino resin fine particle dispersion was subjected to solid-liquid separation using a centrifuge, and the resulting cake was washed with methanol and vacuum dried at 180 ° C. for 2 hours to obtain amino resin fine particle (2) powder.
When the average particle size of the resulting amino resin fine particles (2) was measured by a caliper method, the average particle size was 0.24 μm and the coefficient of variation was 8.2%.
<Manufacture of insulating fine particle-coated conductive fine particles (2)>
The amino resin fine particles obtained by dispersing in the methanol so that the concentration (solid content) of the amino resin fine particles (2) in which the surface of the melamine resin particles is coated with a condensate of benzoguanamine and formaldehyde is 5%. After adding 50 parts of the conductive fine particles (1) obtained in Synthesis Example 1 to the methanol dispersion of (2) and uniformly dispersing the methanol, the methanol is distilled off by an evaporator, and the surface of the conductive fine particles (1) Was coated with amino resin fine particles (2) to obtain insulating fine particle-coated conductive fine particles (2).
<Manufacture of anisotropic conductive adhesive composition (2)>
The anisotropic conductive adhesive composition (2) was carried out in the same manner as in Example 1 except that the insulating fine particle-coated conductive fine particles (1) in Example 1 were changed to the insulating fine particle-coated conductive fine particles (2). Got.
<Anisotropic conductive molded body (2)>
An anisotropic conductive molded body (2) is obtained in the same manner as in Example 1 except that the insulating fine particle-coated conductive fine particles (1) in Example 1 are changed to the insulating fine particle-coated conductive fine particles (2). It was.
The evaluation results are shown in Table 1.

〔実施例3〕
アモルファスシリカ微粒子(日本触媒社製、「シーホスターKE−P30」、平均粒子径0.28μm)175部をビーカーに入れ、ここにイオン交換水1575部を添加し超音波分散させた後、攪拌機、還流冷却管及び温度計を備えた四つ口フラスコに移し替え、90℃に昇温した。別途、ベンゾグアナミン100部、37%ホルマリン130部、65%DBSNa6.2部、ドデシルベンゼンスルホン酸5.0部、イオン交換水350部を均一に分散混合し、ベンゾグアナミン分散液を得た。上記の90℃に保持されたアモルファスシリカ微粒子含有液1750部中に上記のベンゾグアナミン分散液を2時間かけて滴下した。滴下後、さらに90℃で5時間保持し、その後30℃まで冷却して、アモルファスシリカ微粒子の表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(3)を含有する分散液を得た後、アミノ樹脂微粒子(3)の粉体を得た。
得られたアミノ樹脂微粒子(3)の平均粒子径をノギス法により測定したところ、平均粒子径は0.36μm、変動係数は9.0%であった。
実施例1と同様に、絶縁性微粒子被覆導電性微粒子(3)、異方性導電接着剤組成物(3)、異方性導電成形体(3)を得た。評価結果を表1に示した。
Example 3
175 parts of amorphous silica fine particles (manufactured by Nippon Shokubai Co., Ltd., “Seahoster KE-P30”, average particle diameter 0.28 μm) are placed in a beaker, and 1575 parts of ion-exchanged water are added and ultrasonically dispersed therein. The mixture was transferred to a four-necked flask equipped with a condenser and a thermometer, and the temperature was raised to 90 ° C. Separately, 100 parts of benzoguanamine, 130 parts of 37% formalin, 6.2 parts of 65% DBSNa, 5.0 parts of dodecylbenzenesulfonic acid and 350 parts of ion-exchanged water were uniformly dispersed and mixed to obtain a benzoguanamine dispersion. The above benzoguanamine dispersion was dropped into 1750 parts of the above-mentioned amorphous silica fine particle-containing liquid maintained at 90 ° C. over 2 hours. After dropping, the mixture is further maintained at 90 ° C. for 5 hours and then cooled to 30 ° C. to obtain a dispersion containing amino resin fine particles (3) in which the surface of the amorphous silica fine particles is coated with a condensate of benzoguanamine and formaldehyde. Thereafter, a powder of amino resin fine particles (3) was obtained.
When the average particle diameter of the resulting amino resin fine particles (3) was measured by a caliper method, the average particle diameter was 0.36 μm and the coefficient of variation was 9.0%.
In the same manner as in Example 1, insulating fine particle-coated conductive fine particles (3), an anisotropic conductive adhesive composition (3), and an anisotropic conductive molded body (3) were obtained. The evaluation results are shown in Table 1.

