JP2748705B2 - Circuit connection members - Google Patents

Circuit connection members

Info

Publication number
JP2748705B2
JP2748705B2 JP3020645A JP2064591A JP2748705B2 JP 2748705 B2 JP2748705 B2 JP 2748705B2 JP 3020645 A JP3020645 A JP 3020645A JP 2064591 A JP2064591 A JP 2064591A JP 2748705 B2 JP2748705 B2 JP 2748705B2
Authority
JP
Japan
Prior art keywords
particles
circuit
connection
insulating
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3020645A
Other languages
Japanese (ja)
Other versions
JPH04259766A (en
Inventor
功 塚越
敦夫 中島
康史 後藤
共久 太田
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3020645A priority Critical patent/JP2748705B2/en
Publication of JPH04259766A publication Critical patent/JPH04259766A/en
Application granted granted Critical
Publication of JP2748705B2 publication Critical patent/JP2748705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は微細回路用の接続部材に
関し、更に詳しくは集積回路、液晶パネル等の接続端子
とそれに対向配置された回路基板上の接続端子を電気
的、機械的に接続するための接続部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member for a fine circuit, and more particularly, to electrically and mechanically connecting a connecting terminal of an integrated circuit, a liquid crystal panel, etc. to a connecting terminal on a circuit board opposed to the connecting terminal. To a connection member for performing the connection.

【0002】[0002]

【従来の技術】電子部品の小形薄形化に伴い、これらに
用いる回路は高密度、高精細化している。これら微細回
路の接続は、従来のハンダやゴムコネクターなどでは対
応が困難であることから、最近では分解能に優れた異方
導電性の接着剤や膜状物(以下接続部材という)が多用
されるようになってきた。この方法は相対峙する回路間
に、導電材料を所定量含有した接着剤よりなる接続部材
層を設け、加圧又は加熱加圧手段を構じることによっ
て、回路間の電気的接続と同時に隣接回路間には絶縁性
を付与し、相対峙する回路を接着固定するものである。
2. Description of the Related Art As electronic components have become smaller and thinner, circuits used for them have become higher in density and higher in definition. Since connection of these microcircuits is difficult with conventional solders or rubber connectors, recently, anisotropic conductive adhesives and film-like materials (hereinafter referred to as connection members) with excellent resolution are frequently used. It has become. In this method, a connecting member layer made of an adhesive containing a predetermined amount of a conductive material is provided between opposing circuits, and a pressurizing or heating pressurizing means is provided. The insulation is provided between the circuits, and the opposing circuits are bonded and fixed.

【0003】接続部材を高分解能化するための基本的な
考え方は、隣接回路との絶縁性を確保するために導電材
料の粒径を回路間の絶縁部分よりも小さくし、合わせて
導電材料が接触しない程度に添加量を加減しながら回路
接続部における導通性を確実に得ることである。しかし
ながら導電材料の粒径を小さくすると、表面積の増加と
粒子個数の著しい増加により粒子は2次凝集してしまい
隣接回路との絶縁性が保持できなくなり、また粒子の添
加量を減少すると接続すべき回路上の導電材料の数が減
少することから接触点数が不足し接続回路間での導通が
得られなくなるために、長期接続信頼性を保ちながら接
続部材を高分解能することは極めて困難であった。
[0003] The basic idea for increasing the resolution of the connecting member is to make the particle size of the conductive material smaller than that of the insulating portion between the circuits in order to ensure the insulation from the adjacent circuit, and to make the conductive material accordingly. An object is to surely obtain conductivity at a circuit connecting portion while controlling the amount of addition so as not to contact. However, when the particle size of the conductive material is reduced, the particles are secondary-aggregated due to an increase in the surface area and the number of particles are remarkably increased, so that the insulating property with the adjacent circuit cannot be maintained. Since the number of conductive materials on the circuit is reduced, the number of contact points is insufficient and conduction between the connection circuits cannot be obtained, and it has been extremely difficult to achieve high resolution of the connection member while maintaining long-term connection reliability. .

【0004】このような微細回路の接続を可能とし、か
つ接続信頼性に優れた接続部材を得る試みとして、我々
は先に特開昭63−237372号公報記載の方法を提
案した。この方法は、導電性粒子の表面が回路接続時の
熱圧により流動性を有する熱可塑性絶縁層で覆われた粒
子と絶縁性接着剤よりなるものである。この方法は回路
接続時の加熱加圧によりその表面の絶縁層が軟化流動し
その被覆が回路若しくは粒子の接触部において排除され
ることにより接続回路間に導電性を与える。一方絶縁回
路部においては、回路間の粒子ほどには加圧されないた
めに絶縁層の被覆はそのまま保たれることから絶縁性が
得られる。
[0004] As an attempt to obtain a connection member which enables connection of such a fine circuit and has excellent connection reliability, we have previously proposed a method described in Japanese Patent Application Laid-Open No. 63-237372. In this method, the conductive particles are composed of particles whose surfaces are covered with a thermoplastic insulating layer having fluidity due to the heat pressure at the time of circuit connection, and an insulating adhesive. In this method, the insulating layer on the surface is softened and flowed by heating and pressurizing at the time of circuit connection, and the coating is removed at the contact portion of the circuit or the particle, thereby providing conductivity between the connected circuits. On the other hand, in the insulated circuit portion, the insulation is obtained because the coating of the insulating layer is kept as it is because pressure is not applied as much as particles between circuits.

