JPS6331905B2 - - Google Patents

Info

Publication number
JPS6331905B2
JPS6331905B2 JP59199246A JP19924684A JPS6331905B2 JP S6331905 B2 JPS6331905 B2 JP S6331905B2 JP 59199246 A JP59199246 A JP 59199246A JP 19924684 A JP19924684 A JP 19924684A JP S6331905 B2 JPS6331905 B2 JP S6331905B2
Authority
JP
Japan
Prior art keywords
connecting member
conductive particles
connection
conductive
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59199246A
Other languages
Japanese (ja)
Other versions
JPS6177278A (en
Inventor
Isao Tsukagoshi
Yutaka Yamaguchi
Atsuo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP19924684A priority Critical patent/JPS6177278A/en
Publication of JPS6177278A publication Critical patent/JPS6177278A/en
Publication of JPS6331905B2 publication Critical patent/JPS6331905B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は回路の接続に用いられる導電性の接続
部材に関する。 〔従来の技術〕 従来より集積回路類の配線基板への接続、表示
素子類と配線基板への接続、電気回路とリードと
の接続などのように接続端子が細かいピツチで並
んでいる場合の接続方法として、ハンダ付や導電
性接着剤による方法が広く用いられている。 しかしながら、これらの方法においては導電回
路部のみに限定して接続部材を形成しなければな
らないので、高密度、高精細化の進む微細回路の
接続に困難をきたしていた。 最近回路接続用の接続部材について検討が加え
られ、すでに特開昭51−20941号公報、特開和55
−104007号公報、特開昭56−22193号公程、特開
昭51−21192号公報等により提案されている。こ
れらはいずれもその基本思想は、相対峙する回路
間に導電性材料を含む異方導電性の接続部材層を
設け、加圧または加熱加圧手段を構じることによ
つて、回路間の電気的接続と同時に隣接回路間に
絶縁性を付与し相対峙する回路を接着回定するも
のである。 しかしながらこのような従来の方法において
は、回路間の導電は主として複数個の導電性材
料、多くの場合には金属粒子の接触によつて得ら
れるものであり、いま一歩導電の信頼性が不足し
ていた。 上記導通の信頼性向上の方法として、接着剤成
分中に熱溶融性金属粒子を充填し、回路接続時の
加熱により金属粒子を溶融させて接続する試みも
ある。 しかしながらこの方法においても、接続時の条
件巾が狭く温度・圧力・時間の厳密なコントロー
ルが要求される為、接続信頼性が充分に得られな
い欠点を有していた。すなわち接続時に金属粒子
を加熱溶融する為には、該金属の融点以上の温度
が必要であり、接続温度が金属の融点より高くな
る程、溶融金属の粘度低下により電気的接続を必
要とする回路部以外にも流れだす結果、隣接回路
間との充分な絶縁性が得られず微細回路に対応で
きなかつた。その為に接続時の昇温カーブに充分
留意して、温度・時間の条件を設定しなければな
らなかつた。さらに加熱加圧時における偏圧によ
つても接続回路部の接続部材の厚みに変動を生じ
る為に導電性にバラツキを生じる欠点を有してい
た。 本発明者らは、先に回路接続用に極めて良好な
透明性を有する導電性接着シートを提案したが、
さらに上記した従来技術の欠点を改善し、信頼性
の高い接続を可能とする方法について鋭意検討の
結果、本発明に達した。 〔発明の目的〕 本発明は簡便な接着作業により信頼性にすぐれ
た異方導電性と高接着力を併せ有する微細回路接
続用の接続部材を提供することを目的とする。 〔発明の開示〕 すなわち本発明は、接着剤成分と導電性粒子と
よりなる接続部材において、前記導電性粒子が融
点250℃以上の核材からなる粒子の表面の一部も
しくは全面を、融点が100〜250℃の低融点金属に
より被覆された粒子を使用することを特徴とする
接続部材であり、好ましくは前記被覆層を有する
導電性粒子は、平均粒径が1〜50μmであり、粒
子の最大径に対する最小径の比が0.5〜1.0であり
接続部材中に0.1〜10体積%含有され、かつ接続
部材の厚みは前記導電性粒子の平均粒径の110%
以上であり、全光線透過率40%以上の透明性と感
熱貼付性を有する接続部材である。 本発明にかゝる接続部材においては、核材に被
覆された低融点金属は接続時の加熱あるいは加熱
加圧により溶融し、導電性粒子相互あるいは導電
回路部との連結材として作用するため、信頼性に
優れた微細回路の接続が可能となり、さらには融
点250℃以上の核材は加熱あるいは加熱・加圧に
よる接続操作時において回路間のスペーサとして
作用し接続部材層の均一厚みを付与するために、
信頼性にすぐれた厚み方向の導電性と面方向の絶
縁性が得られる。 また感熱貼付性を有する接着剤は接続時の加熱
あるいは加熱加圧により接着性を発現するため
に、回路同士の機械的接続が同時に得られる。 本発明にかゝる接続部材の構成を図面を用いて
説明すると、第1図は本発明に使用する導電性粒
子を示す断面模式図であり、核材1の表面が低融
点金属2により一部あるいは全面が被覆されてい
る様子を示している。 核材1としては、融点が250℃以上の導電性を
有するたとえばNi、Fe、Cr、Co、Al、Sb、
Mo、Cu、Ag、Pt、Au、Bi、Pb、Pd、Zn等の
金属粒子やカーボン等があり、これらの単体ある
いは合金、酸化物などでも良く、さらにはこれら
の一種又は2種以上を複合して用いることも出来
る。核材1としてはガラス類や耐熱性ポリマ類等
の非導電性の粒子でも良い。核材1の形状は第1
図a,bに示すような球状であることが好ましい
が、c,dとして示したように表面に突起や凹凸
があつても良い。 2は低融点金属であり融点が100〜250℃の範囲
にあるものが適用できる。融点が100℃よりも低
いと高温時における回路の接続信頼性が低下する
ため好ましくなく、250℃以上であると、回路接
続時に高温を必要とし回路に装着した部品に高温
による悪影響が生じるため好ましくない。 これら低融点金属としては各種の共晶合金ある
いは非共晶低融点合金あるいは単独金属が使用で
きる。たとえばPb88.7%/Sn11.1%(融点250
℃)、以下同様な表現で示すと、Pb82.6/Cd17.4
(248℃)Pb85/Au15(215℃)、Tl93.7/Na6.3
(238℃)、Tl92/As8(220℃)、Tl99.4/Li0.6
(211℃)、Tl82.9/Cd17.1(203℃)、Tl97/Mg3
(203℃)、Tl80/Sb20(195℃)、Tl52.5/Bi47.5
(188℃)、Tl96.5/K3.5(173℃)、Tl73/Au27
(131℃)、Bi97/Na3(218℃)、Bi76.5/23.5Tl
(198℃)、Bi60/Cd40(144℃)、Bi57/Sn43(139
℃)、Bi56.5/Pb43.5(125℃)、Sn(232℃)、
Sn67.7/Cd32.3(177℃)、Sn56.5/Tl43.5(170
℃)、In97.2/Zn2.8(144℃)、In74/Cd26(123
℃)、Bi57/Pb11/Sn42(135℃)、Bi56/Sn40/
Zn4(130℃)、Bi53.9/Sn25.9/Cd20.2(103℃)、
Sn48/In52(117℃)、In(157℃)、Ag5/Pb15/
In80(149℃)、Pb38/Sn62(183℃)、Pb47/
Sn50/Sb3(186℃)、Pb50/In50(180℃)、
Pb50/Sn50/Sn50(183℃)、Pb10/Sn90(183
℃)、Au3.5/Pb96.5(221℃)、Pb5/Sn95(183
℃)、Ag10/In90(204℃)、Pb60/Sn40(183℃)、
Sn95/Sb5(232℃)などがある。 核材1の表面上に低融点金属層2を構成する方
法としては、たとえばメツキ法、蒸着法、スパツ
タリング法、吸着法などの一般的手段が適用可能
であり、被覆層の厚みは任意に設定可能である。
このとき核材の表面上に接着性向上の為に、プラ
イマー層を設ける等の表面処理を行なうことも可
能である。核材1が非導電性の場合には低融点金
属層は全面に設けることが好ましい。 上記により得られた導電性粒子は平均粒径が1
〜50μm、粒子径の最大径に対する最小径の比が
0.5〜1.0であるものとする。 粒子径が1μm以下では多量の導電性粒子を必
要とするため接着力の低下が大きく、50μm以下
では隣接微細回路間に存在する確率が大きいため
に高分解能が得られない。 形状については、前述の如く最大径に対する最
小径の比(以下粒径比という)が0.5〜1.0程度と
する。この範囲外では導電性と接着性のバランス
がくずれる。 この範囲を満たす例としては、ほゞ球状である
ものが代表的であるが、上記の条件を満たすもの
であれば特に限定されない。また粒子表面に突起
物や凹凸があつても良い。 また粒子径は全体的な平均粒径をとるものと
し、粒子の形状や粒子径の測定は、たとえば走査
形電子顕微鏡などによる方法が便利である。 導電性粒子が球状であると、接続時の加熱加圧
により粒子相互あるいは粒子と回路面との接触を
得やすく高導電性を得やすい。 第2図及び第3図は本発明になる接続部材の構
成を示す断面模式図であり、接着剤3の中に導電
性粒子4が存在している。 導電性粒子4は接続部材の厚み方向に単層で存
在(第3図)しても良いし、厚み方向に複数個配
列あるいは凝集(第2図)した構造であつても良
い。 接着剤3中に占める導電性粒子4は0.1〜10体
積%が適当である。0.1体積%以下では満足する
導電性が得られず、10体積%以上では隣接回路と
の絶縁性が低下し、また接続部材の透明性も得ら
れない。 本発明で用いられる接着剤としては、基本的に
は絶縁性を示す通常の接着性シート類に用いられ
ている配合が適用可能である。通常の接着シート
類に用いられる配合は凝集力を付与するポリマー
と、その他必要に応じて用いる粘着付与剤、粘着
性調整剤、架橋剤、老化防止剤、分散剤等からな
つている。 これらポリマ一種としては、エチレン酢酸ビニ
ル共重合体、エチレン−酢酸ビニル共重合体変性
物、ポリエチレン、エチレン−プロピレン共重合
体、エチレン−アクリル酸共重合体、エチレン−
アクリル酸エステル共重合体、エチレン−アクリ
ル酸塩共重合体、アクリル酸エステル系ゴム、ポ
リイソブチレン、アタクチツクポリプロピレン、
ポリビニルプチラール、アクリロニトリル−ブタ
ジエン共重合体、スチレン−ブタジエンブロツク
共重合体、スチレン−イソプレンブロツク共重合
体、ポリブタジエン、エチレンセルロース、ポリ
エステル、ポリアミド、ポリウレタン、天然ゴ
ム、シリコン系ゴム、ポリクロロプレン、等の合
成ゴム類、ポリビニルエーテルなどが適用可能で
あり、単独あるいは2種以上併用して用いられ
る。 粘着付与剤としては、ジシクロペンタジエン樹
脂、ロジン、変性ロジン、テルペン樹脂、キシレ
ン樹脂、テルペン−フエノール樹脂、アルキルフ
エノール樹脂、クマロン−インデン樹脂等があ
り、これらを必要に応じて、単独あるいは2種以
上併用して用いる。粘着性調整剤としてはたとえ
ばジオクチルフタレートをはじめとする各種可塑
剤類等が代表的である。 架橋剤はポリマーの凝集力を高めることが必要
な場合に用いられ、ポリマの官能基と反応する多
官能性物質であり、たとえばポリイソシアネー
ト、メラミン樹脂尿素樹脂、フエノール樹脂等が
あげられる。 老化防止剤は、ポリマーバインダの熱、酸素、
光等に対する安定性を高めることが必要な場合に
用いるものでたとえば金属石ケン類を代表とする
安定剤や、アルキルフエノール類などの酸化防止
剤、ベンゾフエノン系、ベンゾトリアゾール系な
どの紫外線吸収剤等があり、やはり必要に応じて
単独あるいは2種以上併用して用いられる。 分散剤は、導電性粒子の分散性向上のために用
いる場合がある。この例としてはたとえば界面活
性剤がありノニオン系、カチオン系、アニオン
系、両性のうち1種あるいは2種以上併用して用
いることができる。 本発明にかゝる接続部材の製造方法としては、
ポリマおよびその他必要に応じて使用する添加剤
からなる接着剤組成物を溶剤に溶解し、あるいは
熱溶融させて液状とした後に導電性粒子をボール
ミルなどの通常の方法により混合し導電性粒子混
合接着剤組成物を得る。 上記導電性粒子混合接着剤を、接続を要する一
方あるいは双方の回路上にスクリーン印刷やロー
ルコータ等の手段を用いて接続部材層を形成して
も良いし、あるいは又接続部材の連続長尺体を得
るには紙やプラスチツクフイルム等に必要に応じ
て剥離処理を行なつたセパレータ上に前記手段に
より接続部材層を形成後巻重しても良いし、接着
層の粘着性が無い場合においてはセパレータを用
いずに巻重することも可能である。 上記製法において接着剤組成物中に溶剤を含む
場合においては溶剤乾燥時の接続部材厚み方向の
体積減少現象を利用して導電性粒子が厚み方向に
より密な配列を有する接続部材を得ることが可能
であり、又無溶剤下のホツトメルト塗工において
は、製造時の溶剤による環境汚染を防止すること
が可能となる。 接続部材層の厚みは、導電性粒子の粒径および
接続部材の特性を考慮して相対的に決定される。 すなわち接着剤により導電性粒子を充分に保持
するためには導電性粒子の粒径の110%以上を最
低必要とする。110%以下であると導電性粒子が