〔実施例4〕
実施例3におけるアミノ樹脂微粒子(3)の合成において、アモルファスシリカ微粒子の代わりにポリメタクリル酸メチル架橋物(日本触媒社製、「エポスターMX100W」、平均粒子径0.20μm)を用いた以外は実施例3と同様にして、ポリメタクリル酸メチル架橋物表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(4)を含有する分散液を得た後、アミノ樹脂微粒子(4)の粉体を得た。
得られたアミノ樹脂微粒子(4)の平均粒子径をノギス法により測定したところ、平均粒子径は0.24μm、変動係数は7.7%であった。
実施例1と同様に、絶縁性微粒子被覆導電性微粒子(4)、異方性導電接着剤組成物(4)、異方性導電成形体(4)を得た。評価結果を表1に示した。
Example 4
The synthesis of the amino resin fine particles (3) in Example 3 was carried out except that polymethyl methacrylate cross-linked product (manufactured by Nippon Shokubai Co., Ltd., “Eposter MX100W”, average particle size 0.20 μm) was used instead of amorphous silica fine particles. In the same manner as in Example 3, after obtaining a dispersion containing amino resin fine particles (4) whose polymethyl methacrylate cross-linked surface was coated with a condensate of benzoguanamine and formaldehyde, powder of amino resin fine particles (4) was obtained. Got the body.
When the average particle diameter of the resulting amino resin fine particles (4) was measured by a caliper method, the average particle diameter was 0.24 μm and the coefficient of variation was 7.7%.
In the same manner as in Example 1, insulating fine particle-coated conductive fine particles (4), an anisotropic conductive adhesive composition (4), and an anisotropic conductive molded body (4) were obtained. The evaluation results are shown in Table 1.

〔実施例5〕
γ−メタクリロキシプロピルトリメトキシシラン27部を、0.15%ドデシルベンゼンスルホン酸水溶液54部と混合し、50℃に加熱して、γ−メタクリロキシプロピルトリメトキシシランを加水分解し、透明な溶液とした。冷却後、該溶液にメタノール10部、アゾビス(2,4−ジメチルバレロニトリル)0.14部を混合して、B液とした。
一方、水141部、25質量%アンモニア溶液9部を混合してA液を別途調製した。
A液を攪拌しながら、B液を10分間かけて滴下して、重縮合反応を行った。撹拌を継続しながら、1時間後、窒素雰囲気中で70℃に昇温し、70℃で2時間加熱保持することにより、ラジカル重合反応を行った。その後、室温まで冷却し、懸濁体を得た。得られた懸濁体を瀘過により固液分離し、得られたケーキに対し、水による洗浄と瀘過を3回繰返した後、150℃で2時間真空乾燥して、有機無機複合粒子(5)(平均粒子径0.80μm)を得た。
実施例3におけるアミノ樹脂微粒子(3)の合成において、アモルファスシリカ微粒子の代わりに有機無機複合粒子(5)を用いた以外は実施例2と同様にして、有機無機複合粒子(5)表面がベンゾグアナミンとホルムアルデヒドとの縮合物により被覆されたアミノ樹脂微粒子(5)を含有する分散液を得た後、アミノ樹脂微粒子(5)の粉体を得た。
得られたアミノ樹脂微粒子(5)の平均粒子径をノギス法により測定したところ、平均粒子径は0.97μm、変動係数は7.1%であった。
実施例1と同様に、絶縁性微粒子被覆導電性微粒子(5)、異方性導電接着剤組成物(5)、異方性導電成形体(5)を得た。評価結果を表1に示した。
Example 5
27 parts of γ-methacryloxypropyltrimethoxysilane was mixed with 54 parts of a 0.15% aqueous dodecylbenzenesulfonic acid solution and heated to 50 ° C. to hydrolyze γ-methacryloxypropyltrimethoxysilane to produce a transparent solution. It was. After cooling, 10 parts of methanol and 0.14 part of azobis (2,4-dimethylvaleronitrile) were mixed with the solution to obtain a liquid B.
On the other hand, 141 parts of water and 9 parts of a 25 mass% ammonia solution were mixed to prepare liquid A separately.
While stirring the liquid A, the liquid B was added dropwise over 10 minutes to carry out a polycondensation reaction. One hour later, while continuing stirring, the temperature was raised to 70 ° C. in a nitrogen atmosphere, and the mixture was heated and held at 70 ° C. for 2 hours to carry out a radical polymerization reaction. Then, it cooled to room temperature and obtained the suspension. The obtained suspension was subjected to solid-liquid separation by filtration, and the obtained cake was repeatedly washed with water and filtered three times, and then vacuum-dried at 150 ° C. for 2 hours to obtain organic-inorganic composite particles ( 5) (average particle diameter 0.80 micrometer) was obtained.
In the synthesis of the amino resin fine particles (3) in Example 3, the surface of the organic / inorganic composite particles (5) is benzoguanamine in the same manner as in Example 2 except that the organic / inorganic composite particles (5) are used instead of the amorphous silica fine particles. After obtaining a dispersion containing amino resin fine particles (5) coated with a condensate of aldehyde and formaldehyde, a powder of amino resin fine particles (5) was obtained.
When the average particle diameter of the resulting amino resin fine particles (5) was measured by a caliper method, the average particle diameter was 0.97 μm and the coefficient of variation was 7.1%.
In the same manner as in Example 1, insulating fine particle-coated conductive fine particles (5), an anisotropic conductive adhesive composition (5), and an anisotropic conductive molded body (5) were obtained. The evaluation results are shown in Table 1.