【0005】上記した理由により導電性粒子は接着剤中
に高濃度に充填することが可能となり微小接続面積での
導通が確実に得られるので高分解能な接続部品を得るこ
とができる。また導電性粒子は回路接続時の加熱加圧に
より軟化変形し回路や粒子との接触面積が向上すること
と、接続部の温度変化に対して追随性を有するので接続
部の信頼性、特に高温高湿試験や温度変化を含む場合の
ような長期間の接続信頼性が著しく向上できる。
[0005] For the above reasons, the conductive particles can be filled into the adhesive at a high concentration, and conduction in a minute connection area can be reliably obtained, so that a high-resolution connection part can be obtained. In addition, the conductive particles are softened and deformed by heating and pressurizing when connecting the circuit, improving the contact area with the circuit and the particles, and have the ability to follow the temperature change of the connecting part. Long-term connection reliability, such as when a high humidity test or a temperature change is included, can be significantly improved.

【0006】[0006]

【発明が解決しようとする課題】特開昭63−2373
72号公報に示される方法は、高分解能化と接続信頼性
の両立が可能な優れた方法であるが、隣接回路間の絶縁
性が安定して得られないという問題点があった。この理
由は、熱可塑性絶縁層の被覆の除去程度が回路接続時の
条件や絶縁層の厚みによって微妙に変動するためと考え
られる。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 63-2373
The method disclosed in Japanese Patent No. 72 is an excellent method capable of achieving both high resolution and connection reliability, but has a problem that the insulation between adjacent circuits cannot be stably obtained. It is considered that the reason for this is that the degree of removal of the coating of the thermoplastic insulating layer slightly varies depending on the conditions at the time of circuit connection and the thickness of the insulating layer.

【0007】すなわち、回路接続時の熱や圧力が過剰で
あると、形成した熱可塑性絶縁層が溶融して隣接回路間
で導電粒子同士が接触してしまい、絶縁性が不十分とな
り、逆に熱圧が不足であると、絶縁性は良好だが回路面
と導電粒子間の絶縁層の排除が不十分となり接続抵抗の
上昇を招いてしまうものとみられる。したがって、これ
らの特性のバランスを得るために接続条件を厳密に管理
せねばならず、非量産的であった。
That is, if the heat and pressure during circuit connection are excessive, the formed thermoplastic insulating layer melts and conductive particles come into contact with each other between adjacent circuits, resulting in insufficient insulation. If the heat pressure is insufficient, the insulating properties are good, but the removal of the insulating layer between the circuit surface and the conductive particles is insufficient, and it is considered that the connection resistance is increased. Therefore, in order to obtain a balance between these characteristics, the connection conditions must be strictly controlled, which is not mass-produced.

【0008】[0008]

【課題を解決するための手段】本発明は、高分子重合体
からなる核材上に導電性金属薄層を実質的に被覆した熱
変形性導電粒子の表面に、熱変形性導電粒子よりも粒径
が小さく接続条件下で接着剤よりも硬質でかつ非溶融性
である絶縁性粒子を結着剤を介して付着形成してなる複
合粒子を接着剤中に分散してなることを特徴とする回路
の接続部材に関する。
SUMMARY OF THE INVENTION According to the present invention, there is provided a heat-deformable conductive particle comprising a core material made of a high-molecular polymer and a conductive metal thin layer substantially coated on the surface thereof. Smaller particle size, harder and less meltable than adhesive under connection conditions
The present invention relates to a circuit connecting member, characterized in that composite particles formed by attaching insulating particles as described above through a binder are dispersed in an adhesive.

【0009】本発明にかかる複合粒子について以下図面
によりその実施例を説明する。図1から図5は、本発明
に好適な複合粒子を示す断面模式図である。
Examples of the composite particles according to the present invention will be described below with reference to the drawings. 1 to 5 are schematic sectional views showing composite particles suitable for the present invention.

【0010】図1は、高分子核材1の表面に導電性金属
薄層2を実質的に被覆形成してなる熱変形性導電粒子5
の表面に、絶縁性粒子3を付着形成して固定化した複合
粒子6を示している。
FIG. 1 shows heat-deformable conductive particles 5 obtained by substantially coating a surface of a polymer core material 1 with a conductive metal thin layer 2.
Shows the composite particles 6 in which the insulating particles 3 are adhered and fixed on the surface of the composite particles 6.

【0011】絶縁性粒子3は、結着剤4の介在により形
成(図1〜図3)しても、図4のように結着剤4を用い
ずにファンデルワールス力や静電気力を利用して固定化
する方法であってもよい。絶縁性粒子3は、図1〜図4
のように単層で存在しても、図5のように複層で存在し
てもよい。複層で存在する場合は、絶縁性をより安定的
に得やすい。
Even if the insulating particles 3 are formed by the interposition of the binder 4 (FIGS. 1 to 3), van der Waals force or electrostatic force is used without using the binder 4 as shown in FIG. Alternatively, a method for immobilization may be used. The insulating particles 3 are shown in FIGS.
Or a multi-layer as shown in FIG. When it exists in multiple layers, it is easy to obtain insulation more stably.

【0012】図1の場合、絶縁性粒子3が結着剤4より
露出した構造なので、ほかの導電粒子5との間で安定し
た絶縁配置をとりやすい。図2の場合は、結着剤4の中
に絶縁性粒子3が埋没した構造であるが、結着剤4のみ
場合に比べて絶縁性粒子3が存在することや、絶縁性粒
子3が結着剤4よりも硬質なことから接続時に結着剤4
が流動しても絶縁性粒子3によりやはり安定した絶縁性
が得られる。
In the case of FIG. 1, since the insulating particles 3 are exposed from the binder 4, a stable insulating arrangement with the other conductive particles 5 can be easily obtained. FIG. 2 shows a structure in which the insulating particles 3 are buried in the binder 4. However, compared to the case where only the binder 4 is used, the insulating particles 3 are present, and the insulating particles 3 are bonded. Binder 4 at the time of connection because it is harder than binder 4
Even if the fluid flows, stable insulating properties can be obtained by the insulating particles 3.