接着剤で保護されない為に酸化あるいは腐食等に
より導電性に劣化を生じる。また接続部材の特性
上5〜100μmの厚みが必要である。 5μm以下では充分な接着性が得られず、100μ
m以上では充分な導電性を得る為に多重の導電性
粒子の混合を必要とすることから実用的でない。
接続部材層には必要に応じて導電性あるいは非導
電性のたとえば不織布等よりなる芯材を用いても
良い。 得られた接続部材面は、必要に応じて塵埃等の
付着防止のためにセパレータで覆つても良いし、
あるいは両面セパレータを用いれば連続的に巻重
することも可能である。 このようにして得られた接続部材はかなりの透
明性を有する。接続部材が透明性を有すると製造
時の品質管理が行い易く外観上の見映えも良い。
また表示素子類の接着等においては、被着体を透
視できる構成をとることが可能となる。 得られた接続部材を用いて回路を接着する方法
としては、たとえば回路Aに、フイルム状接続部
材を仮貼付した状態でセパレータのある場合には
セパレータを剥離し、あるいは導電性接着剤組成
物を塗布し必要に応じて溶剤除去後の状態でその
面に回路Bを熱プレス、あるいは加熱ロール等で
貼付ければよい。このとき第7図に示すように接
着部の軟化、流動により両回路A5,B6は強力
に接続され、また同時に金属粒子2の溶融により
安定した導通回路を、接着層内に形成することが
できる。 本発明を以下実施例により詳細に説明する。 実施例1〜6および比較例1〜3 (1) 接続部材の作成 核材として平均粒径44μmのCu球を撹拌しな
がら、Sn48/In52(融点117℃)よりなる合金
を真空蒸着法により表面被覆処理を行なつた。 被覆層の厚みは平均的に0.5μmであり上記に
より得られた導電性粒子は平均粒径45μmであ
つた。 上記粒子をスチレンブタジエンブロツク共重
合体(MI2.6)100部と軟化点120℃の芳香族系
粘着付与剤40部およびトルエン200部よりなる
接着剤溶液中に、前記導電性粒子の添加量を変
えて配合した。 上記配合物をボールミルで48時間混合して導
電性粒子混合の接着剤溶液を得た。 この溶液をバーコータでセパレータ(シリコ
ン処理ポリエステルフイルム)上に塗布し、
100℃−3分乾燥して溶剤を除去してフイルム
状の接続部材を得た。 (2) 評価 ライン巾0.1mm、ピツチ0.2mmの回路を有する
全回路幅100mmのフレキシブル回路板(FPC)
に、接着巾3mm、長さ100mmに切断した上記接
続部材を載置して100℃−2Kg/cm2−5秒の加
熱加圧により仮貼付して接続部材付FPCを得
た。 そのあとセパレータを剥離して、他の同一ピ
ツチを有するFPCをセパレータ剥離面に載せ
て顕微鏡でFPC回路の位置合せをした後、圧
力5Kg/cm2で10秒間加熱加圧して回路を接続し
た。接着温度は第1表に示すとおりでありプレ
スの熱板温度を調節して求めた。 各実施例において接着シートは透明であるた
めに、透過光の助けにより回路の位置合せが容
易であつた。 特性を第1表に示したが、いずれの実施例に
おいても充分なる接続導通抵抗および隣接回路
との絶縁性を示し、かつ充分な接着力を有して
いた。また接続条件の広い範囲で良好な特性を
えた。 比較例 1〜3 実施例1〜6と同様であるが導電性粒子の添加
量、厚みをかえた。条件および評価結果を第1表
に示した。 比較例1においては接続部材の厚みが大きい為
に透明性が低下して回路の位置合せが困難であり
比較例2においては、導電性粒子の添加量が多い
為に隣接回路との絶縁性が不足し、又比較例1と
同様に透明性が低下した。比較例3においてはシ
ート厚み/粒径の比が小さい為に接続部材の表面
が荒れて接着力が低下した。 実施例 7 平均粒径9μmのガラス球表面に、Bi57/Sn43
(融点139℃)よりなる合金を厚み1μmとなるよ
うにメツキした。接着剤として熱可塑性ポリエス
テル樹脂(ガラス転移点7℃)の30%メチルケト
ン溶液中に分散混合して実施例1〜6と同様にフ
イルム状接続部材を得た。 前記実施例1〜6と同様にしてFPC同士を接
続評価して、第1表に示す良好な特性を得た。 実施例 8 実施例7で得た導電性粒子混合接着剤溶液をセ
パレータ上でなくFPCの回路上に直接塗布乾燥
して接続部材付FPCを得た後、実施例1〜6と
同様にして他のFPCを接続した。 結果を第1表に示したが、良好な特性を有して
いた。 なお本実施例においては、接続部材を一方の回
路に仮貼付する工程が不要であり工程が不要であ
る。 比較例 4 実施例7と同様であるが核材なしのBi57/
Sn43(融点139℃)の単独粒子(平均粒径11μm)
を用いて接続部材を作成した。評価結果を第1表
に示したが、融点より21℃高い160℃で加熱加圧
したところ溶融金属が回路間に流れだして隣接回
路と導通してしまい絶縁不良であつた。
[Industrial Field of Application] The present invention relates to a conductive connecting member used for connecting circuits. [Prior art] Conventionally, connections have been made in cases where connection terminals are lined up at a fine pitch, such as connection of integrated circuits to wiring boards, connection of display elements to wiring boards, connection of electrical circuits to leads, etc. As a method, methods using soldering or conductive adhesive are widely used. However, in these methods, the connection member must be formed only in the conductive circuit portion, making it difficult to connect fine circuits that are becoming increasingly dense and fine. Recently, connection members for circuit connections have been studied, and have already been published in JP-A-51-20941 and JP-A-55.
This has been proposed in JP-A-104007, JP-A-56-22193, JP-A-51-21192, etc. The basic idea of all of these is to provide an anisotropically conductive connecting member layer containing a conductive material between opposing circuits, and to provide pressure or heating and pressure means to connect the circuits. At the same time as electrical connection, insulation is provided between adjacent circuits, and opposing circuits are bonded and connected. However, in such conventional methods, conduction between circuits is mainly obtained through contact between multiple conductive materials, often metal particles, and the reliability of conduction is still lacking. was. As a method for improving the reliability of the conduction, there has been an attempt to fill an adhesive component with heat-melting metal particles and to melt the metal particles by heating during circuit connection. However, this method also has the disadvantage that sufficient connection reliability cannot be obtained because the range of conditions during connection is narrow and strict control of temperature, pressure, and time is required. In other words, in order to heat and melt the metal particles during connection, a temperature higher than the melting point of the metal is required, and as the connection temperature becomes higher than the melting point of the metal, the viscosity of the molten metal decreases, making the circuit requiring electrical connection. As a result, sufficient insulation between adjacent circuits could not be obtained, making it impossible to handle fine circuits. Therefore, it was necessary to set the temperature and time conditions with due consideration to the temperature rise curve at the time of connection. Furthermore, uneven pressure during heating and pressurization causes variations in the thickness of the connecting member of the connecting circuit portion, resulting in a drawback of variations in conductivity. The present inventors previously proposed a conductive adhesive sheet with extremely good transparency for circuit connection;
Furthermore, as a result of intensive studies on a method for improving the above-mentioned drawbacks of the prior art and enabling a highly reliable connection, the present invention was arrived at. [Object of the Invention] An object of the present invention is to provide a connecting member for connecting microcircuits that has both highly reliable anisotropic conductivity and high adhesive strength through a simple bonding operation. [Disclosure of the Invention] That is, the present invention provides a connecting member comprising an adhesive component and conductive particles, in which the conductive particles cover a part or the entire surface of the particle comprising a core material having a melting point of 250°C or higher. The connecting member is characterized by using particles coated with a low melting point metal of 100 to 250°C, and preferably the conductive particles having the coating layer have an average particle size of 1 to 50 μm, and The ratio of the minimum diameter to the maximum diameter is 0.5 to 1.0, the connecting member contains 0.1 to 10% by volume, and the thickness of the connecting member is 110% of the average particle diameter of the conductive particles.
This is a connecting member that has transparency with a total light transmittance of 40% or more and heat-sensitive adhesive properties. In the connecting member according to the present invention, the low melting point metal coated on the core material is melted by heating or heating and pressurizing during connection, and acts as a connecting material between the conductive particles or the conductive circuit part. It is possible to connect fine circuits with excellent reliability, and the core material with a melting point of 250℃ or higher acts as a spacer between circuits during connection operations by heating or heating/pressure, giving a uniform thickness to the connection member layer. for,
Provides highly reliable conductivity in the thickness direction and insulation in the planar direction. Furthermore, since adhesives having heat-sensitive pasting properties develop their adhesive properties by heating or heating and pressurizing during connection, mechanical connection between circuits can be obtained at the same time. To explain the structure of the connecting member according to the present invention with reference to the drawings, FIG. It shows that part or the entire surface is covered. As the core material 1, for example, Ni, Fe, Cr, Co, Al, Sb,
There are metal particles such as Mo, Cu, Ag, Pt, Au, Bi, Pb, Pd, and Zn, carbon, etc., and these may be used singly or as alloys, oxides, etc., and also in combinations of one or more of these. It can also be used as The core material 1 may be non-conductive particles such as glass or heat-resistant polymers. The shape of the core material 1 is the first
It is preferable to have a spherical shape as shown in figures a and b, but the surface may have protrusions or irregularities as shown in figures c and d. 2 is a low melting point metal, and a metal having a melting point in the range of 100 to 250°C is applicable. If the melting point is lower than 100℃, it is undesirable because the reliability of circuit connection at high temperatures will decrease, and if it is 250℃ or higher, high temperature is required when connecting the circuit, and high temperature will have an adverse effect on the parts installed in the circuit, so it is not preferable. do not have. As these low melting point metals, various eutectic alloys, non-eutectic low melting point alloys, or individual metals can be used. For example, Pb88.7%/Sn11.1% (melting point 250
℃), expressed in the same way below, Pb82.6/Cd17.4
(248℃) Pb85/Au15 (215℃), Tl93.7/Na6.3
(238℃), Tl92/As8 (220℃), Tl99.4/Li0.6
(211℃), Tl82.9/Cd17.1 (203℃), Tl97/Mg3
(203℃), Tl80/Sb20 (195℃), Tl52.5/Bi47.5
(188℃), Tl96.5/K3.5 (173℃), Tl73/Au27
(131℃), Bi97/Na3 (218℃), Bi76.5/23.5Tl
(198℃), Bi60/Cd40 (144℃), Bi57/Sn43 (139
℃), Bi56.5/Pb43.5 (125℃), Sn (232℃),
Sn67.7/Cd32.3 (177℃), Sn56.5/Tl43.5 (170
°C), In97.2/Zn2.8 (144 °C), In74/Cd26 (123
℃), Bi57/Pb11/Sn42 (135℃), Bi56/Sn40/
Zn4 (130℃), Bi53.9/Sn25.9/Cd20.2 (103℃),
Sn48/In52 (117℃), In (157℃), Ag5/Pb15/
In80 (149℃), Pb38/Sn62 (183℃), Pb47/
Sn50/Sb3 (186℃), Pb50/In50 (180℃),
Pb50/Sn50/Sn50 (183℃), Pb10/Sn90 (183
℃), Au3.5/Pb96.5 (221℃), Pb5/Sn95 (183
℃), Ag10/In90 (204℃), Pb60/Sn40 (183℃),
Examples include Sn95/Sb5 (232℃). As a method for configuring the low melting point metal layer 2 on the surface of the core material 1, general methods such as plating method, vapor deposition method, sputtering method, and adsorption method can be applied, and the thickness of the coating layer can be set arbitrarily. It is possible.
At this time, it is also possible to perform surface treatment such as providing a primer layer on the surface of the core material in order to improve adhesion. When the core material 1 is non-conductive, it is preferable to provide the low melting point metal layer over the entire surface. The conductive particles obtained above have an average particle size of 1
~50 μm, the ratio of the minimum particle size to the maximum particle size is
It shall be between 0.5 and 1.0. When the particle size is 1 μm or less, a large amount of conductive particles are required, resulting in a large drop in adhesive strength, and when the particle size is 50 μm or less, high resolution cannot be obtained because there is a high probability that the particles will exist between adjacent microcircuits. Regarding the shape, as described above, the ratio of the minimum diameter to the maximum diameter (hereinafter referred to as particle size ratio) is about 0.5 to 1.0. Outside this range, the balance between conductivity and adhesiveness will be lost. A typical example that satisfies this range is one that is approximately spherical, but is not particularly limited as long as it satisfies the above conditions. Further, the particle surface may have protrusions or irregularities. Further, the particle size is assumed to be the overall average particle size, and it is convenient to measure the particle shape and particle size using, for example, a scanning electron microscope. When the conductive particles are spherical, it is easy to obtain contact between the particles or between the particles and the circuit surface by applying heat and pressure during connection, and it is easy to obtain high conductivity. 2 and 3 are schematic cross-sectional views showing the structure of the connecting member according to the present invention, in which conductive particles 4 are present in the adhesive 3. FIG. The conductive particles 4 may exist in a single layer in the thickness direction of the connecting member (FIG. 3), or may have a structure in which a plurality of conductive particles are arranged or aggregated in the thickness direction (FIG. 2). The amount of conductive particles 4 in the adhesive 3 is suitably 0.1 to 10% by volume. If it is less than 0.1% by volume, satisfactory conductivity cannot be obtained, and if it is more than 10% by volume, the insulation with adjacent circuits will decrease, and the transparency of the connecting member will not be obtained. As the adhesive used in the present invention, basically any formulation used in ordinary adhesive sheets exhibiting insulation properties can be used. The formulation used for ordinary adhesive sheets consists of a polymer that imparts cohesive force, and other components such as a tackifier, tackifier, crosslinking agent, anti-aging agent, dispersant, etc., which are used as necessary. Examples of these polymers include ethylene-vinyl acetate copolymer, modified ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, and ethylene-vinyl acetate copolymer.
Acrylic ester copolymer, ethylene-acrylate copolymer, acrylic ester rubber, polyisobutylene, atactic polypropylene,
Polyvinylbutyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, polybutadiene, ethylene cellulose, polyester, polyamide, polyurethane, natural rubber, silicone rubber, polychloroprene, etc. Synthetic rubbers, polyvinyl ether, etc. are applicable, and may be used alone or in combination of two or more. Tackifiers include dicyclopentadiene resin, rosin, modified rosin, terpene resin, xylene resin, terpene-phenol resin, alkylphenol resin, coumaron-indene resin, etc. These can be used alone or in combination as necessary. Used in combination with the above. Typical tackiness modifiers include various plasticizers such as dioctyl phthalate. The crosslinking agent is used when it is necessary to increase the cohesive force of the polymer, and is a polyfunctional substance that reacts with the functional groups of the polymer, such as polyisocyanates, melamine resins, urea resins, and phenolic resins. Anti-aging agents are activated by polymer binder heat, oxygen,
Used when it is necessary to increase stability against light, etc., such as stabilizers such as metal soaps, antioxidants such as alkylphenols, and ultraviolet absorbers such as benzophenones and benzotriazoles. These are used alone or in combination of two or more, if necessary. A dispersant may be used to improve the dispersibility of conductive particles. Examples of this include surfactants, which may be used singly or in combination of nonionic, cationic, anionic, and amphoteric surfactants. As a method for manufacturing a connecting member according to the present invention,
Conductive particle mixed adhesive is created by dissolving an adhesive composition consisting of a polymer and other additives used as necessary in a solvent or heat-melting it to a liquid state, and then mixing it with conductive particles using a conventional method such as a ball mill. A drug composition is obtained. The conductive particle mixed adhesive may be used to form a connection member layer on one or both of the circuits requiring connection using means such as screen printing or a roll coater, or alternatively, a continuous elongated connection member layer may be formed using the conductive particle mixed adhesive. In order to obtain this, a connecting member layer may be formed by the above method on a separator made of paper or plastic film, etc., which has been subjected to peeling treatment as necessary, and then rolled up. It is also possible to stack the layers without using a separator. In the case where the adhesive composition contains a solvent in the above manufacturing method, it is possible to obtain a connecting member in which the conductive particles are more densely arranged in the thickness direction by utilizing the phenomenon of volume reduction in the thickness direction of the connecting member when the solvent dries. Moreover, in hot melt coating without a solvent, it is possible to prevent environmental pollution caused by solvents during manufacturing. The thickness of the connecting member layer is relatively determined in consideration of the particle size of the conductive particles and the characteristics of the connecting member. That is, in order to sufficiently hold the conductive particles with an adhesive, the adhesive needs to have a minimum particle size of 110% or more of the particle size of the conductive particles. If it is less than 110%, the conductive particles will not be protected by the adhesive, resulting in deterioration in conductivity due to oxidation or corrosion. Further, due to the characteristics of the connecting member, a thickness of 5 to 100 μm is required. If it is less than 5μm, sufficient adhesiveness cannot be obtained, and if it is less than 100μm,
m or more is not practical because it requires mixing multiple conductive particles in order to obtain sufficient conductivity.
For the connection member layer, a conductive or non-conductive core material made of, for example, non-woven fabric may be used as required. The obtained connection member surface may be covered with a separator to prevent dust from adhering to it, if necessary.
Alternatively, continuous winding is also possible by using double-sided separators. The connecting member thus obtained has considerable transparency. When the connecting member is transparent, quality control during manufacturing is easy to perform and the appearance is good.
Furthermore, when adhering display elements, etc., it becomes possible to adopt a configuration in which the adherend can be seen through. As a method for bonding a circuit using the obtained connecting member, for example, a film-like connecting member is temporarily attached to the circuit A, and if there is a separator, the separator is peeled off, or a conductive adhesive composition is applied. After coating and removing the solvent if necessary, circuit B may be attached to the surface using a hot press, a heated roll, or the like. At this time, as shown in FIG. 7, both circuits A5 and B6 are strongly connected due to the softening and flow of the adhesive part, and at the same time, a stable conductive circuit can be formed within the adhesive layer by melting the metal particles 2. . The present invention will be explained in detail below using examples. Examples 1 to 6 and Comparative Examples 1 to 3 (1) Creation of connecting members While stirring Cu spheres with an average particle size of 44 μm as a core material, an alloy consisting of Sn48/In52 (melting point 117°C) was deposited on the surface by vacuum evaporation. Coating treatment was performed. The average thickness of the coating layer was 0.5 μm, and the conductive particles obtained above had an average particle size of 45 μm. The conductive particles were added to an adhesive solution consisting of 100 parts of styrene-butadiene block copolymer (MI2.6), 40 parts of an aromatic tackifier with a softening point of 120°C, and 200 parts of toluene. I changed and blended it. The above formulation was mixed in a ball mill for 48 hours to obtain an adhesive solution containing conductive particles. Apply this solution on the separator (siliconized polyester film) using a bar coater,
The solvent was removed by drying at 100°C for 3 minutes to obtain a film-like connection member. (2) Evaluation Flexible circuit board (FPC) with a total circuit width of 100 mm and a circuit with a line width of 0.1 mm and a pitch of 0.2 mm.
The above-mentioned connecting member cut into a piece having an adhesive width of 3 mm and a length of 100 mm was placed thereon, and was temporarily attached by heating and pressing at 100° C. for 2 kg/cm 2 for 5 seconds to obtain an FPC with a connecting member. Thereafter, the separator was peeled off, another FPC having the same pitch was placed on the separator peeled surface, the FPC circuit was aligned using a microscope, and the circuit was connected by heating and pressing at a pressure of 5 kg/cm 2 for 10 seconds. The bonding temperature is as shown in Table 1 and was determined by adjusting the temperature of the hot plate of the press. Since the adhesive sheet in each example was transparent, it was easy to align the circuits with the aid of transmitted light. The properties are shown in Table 1, and all examples showed sufficient connection conduction resistance and insulation with adjacent circuits, and had sufficient adhesive strength. In addition, good characteristics were obtained over a wide range of connection conditions. Comparative Examples 1 to 3 Same as Examples 1 to 6, but the amount of conductive particles added and the thickness were changed. The conditions and evaluation results are shown in Table 1. In Comparative Example 1, the thickness of the connecting member is large, resulting in decreased transparency and difficulty in aligning the circuit, and in Comparative Example 2, the large amount of conductive particles added makes it difficult to insulate from adjacent circuits. It was insufficient, and like Comparative Example 1, the transparency decreased. In Comparative Example 3, since the ratio of sheet thickness/particle size was small, the surface of the connecting member was rough and the adhesive strength was reduced. Example 7 Bi57/Sn43 on the surface of a glass sphere with an average particle size of 9 μm
(melting point: 139°C) was plated to a thickness of 1 μm. A thermoplastic polyester resin (glass transition point: 7° C.) as an adhesive was dispersed and mixed in a 30% methyl ketone solution to obtain a film-like connecting member in the same manner as in Examples 1 to 6. The connection between FPCs was evaluated in the same manner as in Examples 1 to 6, and the good characteristics shown in Table 1 were obtained. Example 8 After applying and drying the conductive particle mixed adhesive solution obtained in Example 7 directly onto the circuit of the FPC instead of on the separator to obtain an FPC with a connecting member, other treatments were carried out in the same manner as in Examples 1 to 6. FPC was connected. The results are shown in Table 1, and it was found that it had good properties. Note that in this embodiment, the step of temporarily attaching the connecting member to one circuit is unnecessary, and the step is unnecessary. Comparative Example 4 Same as Example 7 but without core material Bi57/
Single particle of Sn43 (melting point 139℃) (average particle size 11μm)
A connecting member was created using The evaluation results are shown in Table 1. When heated and pressurized at 160°C, which is 21°C higher than the melting point, molten metal flowed between the circuits and was electrically connected to the adjacent circuit, resulting in poor insulation.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明になる接続部材は
導電性粒子として核材に被覆された熱溶融性金属
を用いることにより、接続時の加熱あるいは加熱
加圧により導電性粒子相互あるいは導電回路部と
溶融連結するため信頼性に優れた微細回路の接続
が可能となる。 また導電性粒子中の核材は接続操作時の回路間
のスペーサとして作用するため、厚み方向の導電
性と面方向の絶縁性が広い接続条件巾において得
られる。さらに接続部材は透明であるため微細な
回路の位置合せを透過光などの助けをかりて容易
に行なえるなどの利点を有する。
As described in detail above, the connecting member of the present invention uses a heat-fusible metal coated with a core material as conductive particles, so that the conductive particles can be connected to each other or conductive circuits by heating or heating and pressurizing during connection. This allows for highly reliable microcircuit connections due to the fusion connection. Furthermore, since the core material in the conductive particles acts as a spacer between circuits during the connection operation, conductivity in the thickness direction and insulation in the surface direction can be obtained over a wide range of connection conditions. Furthermore, since the connecting member is transparent, it has the advantage that minute alignment of circuits can be easily performed with the aid of transmitted light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は導電性粒子の断面模式図、第2図およ
び第3図は本発明に係る接続部材の断面模式図、
第4図は回路接続部の断面模式図である。 符号の説明、1……核材、2……低融点金属、
3……接着剤、4……導電性粒子、5,6……回
路、7……絶縁基板。
FIG. 1 is a schematic cross-sectional view of conductive particles, FIGS. 2 and 3 are schematic cross-sectional views of a connecting member according to the present invention,
FIG. 4 is a schematic cross-sectional view of the circuit connection portion. Explanation of symbols, 1...Nuclear material, 2...Low melting point metal,
3... Adhesive, 4... Conductive particles, 5, 6... Circuit, 7... Insulating substrate.

Claims (1)

【特許請求の範囲】 1 絶縁性接着剤成分中に、厚み方向に体積を減
少させたときに、厚み方向にのみ導電路を形成す
る程度に導電性粒子を分散させてなる回路の接続
部材において、前記導電性粒子が250℃以上の融
点を有する核材からなる粒子のほぼ全面を融点が
100〜250℃の低融点金属により被覆された粒子で
あることを特徴とする回路の接続部材。 2 導電性粒子が平均粒径が1〜50μm、粒子の
最大径に対する最小径の比が0.5〜1.0であり、接
続部材中に0.1〜10体積%含有され、接続部材の
厚みが前記導電性粒子の平均粒径の110%以上で
あり、かつ全光線透過率(JIS K−6714)が40%
以上である特許請求の範囲第1項記載の回路の接
続部材。 3 接着剤成分が熱可塑性ポリマを主成分とする
感熱貼付性を有するものである特許請求の範囲第
1項または第2項記載の回路の接続部材。
[Claims] 1. In a circuit connecting member in which conductive particles are dispersed in an insulating adhesive component to such an extent that a conductive path is formed only in the thickness direction when the volume is reduced in the thickness direction. , the conductive particles are made of a core material having a melting point of 250°C or higher, and almost the entire surface of the particle has a melting point of 250°C or higher.
A circuit connecting member characterized by being particles coated with a low melting point metal of 100 to 250°C. 2 The conductive particles have an average particle diameter of 1 to 50 μm, a ratio of the minimum diameter to the maximum diameter of the particles of 0.5 to 1.0, are contained in the connection member at 0.1 to 10% by volume, and the thickness of the connection member is the same as that of the conductive particles. 110% or more of the average particle diameter of
The circuit connection member according to claim 1, which is the above. 3. The circuit connecting member according to claim 1 or 2, wherein the adhesive component is mainly composed of a thermoplastic polymer and has heat-sensitive adhesion properties.
JP19924684A 1984-09-21 1984-09-21 Connection member for circuit Granted JPS6177278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19924684A JPS6177278A (en) 1984-09-21 1984-09-21 Connection member for circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19924684A JPS6177278A (en) 1984-09-21 1984-09-21 Connection member for circuit

Publications (2)

Publication Number Publication Date
JPS6177278A JPS6177278A (en) 1986-04-19
JPS6331905B2 true JPS6331905B2 (en) 1988-06-27

Family

ID=16404598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19924684A Granted JPS6177278A (en) 1984-09-21 1984-09-21 Connection member for circuit

Country Status (1)

Country Link
JP (1) JPS6177278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212534A (en) * 2002-01-23 2003-07-30 Ube Nitto Kasei Co Ltd Conductive silica particle

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178069A (en) * 1984-09-26 1986-04-21 日立化成工業株式会社 Connection member for circuit
JP2504057B2 (en) * 1987-06-02 1996-06-05 日立化成工業株式会社 Conductive particles
JP2629490B2 (en) * 1991-07-12 1997-07-09 日立化成工業株式会社 Anisotropic conductive adhesive
JPH08249922A (en) * 1995-10-31 1996-09-27 Hitachi Chem Co Ltd Coated particle
CN1219299C (en) * 2001-01-24 2005-09-14 化研科技株式会社 Conductive power and conductive composition
JP4684439B2 (en) * 2001-03-06 2011-05-18 富士通株式会社 Conductive particles, conductive composition, and method for manufacturing electronic device
JP2007026776A (en) * 2005-07-13 2007-02-01 Sumitomo Electric Ind Ltd Conductive fine particle and adhesive using the same
JP4993916B2 (en) * 2006-01-31 2012-08-08 昭和シェル石油株式会社 In solder-coated copper foil ribbon conductor and connection method thereof
JP5346607B2 (en) * 2009-02-04 2013-11-20 日立電線株式会社 Terminal and connection method of terminal and electric wire
JP5828582B2 (en) * 2011-03-24 2015-12-09 デクセリアルズ株式会社 Solar cell module, method for manufacturing solar cell module, conductive adhesive
FR2996348B1 (en) * 2012-10-03 2015-05-15 Amc Holding POWDER AND PASTE FOR IMPROVING THE CONDUCTANCE OF ELECTRICAL CONNECTIONS
CN108140450B (en) * 2016-03-15 2021-08-03 积水化学工业株式会社 Metal-containing particle, connecting material, connection structure, and method for producing connection structure
JP7007138B2 (en) * 2016-09-09 2022-02-10 積水化学工業株式会社 Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures
JP2019029135A (en) * 2017-07-27 2019-02-21 日立化成株式会社 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823174A (en) * 1981-07-31 1983-02-10 信越ポリマー株式会社 Connector
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet
JPS6177279A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823174A (en) * 1981-07-31 1983-02-10 信越ポリマー株式会社 Connector
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet
JPS6177279A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212534A (en) * 2002-01-23 2003-07-30 Ube Nitto Kasei Co Ltd Conductive silica particle

Also Published As

Publication number Publication date
JPS6177278A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
JP2748705B2 (en) Circuit connection members
JPS6331905B2 (en)
EP0242025B1 (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
KR102114626B1 (en) Anisotropic conductive film, connection method, and assembly
JPS62188184A (en) Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH01206575A (en) Hot bond type connector with adhesive
WO2012141200A1 (en) Anisotropic conductive film, connection method, and connected structure
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
KR20160113168A (en) Electrically conductive adhesive tapes and articles therefrom
JPS6331906B2 (en)
KR101906025B1 (en) Anisotropic conductive film, connection method, and joined body
EP0140619A2 (en) Anisotropic-electroconductive adhesive film and circuit connecting method using the same
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JPS6178069A (en) Connection member for circuit
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JPH0340899B2 (en)
JPH0773067B2 (en) Circuit connection member
JPH083963B2 (en) Circuit connection member
JP3026432B2 (en) Circuit connection structure
JP6532575B2 (en) Anisotropic conductive film, connection method, bonded body, and method of manufacturing bonded body
JPH0697573B2 (en) Circuit connection member
JPH08249922A (en) Coated particle
JP6285191B2 (en) Anisotropic conductive film, method for producing the same, connection method and joined body
JP4155470B2 (en) Electrode connection method using connecting members
JPS62165886A (en) Jointing member of circuiy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term