〔比較例1〕
「エポスターS」に代えて、アモルファスシリカ微粒子(日本触媒社製、「シーホスターKE−W30」、平均粒子径0.25μm)を用いた以外は、実施例1と同様に行い、絶縁性微粒子被覆導電性微粒子(C1)、異方性導電接着剤組成物(C1)、異方性導電成形体(C1)を得た。評価結果を表1に示した。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that amorphous silica fine particles (Nippon Shokubai Co., Ltd., “Seahoster KE-W30”, average particle diameter of 0.25 μm) were used instead of “Eposter S”. Fine particles (C1), an anisotropic conductive adhesive composition (C1), and an anisotropic conductive molded body (C1) were obtained. The evaluation results are shown in Table 1.

〔比較例2〕
「エポスターS」に代えて、ポリメタクリル酸メチル架橋物(日本触媒社製、「エポスターMX100W」、平均粒子径0.20μm)を用いた以外は、実施例1と同様に行い、絶縁性微粒子被覆導電性微粒子(C2)、異方性導電接着剤組成物(C2)、異方性導電成形体(C2)を得た。評価結果を表1に示した。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that polymethyl methacrylate cross-linked product (manufactured by Nippon Shokubai Co., Ltd., “Eposter MX100W”, average particle size 0.20 μm) was used instead of “Eposter S”, and coated with insulating fine particles Conductive fine particles (C2), an anisotropic conductive adhesive composition (C2), and an anisotropic conductive molded body (C2) were obtained. The evaluation results are shown in Table 1.

Figure 0005554077
Figure 0005554077

表1に示すように、本発明の絶縁性微粒子被覆導電性微粒子を用いた実施例1〜5においては、導電接続構造体における導通性および絶縁性が優れていることが判る。また、本発明の絶縁性微粒子被覆導電性微粒子を用いた実施例1〜5においては、絶縁性微粒子の被覆状態が良好であることが判る。一方、絶縁性微粒子としてアモルファスシリカ微粒子、ポリメタクリル酸メチル架橋物を用いた比較例1、比較例2では、導電接続構造体における絶縁性が劣っていること、絶縁性微粒子の被覆状態が悪いことが判る。これは、比較例1、比較例2では、導電性微粒子表面から絶縁性微粒子が脱落することによって被覆状態が悪くなり、これによって、導電接続構造体における絶縁性が劣っていることを示している。   As shown in Table 1, in Examples 1 to 5 using the insulating fine particle-coated conductive fine particles of the present invention, it can be seen that the conductive connection structure is excellent in conductivity and insulation. In Examples 1 to 5 using the insulating fine particle-coated conductive fine particles of the present invention, it can be seen that the coated state of the insulating fine particles is good. On the other hand, in Comparative Example 1 and Comparative Example 2 using amorphous silica fine particles and polymethyl methacrylate cross-linked products as insulating fine particles, the insulating property in the conductive connection structure is inferior, and the covering state of the insulating fine particles is poor. I understand. This shows that in Comparative Example 1 and Comparative Example 2, the insulating fine particles fall off from the surface of the conductive fine particles, so that the covering state is deteriorated, whereby the insulating property in the conductive connection structure is inferior. .

本発明の絶縁性微粒子被覆導電性微粒子は、電気接続用異方導電材料として好適に用いることができる。   The insulating fine particle-coated conductive fine particles of the present invention can be suitably used as an anisotropic conductive material for electrical connection.