【0013】図3の場合は、絶縁性粒子3が個別(もち
ろん一部の凝集した絶縁性粒子であってもよい。)に結
着剤4で処理されており、絶縁性粒子3の変質防止に好
適でありこの場合も安定した絶縁性が得られる。更に本
例においては、導電粒子5上に絶縁性粒子3を確実に形
成できる特徴を有する。
In the case of FIG. 3, the insulating particles 3 are individually (of course, may be a part of aggregated insulating particles) treated with the binder 4 to prevent deterioration of the insulating particles 3. In this case, stable insulation can be obtained. Further, this embodiment has a feature that the insulating particles 3 can be reliably formed on the conductive particles 5.

【0014】上記した代表的な複合粒子は、2種以上混
在して使用することも可能である。以下、構成材料につ
いて説明する。高分子核材1は完全な充実体、内部気泡
を有する発泡体、内部が気体からなる中空体、小粒子の
集まりにより核材を形成する凝集体などのいずれでもよ
く、これらを単独若しくは複合して用いることができ
る。高分子核材1の形状は、ほぼ球状のものが好ましい
が、その形状は特に限定されない。
The above-described typical composite particles can be used in combination of two or more. Hereinafter, the constituent materials will be described. The polymer core material 1 may be any of a solid body, a foam having internal bubbles, a hollow body having a gas inside, an aggregate forming a core material by a collection of small particles, and the like. Can be used. The shape of the polymer core material 1 is preferably substantially spherical, but the shape is not particularly limited.

【0015】高分子核材1の材質としては、ポリスチレ
ンやエポキシ樹脂などの各種プラスチック類又はスチレ
ンブタジエンゴムやシリコーンゴム等の各種ゴム類及び
デンプンやセルロース等の天然高分子類などがあり、こ
れらを主成分として架橋剤や硬化剤、官能基付与物質、
カップリング剤及び老化防止剤などの各種添加剤を用い
ることができる。
Examples of the material of the polymer core material 1 include various plastics such as polystyrene and epoxy resin, various rubbers such as styrene-butadiene rubber and silicone rubber, and natural polymers such as starch and cellulose. Crosslinking agents and curing agents as main components, functional group imparting substances,
Various additives such as a coupling agent and an antioxidant can be used.

【0016】導電性金属薄層2は導電性を有する各種の
金属、金属酸化物、合金等が用いられる。金属の例とし
ては、Zn、Al、Sb、Au、Ag、Sn、Fe、Cu、Pb、Ni、Pd、
Ptなどがあり、これらを単独若しくは複合して用いるこ
とが可能であり、更に特殊な目的、例えば硬度や表面張
力の調整及び密着性の改良などのために、Mo、Mn、Cd、
Si、Ta及びCrなどのほかの金属やその化合物などを添加
することができる。導電性と耐腐食性からNi、Ag、Au、
Sn、Cuが好ましく用いられ、これらはまた単層若しくは
複層として形成することも可能である。
The conductive metal thin layer 2 is made of various conductive metals, metal oxides, alloys and the like. Examples of metals include Zn, Al, Sb, Au, Ag, Sn, Fe, Cu, Pb, Ni, Pd,
There are Pt and the like, and these can be used alone or in combination.For further special purposes, for example, adjustment of hardness and surface tension and improvement of adhesion, Mo, Mn, Cd,
Other metals such as Si, Ta and Cr and their compounds can be added. Ni, Ag, Au, from conductivity and corrosion resistance
Sn and Cu are preferably used, and they can also be formed as a single layer or multiple layers.

【0017】これらを用いて導電性金属薄層2を高分子
核材1上に形成する方法としては、蒸着法、スパッタリ
ング法、イオンプレーティング法、溶射法などの乾式法
やめっき法などが適用できる。湿式の分散系によること
から均一厚みの被覆層を得ることのできる無電解めっき
法が好ましい。金属薄層の厚みは通常0.01〜5μ
m、好ましくは0.05〜1.0μmとする。ここで厚
みは金属下地層のある場合にはその層も含むものとす
る。被覆層の厚みが薄いと導電性が低下し、厚みが増す
と回路接続時における高分子核材の変形が起こり難くな
り回路への接触面積が減少することから接続信頼性が低
下する。
As a method for forming the conductive metal thin layer 2 on the polymer nucleus material 1 by using these, a dry method such as an evaporation method, a sputtering method, an ion plating method, a thermal spraying method, or a plating method is applied. it can. An electroless plating method capable of obtaining a coating layer having a uniform thickness is preferable because of a wet dispersion system. The thickness of the thin metal layer is usually 0.01 to 5μ.
m, preferably 0.05 to 1.0 μm. Here, the thickness includes the metal base layer, if there is one. If the thickness of the coating layer is small, the conductivity is reduced. If the thickness is increased, deformation of the polymer nucleus material at the time of circuit connection is less likely to occur and the contact area with the circuit is reduced, so that connection reliability is reduced.

【0018】以上によりなる熱変形性導電粒子5の粒径
は0.5〜50μmが好ましい。0.5μm未満では充
填粒子数が多くなることから回路への接触面積が実質的
に減少するので回路との接着性が低下し、50μmを超
えると粒子が隣接回路間に存在した時に絶縁性が失われ
るので分解能の向上が難しくなる。粒子は接続部材中
に、独立若しくは凝集して存在することができる。
The particle diameter of the thermally deformable conductive particles 5 formed as described above is preferably 0.5 to 50 μm. When the particle size is less than 0.5 μm, the number of the filled particles increases, and the contact area with the circuit is substantially reduced, so that the adhesion to the circuit is reduced. It is difficult to improve the resolution because it is lost. The particles can exist independently or aggregated in the connecting member.

【0019】絶縁性粒子3は、熱変形性導電粒子5より
も粒径を小さくすることが、固定化が行いやすく、また
接続部材の高分解能化を図る上からも好ましく、絶縁性
粒子3/導電粒子5の平均粒径の比で1/3以下より好
ましくは1/5以下とすることが好適である。このよう
な理由から絶縁性粒子3の平均粒径は2μm以下より好
ましくは0.5μm以下が好ましい。
It is preferable that the diameter of the insulating particles 3 is smaller than that of the thermally deformable conductive particles 5 from the viewpoint of easy fixation and high resolution of the connecting member. The ratio of the average particle diameter of the conductive particles 5 is preferably 1/3 or less, more preferably 1/5 or less. For this reason, the average particle size of the insulating particles 3 is preferably 2 μm or less, more preferably 0.5 μm or less.

【0020】絶縁性粒子3の材質としては絶縁性のTi、
Mg、Zn、Si、Ba、Ca、Al、Feなどの酸化物、窒化物、炭
酸塩などの化合物やナイロン、ポリアセタール、ポリメ
チルメタクリレート、ポリスチレン等の熱可塑性物質
や、その他のエポキシ樹脂、フェノール樹脂、ベンゾグ
アナミン樹脂等の熱硬化性物質であってもよい。これら
の中では、金属酸化物や金属窒化物などの金属化合物や
熱硬化性樹脂が絶縁層の耐熱性に優れることや、回路接
続時に非溶融性であることから絶縁性の保持に優れるの
で好ましく適用できる。
The material of the insulating particles 3 is insulating Ti,
Compounds such as oxides, nitrides, and carbonates such as Mg, Zn, Si, Ba, Ca, Al, and Fe; thermoplastics such as nylon, polyacetal, polymethyl methacrylate, and polystyrene; and other epoxy resins and phenolic resins And a thermosetting substance such as a benzoguanamine resin. Among these, metal compounds such as metal oxides and metal nitrides and thermosetting resins are preferable because they have excellent heat resistance of the insulating layer and are excellent in maintaining insulation because they are non-melting at the time of circuit connection. Applicable.

【0021】絶縁性粒子3の熱変形性導電粒子5上への
固定化方法としては、例えば噴霧法や高速撹拌法などの
造粒方法が適用可能であり、このような方法による製造
装置としては、メカノミル(岡田精工)、オングミル
(ホソカワミクロン)、ハイプリダイゼーションシステ
ム(奈良機械)、コートマイザー(フロイント産業)、
クラックスシステム(オリエント化学)等の商品名で市
販されており、いずれも好ましく適用できる。
As a method for immobilizing the insulating particles 3 on the heat-deformable conductive particles 5, for example, a granulation method such as a spraying method or a high-speed stirring method can be applied. , Mechano Mill (Okada Seiko), Ong Mill (Hosokawa Micron), High Predication System (Nara Machine), Coatmizer (Freund Sangyo),
It is commercially available under a trade name such as CLAX SYSTEM (Orient Chemical), and any of them can be preferably applied.

【0022】絶縁性粒子3の熱変形性導電粒子5上への
形成量は隣接粒子間で絶縁性が確保できればよく、その
ためには絶縁性粒子3の表面積に対し導電粒子5上への
投影面積(すなわち絶縁性粒子の粒径の投影面積)が1
/2以上であることが好ましい。
The amount of the insulating particles 3 formed on the heat-deformable conductive particles 5 is only required to ensure insulation between adjacent particles. For this purpose, the projected area of the insulating particles 3 on the conductive particles 5 is larger than the surface area of the insulating particles 3. (That is, the projected area of the particle size of the insulating particles) is 1
/ 2 or more.

【0023】結着剤4は、絶縁性粒子3を導電性粒子5
上に付着形成するために用いる。結着剤4の材質として
は、回路接続時の加熱、加圧により流動性を有する熱可
塑性物質が適用可能であり、これらは例えばナイロン、
ポリアセタール、ポリメチルメタクリレート、ポリスチ
レン、ポリプロピレン、ポリエチレン等を例示できる。
The binder 4 is formed by converting the insulating particles 3 into the conductive particles 5.
It used to deposited thereon. As a material of the binder 4, a thermoplastic substance having fluidity by heating and pressurizing at the time of circuit connection can be used.
Examples thereof include polyacetal, polymethyl methacrylate, polystyrene, polypropylene, and polyethylene.

【0024】結着剤4は、図2及び図3のように最外層
に形成される場合は絶縁性でなければならないが、その
他(図1、図4、図5)の場合には導電性、絶縁性のど
ちらであってもよい。
The binder 4 must be insulative when it is formed on the outermost layer as shown in FIGS. 2 and 3, but in other cases (FIGS. 1, 4 and 5), it is conductive. Or insulating.

【0025】以上よりなる複合粒子6を絶縁性接着剤7
中に分散することで本発明の回路の接続部材が得られ
る。
The above composite particles 6 are mixed with an insulating adhesive 7
By dispersing the inside, the connection member of the circuit of the present invention is obtained.

【0026】本発明で用いられる絶縁性接着剤7として
は、基本的には絶縁性を示す通常の接着性シート類に用
いられる配合物が適用でき、特に熱、光、電子線、湿
気、嫌気性などによる各硬化性接着剤が回路接続時の導
電粒子の変形を安定して保持できるので好適である。
As the insulative adhesive 7 used in the present invention, compounds used for ordinary adhesive sheets showing insulation properties can be basically applied. In particular, heat, light, electron beam, moisture, anaerobic Each of the curable adhesives due to the properties and the like is preferable because it can stably hold the deformation of the conductive particles at the time of circuit connection.

【0027】これらの接着剤の主要材料を例示するとエ
チレン−酢酸ビニル共重合体、エチレン−アクリル酸共
重合体、アクリル酸エステル系ゴム、ポリビニルアセタ
ール、アクリロニトリル−ブタジエン共重合体、スチレ
ン−ブタジエン共重合体、スチレン−エチレン−ブチレ
ン共重合体、フェノキシ樹脂、エポキシ樹脂、ポリエス
テル、ポリウレタン等やこれらの変性体があり、これら
は単独若しくは2種以上併用して用いることができ、こ
れらには更に、粘着付与剤、架橋剤、老化防止剤及びカ
ップリング剤等の添加剤も適時含有できる。上記した接
着剤の中では、例えば水酸基などの官能基を有する材料
とこれと反応性を有するイソシアネート等との組み合わ
せや、エポキシ樹脂と潜存性硬化剤との組み合わせ等の
いわゆる硬化可能な接着剤がその耐熱性の良好なことか
ら好ましく、特にエポキシ系接着剤は、保存性と短時間
硬化性の両立が得やすいことから、本用途により好まし
く適用可能である。
Examples of the main materials of these adhesives include ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, acrylate rubber, polyvinyl acetal, acrylonitrile-butadiene copolymer, and styrene-butadiene copolymer. And modified styrene-ethylene-butylene copolymers, phenoxy resins, epoxy resins, polyesters, polyurethanes, and the like, and these can be used alone or in combination of two or more. Additives such as imparting agents, cross-linking agents, antioxidants and coupling agents can also be included as appropriate. Among the above-mentioned adhesives, for example, a so-called curable adhesive such as a combination of a material having a functional group such as a hydroxyl group and an isocyanate having a reactivity with the material, or a combination of an epoxy resin and a latent curing agent. Is preferable because of its good heat resistance. In particular, an epoxy-based adhesive is more preferably applicable to the present application because it is easy to obtain both storage stability and short-time curability.

【0028】接着剤7中に占める複合粒子6の添加量
は、その表面が絶縁層で被覆されているために高密度に
充填することが可能である。すなわち従来の回路の接続
部材においては、その添加量は一般的に5体積%以下と
少量の添加により隣接回路との絶縁性を制御していた
が、本発明においては2〜35体積%と多量に添加する
ことが可能となった。2体積%未満では微細回路部にお
ける導電性粒子の数が少なすぎることから接続の信頼性
が不足し、35体積%を超えると接続回路の接着性が不
足する。好ましい添加量は5〜25体積%である。
The addition amount of the composite particles 6 in the adhesive 7 can be filled at a high density because the surface is covered with the insulating layer. That is, in the connection member of the conventional circuit, the addition amount is generally 5% by volume or less to control the insulation with the adjacent circuit by adding a small amount, but in the present invention, the addition amount is as large as 2 to 35% by volume. It has become possible to add to. If it is less than 2% by volume, the number of conductive particles in the fine circuit portion is too small, so that the reliability of the connection is insufficient. If it exceeds 35% by volume, the adhesiveness of the connection circuit is insufficient. The preferred amount is 5 to 25% by volume.

【0029】上記接着剤を溶剤に溶解するか、懸濁状に
媒体中に分散しあるいは熱溶融するなどにより液状とし
た後、複合粒子をボールミルや撹拌装置によるなどの通
常の分散方法により混合することで接続部材用の組成物
を得る。
After dissolving the adhesive in a solvent, dispersing it in a suspension in a medium, or melting it by heat, the composite particles are mixed by an ordinary dispersion method such as a ball mill or a stirrer. Thus, a composition for a connection member is obtained.

【0030】上記の複合粒子を混合した接続部材用組成
物は、接続を要する一方若しくは相方の回路上にスクリ
ーン印刷やロールコータ等の手段を用いて直接回路上に
接続部材を構成するか、あるいはフィルム状の接続部材
としてもよい。この時、接続部材の厚みは特に規定しな
いが1〜100μmが好ましい。1μm未満では回路と
の接着性が十分に得にくいことがあり、100μmを超
えると回路の接続が短時間の場合に接続時の熱伝達が不
十分となり絶縁粒子が十分に流動することができないの
で十分な導電性が得られないことがある。
The composition for a connection member obtained by mixing the above-mentioned composite particles may be used to form a connection member directly on a circuit using screen printing or a roll coater on one or the other circuit requiring connection, or It may be a film-like connecting member. At this time, the thickness of the connection member is not particularly limited, but is preferably 1 to 100 μm. If it is less than 1 μm, it may be difficult to obtain sufficient adhesiveness to the circuit, and if it exceeds 100 μm, when the connection of the circuit is short, heat transfer at the time of connection is insufficient and the insulating particles cannot flow sufficiently. In some cases, sufficient conductivity cannot be obtained.

【0031】本発明になる接続部材の使用方法として
は、例えば回路にフィルム状接続部材を仮貼りした状態
でセパレータのある場合にはそれを剥離し、あるいは上
記組成物を回路上に塗布し必要に応じて溶剤や分散媒を
除去した状態で、その面に他の接続すべき回路を位置合
わせして、熱プレスや加熱ロール等により加熱加圧すれ
ばよい。
As a method of using the connecting member according to the present invention, for example, when a separator is provided in a state where a film-like connecting member is temporarily attached to a circuit, it is necessary to peel off the separator or apply the above composition onto the circuit. After removing the solvent and the dispersion medium according to the above conditions, another circuit to be connected may be positioned on the surface, and heated and pressed by a hot press or a heating roll.

【0032】図6〜図7を用いて本発明になる接続部材
による回路端子の接続状況を説明する。図6は回路端子
8−8′間に、本発明になる複合粒子6と接着剤7よR
になる接続部材を形成した状態を示す。図6の状態で回
路端子8−8′の方向に加熱加圧することにより、図7
のように、熱変形性導電粒子5は偏平化して回路との接
触面積が増加し8−8′の距離が短縮する。この時、絶
縁性粒子3は加圧により回路との接触面から排除されて
低圧側の変形性導電粒子の長軸方向に移動する。また、
結着剤4があっても熱可塑性であることから、接続時に
低粘度化しており絶縁粒子3の移動に支障がない。した
がって、接続時の硬化前における最低粘度の低い順に、
接着剤<結着層<導電粒子<絶縁粒子の構成とすること
が好ましい。
The connection state of the circuit terminals by the connection member according to the present invention will be described with reference to FIGS. FIG. 6 shows the composite particles 6 and the adhesive 7 according to the present invention between the circuit terminals 8-8 '.
2 shows a state in which a connecting member is formed. By heating and pressing in the direction of the circuit terminals 8-8 'in the state of FIG.
As described above, the heat-deformable conductive particles 5 are flattened, the contact area with the circuit is increased, and the distance of 8-8 'is reduced. At this time, the insulating particles 3 are removed from the contact surface with the circuit by pressurization and move in the long axis direction of the deformable conductive particles on the low pressure side. Also,
Even if the binder 4 is present, since the binder 4 is thermoplastic, the viscosity is reduced at the time of connection, so that the movement of the insulating particles 3 is not hindered. Therefore, in order of the lowest viscosity before curing at the time of connection,
It is preferable to have a configuration of adhesive <binding layer <conductive particles <insulating particles.

【0033】前記の絶縁粒子が変形性導電粒子の長軸側
に移動した状態で、冷却あるいは接着剤の硬化反応の進
行等により接着剤の凝集力を増大することで、複合粒子
が固定化して回路の接続が完了する。
In the state where the insulating particles are moved to the major axis side of the deformable conductive particles, the cohesive force of the adhesive is increased by cooling or the curing reaction of the adhesive, so that the composite particles are fixed. Circuit connection is completed.

【0034】接続時の条件は、温度、圧力、時間の相互
関係で変動するが、下記条件を例示することができる。
加熱条件としては300℃以下(より好ましくは250
℃以下)、加圧条件としては1〜100kgf/cm2(より
好ましくは5〜50kgf/cm2)、時間は60秒以下が好
ましい。この理由は、300℃以上であると接続周辺部
に熱損傷を与えやすく、1kgf/cm2未満では絶縁性粒子
3の排除が不十分となり100kgf/cm2を超すと接続周
辺部が破壊しやすくなり、時間が60秒以上となると接
続作業性が低下するためである。
The conditions at the time of connection vary depending on the relationship among temperature, pressure and time, but the following conditions can be exemplified.
The heating conditions are 300 ° C. or less (more preferably 250 ° C.).
C. or lower), the pressure conditions are preferably 1 to 100 kgf / cm2 (more preferably 5 to 50 kgf / cm2), and the time is preferably 60 seconds or less. The reason for this is that if the temperature is higher than 300 ° C., thermal damage is likely to occur in the peripheral portion of the connection. If it is less than 1 kgf / cm 2, the elimination of the insulating particles 3 is insufficient. If the time is 60 seconds or longer, the connection workability is reduced.

【0035】本発明によれば、回路接続時の熱圧により
接着剤や用いる結着剤が低粘度化するので、絶縁性粒子
は接続する回路端子部において端子と導電粒子の接触面
から加圧により排除されて、圧力の低い端子と導電粒子
の非接触部である導電粒子の横方向に流動若しくは回転
等により移動した状態で、接着剤により固定できる(図
7参照)。
According to the present invention, the adhesive or binder used by thermal pressure during circuit connection is low viscosity, the insulating particles are pressurized from the contact surface of the terminals and the conductive particles in the circuit terminal portion to be connected And can be fixed with an adhesive in a state where the conductive particles, which are non-contact portions between the terminal with low pressure and the conductive particles, are moved or rotated in the lateral direction by flow or rotation (see FIG. 7).

【0036】そのために隣接する回路間との絶縁性は、
熱変形し難い絶縁性粒子により、あるいは変形性導電粒
子の長軸面における絶縁性粒子の密度の増加により、確
実な絶縁性を得ることが可能となる。
Therefore, the insulation between adjacent circuits is
With insulating particles that are not easily thermally deformed, or by increasing the density of insulating particles on the major axis surface of the deformable conductive particles, it is possible to obtain reliable insulation.

【0037】したがって、従来の熱可塑性絶縁層を形成
した場合に比べて、接続時の温度、圧力等の条件を広く
適用することが可能となる。また、接続部材の製造時に
おいても表面絶縁層の厚みを制御しやすく品質向上が図
れる。
Therefore, compared with the case where a conventional thermoplastic insulating layer is formed, it is possible to widely apply conditions such as temperature and pressure at the time of connection. Further, the thickness of the surface insulating layer can be easily controlled even during the production of the connection member, and the quality can be improved.

【0038】また、導電粒子を熱変形性としたことによ
り、回路接続時の加熱加圧により軟化変形し回路面や導
電粒子相互で接触面積が増加することや、高分子核材と
絶縁性接着剤の熱膨張率や弾性率の近似が可能となるこ
とにより、接続部の温度変化に対する追随性を有するの
で長期間の接続安定性が得られる。回路との接触面積は
増加しても、絶縁性粒子により横方向の絶縁性は確保で
き微細回路に対して対応可能である。
Further, by making the conductive particles thermally deformable, the conductive particles are softened and deformed by heating and pressurizing at the time of circuit connection, so that the contact area between the circuit surface and the conductive particles is increased. Since the thermal expansion coefficient and the elastic modulus of the agent can be approximated, the agent has a follow-up property to the temperature change of the connecting portion, and therefore, a long-term connection stability can be obtained. Even if the contact area with the circuit increases, insulating properties in the lateral direction can be ensured by the insulating particles, and it is possible to cope with a fine circuit.

【0039】更に、絶縁性接着剤を硬化可能な組成物と
することにより耐熱性に優れた電極間の高強度な接続が
可能となり、導電粒子の変形及び絶縁性粒子の配置を安
定保持できるので接続の安定性が一層向上する。
Furthermore, by setting the insulating adhesive to a curable composition, high-strength connection between electrodes having excellent heat resistance can be achieved, and the deformation of the conductive particles and the arrangement of the insulating particles can be stably maintained. Connection stability is further improved.

【0040】[0040]

【発明の効果】本発明によれば、回路間の電気的接続と
隣接回路間での優れた絶縁性を広い接続条件下で容易に
達成しうる接続部材を提供することが可能となる。
According to the present invention, it is possible to provide a connection member which can easily achieve electrical connection between circuits and excellent insulation between adjacent circuits under a wide range of connection conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に好適な複合粒子を示す断面模式図で
ある。
FIG. 1 is a schematic sectional view showing a composite particle suitable for the present invention.

【図2】 本発明に好適な複合粒子を示す断面模式図で
ある。
FIG. 2 is a schematic sectional view showing a composite particle suitable for the present invention.

【図3】 本発明に好適な複合粒子を示す断面模式図で
ある。
FIG. 3 is a schematic sectional view showing a composite particle suitable for the present invention.

【図4】 本発明に好適な複合粒子を示す断面模式図で
ある。
FIG. 4 is a schematic sectional view showing a composite particle suitable for the present invention.

【図5】 本発明に好適な複合粒子を示す断面模式図で
ある。
FIG. 5 is a schematic sectional view showing a composite particle suitable for the present invention.

【図6】 本発明になる接続部材を用いた回路端子の接
続状況を示す断面模式図である。
FIG. 6 is a schematic cross-sectional view showing a connection state of a circuit terminal using the connection member according to the present invention.

【図7】 本発明になる接続部材を用いた回路端子の接
続状況を示す断面模式図である。
FIG. 7 is a schematic cross-sectional view showing a connection state of a circuit terminal using the connection member according to the present invention.

【符号の説明】[Explanation of symbols]

1 高分子核材 2 導電性金属薄層 3、3′ 絶縁性粒子 4 結着剤 5 熱変形性導電粒子 6 複合粒子 7 絶縁性接着剤 8、8′ 回路端子 REFERENCE SIGNS LIST 1 polymer nucleus material 2 conductive metal thin layer 3, 3 ′ insulating particles 4 binder 5 heat-deformable conductive particles 6 composite particles 7 insulating adhesive 8, 8 ′ circuit terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 共久 茨城県下館市大字小川1500番地 日立化 成工業株式会社 下館研究所内 (72)発明者 山口 豊 茨城県下館市大字小川1500番地 日立化 成工業株式会社 下館研究所内 (56)参考文献 特開 平4−149273(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kyohisa Ota 1500 Oji Ogawa, Shimodate City, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd. (56) References JP-A-4-149273 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高分子重合体からなる核材上に導電性金
属薄層を実質的に被覆した熱変形性導電粒子の表面に、
熱変形性導電粒子よりも粒径が小さく接続条件下で接着
剤よりも硬質でかつ非溶融性である絶縁性粒子を結着剤
を介して付着形成してなる複合粒子を接着剤中に分散し
てなることを特徴とする回路の接続部材。
1. A heat-deformable conductive particle having a conductive metal thin layer substantially coated on a core material made of a high-molecular polymer,
Bonding agent with insulating particles that are smaller in size than heat-deformable conductive particles and harder and more non-melting than adhesive under connection conditions
A connection member for a circuit, characterized by dispersing composite particles formed by adhesion through an adhesive in an adhesive.
JP3020645A 1991-02-14 1991-02-14 Circuit connection members Expired - Lifetime JP2748705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020645A JP2748705B2 (en) 1991-02-14 1991-02-14 Circuit connection members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020645A JP2748705B2 (en) 1991-02-14 1991-02-14 Circuit connection members

Publications (2)

Publication Number Publication Date
JPH04259766A JPH04259766A (en) 1992-09-16
JP2748705B2 true JP2748705B2 (en) 1998-05-13

Family

ID=12032964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020645A Expired - Lifetime JP2748705B2 (en) 1991-02-14 1991-02-14 Circuit connection members

Country Status (1)

Country Link
JP (1) JP2748705B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047600A1 (en) 2006-10-17 2008-04-24 Hitachi Chemical Company, Ltd. Coated particle and method for producing the same, anisotropic conductive adhesive composition using coated particle, and anisotropic conductive adhesive film
JP2009102731A (en) * 2007-10-02 2009-05-14 Hitachi Chem Co Ltd Conductive particle, method for producing the same, method for producing insulated conductive particle, and anisotropic conductive adhesive film
WO2009099143A1 (en) 2008-02-05 2009-08-13 Hitachi Chemical Company, Ltd. Conductive particle and method for producing conductive particle
WO2011002065A1 (en) 2009-07-01 2011-01-06 日立化成工業株式会社 Coated conductive particles and method for producing same
EP2282314A1 (en) 2009-08-06 2011-02-09 Hitachi Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010781A4 (en) 1997-04-17 2007-04-25 Sekisui Chemical Co Ltd Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
US6663799B2 (en) 2000-09-28 2003-12-16 Jsr Corporation Conductive metal particles, conductive composite metal particles and applied products using the same
KR100832282B1 (en) * 2000-10-23 2008-05-26 세키스이가가쿠 고교가부시키가이샤 Coated particle
JP5060692B2 (en) * 2001-07-13 2012-10-31 株式会社日本触媒 Anisotropic conductive material
TW557237B (en) 2001-09-14 2003-10-11 Sekisui Chemical Co Ltd Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP4872180B2 (en) * 2001-09-25 2012-02-08 日立化成工業株式会社 Semiconductor mounting substrate and semiconductor package
JP4724369B2 (en) * 2003-09-29 2011-07-13 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing conductive particles
KR100621463B1 (en) * 2003-11-06 2006-09-13 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive film Containing the Particles
US20100025089A1 (en) * 2004-01-07 2010-02-04 Jun Taketatsu Circuit connection material, film-shaped circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
KR100597391B1 (en) 2004-05-12 2006-07-06 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
KR100722493B1 (en) 2005-09-02 2007-05-28 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film Using the Same
WO2007099965A1 (en) * 2006-02-27 2007-09-07 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
WO2009054386A1 (en) * 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP5626288B2 (en) * 2008-02-05 2014-11-19 日立化成株式会社 Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure
JP4991666B2 (en) * 2008-09-19 2012-08-01 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5617210B2 (en) * 2009-09-14 2014-11-05 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
JP5554077B2 (en) * 2009-09-15 2014-07-23 株式会社日本触媒 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JP5526698B2 (en) * 2009-10-16 2014-06-18 デクセリアルズ株式会社 Light reflective conductive particles, anisotropic conductive adhesive, and light emitting device
JP2011105861A (en) * 2009-11-18 2011-06-02 Hitachi Chem Co Ltd Circuit-connecting material and connected structure
JP5716281B2 (en) * 2010-03-01 2015-05-13 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP5476168B2 (en) * 2010-03-09 2014-04-23 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5558882B2 (en) * 2010-03-30 2014-07-23 芝浦メカトロニクス株式会社 Wiring forming material and coating apparatus
JP5914987B2 (en) * 2010-06-09 2016-05-11 デクセリアルズ株式会社 Light-reflective anisotropic conductive paste and light-emitting device
WO2012002508A1 (en) * 2010-07-02 2012-01-05 積水化学工業株式会社 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure
JP5025825B2 (en) * 2010-07-28 2012-09-12 積水化学工業株式会社 Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP5576231B2 (en) * 2010-09-30 2014-08-20 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
KR101995599B1 (en) * 2011-03-16 2019-07-02 데쿠세리아루즈 가부시키가이샤 Light-reflecting anisotropically conductive adhesive and light emitting device
WO2012137335A1 (en) * 2011-04-07 2012-10-11 日立化成工業株式会社 Circuit connection material and use thereof, and connecting structure and method for producing same
JP5821552B2 (en) * 2011-11-10 2015-11-24 日立化成株式会社 Water-repellent conductive particles, anisotropic conductive material, and conductive connection structure
JP5821551B2 (en) * 2011-11-10 2015-11-24 日立化成株式会社 Conductive particles, anisotropic conductive materials, and conductive connection structures
KR102095826B1 (en) * 2012-07-03 2020-04-01 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure
JP5939063B2 (en) * 2012-07-11 2016-06-22 日立化成株式会社 Insulating coated conductive particles and anisotropic conductive adhesive using the same
JP2014030026A (en) * 2013-08-30 2014-02-13 Dexerials Corp Anisotropic conducting adhesive material, and light-emitting device
JP6564302B2 (en) * 2014-10-28 2019-08-21 積水化学工業株式会社 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, conductive material, and connection structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004042B2 (en) * 1990-10-12 2000-01-31 綜研化学株式会社 Metal-containing resin particles and uses thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047600A1 (en) 2006-10-17 2008-04-24 Hitachi Chemical Company, Ltd. Coated particle and method for producing the same, anisotropic conductive adhesive composition using coated particle, and anisotropic conductive adhesive film
JP2009102731A (en) * 2007-10-02 2009-05-14 Hitachi Chem Co Ltd Conductive particle, method for producing the same, method for producing insulated conductive particle, and anisotropic conductive adhesive film
JP2012119326A (en) * 2007-10-02 2012-06-21 Hitachi Chem Co Ltd Conductive particle, manufacturing method for the same, manufacturing method for insulation coated conductive particle, and anisotropic conductive adhesive film
KR101294946B1 (en) * 2007-10-02 2013-08-08 히타치가세이가부시끼가이샤 Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
WO2009099143A1 (en) 2008-02-05 2009-08-13 Hitachi Chemical Company, Ltd. Conductive particle and method for producing conductive particle
WO2011002065A1 (en) 2009-07-01 2011-01-06 日立化成工業株式会社 Coated conductive particles and method for producing same
EP2282314A1 (en) 2009-08-06 2011-02-09 Hitachi Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material
US8383016B2 (en) 2009-08-06 2013-02-26 Hitachi Chemical Company, Ltd. Conductive fine particles and anisotropic conductive material

Also Published As

Publication number Publication date
JPH04259766A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
JP2748705B2 (en) Circuit connection members
US5162087A (en) Anisotropic conductive adhesive compositions
US5001542A (en) Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
JPS62188184A (en) Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
US20150237725A1 (en) Anisotropic conductive film, connection method, and assembly
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
JPS6331905B2 (en)
JPH04174980A (en) Connecting member for circuit
WO2004100179A9 (en) Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JP2504057B2 (en) Conductive particles
JPS6331906B2 (en)
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP2921740B2 (en) Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
JPH07268303A (en) Anisotropic electrically-conductive adhesive composition
JPH0773066B2 (en) Circuit connection member
JPH04149237A (en) Metal-containing resin particle and its use
JPS62206772A (en) Circuit connection structure
JPH10273635A (en) Connecting member for circuit and production of circuit board
JP3003952B2 (en) Connection structure using anisotropic conductive agent
JP6532575B2 (en) Anisotropic conductive film, connection method, bonded body, and method of manufacturing bonded body
JPH0773067B2 (en) Circuit connection member
JP2004006417A (en) Connecting element and connection structure of electrode using this
TWI784126B (en) Conductive Adhesive Composition
JP3026432B2 (en) Circuit connection structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

EXPY Cancellation because of completion of term