Claims (6)

導電性微粒子の表面に平均粒子径1μm以下のアミノ樹脂微粒子が存在してなり、
該アミノ樹脂微粒子が、コア部と表層部とを有し、該表層部にアミノ樹脂の成分を有する、
絶縁性微粒子被覆導電性微粒子。
Amino resin fine particles having an average particle diameter of 1 μm or less exist on the surface of the conductive fine particles,
The amino resin particles, and a core portion and a surface layer portion, that have a component of amino resin in the surface layer portion,
Insulating fine particles coated conductive fine particles.
前記コア部が、無機粒子、有機粒子または有機無機複合粒子から形成され、
前記表層部が、アミノ樹脂から形成される、
請求項1に記載の絶縁性微粒子被覆導電性微粒子。
The core part is formed from inorganic particles, organic particles or organic-inorganic composite particles,
The surface layer portion is formed from an amino resin;
The insulating fine particle-coated conductive fine particles according to claim 1.
前記コア部と前記表層部とがそれぞれ異なるアミノ化合物を用いて得られたアミノ樹脂から形成される、
請求項1に記載の絶縁性微粒子被覆導電性微粒子。
Said core part and said surface layer portion is formed from an amino resin obtained using a different amino compound,
The insulating fine particle-coated conductive fine particles according to claim 1.
前記コア部が、メラミンを用いて形成され、
前記表層部が、グアナミン化合物を用いて形成される、
請求項3に記載の絶縁性微粒子被覆導電性微粒子。
The core is formed using melamine;
The surface layer is formed using a guanamine compound;
The insulating fine particle-coated conductive fine particles according to claim 3.
請求項1から4のいずれかに記載の絶縁性微粒子被覆導電性微粒子がバインダー樹脂中に分散してなる、異方性導電接着剤組成物。   An anisotropic conductive adhesive composition, wherein the insulating fine particle-coated conductive fine particles according to any one of claims 1 to 4 are dispersed in a binder resin. 請求項5に記載の異方性導電接着剤組成物から得られる、異方性導電成形体。

An anisotropic conductive molded body obtained from the anisotropic conductive adhesive composition according to claim 5.

JP2010008868A 2009-09-15 2010-01-19 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body Expired - Fee Related JP5554077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008868A JP5554077B2 (en) 2009-09-15 2010-01-19 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009212678 2009-09-15
JP2009212678 2009-09-15
JP2010008868A JP5554077B2 (en) 2009-09-15 2010-01-19 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Publications (2)

Publication Number Publication Date
JP2011086598A JP2011086598A (en) 2011-04-28
JP5554077B2 true JP5554077B2 (en) 2014-07-23

Family

ID=44079389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008868A Expired - Fee Related JP5554077B2 (en) 2009-09-15 2010-01-19 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body

Country Status (1)

Country Link
JP (1) JP5554077B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750342B2 (en) * 2011-09-12 2015-07-22 株式会社日本触媒 Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP6374689B2 (en) * 2013-04-04 2018-08-15 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748705B2 (en) * 1991-02-14 1998-05-13 日立化成工業株式会社 Circuit connection members
JP4387175B2 (en) * 2003-07-07 2009-12-16 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP2005187637A (en) * 2003-12-25 2005-07-14 Sekisui Chem Co Ltd Anisotropically electroconductive adhesive, top/bottom conductive material for liquid crystal display device and liquid crystal display device
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles
JP5074082B2 (en) * 2007-04-16 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particle body, anisotropic conductive connecting material using the same, and method for producing conductive particle body
JP4957695B2 (en) * 2007-10-02 2012-06-20 日立化成工業株式会社 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
WO2009078469A1 (en) * 2007-12-18 2009-06-25 Hitachi Chemical Company, Ltd. Insulator-covered conductive particle, anisotropic conductive adhesive film, and methods for producing those

Also Published As

Publication number Publication date
JP2011086598A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP5902717B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5245021B1 (en) Conductive fine particles and anisotropic conductive material containing the same
JP2010229303A (en) Method for producing core shell type organic/inorganic composite material particle, core shell type organic/inorganic composite material particle, and electroconductive fine particle
JP5583647B2 (en) Conductive fine particles and anisotropic conductive material using the same
WO2012102199A1 (en) Conductive microparticle, resin particle, and anisotropic conductive material using same
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
TWI574283B (en) Organic and inorganic mixed particles, conductive particles, conductive materials and connecting structures
JP5340686B2 (en) Polymer fine particles, method for producing polymer fine particles, and conductive fine particles
JP5466022B2 (en) Conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP5750342B2 (en) Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP2020037705A (en) Base material particle, conductive particle, conductive material and connection structure
JP2019114552A (en) Base particle, conductive particle, conductive material, and connection structure
JP5667557B2 (en) Conductive fine particles and anisotropic conductive materials
JP5554077B2 (en) Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5711105B2 (en) Conductive fine particles and anisotropic conductive materials
JP5583714B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5952553B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP2013120658A (en) Conductive fine particle and anisotropic conductive material including the same
JP2011065750A (en) Insulating fine particle-coated conductive particle, anisotropic conductive adhesive composition, and anisotropic conductive molding
JP5951977B2 (en) Conductive fine particles
JP5917318B2 (en) Conductive fine particles
JP5883283B2 (en) Conductive particles and anisotropic conductive materials
JP5970178B2 (en) Conductive fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees