JP2019029135A - Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof - Google Patents

Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof Download PDF

Info

Publication number
JP2019029135A
JP2019029135A JP2017145591A JP2017145591A JP2019029135A JP 2019029135 A JP2019029135 A JP 2019029135A JP 2017145591 A JP2017145591 A JP 2017145591A JP 2017145591 A JP2017145591 A JP 2017145591A JP 2019029135 A JP2019029135 A JP 2019029135A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
solder particles
conductive film
solder
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017145591A
Other languages
Japanese (ja)
Inventor
敏光 森谷
Toshimitsu Moriya
敏光 森谷
暁黎 杜
Gyorei To
暁黎 杜
振一郎 須方
Shinichiro Sugata
振一郎 須方
精吾 横地
Seigo Yokochi
精吾 横地
芳則 江尻
Yoshinori Ejiri
芳則 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017145591A priority Critical patent/JP2019029135A/en
Publication of JP2019029135A publication Critical patent/JP2019029135A/en
Priority to JP2022164228A priority patent/JP2022186787A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing method of an anisotropic conductive film useful for manufacturing a connection structure having both excellent insulation reliability and conduction reliability even when a connecting portion of circuit members to be electrically connected to each other is minute.SOLUTION: A manufacturing method of an anisotropic conductive film according to the present invention includes, in this order, (a) a step of accommodating one or a plurality of solder particles respectively in a plurality of openings provided in the transfer mold, (b) a step of obtaining a first film to which the solder particles are transferred by bringing an insulating adhesive component into contact with the side where the transfer mold opening is provided, and (c) a step of obtaining an anisotropic conductive film by forming a second film including the insulating adhesive component on the surface of the first film on the side to which the solder particles are transferred.SELECTED DRAWING: Figure 7

Description

本発明は、異方性導電フィルム及びその製造方法、並びに接続構造体及びその製造方法に関する。   The present invention relates to an anisotropic conductive film and a manufacturing method thereof, and a connection structure and a manufacturing method thereof.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装と、COF(Chip−on−Flex)実装との二種に大別することができる。COG実装では、導電粒子を含む異方性導電接着剤を用いて液晶駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方性導電接着剤を用いてそれらをガラスパネルに接合する。ここでいう「異方性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting the liquid crystal driving IC on the liquid crystal display glass panel can be roughly divided into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, a liquid crystal driving IC is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The term “anisotropic” as used herein means that conduction is achieved in the pressurizing direction and insulation is maintained in the non-pressurizing direction.

ところで、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金属バンプは狭ピッチ化及び狭面積化しており、そのため、異方性導電接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させるおそれがある。特にCOG実装ではその傾向が顕著である。隣接する回路電極間に導電粒子が流出すると、金属バンプとガラスパネルとの間に捕捉される導電粒子数が減少し、対面する回路電極間の接続抵抗が上昇する接続不良を起こすおそれがある。このような傾向は、単位面積あたり2万個/mm未満の導電粒子を投入すると、より顕著である。 By the way, with the recent high definition of liquid crystal display, the metal bumps which are circuit electrodes of the liquid crystal driving IC have been narrowed in pitch and area, so that the conductive particles of the anisotropic conductive adhesive are adjacent to each other. There is a risk of causing a short circuit by flowing out between the electrodes. This tendency is particularly remarkable in COG mounting. When the conductive particles flow out between adjacent circuit electrodes, the number of conductive particles trapped between the metal bumps and the glass panel is reduced, which may cause a connection failure in which the connection resistance between the facing circuit electrodes is increased. Such a tendency is more prominent when conductive particles of less than 20,000 / mm 2 are introduced per unit area.

これらの問題を解決する方法として、導電粒子(母粒子)の表面に複数の絶縁粒子(子粒子)を付着させ、複合粒子を形成させる方法が提案されている。例えば、特許文献1,2では導電粒子の表面に球状の樹脂粒子を付着させる方法が提案されている。更に単位面積あたり7万個/mm以上の導電粒子を投入した場合であっても、絶縁信頼性に優れた絶縁被覆導電粒子が提案されており、特許文献3では、第1の絶縁粒子と、第1の絶縁粒子よりもガラス転移温度が低い第2の絶縁粒子が導電粒子の表面に付着された絶縁被覆導電粒子が提案されている。また、特許文献4では、電極間の接続をより強固にする観点から、はんだ粒子を含んだ導電ペーストが提案されている。 As a method for solving these problems, a method has been proposed in which a plurality of insulating particles (child particles) are attached to the surface of conductive particles (mother particles) to form composite particles. For example, Patent Documents 1 and 2 propose a method of attaching spherical resin particles to the surface of conductive particles. Furthermore, even when 70,000 particles / mm 2 or more of conductive particles are charged per unit area, insulating coated conductive particles having excellent insulation reliability have been proposed. In Patent Document 3, the first insulating particles and Insulating coated conductive particles in which second insulating particles having a glass transition temperature lower than that of the first insulating particles are attached to the surface of the conductive particles have been proposed. Patent Document 4 proposes a conductive paste containing solder particles from the viewpoint of further strengthening the connection between electrodes.

特許第4773685号公報Japanese Patent No. 4777385 特許第3869785号公報Japanese Patent No. 3869785 特開2014−17213号公報JP 2014-17213 A 特開2016−76494号公報Japanese Patent Laid-Open No. 2006-76494

ところで、電気的に互いに接続すべき回路部材の接続箇所が微小(例えばバンプ面積2000μm未満)である場合、安定した導通信頼性を得るために導電粒子を増やすことが好ましい。このような理由から、単位面積あたり10万個/mm以上の導電粒子を投入する場合もでてきている。しかしながら、このように接続箇所が微小である場合、特許文献1〜3に記載の絶縁被覆導電粒子を用いたとしても、導通信頼性と絶縁信頼性のバランスを取ることは難しく、未だ改善の余地があった。他方、特許文献4に記載のはんだ粒子を含む導電ペーストを用いた場合、導通信頼性は十分に確保し得るものの、絶縁信頼性が不十分であるという課題があった。 By the way, when the connection location of the circuit members to be electrically connected to each other is very small (for example, a bump area of less than 2000 μm 2 ), it is preferable to increase the conductive particles in order to obtain stable conduction reliability. For these reasons, there are cases where 100,000 particles / mm 2 or more of conductive particles are introduced per unit area. However, when the connection location is very small as described above, even if the insulating coated conductive particles described in Patent Documents 1 to 3 are used, it is difficult to balance conduction reliability and insulation reliability, and there is still room for improvement. was there. On the other hand, when the conductive paste containing solder particles described in Patent Document 4 is used, there is a problem that the insulation reliability is insufficient, although the conduction reliability can be sufficiently ensured.

本発明は、上記課題に鑑みてなされたものであり、電気的に互いに接続すべき回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を製造するのに有用な異方性導電フィルム及びその製造方法を提供することを目的とする。また、本発明は、この異方性導電フィルムを用いて製造される接続構造体及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and manufactures a connection structure that is excellent in both insulation reliability and conduction reliability even when connection portions of circuit members to be electrically connected to each other are minute. An object of the present invention is to provide an anisotropic conductive film useful for the production and a method for producing the same. Moreover, an object of this invention is to provide the connection structure manufactured using this anisotropic conductive film, and its manufacturing method.

上記課題を解決するため、本発明者らは従来の手法では絶縁抵抗値が低下する理由について検討した。その結果、特許文献1,2に記載の発明では、導電粒子の表面に被覆されている絶縁粒子の被覆性が低く、単位面積あたり2万個/mm程度又はこれ未満の導電粒子の投入量であっても、絶縁抵抗値が低下しやすいことが分かった。 In order to solve the above-mentioned problems, the present inventors have examined the reason why the insulation resistance value is lowered in the conventional method. As a result, in the inventions described in Patent Documents 1 and 2, the coverage of the insulating particles coated on the surface of the conductive particles is low, and the input amount of the conductive particles of about 20,000 / mm 2 or less per unit area Even so, it has been found that the insulation resistance value tends to decrease.

特許文献3に記載の発明においては、特許文献1,2に記載の発明の欠点を補うため、第1の絶縁粒子と、第1の絶縁粒子よりもガラス転移温度が低い第2の絶縁粒子を導電粒子の表面に付着させている。これにより、導電粒子の投入量が単位面積あたり7万個/mm程度であれば絶縁抵抗値が十分に高い状態を維持できる。しかし、導電粒子の投入量が単位面積あたり10万個/mm以上ともなると絶縁抵抗値が不十分となる可能性があることが分かった。 In the invention described in Patent Document 3, in order to compensate for the disadvantages of the invention described in Patent Documents 1 and 2, the first insulating particles and the second insulating particles having a glass transition temperature lower than that of the first insulating particles are used. It adheres to the surface of the conductive particles. Thereby, if the input amount of the conductive particles is about 70,000 particles / mm 2 per unit area, the insulation resistance value can be kept sufficiently high. However, it has been found that the insulation resistance value may be insufficient when the amount of conductive particles charged is 100,000 / mm 2 or more per unit area.

特許文献4に記載の発明においては、はんだ粒子を含んだ導電ペーストを用いていることで、特許文献1〜3に記載の発明と比較して優れた導通信頼性に達成し得ると認められるものの、電気的に互いに接続すべき回路部材の接続箇所が微小(例えばバンプ面積2000μm未満)である場合、バンプとバンプの間の接続部以外にはんだ粒子が残りやすいため、絶縁信頼性が不十分となる可能性があることが分かった。 In the invention described in Patent Document 4, it is recognized that by using a conductive paste containing solder particles, excellent conduction reliability can be achieved as compared with the inventions described in Patent Documents 1 to 3. When the connection parts of the circuit members to be electrically connected to each other are very small (for example, the bump area is less than 2000 μm 2 ), the solder particles tend to remain other than the connection part between the bumps, so that the insulation reliability is insufficient. It turns out that there is a possibility.

本発明は本発明者らの上記知見に基づいてなされたものである。本発明は以下の工程をこの順序で含む異方性導電フィルムの製造方法を提供する。
(a)転写型に設けられている複数の開口部に、一個又は複数個のはんだ粒子をそれぞれ収容する工程。
(b)転写型の開口部が設けられている側に、絶縁性を有する接着剤成分を接触させることにより、はんだ粒子が転写された第一のフィルムを得る工程。
(c)はんだ粒子が転写された側の第一のフィルムの表面上に、絶縁性を有する接着剤成分からなる第二のフィルムを形成することにより、異方性導電フィルムを得る工程。
The present invention has been made based on the above findings of the present inventors. The present invention provides a method for producing an anisotropic conductive film comprising the following steps in this order.
(A) A step of accommodating one or a plurality of solder particles in a plurality of openings provided in the transfer mold.
(B) The process of obtaining the 1st film by which the solder particle was transcribe | transferred by making the adhesive agent component which has insulation on the side in which the transcription | transfer type opening part is provided.
(C) The process of obtaining an anisotropic conductive film by forming the 2nd film which consists of an adhesive agent component which has insulation on the surface of the 1st film of the side by which the solder particle was transcribe | transferred.

上記異方性導電フィルムの製造方法によれば、転写型を用いることで、異方性導電フィルムの厚さ方向における所定の領域に、一個のはんだ粒子又は複数個のはんだ粒子からなる粒子群が隣接する一個のはんだ粒子又は粒子群と離隔した状態で並ぶように配置された異方性導電フィルムを製造することができる。例えば、接続すべき電極のパターンに応じた転写型を用いて異方性導電フィルムを製造することで、異方性導電フィルムにおけるはんだ粒子の位置及び個数を十分に制御することができる。このような異方性導電フィルムを用いて接続構造体を製造することにより、電気的に互いに接続すべき一対の電極間に存在するはんだ粒子の数を十分に確保する一方、絶縁性を保つべき隣接する電極間に存在するはんだ粒子の数を十分に少なくすることができる。これにより、回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を十分に効率的且つ安定的に製造することができる。   According to the method for producing an anisotropic conductive film, by using a transfer mold, a particle group composed of one solder particle or a plurality of solder particles is formed in a predetermined region in the thickness direction of the anisotropic conductive film. An anisotropic conductive film arranged so as to be separated from one adjacent solder particle or particle group can be manufactured. For example, the position and number of solder particles in the anisotropic conductive film can be sufficiently controlled by manufacturing the anisotropic conductive film using a transfer mold corresponding to the pattern of the electrode to be connected. By manufacturing a connection structure using such an anisotropic conductive film, the number of solder particles existing between a pair of electrodes to be electrically connected to each other should be sufficiently ensured while insulating properties should be maintained. The number of solder particles existing between adjacent electrodes can be sufficiently reduced. Thereby, even if the connection location of a circuit member is minute, the connection structure which is excellent in both insulation reliability and conduction | electrical_connection reliability can be manufactured sufficiently efficiently and stably.

上記(b)工程で得られる第一のフィルムは、その表面に、はんだ粒子が露出していてもよいし、第一のフィルムの表面側にはんだ粒子が埋設されていてもよい。第一のフィルムの表面側にはんだ粒子を埋設するには、(b)工程において、開口部の内部にまで接着剤成分を侵入させればよい。また、(b)工程で得られる第一のフィルムにおいて、転写されたはんだ粒子を固定化するため、(b)工程は、はんだ粒子の転写後に、接着剤成分を硬化させるステップを有してもよい。   Solder particles may be exposed on the surface of the first film obtained in the step (b), or solder particles may be embedded on the surface side of the first film. In order to embed the solder particles on the surface side of the first film, in the step (b), the adhesive component may be inserted into the opening. Further, in the first film obtained in the step (b), the step (b) may include a step of curing the adhesive component after the transfer of the solder particles in order to fix the transferred solder particles. Good.

本発明において、はんだ粒子の平均粒径は、0.6〜15μmであることが好ましい。はんだ粒子は、スズ又はスズ合金を含むことが好ましい。はんだ粒子を構成するスズ合金の具体例として、In−Sn合金、In−Sn−Ag合金、Sn−Bi合金、Sn−Bi−Ag合金、Sn−Ag−Cu合金及びSn−Cu合金が挙げられる。高い導通信頼性を達成する観点から、はんだ粒子の表面は、フラックス成分によって被覆されていることが好ましい。   In this invention, it is preferable that the average particle diameter of a solder particle is 0.6-15 micrometers. The solder particles preferably contain tin or a tin alloy. Specific examples of the tin alloy constituting the solder particles include In—Sn alloy, In—Sn—Ag alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, and Sn—Cu alloy. . From the viewpoint of achieving high conduction reliability, the surface of the solder particles is preferably coated with a flux component.

本発明は次の構成の異方性導電フィルムを提供する。すなわち、本発明に係る異方性導電フィルムは、絶縁性を有する接着剤成分からなる絶縁性フィルムと、絶縁性フィルム中に配置されている複数のはんだ粒子とを含み、当該異方性導電フィルムの縦断面において、一個のはんだ粒子又は複数個のはんだ粒子からなる粒子群が隣接する一個のはんだ粒子又は粒子群と離隔した状態で横方向に並ぶように配置されている。なお、ここでいう「縦断面」とは異方性導電フィルムの主面に対して直交する断面を意味し、「横方向」とは異方性導電フィルムの主面と平行な方向を意味する。   The present invention provides an anisotropic conductive film having the following constitution. That is, the anisotropic conductive film according to the present invention includes an insulating film made of an adhesive component having an insulating property and a plurality of solder particles arranged in the insulating film, and the anisotropic conductive film In the vertical cross section, the particle group composed of one solder particle or a plurality of solder particles is arranged so as to be laterally arranged in a state of being separated from one adjacent solder particle or particle group. Here, the “longitudinal section” means a section orthogonal to the main surface of the anisotropic conductive film, and the “lateral direction” means a direction parallel to the main surface of the anisotropic conductive film. .

接続構造体のより一層優れた絶縁信頼性及び導通信頼性の両方を達成する観点から、上記異方性導電フィルムの横断面において、粒子群が規則的に配置されていることが好ましい。   From the viewpoint of achieving both superior insulation reliability and conduction reliability of the connection structure, it is preferable that the particle groups are regularly arranged in the cross section of the anisotropic conductive film.

本発明は、上記異方性導電フィルムを用いて接続構造体を製造する方法を提供する。すなわち、本発明に係る接続構造体の製造方法は、第一の基板と当該第一の基板に設けられた第一の電極とを有する第一の回路部材を準備すること;第一の電極と電気的に接続される第二の電極を有する第二の回路部材を準備すること;第一の回路部材の第一の電極を有する面と、第二の回路部材の第二の電極を有する面との間に、上記異方性導電フィルムを配置すること;第一の回路部材と異方性導電フィルムと第二の回路部材とを含む積層体を積層体の厚さ方向の押圧した状態で、はんだ粒子の融点以上に加熱することによって第一の電極と第二の電極とをはんだを介して電気的に接続し且つ第一の回路部材と第二の回路部材と接着することを含む。   The present invention provides a method for producing a connection structure using the anisotropic conductive film. That is, the manufacturing method of the connection structure according to the present invention provides a first circuit member having a first substrate and a first electrode provided on the first substrate; Providing a second circuit member having a second electrode to be electrically connected; a surface having a first electrode of the first circuit member and a surface having a second electrode of the second circuit member The anisotropic conductive film is disposed between the laminated body including the first circuit member, the anisotropic conductive film, and the second circuit member pressed in the thickness direction of the laminated body. The first electrode and the second electrode are electrically connected via the solder by heating to the melting point of the solder particles or higher, and the first circuit member and the second circuit member are bonded.

上記接続構造体の製造方法によれば、第一の電極と第二の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を十分に効率的且つ安定的に製造することができる。すなわち、上記積層体の厚さ方向に押圧した状態で、上記積層体をはんだ粒子の融点以上に加熱することにより、第一の電極と第二の電極の間に、はんだ粒子が溶融しながら寄り集まり、第一の電極と第二の電極とがはんだを介して接合される。これにより、第一の電極と第二の電極との良好な導通信頼性を得ることが可能である。これに加え、第一の電極と第二の電極の間に、はんだ粒子が溶融しながら寄り集まることで、絶縁性を保つべき隣接する電極間に、はんだ粒子が残りづらくなるため、当該電極間のショート発生が抑制され、高い絶縁信頼性を得ることが可能になる。   According to the method for manufacturing a connection structure, a connection structure that is excellent in both insulation reliability and conduction reliability is sufficiently efficient even if the connection portion between the first electrode and the second electrode is minute. It can be manufactured stably. That is, in a state where the laminate is pressed in the thickness direction, the laminate is heated to a temperature higher than the melting point of the solder particles, so that the solder particles are melted between the first electrode and the second electrode. Collectively, the first electrode and the second electrode are joined via solder. Thereby, it is possible to obtain good conduction reliability between the first electrode and the second electrode. In addition to this, the solder particles gather together while melting between the first electrode and the second electrode, so that it is difficult for the solder particles to remain between adjacent electrodes that should maintain insulation. The occurrence of short circuit is suppressed, and high insulation reliability can be obtained.

本発明は次の構成の接続構造体を提供する。すなわち、本発明に係る接続構造体は、第一の基板と当該第一の基板に設けられた第一の電極とを有する第一の回路部材と、第一の電極と電気的に接続されている第二の電極を有する第二の回路部材と、第一の電極と第二の電極との間に介在するはんだ接合部と、第一の回路部材と第二の回路部材との間に設けられ、第一の回路部材と第二の回路部材と接着している絶縁接着層とを備える。   The present invention provides a connection structure having the following configuration. That is, the connection structure according to the present invention is electrically connected to the first circuit member having the first substrate and the first electrode provided on the first substrate, and the first electrode. A second circuit member having a second electrode, a solder joint interposed between the first electrode and the second electrode, and provided between the first circuit member and the second circuit member And an insulating adhesive layer bonded to the first circuit member and the second circuit member.

本発明において、第一の電極及び第二の電極の少なくとも一方が、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物からなる群から選ばれる材質からなることが好ましい。第一の電極及び第二の電極の少なくとも一方が銅からなる場合、第一の電極と第二の電極が金属間化合物からなる層を介して接続されていてもよい。この金属間化合物からなる層の厚さは、導通信頼性及び接続強度の観点から0.1〜10.0μmであることが好ましい。なお、「金属間化合物からなる層」とは、はんだ粒子が融解してはんだ層が形成される際に、はんだ層に銅の拡散が起こることで形成される層をいう。   In the present invention, it is preferable that at least one of the first electrode and the second electrode is made of a material selected from the group consisting of copper, nickel, palladium, gold, silver and alloys thereof, and indium tin oxide. . When at least one of the first electrode and the second electrode is made of copper, the first electrode and the second electrode may be connected via a layer made of an intermetallic compound. The thickness of the layer made of the intermetallic compound is preferably 0.1 to 10.0 μm from the viewpoint of conduction reliability and connection strength. The “layer composed of an intermetallic compound” refers to a layer formed by diffusion of copper in the solder layer when the solder particles are melted to form the solder layer.

本発明によれば、電気的に互いに接続すべき回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を製造するのに有用な異方性導電フィルム及びその製造方法が提供される。また、本発明によれば、この異方性導電フィルムを用いて製造される接続構造体及びその製造方法が提供される。   According to the present invention, an anisotropic conductive useful for manufacturing a connection structure excellent in both insulation reliability and conduction reliability even if connection portions of circuit members to be electrically connected to each other are minute. Films and methods for making the same are provided. Moreover, according to this invention, the connection structure manufactured using this anisotropic conductive film and its manufacturing method are provided.

図1は本発明に係る異方性導電フィルムの第一実施形態を模式的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a first embodiment of an anisotropic conductive film according to the present invention. 図2(a)は図1に示すIIa−IIa線における模式的な横断面図であり、図2(b)は第一実施形態の変形例を模式的に示す横断面図である。2A is a schematic cross-sectional view taken along line IIa-IIa shown in FIG. 1, and FIG. 2B is a cross-sectional view schematically showing a modification of the first embodiment. 図3は本発明に係る異方性導電フィルムの第二実施形態を模式的に示す縦断面図である。FIG. 3 is a longitudinal sectional view schematically showing a second embodiment of the anisotropic conductive film according to the present invention. 図4(a)は図3にIVa−IVa線における模式的な横断面図であり、図4(b)は第二実施形態の変形例を模式的に示す横断面図である。FIG. 4A is a schematic cross-sectional view taken along line IVa-IVa in FIG. 3, and FIG. 4B is a cross-sectional view schematically showing a modification of the second embodiment. 図5(a)は転写型の一例を模式的に示す平面図であり、図5(b)は図5(a)に示すb−b線における断面図である。FIG. 5A is a plan view schematically showing an example of a transfer mold, and FIG. 5B is a cross-sectional view taken along the line bb shown in FIG. 図6は転写型のそれぞれの凹部に一個のはんだ粒子が捕捉された状態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a state where one solder particle is captured in each recess of the transfer mold. 図7(a)〜図7(c)は第一実施形態に係る異方性導電フィルムの製造過程の一例を模式的に示す断面図である。Fig.7 (a)-FIG.7 (c) are sectional drawings which show typically an example of the manufacture process of the anisotropic conductive film which concerns on 1st embodiment. 図8(a)及び図8(b)は転写型のそれぞれの凹部に複数のはんだ粒子が収容された状態を模式的に示す断面図及び平面図である。FIGS. 8A and 8B are a cross-sectional view and a plan view schematically showing a state in which a plurality of solder particles are accommodated in the respective concave portions of the transfer mold. 図9(a)〜図9(c)は第二実施形態に係る異方性導電フィルムの製造過程の一例を模式的に示す断面図である。Fig.9 (a)-FIG.9 (c) are sectional drawings which show typically an example of the manufacturing process of the anisotropic conductive film which concerns on 2nd embodiment. 図10は本発明に係る接続構造体の一部を拡大して示す図であって、はんだによって第一の電極と第二の電極が電気的に接続された状態の第一の例を模式的に示す断面図である。FIG. 10 is an enlarged view showing a part of the connection structure according to the present invention, and schematically shows a first example in which the first electrode and the second electrode are electrically connected by solder. FIG. 図11は本発明に係る接続構造体の一部を拡大して示す図であって、はんだによって第一の電極と第二の電極が電気的に接続された状態の第二の例を模式的に示す断面図である。FIG. 11 is an enlarged view of a part of the connection structure according to the present invention, and schematically shows a second example in which the first electrode and the second electrode are electrically connected by solder. FIG. 図12は本発明に係る接続構造体の一部を拡大して示す図であって、はんだによって第一の電極と第二の電極が電気的に接続された状態の第三の例を模式的に示す断面図である。FIG. 12 is an enlarged view showing a part of the connection structure according to the present invention, and schematically shows a third example in which the first electrode and the second electrode are electrically connected by solder. FIG. 図13は本発明に係る接続構造体の一部を拡大して示す図であって、はんだによって第一の電極と第二の電極が電気的に接続された状態の第四の例を模式的に示す断面図である。FIG. 13 is an enlarged view showing a part of the connection structure according to the present invention, and schematically shows a fourth example in which the first electrode and the second electrode are electrically connected by solder. FIG. 図14は本発明に係る接続構造体の一部を拡大して示す図であって、はんだによって第一の電極と第二の電極が電気的に接続された状態の第五の例を模式的に示す断面図である。FIG. 14 is an enlarged view of a part of the connection structure according to the present invention, and is a schematic diagram of a fifth example in which the first electrode and the second electrode are electrically connected by solder. FIG. 図15は本発明に係る接続構造体の一部を拡大して示す図であって、はんだによって第一の電極と第二の電極が電気的に接続された状態の第六の例を模式的に示す断面図である。FIG. 15 is an enlarged view showing a part of the connection structure according to the present invention, and schematically shows a sixth example in which the first electrode and the second electrode are electrically connected by solder. FIG. 図16(a)及び図16(b)は、本発明に係る接続構造体の製造過程の第一の例を模式的に示す断面図である。FIGS. 16A and 16B are cross-sectional views schematically showing a first example of the manufacturing process of the connection structure according to the present invention. 図17(a)及び図17(b)は、本発明に係る接続構造体の製造過程の第二の例を模式的に示す断面図である。FIG. 17A and FIG. 17B are cross-sectional views schematically showing a second example of the manufacturing process of the connection structure according to the present invention. 図18(a)及び図18(b)は、本発明に係る接続構造体の製造過程の第三の例を模式的に示す断面図である。18 (a) and 18 (b) are cross-sectional views schematically showing a third example of the manufacturing process of the connection structure according to the present invention. 図19(a)及び図19(b)は、本発明に係る接続構造体の製造過程の第四の例を模式的に示す断面図である。FIGS. 19A and 19B are cross-sectional views schematically showing a fourth example of the manufacturing process of the connection structure according to the present invention. 図20(a)及び図20(b)は、本発明に係る接続構造体の製造過程の第五の例を模式的に示す断面図である。20 (a) and 20 (b) are cross-sectional views schematically showing a fifth example of the manufacturing process of the connection structure according to the present invention. 図21(a)及び図21(b)は、本発明に係る接続構造体の製造過程の第六の例を模式的に示す断面図である。FIG. 21A and FIG. 21B are cross-sectional views schematically showing a sixth example of the manufacturing process of the connection structure according to the present invention. 図22は、押圧及び加熱がなされる前の異方性導電フィルムのはんだ粒子の位置と、バンプ(電極)の位置との関係の第一の例を模式的に示す平面図である。FIG. 22 is a plan view schematically showing a first example of the relationship between the positions of the solder particles of the anisotropic conductive film and the positions of the bumps (electrodes) before being pressed and heated. 図23は、押圧及び加熱がなされる前の異方性導電フィルムのはんだ粒子の位置と、バンプ(電極)の位置との関係の第二の例を模式的に示す平面図である。FIG. 23 is a plan view schematically showing a second example of the relationship between the positions of the solder particles of the anisotropic conductive film and the positions of the bumps (electrodes) before being pressed and heated. 図24は、押圧及び加熱がなされる前の異方性導電フィルムのはんだ粒子の位置と、バンプ(電極)の位置との関係の第三の例を模式的に示す平面図である。FIG. 24 is a plan view schematically showing a third example of the relationship between the positions of the solder particles of the anisotropic conductive film and the positions of the bumps (electrodes) before being pressed and heated. 図25は、押圧及び加熱がなされる前の異方性導電フィルムのはんだ粒子の位置と、バンプ(電極)との関係の第四の例を模式的に示す平面図である。FIG. 25 is a plan view schematically showing a fourth example of the relationship between the positions of the solder particles of the anisotropic conductive film and the bumps (electrodes) before being pressed and heated.

以下、本発明に実施形態について説明する。本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. The materials exemplified below may be used alone or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.

<異方性導電フィルム>
図1に示す第一実施形態に係る異方性導電フィルム10は、絶縁性を有する接着剤成分からなる絶縁性フィルム2と、絶縁性フィルム2中に配置されている複数のはんだ粒子1とによって構成されている。異方性導電フィルム10の所定の縦断面において、一個のはんだ粒子1は隣接する一個のはんだ粒子1と離隔した状態で横方向(図1における左右方向)に並ぶように配置されている。換言すると、異方性導電フィルム10は、その縦断面において、複数のはんだ粒子1が横方向に列をなしている中央領域10aと、はんだ粒子1が実質的に存在しない表面側領域10b,10cとによって構成されている。
<Anisotropic conductive film>
An anisotropic conductive film 10 according to the first embodiment shown in FIG. 1 includes an insulating film 2 made of an adhesive component having an insulating property, and a plurality of solder particles 1 arranged in the insulating film 2. It is configured. In a predetermined longitudinal section of the anisotropic conductive film 10, one solder particle 1 is arranged so as to be arranged in the horizontal direction (left and right direction in FIG. 1) in a state of being separated from one adjacent solder particle 1. In other words, the anisotropic conductive film 10 has, in its longitudinal section, a central region 10a in which a plurality of solder particles 1 are arranged in a row in the horizontal direction, and surface side regions 10b, 10c in which the solder particles 1 are not substantially present. And is composed of.

図2(a)は図1に示すIIa−IIa線における模式的な横断面図である。同図に示されるとおり、異方性導電フィルム10の横断面において、はんだ粒子1が規則的に配置されている。図2(a)に示されたとおり、はんだ粒子1は異方性導電フィルム10の全体の領域に対して規則的且つほぼ均等の間隔で配置されていてもよく、図2(b)に示された変形例のように、異方性導電フィルム10の横断面において、複数のはんだ粒子1が規則的に配置されている領域10dと、はんだ粒子1が実質的に存在しない領域10eとが規則的に形成されるように、はんだ粒子1を配置してもよい。例えば、接続すべき電極の形状、サイズ及びパターン等に応じ、はんだ粒子1の位置及び個数等を設定すればよい。   FIG. 2A is a schematic cross-sectional view taken along the line IIa-IIa shown in FIG. As shown in the figure, the solder particles 1 are regularly arranged in the cross section of the anisotropic conductive film 10. As shown in FIG. 2 (a), the solder particles 1 may be regularly and substantially equally spaced with respect to the entire region of the anisotropic conductive film 10, as shown in FIG. 2 (b). As in the modified example, in the cross section of the anisotropic conductive film 10, a region 10d in which the plurality of solder particles 1 are regularly arranged and a region 10e in which the solder particles 1 are not substantially present are regular. The solder particles 1 may be arranged so as to be formed. For example, the position and number of solder particles 1 may be set according to the shape, size, pattern, etc. of the electrodes to be connected.

図3に示す第二実施形態に係る異方性導電フィルム20は、絶縁性を有する接着剤成分からなる絶縁性フィルム2と、絶縁性フィルム2中に配置されている複数の粒子群1Aとによって構成されている。粒子群1Aは複数のはんだ粒子1からなる。異方性導電フィルム20の所定の縦断面において、一つの粒子群1Aは隣接する一つの粒子群1Aと離隔した状態で横方向(図3における左右方向)に並ぶように配置されている。換言すると、異方性導電フィルム20は、その縦断面において、複数の粒子群1Aが横方向に列をなしている中央領域20aと、粒子群1Aが実質的に存在しない表面側領域20b,20cとによって構成されている。   An anisotropic conductive film 20 according to the second embodiment shown in FIG. 3 includes an insulating film 2 made of an adhesive component having insulating properties, and a plurality of particle groups 1A arranged in the insulating film 2. It is configured. The particle group 1 </ b> A is composed of a plurality of solder particles 1. In a predetermined longitudinal section of the anisotropic conductive film 20, one particle group 1A is arranged in the lateral direction (left and right direction in FIG. 3) in a state of being separated from one adjacent particle group 1A. In other words, the anisotropic conductive film 20 includes a central region 20a in which a plurality of particle groups 1A are arranged in a row in the longitudinal section, and surface side regions 20b and 20c in which the particle group 1A does not substantially exist. And is composed of.

図4(a)は図1に示すIVa−IVa線における模式的な横断面図である。同図に示されるとおり、異方性導電フィルム20の横断面において、粒子群1Aが規則的に配置されている。図4(a)に示されたとおり、粒子群1Aは異方性導電フィルム20の全体の領域に対して規則的且つほぼ均等の間隔で配置されていてもよく、図4(b)に示された変形例のように、異方性導電フィルム20の横断面において、複数の粒子群1Aが規則的に配置されている領域20dと、粒子群1Aが実質的に存在しない領域20eとが規則的に形成されるように、粒子群1Aを配置してもよい。例えば、接続すべき電極の形状、サイズ及びパターン等に応じ、粒子群1Aの位置及び個数等を設定すればよい。   FIG. 4A is a schematic cross-sectional view taken along line IVa-IVa shown in FIG. As shown in the figure, in the cross section of the anisotropic conductive film 20, the particle group 1A is regularly arranged. As shown in FIG. 4A, the particle group 1A may be regularly and substantially equally spaced with respect to the entire region of the anisotropic conductive film 20, as shown in FIG. As in the modified example, in the cross section of the anisotropic conductive film 20, the region 20d in which the plurality of particle groups 1A are regularly arranged and the region 20e in which the particle groups 1A are not substantially present are regular. The particle group 1A may be arranged so as to be formed. For example, the position and number of the particle group 1A may be set according to the shape, size, pattern, and the like of the electrode to be connected.

(はんだ粒子)
はんだ粒子1の粒径は、例えば、0.4〜30μmであり、0.5〜20μm又は0.6〜15μmであってもよい。はんだ粒子1の粒径が0.4μm未満であると、はんだ表面の酸化の影響を受けやすく、電気的に接続すべき一対の電極ではんだ粒子1が押圧された状態で、はんだ粒子1を融点以上に加熱しても、はんだ粒子1が溶融せずに微小な粒子のままで残る傾向にあり、導通信頼性が不十分となる傾向にある。一方、はんだ粒子1の粒径が30μmを超えると、絶縁信頼性が不十分となる傾向にある。
(Solder particles)
The particle size of the solder particles 1 is, for example, 0.4 to 30 μm, and may be 0.5 to 20 μm or 0.6 to 15 μm. When the particle size of the solder particles 1 is less than 0.4 μm, the solder particles 1 are easily affected by the oxidation of the solder surface, and the solder particles 1 are melted in a state where the solder particles 1 are pressed by a pair of electrodes to be electrically connected. Even when heated to the above, the solder particles 1 tend to remain as fine particles without melting, and the conduction reliability tends to be insufficient. On the other hand, when the particle size of the solder particles 1 exceeds 30 μm, the insulation reliability tends to be insufficient.

はんだ粒子1の平均粒径は、例えば、0.6〜15μmであり、1.0〜12μm又は1.2〜10μmであってもよい。はんだ粒子1の平均粒径が0.6μm未満であると、はんだ表面の酸化の影響を受けやすく、電気的に接続すべき一対の電極ではんだ粒子1が押圧された状態で、はんだ粒子1を融点以上に加熱しても、はんだ粒子1が溶融せずに微小な粒子のままで残る傾向にあり、導通信頼性が不十分となる傾向にある。一方、はんだ粒子1の平均粒径が15μmを超えると、絶縁信頼性が不十分となる傾向にある。   The average particle diameter of the solder particles 1 is, for example, 0.6 to 15 μm, and may be 1.0 to 12 μm or 1.2 to 10 μm. When the average particle diameter of the solder particles 1 is less than 0.6 μm, the solder particles 1 are easily affected by oxidation of the solder surface, and the solder particles 1 are pressed in a state where the solder particles 1 are pressed by a pair of electrodes to be electrically connected. Even when heated to the melting point or higher, the solder particles 1 tend to remain as fine particles without melting, and the conduction reliability tends to be insufficient. On the other hand, if the average particle size of the solder particles 1 exceeds 15 μm, the insulation reliability tends to be insufficient.

はんだ粒子1の粒径は、走査電子顕微鏡(以下、SEM)を用いた観察により測定することができる。すなわち、はんだ粒子の平均粒径は、任意のはんだ粒子300個についてSEMを用いた観察により粒径の測定を行い、それらの平均値をとることにより得られる。   The particle size of the solder particles 1 can be measured by observation using a scanning electron microscope (hereinafter, SEM). That is, the average particle diameter of the solder particles can be obtained by measuring the particle diameter of 300 arbitrary solder particles by observation using an SEM and taking the average value thereof.

はんだ粒子1は、スズ又はスズ合金を含む。スズ合金としては、例えば、In−Sn、In−Sn−Ag、Sn−Bi、Sn−Bi−Ag、Sn−Ag−Cu、Sn−Cuを用いることができ、下記の例が挙げられる。
・In−Sn(In52質量%、Bi48質量% 融点118℃)
・In−Sn−Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn−Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn−Bi−Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)
・Sn−Ag−Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn−Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
The solder particle 1 contains tin or a tin alloy. As the tin alloy, for example, In—Sn, In—Sn—Ag, Sn—Bi, Sn—Bi—Ag, Sn—Ag—Cu, and Sn—Cu can be used, and the following examples are given.
In-Sn (In 52 mass%, Bi48 mass% melting point 118 ° C)
In-Sn-Ag (In 20% by mass, Sn 77.2% by mass, Ag 2.8% by mass, melting point 175 ° C.)
・ Sn-Bi (Sn43% by mass, Bi57% by mass, melting point 138 ° C.)
・ Sn-Bi-Ag (Sn 42 mass%, Bi 57 mass%, Ag 1 mass% melting point 139 ° C.)
Sn-Ag-Cu (Sn 96.5% by mass, Ag 3% by mass, Cu 0.5% by mass, melting point 217 ° C.)
Sn-Cu (Sn 99.3 mass%, Cu 0.7 mass% melting point 227 ° C)

接続する温度に応じて、上記スズ合金を選択することができる。例えば、低温で接続したい場合、In−Sn合金、Sn−Bi合金を採用すればよく、150℃以下で接続することができる。Sn−Ag−Cu及びSn−Cu等の融点の高い材料を採用した場合、高温放置後においても、高い信頼性を達成できる傾向にある。   The tin alloy can be selected according to the temperature to be connected. For example, when a connection is desired at a low temperature, an In—Sn alloy or a Sn—Bi alloy may be employed, and the connection can be made at 150 ° C. or lower. When a material having a high melting point such as Sn-Ag-Cu and Sn-Cu is employed, high reliability tends to be achieved even after being left at high temperature.

はんだ粒子1を構成するスズ又はスズ合金は、Ag,Cu,Ni,Bi,Zn,Pd,Pb,Au,P及びBから選ばれる一種以上を含んでもよい。これらの元素のうち、以下の観点からAg又はCuを含んでもよい。すなわち、はんだ粒子1がAg又はCuを含むことで、はんだ粒子1の融点を220℃程度まで低下させることができる、電極との接合強度が向上することによって良好な導通信頼性を得られるという効果が奏される。   The tin or tin alloy constituting the solder particles 1 may include one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P, and B. Among these elements, Ag or Cu may be contained from the following viewpoints. That is, when the solder particles 1 contain Ag or Cu, the melting point of the solder particles 1 can be lowered to about 220 ° C., and the effect of obtaining good conduction reliability by improving the bonding strength with the electrodes. Is played.

はんだ粒子1のCu含有率は、例えば、0.05〜10質量%であり、0.1〜5質量%又は0.2〜3質量%であってもよい。Cu含有率が0.05質量%以上であれば、良好なはんだ接続信頼性を得られやすく、他方、10質量%以下であれば融点が低くなり、はんだの濡れ性が向上し、結果として接合部の接続信頼性が良好となりやすい。   The Cu content of the solder particles 1 is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. If the Cu content is 0.05% by mass or more, good solder connection reliability can be easily obtained. On the other hand, if the Cu content is 10% by mass or less, the melting point is lowered and the solder wettability is improved. The connection reliability of the part tends to be good.

はんだ粒子1のAg含有率は、例えば、0.05〜10質量%であり、0.1〜5質量%又は0.2〜3質量%であってもよい。Ag含有率が0.05質量%以上であれば、良好なはんだ接続信頼性を得られやすく、他方、10質量%以下であれば融点が低くなり、はんだの濡れ性が向上し、結果として接合部の接続信頼性が良好となりやすい。   The Ag content of the solder particles 1 is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. If the Ag content is 0.05% by mass or more, good solder connection reliability can be easily obtained. On the other hand, if the Ag content is 10% by mass or less, the melting point is lowered and the solder wettability is improved. The connection reliability of the part tends to be good.

(絶縁性フィルム)
絶縁性フィルム2を構成する接着剤成分として、熱硬化性化合物が挙げられる。熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。なかでも、絶縁樹脂の硬化性及び粘度をより一層良好にし、接続信頼性をより一層高める観点から、エポキシ化合物が好ましい。
(Insulating film)
A thermosetting compound is mentioned as an adhesive agent component which comprises the insulating film 2. FIG. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acryl compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. Among these, an epoxy compound is preferable from the viewpoint of further improving the curability and viscosity of the insulating resin and further improving the connection reliability.

接着剤成分は熱硬化剤をさらに含んでもよい。熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤、酸無水物、熱カチオン開始剤及び熱ラジカル発生剤等が挙げられる。これらは一種を単独で用いてもよく、二種以上を併用してもよい。これらのうち、低温で速やかに硬化可能である点で、イミダゾール硬化剤、ポリチオール硬化剤又はアミン硬化剤が好ましい。また、熱硬化性化合物と熱硬化剤とを混合したときに保存安定性が高くなるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性ポリチオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。   The adhesive component may further include a thermosetting agent. Examples of the thermosetting agent include an imidazole curing agent, an amine curing agent, a phenol curing agent, a polythiol curing agent, an acid anhydride, a thermal cation initiator, and a thermal radical generator. These may be used alone or in combination of two or more. Among these, an imidazole curing agent, a polythiol curing agent, or an amine curing agent is preferable because it can be quickly cured at a low temperature. Moreover, since a storage stability becomes high when a thermosetting compound and a thermosetting agent are mixed, a latent hardening agent is preferable. The latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent. In addition, the said thermosetting agent may be coat | covered with polymeric substances, such as a polyurethane resin or a polyester resin.

上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。   The imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.

上記ポリチオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。ポリチオール硬化剤の溶解度パラメーターは、好ましくは9.5以上、好ましくは12以下である。上記溶解度パラメーターは、Fedors法にて計算される。例えば、トリメチロールプロパントリス−3−メルカプトプロピオネートの溶解度パラメーターは9.6、ジペンタエリスリトールヘキサ−3−メルカプトプロピオネートの溶解度パラメーターは11.4である。   The polythiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. . The solubility parameter of the polythiol curing agent is preferably 9.5 or more, preferably 12 or less. The solubility parameter is calculated by the Fedors method. For example, the solubility parameter of trimethylolpropane tris-3-mercaptopropionate is 9.6, and the solubility parameter of dipentaerythritol hexa-3-mercaptopropionate is 11.4.

上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。   The amine curing agent is not particularly limited, and hexamethylene diamine, octamethylene diamine, decamethylene diamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.

上記熱カチオン硬化剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。   Examples of the thermal cationic curing agent include iodonium-based cationic curing agents, oxonium-based cationic curing agents, and sulfonium-based cationic curing agents. Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.

上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイゾブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。   The thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN). Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.

(フラックス)
異方性導電フィルム10,20は、フラックスを含むことが好ましい。具体的には、異方性導電フィルム10,20を構成する接着剤成分がフラックスを含有するとともに、はんだ粒子1の表面をフラックスが覆っていることが好ましい。フラックスは、はんだ表面の酸化物を溶融して、粒子同士が融着するとともに、電極へのはんだの濡れ性を向上させる。
(flux)
The anisotropic conductive films 10 and 20 preferably contain a flux. Specifically, it is preferable that the adhesive component constituting the anisotropic conductive films 10 and 20 contains the flux and the surface of the solder particles 1 covers the flux. The flux melts the oxide on the solder surface and fuses the particles to each other and improves the wettability of the solder to the electrode.

フラックスとして、はんだ接合等に一般的に用いられているものを使用できる。具体例としては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。これらは一種を単独で用いてもよく、二種以上を併用してもよい。   As the flux, one that is generally used for soldering or the like can be used. Specific examples include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and rosin. Can be mentioned. These may be used alone or in combination of two or more.

溶融塩としては、塩化アンモニウム等が挙げられる。有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。松脂としては、活性化松脂及び非活性化松脂等が挙げられる。松脂はアビエチン酸を主成分とするロジン類である。フラックスとして、カルボキシル基を二個以上有する有機酸又は松脂を使用することにより、電極間の導通信頼性がより一層高くなるという効果が奏される。   Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. Pine resin is a rosin composed mainly of abietic acid. By using an organic acid or pine resin having two or more carboxyl groups as the flux, there is an effect that the conduction reliability between the electrodes is further enhanced.

フラックスの融点は、好ましくは50℃以上であり、より好ましくは70℃以上であり、さらに好ましくは80℃以上である。フラックスの融点は、好ましくは200℃以下であり、より好ましくは160℃以下であり、さらに好ましくは150℃以下であり、特に好ましくは140℃以下である。上記フラックスの融点が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだ粒子が電極上により一層効率的に配置される。フラックスの融点の範囲は、80〜190℃であることが好ましく、80〜140℃以下であることがより好ましい。   The melting point of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 80 ° C. or higher. The melting point of the flux is preferably 200 ° C. or less, more preferably 160 ° C. or less, further preferably 150 ° C. or less, and particularly preferably 140 ° C. or less. When the melting point of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited and the solder particles are more efficiently arranged on the electrode. The range of the melting point of the flux is preferably 80 to 190 ° C, and more preferably 80 to 140 ° C.

融点が80〜190℃の範囲にあるフラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。   Examples of the flux having a melting point in the range of 80 to 190 ° C. include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 ° C.), suberic acid (melting point) 142 ° C.) and the like, benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.

<異方性導電フィルムの製造方法>
図5〜7を参照しながら、<異方性導電フィルム10の製造方法について説明する。
<Method for producing anisotropic conductive film>
The manufacturing method of the anisotropic conductive film 10 will be described with reference to FIGS.

まず、はんだ粒子1を配列させるための転写型60を準備する。図5(a)は転写型60の平面図であり、図5(b)は図5(a)に示すb−b線における断面図である。図6は、転写型60が有する複数の凹部62(開口部)にはんだ粒子1が一つずつ収容された状態を示す断面図である。   First, a transfer mold 60 for arranging the solder particles 1 is prepared. 5A is a plan view of the transfer mold 60, and FIG. 5B is a cross-sectional view taken along the line bb shown in FIG. 5A. FIG. 6 is a cross-sectional view showing a state in which the solder particles 1 are accommodated one by one in the plurality of recesses 62 (openings) of the transfer mold 60.

転写型60の凹部62は、凹部62の底部62a側から転写型60の表面60a側に向けて開口面積が拡大するテーパ状に形成されていることが好ましい。すなわち、図5(a)及び図5(b)に示すように、凹部62の底部62aの幅(これらの図における幅a)は、凹部62の表面60aにおける開口の幅(これらの図における幅b)よりも狭いことが好ましい。凹部62のサイズ(テーパ角度及び深さ)は、凹部62に収容するはんだ粒子1のサイズに応じて設定すればよい。   The recess 62 of the transfer mold 60 is preferably formed in a tapered shape in which the opening area increases from the bottom 62 a side of the recess 62 toward the surface 60 a side of the transfer mold 60. That is, as shown in FIGS. 5A and 5B, the width of the bottom 62a of the recess 62 (the width a in these drawings) is the width of the opening in the surface 60a of the recess 62 (the width in these drawings). Narrower than b). What is necessary is just to set the size (taper angle and depth) of the recessed part 62 according to the size of the solder particle 1 accommodated in the recessed part 62. FIG.

転写型60を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。これらのうち、凹部62にはんだ粒子1を収容した状態で保持する観点から、可撓性を有する樹脂材料からなることが好ましい。転写型60の凹部62は、フォトリソグラフ法等の公知の方法によって形成することができる。なお、転写型60は、熱硬化性樹脂等と接触するとともに、これを硬化させるための熱が加わる場合があることから、耐薬品性及び耐熱性を有する材質からなることが好ましい。   As a material constituting the transfer mold 60, for example, an inorganic material such as silicon, various ceramics, glass, stainless steel, or the like, and an organic material such as various resins can be used. Among these, from the viewpoint of holding the solder particles 1 in the state where the solder particles 1 are accommodated in the recesses 62, it is preferable to be made of a flexible resin material. The recess 62 of the transfer mold 60 can be formed by a known method such as a photolithographic method. The transfer mold 60 is preferably made of a material having chemical resistance and heat resistance because it may be in contact with a thermosetting resin or the like and heat may be applied to cure the resin.

転写型60を使用することで、はんだ粒子1の粒度分布にある程度の幅があっても、これよりも粒度分布の幅が狭い複数のはんだ粒子1を容易に選択し、これらを異方性導電フィルム10の製造に用いることができる。すなわち、転写型60の凹部62のサイズよりも小さいはんだ粒子1は凹部62に一旦収容されたとしても例えば凹部62が形成されている面を下に向ければ落下し、一方、凹部62のサイズよりも大きいはんだ粒子1は凹部62に収容されない。   By using the transfer mold 60, even if there is a certain width in the particle size distribution of the solder particles 1, a plurality of solder particles 1 having a narrower particle size distribution width can be easily selected and anisotropically conductive. It can be used for the production of the film 10. That is, even if the solder particles 1 smaller than the size of the concave portion 62 of the transfer mold 60 are once accommodated in the concave portion 62, for example, the solder particle 1 falls if the surface on which the concave portion 62 is formed faces downward. Larger solder particles 1 are not accommodated in the recesses 62.

異方性導電フィルム10は、凹部62にはんだ粒子1を収容可能な転写型60を使用して製造される。すなわち、異方性導電フィルム10の製造方法は、以下の工程をこの順序で含む。
(a1)転写型60の各凹部62に、一個のはんだ粒子1を収容する工程。
(b1)転写型60の凹部62が設けられている側に、上記接着剤成分からなるフィルム2aを接触させることにより、複数のはんだ粒子1が転写された第一のフィルム2bを得る工程。
(c1)複数のはんだ粒子1が転写された側の第一のフィルム2bの表面2c上に、上記接着剤成分からなる第二のフィルム2dを形成することにより、異方性導電フィルム10を得る工程。
The anisotropic conductive film 10 is manufactured using a transfer mold 60 that can accommodate the solder particles 1 in the recesses 62. That is, the manufacturing method of the anisotropic conductive film 10 includes the following steps in this order.
(A1) A step of accommodating one solder particle 1 in each recess 62 of the transfer mold 60.
(B1) The process of obtaining the 1st film 2b by which the several solder particle 1 was transcribe | transferred by making the film 2a which consists of the said adhesive component contact the side by which the recessed part 62 of the transfer type | mold 60 is provided.
(C1) The anisotropic conductive film 10 is obtained by forming the second film 2d made of the adhesive component on the surface 2c of the first film 2b on the side where the plurality of solder particles 1 are transferred. Process.

図7(a)に示された転写型60は、工程(a1)後の状態であって、複数の凹部62のそれぞれに一個のはんだ粒子1が収容された状態である。この状態を維持したまま、転写型60の凹部62が形成されている表面60aを、上記接着剤成分からなるフィルム2aに向け、転写型60とフィルム2aとを近づける(図7(a)における矢印A,B)。なお、フィルム2aは支持体65の表面上に形成されている。支持体65は、プラスチックフィルムであってもよいし、金属箔であってもよい。   The transfer mold 60 shown in FIG. 7A is in a state after the step (a1), in which one solder particle 1 is accommodated in each of the plurality of recesses 62. While maintaining this state, the transfer mold 60 and the film 2a are brought close to each other with the surface 60a on which the concave portion 62 of the transfer mold 60 is formed facing the film 2a made of the adhesive component (arrow in FIG. 7A). A, B). The film 2a is formed on the surface of the support 65. The support 65 may be a plastic film or a metal foil.

図7(b)は、工程(b1)後の状態であって、転写型60の凹部62が形成されている表面60aをフィルム2aに接触させたことにより、転写型60の凹部62に収容されていたはんだ粒子1がフィルム2aに転写された状態を示している。工程(b1)を経ることで、フィルム2aと、フィルム2aの所定の位置に配置された複数のはんだ粒子1とによって構成される第一のフィルム2bが得られる。第一のフィルム2bは、その表面に、複数のはんだ粒子1が露出している。   FIG. 7B shows the state after the step (b1), and the surface 60a on which the concave portion 62 of the transfer mold 60 is formed is brought into contact with the film 2a, so that it is accommodated in the concave portion 62 of the transfer mold 60. The state which the solder particle 1 which had been transferred to the film 2a is shown. By passing through a process (b1), the 1st film 2b comprised by the film 2a and the some solder particle 1 arrange | positioned in the predetermined position of the film 2a is obtained. The first film 2b has a plurality of solder particles 1 exposed on its surface.

図7(c)は、工程(c1)後の状態であって、第一のフィルム2bの表面2c上に、はんだ粒子1を覆うように第二のフィルム2dを形成した後、支持体65を取り除いた状態を示している。これにより、異方性導電フィルム10が得られる。なお、第二のフィルム2dは、接着剤成分からなる絶縁性フィルムを第一のフィルム2bにラミネートすることによって形成してもよく、あるいは、接着剤成分を含むワニスで第一のフィルム2bを被覆した後、硬化処理を施すことによって形成してもよい。   FIG.7 (c) is the state after a process (c1), Comprising: After forming the 2nd film 2d so that the solder particle 1 may be covered on the surface 2c of the 1st film 2b, the support body 65 is used. The removed state is shown. Thereby, the anisotropic conductive film 10 is obtained. The second film 2d may be formed by laminating an insulating film made of an adhesive component on the first film 2b, or the first film 2b is covered with a varnish containing an adhesive component. Then, it may be formed by performing a curing process.

次に、図8,9を参照しながら、異方性導電フィルム20の製造方法について説明する。異方性導電フィルム20は、転写型60のそれぞれの凹部62に1個のはんだ粒子1を収容する代わりに、複数個のはんだ粒子1を収容することの他は、異方性導電フィルム10と同様にして製造される。なお、図8に示す転写型60は凹部62の開口断面が円形であってテーパ状に形成されている。すなわち、凹部62の底部の直径(図8における直径a)は凹部62の開口の直径(図8における直径b)よりも小さく設定されている。   Next, a method for manufacturing the anisotropic conductive film 20 will be described with reference to FIGS. The anisotropic conductive film 20 has the same structure as the anisotropic conductive film 10 except that a plurality of solder particles 1 are accommodated in place of the single solder particle 1 in each recess 62 of the transfer mold 60. It is manufactured in the same way. Note that the transfer mold 60 shown in FIG. 8 is formed in a tapered shape in which the opening cross section of the recess 62 is circular. That is, the diameter of the bottom of the recess 62 (diameter a in FIG. 8) is set smaller than the diameter of the opening of the recess 62 (diameter b in FIG. 8).

異方性導電フィルム20の製造方法は、以下の工程をこの順序で含む。
(a2)転写型60の各凹部62に、複数のはんだ粒子1を収容する工程。
(b2)転写型60の凹部62が設けられている側に、上記接着剤成分からなるフィルム2aを接触させることにより、複数のはんだ粒子1からなる粒子群1Aが転写された第一のフィルム2bを得る工程。
(c2)複数の粒子群1Aが転写された側の第一のフィルム2bの表面2c上に、上記接着剤成分からなる第二のフィルム2eを形成することにより、異方性導電フィルム20を得る工程。
The manufacturing method of the anisotropic conductive film 20 includes the following steps in this order.
(A2) A step of accommodating a plurality of solder particles 1 in each recess 62 of the transfer mold 60.
(B2) The first film 2b on which the particle group 1A composed of a plurality of solder particles 1 is transferred by bringing the film 2a composed of the adhesive component into contact with the side of the transfer mold 60 where the recess 62 is provided. Obtaining.
(C2) The anisotropic conductive film 20 is obtained by forming the second film 2e made of the adhesive component on the surface 2c of the first film 2b on the side where the plurality of particle groups 1A are transferred. Process.

図8(a)は、工程(a2)後の状態であって、転写型60の凹部62に複数のはんだ粒子1が収容された状態を模式的に示す断面図であり、図8(b)は、その平面図である。一つの凹部62に収容させるはんだ粒子1の数は、はんだ粒子1の粒径及び凹部62のサイズに応じて適宜設定すればよく、例えば、1〜12個とすればよく、2〜8個としてもよい。   FIG. 8A is a cross-sectional view schematically showing a state after the step (a2), in which a plurality of solder particles 1 are accommodated in the recesses 62 of the transfer mold 60, and FIG. Is a plan view thereof. What is necessary is just to set suitably the number of the solder particles 1 accommodated in the one recessed part 62 according to the particle size of the solder particle 1, and the size of the recessed part 62, for example, should just be 1-12 pieces, and is 2-8 pieces. Also good.

図9(a)に示すとおり、凹部62に複数個のはんだ粒子1が収容された状態を維持したまま、転写型60の凹部62が形成されている表面60aを、上記接着剤成分からなるフィルム2aに向け、転写型60とフィルム2aとを近づける(図9(a)における矢印A,B)。なお、凹部62に収容された複数個のはんだ粒子1は、図8(a)に示す状態から転写型60の上下を逆さにすると、凹部62からはんだ粒子1が落下するため、図8(a)に示す向きを維持することが好ましい。   As shown in FIG. 9A, a film made of the above adhesive component is formed on the surface 60a on which the recess 62 of the transfer mold 60 is formed while maintaining the state in which the plurality of solder particles 1 are accommodated in the recess 62. The transfer mold 60 and the film 2a are brought closer to 2a (arrows A and B in FIG. 9A). The plurality of solder particles 1 accommodated in the recesses 62 fall from the recesses 62 when the transfer mold 60 is turned upside down from the state shown in FIG. It is preferable to maintain the orientation shown in FIG.

図9(b)は、工程(b2)後の状態であって、転写型60の凹部62が形成されている表面60aをフィルム2aに接触させたことにより、転写型60の凹部62に収容されていた粒子群1Aがフィルム2aに転写された状態を示している。工程(b2)を経ることで、所定の位置に複数の粒子群1Aが配置された第一のフィルム2bが得られる。第一のフィルム2bの表面2c側には、凹部62に応じた複数の凸部2eが形成されており、これら凸部2eに粒子群1Aが埋設されている。かかる構成の第一のフィルム2bを得るには、(b2)工程において、凹部62の内部にまで接着剤成分を侵入させればよい。具体的には、凹部62の中に、接着剤成分が入り込んで、複数個のはんだ粒子1(粒子群1A)を固定化するため、加圧することが好ましい。さらには、減圧をしながら加圧することで、接着剤成分が凹部62に入りやすくなるので、この方法がより好ましい。また、接着剤成分からなるフィルム2aの代わりに、接着剤成分を含むワニスを凹部62に入れた後、硬化処理を施してもよい。   FIG. 9B shows a state after the step (b2), and is accommodated in the recess 62 of the transfer mold 60 by bringing the surface 60a on which the recess 62 of the transfer mold 60 is formed into contact with the film 2a. The state which the particle group 1A which had been transferred to the film 2a is shown. By passing through a process (b2), the 1st film 2b by which several particle group 1A is arrange | positioned in a predetermined position is obtained. A plurality of convex portions 2e corresponding to the concave portions 62 are formed on the surface 2c side of the first film 2b, and the particle group 1A is embedded in these convex portions 2e. In order to obtain the first film 2b having such a configuration, the adhesive component may be penetrated into the recess 62 in the step (b2). Specifically, it is preferable to apply pressure to fix the plurality of solder particles 1 (particle group 1A) by allowing the adhesive component to enter the recess 62. Furthermore, since the adhesive component easily enters the recess 62 by applying pressure while reducing the pressure, this method is more preferable. Further, instead of the film 2a made of an adhesive component, a varnish containing an adhesive component may be put in the recess 62 and then subjected to a curing treatment.

図9(c)は、工程(c2)後の状態であって、第一のフィルム2bの表面2c上に、第二のフィルム2eを形成した後、支持体65を取り除いた状態を示している。これにより、異方性導電フィルム20が得られる。なお、第二のフィルム2eは、接着剤成分からなる絶縁性フィルムを第一のフィルム2bにラミネートすることによって形成してもよく、あるいは、接着剤成分を含むワニスで第一のフィルム2bを被覆した後、硬化処理を施すことによって形成してもよい。   FIG. 9C shows a state after the step (c2) in which the support 65 is removed after the second film 2e is formed on the surface 2c of the first film 2b. . Thereby, the anisotropic conductive film 20 is obtained. The second film 2e may be formed by laminating an insulating film made of an adhesive component on the first film 2b, or the first film 2b is covered with a varnish containing an adhesive component. Then, it may be formed by performing a curing process.

<接続構造体>
図10は、本実施形態に係る接続構造体50Aの一部を拡大して模式的に示す断面図である。すなわち、同図は第一の回路部材30の電極32と第二の回路部材40の電極42が、融着して形成されたはんだ層70を介して電気的に接続された状態を模式的に示したものである。本明細書において「融着」とは上記のとおり、第一金属層3aの少なくとも一部が熱によって融解されたはんだ粒子1によって接合され、その後、これが固化する工程を経ることによって電極の表面にはんだが接合された状態を意味する。第一の回路部材30は、第一の回路基板31と、その表面31a上に配置された第一の電極32とを備える。第二の回路部材40は、第二の回路基板41と、その表面41a上に配置された第二の電極42とを備える。回路部材30,40の間に充填された絶縁樹脂層55は、第一の回路部材30と第二の回路部材40が接着された状態を維持するとともに、第一の電極32と第二の電極42が電気的に接続された状態を維持する。
<Connection structure>
FIG. 10 is a cross-sectional view schematically showing an enlarged part of the connection structure 50A according to the present embodiment. That is, this figure schematically shows a state in which the electrode 32 of the first circuit member 30 and the electrode 42 of the second circuit member 40 are electrically connected via the solder layer 70 formed by fusion bonding. It is shown. In the present specification, “fusion” is as described above, wherein at least a part of the first metal layer 3a is joined by the solder particles 1 melted by heat, and then is solidified on the surface of the electrode. It means a state where solder is joined. The first circuit member 30 includes a first circuit board 31 and a first electrode 32 disposed on the surface 31a. The second circuit member 40 includes a second circuit board 41 and a second electrode 42 disposed on the surface 41a. The insulating resin layer 55 filled between the circuit members 30 and 40 maintains the state in which the first circuit member 30 and the second circuit member 40 are bonded, and the first electrode 32 and the second electrode. 42 is maintained in an electrically connected state.

回路部材30,40のうちの一方の具体例として、ICチップ(半導体チップ)、抵抗体チップ、コンデンサチップ、ドライバーIC等のチップ部品;リジット型のパッケージ基板が挙げられる。これらの回路部材は、回路電極を備えており、多数の回路電極を備えているものが一般的である。回路部材30,40のうちの他方の具体例としては、金属配線を有するフレキシブルテープ基板、フレキシブルプリント配線板、インジウム錫酸化物(ITO)が蒸着されたガラス基板等の配線基板が挙げられる。   Specific examples of one of the circuit members 30 and 40 include chip components such as an IC chip (semiconductor chip), a resistor chip, a capacitor chip, and a driver IC; a rigid package substrate. These circuit members are provided with circuit electrodes, and generally have many circuit electrodes. Specific examples of the other of the circuit members 30, 40 include a flexible tape substrate having metal wiring, a flexible printed wiring board, and a wiring substrate such as a glass substrate on which indium tin oxide (ITO) is deposited.

第一の電極32または第二の電極42の具体例としては、銅、銅/ニッケル、銅/ニッケル/金、銅/ニッケル/パラジウム、銅/ニッケル/パラジウム/金、銅/ニッケル/金、銅/パラジウム、銅/パラジウム/金、銅/スズ、銅/銀、インジウム錫酸化物等の電極が挙げられる。第一の電極32または第二の電極42は、無電解めっき又は電解めっき又はスパッタで形成することができる。   Specific examples of the first electrode 32 or the second electrode 42 include copper, copper / nickel, copper / nickel / gold, copper / nickel / palladium, copper / nickel / palladium / gold, copper / nickel / gold, copper / Palladium, copper / palladium / gold, copper / tin, copper / silver, indium tin oxide and the like. The first electrode 32 or the second electrode 42 can be formed by electroless plating, electrolytic plating, or sputtering.

図11は、図10に示す接続構造体50Aの変形例である接続構造体50Bを模式的に示す断面図である。接続構造体50Bにおいては、はんだ層70は第一の回路部材30の電極32と第二の回路部材40の電極42に部分的に融着している。   FIG. 11 is a cross-sectional view schematically showing a connection structure 50B that is a modification of the connection structure 50A shown in FIG. In the connection structure 50 </ b> B, the solder layer 70 is partially fused to the electrode 32 of the first circuit member 30 and the electrode 42 of the second circuit member 40.

図12は、図10に示す接続構造体50Aの変形例である接続構造体50Cを模式的に示す断面図である。同図は、第一の電極32及び第二の電極42が銅からなる場合であって、特に高温放置を行った後の電極部の断面を表している。高温放置により金属間化合物からなる層71が形成されている。   FIG. 12 is a cross-sectional view schematically showing a connection structure 50C that is a modification of the connection structure 50A shown in FIG. This figure shows a cross section of the electrode part after the first electrode 32 and the second electrode 42 are made of copper, and particularly after being left at a high temperature. A layer 71 made of an intermetallic compound is formed by being left at a high temperature.

図13は、図10に示す接続構造体50Aの変形例である接続構造体50Dを模式的に示す断面図である。同図は、第一の電極32及び第二の電極42が銅からなる場合であって、特に高温放置を行った後の電極部の断面を表している。高温放置により金属間化合物からなる層71が形成されている。図13は、図12と比較して、高温放置により金属間化合物からなる層71が厚く形成されたことを表しており、落下衝撃などの衝撃を加えると、信頼性が低下する。   FIG. 13 is a cross-sectional view schematically showing a connection structure 50D that is a modification of the connection structure 50A shown in FIG. This figure shows a cross section of the electrode part after the first electrode 32 and the second electrode 42 are made of copper, and particularly after being left at a high temperature. A layer 71 made of an intermetallic compound is formed by being left at a high temperature. FIG. 13 shows that the layer 71 made of an intermetallic compound is formed thicker by being left at a high temperature as compared with FIG. 12, and reliability is lowered when an impact such as a drop impact is applied.

図14は、図10に示す接続構造体50Aの変形例である接続構造体50Eを模式的に示す断面図である。同図は、第一の電極32及び第二の電極42が銅からなる場合であって、特に高温放置を行った後の電極部の断面を表している。高温放置により金属間化合物からなる層71が形成されている。図14は、図12と比較して、第一の電極32と第二の電極42の間に形成されたはんだ層70の厚さが薄い場合を示している。   FIG. 14 is a cross-sectional view schematically showing a connection structure 50E that is a modification of the connection structure 50A shown in FIG. This figure shows a cross section of the electrode part after the first electrode 32 and the second electrode 42 are made of copper, and particularly after being left at a high temperature. A layer 71 made of an intermetallic compound is formed by being left at a high temperature. FIG. 14 shows a case where the thickness of the solder layer 70 formed between the first electrode 32 and the second electrode 42 is thinner than that in FIG.

図15は、図10に示す接続構造体50Aの変形例である接続構造体50Fを模式的に示す断面図である。同図は、第一の電極32及び第二の電極42が銅からなる場合であり、図14をさらに高温放置を行った後の電極部の断面を表している。高温放置により金属間化合物からなる層71が形成されている。この場合、はんだ層は全て、金属間化合物に変化し、厚さが薄い金属間化合物の層71が形成されていることを表している。図15は、図12と比較して、第一の電極32または第二の電極42の間に形成された、もとのはんだ層の厚さが薄く、はんだ層が全て金属間化合物に変化しても、金属間化合物の層71が薄いことを表している。一般的に、金属間化合物の層が厚いと、落下衝撃等の衝撃を加えた際に、信頼性が低下する傾向にあるが、はんだ層の全て金属間化合物に変化し、薄く存在することで、落下衝撃を加えても、信頼性を高く維持することができる。かかる金属間化合物の層71の厚さは0.1〜10.0μmが好ましく、0.3〜8.0μmがより好ましく、0.5〜6.0μmがさらに好ましい。   FIG. 15 is a cross-sectional view schematically showing a connection structure 50F that is a modification of the connection structure 50A shown in FIG. This figure shows a case where the first electrode 32 and the second electrode 42 are made of copper, and shows a cross section of the electrode part after FIG. 14 is further left at a high temperature. A layer 71 made of an intermetallic compound is formed by being left at a high temperature. In this case, all the solder layers are changed to intermetallic compounds, indicating that a thin intermetallic compound layer 71 is formed. In FIG. 15, compared with FIG. 12, the thickness of the original solder layer formed between the first electrode 32 or the second electrode 42 is thin, and all the solder layers are changed to intermetallic compounds. However, this indicates that the intermetallic compound layer 71 is thin. In general, when the intermetallic compound layer is thick, the reliability tends to decrease when an impact such as a drop impact is applied. However, all of the solder layer changes to an intermetallic compound and is thin. Even when a drop impact is applied, high reliability can be maintained. The thickness of the intermetallic compound layer 71 is preferably from 0.1 to 10.0 μm, more preferably from 0.3 to 8.0 μm, and even more preferably from 0.5 to 6.0 μm.

<接続構造体の製造方法>
図16(a)及び図16(b)を参照しながら、接続構造体の製造方法について説明する。これらの図は、図10に示す接続構造体50Aを形成する過程の一例を模式的に示す断面図である。まず、図1に示す異方性導電フィルム10を予め準備し、これを第一の回路部材30と第二の回路部材40とが対面するように配置する(図16(a))。このとき、第一の回路部材30の第一の電極32と第二の回路部材40の第二の電極42とが対向するように設置する。その後、これらの部材の積層体の厚さ方向(図16(a)に示す矢印A及び矢印Bの方向)に加圧する。矢印A及び矢印Bの方向に加圧する際に全体をはんだ粒子1の融点よりも高い温度(例えば130〜260℃)に少なくとも加熱することによって、はんだ粒子1が溶融し、第一の電極32と第二の電極42の間に寄り集まって、はんだ層70が形成され、その後、冷却することで第一の電極32と第二の電極42の間にはんだ層70が固着され、第一の電極32と第二の電極42が電気的に接続される。
<Method for manufacturing connection structure>
A method for manufacturing a connection structure will be described with reference to FIGS. 16 (a) and 16 (b). These drawings are cross-sectional views schematically showing an example of a process of forming the connection structure 50A shown in FIG. First, the anisotropic conductive film 10 shown in FIG. 1 is prepared beforehand, and this is arrange | positioned so that the 1st circuit member 30 and the 2nd circuit member 40 may face (FIG. 16 (a)). At this time, it installs so that the 1st electrode 32 of the 1st circuit member 30 and the 2nd electrode 42 of the 2nd circuit member 40 may oppose. Then, it pressurizes in the thickness direction (the direction of arrow A and arrow B shown in Drawing 16 (a)) of the layered product of these members. At the time of pressurization in the directions of arrows A and B, the whole is heated at least to a temperature higher than the melting point of the solder particles 1 (for example, 130 to 260 ° C.), so that the solder particles 1 are melted and the first electrode 32 and The solder layer 70 is formed by gathering between the second electrodes 42, and then the solder layer 70 is fixed between the first electrode 32 and the second electrode 42 by cooling, so that the first electrode 32 and the second electrode 42 are electrically connected.

絶縁性フィルム2が例えば熱硬化性樹脂からなる場合、矢印A及び矢印Bの方向に加圧する際に全体を加熱することによって熱硬化性樹脂を硬化させることができる。これにより、熱硬化性樹脂の硬化物からなる絶縁樹脂層55が回路部材30,40の間に形成される。   When the insulating film 2 is made of, for example, a thermosetting resin, the thermosetting resin can be cured by heating the whole when pressurizing in the directions of the arrows A and B. As a result, an insulating resin layer 55 made of a cured product of a thermosetting resin is formed between the circuit members 30 and 40.

図17は、図16に示す接続構造体50Aの製造方法の変形例を模式的に示す断面図である。この変形例に係る製造方法においては、はんだ粒子1の一部が電極32,42の融着に寄与せずに絶縁樹脂層55内に残存しているものの、異方性導電フィルム10において特定の位置にはんだ粒子1が配置されているに過ぎず、つまり、はんだ粒子1の密度が十分に低いため、絶縁信頼性を高く維持することができる。   FIG. 17 is a cross-sectional view schematically showing a modification of the method for manufacturing the connection structure 50A shown in FIG. In the manufacturing method according to this modification, a part of the solder particles 1 does not contribute to the fusion of the electrodes 32 and 42 and remains in the insulating resin layer 55, but the anisotropic conductive film 10 has a specific Only the solder particles 1 are disposed at the positions, that is, since the density of the solder particles 1 is sufficiently low, the insulation reliability can be maintained high.

図18は、図16に示す接続構造体50Aの製造方法の変形例を模式的に示す断面図である。この変形例に係る製造方法においては、実質的に全てのはんだ粒子1がはんだ層70となり、第一の回路部材30の第一の電極32と第二の回路部材40の第二の電極42を融着している。異方性導電フィルム10におけるはんだ粒子1の配置をあらかじめ設計することで、融着に寄与せずに接着剤成分内に残存するはんだ粒子1を極力低減することが可能である。これにより、接続構造体の絶縁信頼性をより一層向上することができる。   FIG. 18 is a cross-sectional view schematically showing a modification of the manufacturing method of the connection structure 50A shown in FIG. In the manufacturing method according to this modification, substantially all the solder particles 1 become the solder layer 70, and the first electrode 32 of the first circuit member 30 and the second electrode 42 of the second circuit member 40 are formed. Fused. By designing the arrangement of the solder particles 1 in the anisotropic conductive film 10 in advance, the solder particles 1 remaining in the adhesive component without contributing to fusion can be reduced as much as possible. Thereby, the insulation reliability of a connection structure can be improved further.

図19は、図16に示す接続構造体50Aの製造方法の変形例を模式的に示す断面図である。この変形例は、異方性導電フィルム10を使用する代わりに異方性導電フィルム20を使用したことの他は、図16に示す製造方法と同様である。   FIG. 19 is a cross-sectional view schematically showing a modification of the manufacturing method of the connection structure 50A shown in FIG. This modification is the same as the manufacturing method shown in FIG. 16 except that the anisotropic conductive film 20 is used instead of the anisotropic conductive film 10.

図20は、図17に示す接続構造体の製造方法の変形例を模式的に示す断面図である。この変形例は、異方性導電フィルム10を使用する代わりに異方性導電フィルム20を使用したことの他は、図17に示す製造方法と同様である。粒子群1Aの一部は、電極32,42の融着に寄与せず、また、粒子群1Aは熱履歴により一つのはんだ粒子1Bとなって絶縁樹脂層55内に残存しているものの、異方性導電フィルム20において特定の位置にはんだ粒子1が配置されているに過ぎず、つまり、はんだ粒子1の密度が十分低く、また、はんだ粒子1の粒径が十分に小さく、はんだ粒子1Bの粒径も十分に小さいため、絶縁信頼性を高く維持することができる。   FIG. 20 is a cross-sectional view schematically showing a modification of the method for manufacturing the connection structure shown in FIG. This modification is the same as the manufacturing method shown in FIG. 17 except that the anisotropic conductive film 20 is used instead of the anisotropic conductive film 10. Part of the particle group 1A does not contribute to the fusion of the electrodes 32 and 42, and the particle group 1A remains as one solder particle 1B in the insulating resin layer 55 due to thermal history. The solder particles 1 are merely arranged at specific positions in the isotropic conductive film 20, that is, the density of the solder particles 1 is sufficiently low, and the particle size of the solder particles 1 is sufficiently small. Since the particle size is also sufficiently small, insulation reliability can be maintained high.

図21は、図18に示す接続構造体の製造方法の変形例を模式的に示す断面図である。この変形例に係る製造方法においては、ほとんど全ての粒子群1Aがはんだ層70となり、第一の回路部材30の第一の電極32と第二の回路部材40の第二の電極42を融着している。異方性導電フィルム20における粒子群1Aの配置をあらかじめ設計することで、融着に寄与せずに接着剤成分内に残存するはんだ粒子を極力低減することが可能である。これにより、接続構造体の絶縁信頼性をより一層向上することができる。   FIG. 21 is a cross-sectional view schematically showing a modification of the method for manufacturing the connection structure shown in FIG. In the manufacturing method according to this modification, almost all the particle groups 1A become the solder layer 70, and the first electrode 32 of the first circuit member 30 and the second electrode 42 of the second circuit member 40 are fused. doing. By designing the arrangement of the particle group 1A in the anisotropic conductive film 20 in advance, it is possible to reduce the solder particles remaining in the adhesive component without contributing to the fusion as much as possible. Thereby, the insulation reliability of a connection structure can be improved further.

上述の実施形態及びそれらの変形例に係る接続構造体の適用対象としては、液晶ディスプレイ、パーソナルコンピュータ、携帯電話、スマートフォン、タブレット等のデバイスが挙げられる。   Examples of the application target of the connection structure according to the above-described embodiments and the modifications thereof include devices such as a liquid crystal display, a personal computer, a mobile phone, a smartphone, and a tablet.

本実施形態によれば、接続面積が例えば16〜2000μmあるいは25〜1600μm又は100〜1000μmであるように微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法が提供される。 According to this embodiment, even in very small such that the contact area is for example 16~2000Myuemu 2 or 25~1600Myuemu 2 or 100 to 1000 [mu] m 2, the connection structure both insulation reliability and conduction reliability is excellent and A manufacturing method thereof is provided.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.

<実施例1>
[異方性導電フィルムの作製]
(工程1)はんだ粒子の分級
平均粒径5.0μm以下(d90=5μm)のSn−Biはんだ粒子(5N Plus社製、Type8)100gを、蒸留水に浸漬した後、超音波分散させ、次に、φ3μmのメンブレンフィルタ(メルク株式会社製)で濾過した後、濾液を回収した。その後、濾液を遠心分離にかけ、水溶液中のはんだ粒子を回収した。回収したはんだ粒子は10gであり、平均粒径は、1.0μmであった。
<Example 1>
[Preparation of anisotropic conductive film]
(Step 1) Classification of solder particles After 100 g of Sn-Bi solder particles (5N Plus, Type 8) having an average particle size of 5.0 μm or less (d90 = 5 μm) are immersed in distilled water, they are ultrasonically dispersed. After filtration through a membrane filter (manufactured by Merck & Co., Inc.) with a diameter of 3 μm, the filtrate was recovered. Thereafter, the filtrate was centrifuged to collect solder particles in the aqueous solution. The collected solder particles were 10 g, and the average particle size was 1.0 μm.

(工程2)転写型へのはんだ粒子の配置
開口径1.0μmφ、底部径0.8μmφ、深さ1μm(底部径0.8μmφは、凹部を上面からみると、開口径1.2μmφの中央に位置するものとする)の凹部が1.0μmのスペースの間隔で規則的に配列されている転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に分級後のはんだ粒子(平均粒径1.0μm)を配置した。
(Step 2) Placement of solder particles on transfer mold Opening diameter 1.0 μmφ, bottom diameter 0.8 μmφ, depth 1 μm (bottom diameter 0.8 μmφ is located at the center of the opening diameter 1.2 μmφ when the concave portion is viewed from the top surface) The transfer mold was prepared in which the recesses (which are to be positioned) were regularly arranged at a space interval of 1.0 μm. A polyimide film (thickness: 100 μm) was used as a transfer type film. Solder particles (average particle diameter: 1.0 μm) after classification were placed in the recesses of the transfer mold.

(工程3)接着フィルムの作製
フェノキシ樹脂(ユニオンカーバイド社製、商品名「PKHC」)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、分子量:85万)75gとを、酢酸エチル400gに溶解し、溶液を得た。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185、旭化成株式会社製、商品名「ノバキュアHX−3941」)300gを加え、撹拌して接着剤溶液を得た。得られた接着剤溶液を、セパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータを用いて塗布し、90℃で10分間の加熱することにより乾燥して、厚さ4μm、6μm及び8μmの接着フィルム1(フィルム2aに相当)をセパレータ上に作製した。
(Step 3) Preparation of adhesive film 100 g of phenoxy resin (manufactured by Union Carbide, trade name “PKHC”), acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, 3 parts by mass of glycidyl methacrylate) Copolymer, molecular weight: 850,000) was dissolved in 400 g of ethyl acetate to obtain a solution. To this solution, 300 g of a liquid epoxy resin (epoxy equivalent 185, manufactured by Asahi Kasei Corporation, trade name “Novacure HX-3941”) containing a microcapsule-type latent curing agent was added and stirred to obtain an adhesive solution. The obtained adhesive solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) using a roll coater and dried by heating at 90 ° C. for 10 minutes to obtain a thickness of 4 μm, 6 μm, and An 8 μm adhesive film 1 (corresponding to the film 2a) was produced on the separator.

(工程4)接着フィルムへのはんだ粒子の転写
転写型の凹部に配置されたはんだ粒子と、上記接着フィルム1とを向かい合わせて配置し、50℃、0.01MPa(0.1kgf/cm)で加熱及び加圧することで、接着フィルム1にはんだ粒子を転写させた(図7(b)参照)。
(Step 4) Transfer of Solder Particles to Adhesive Film Solder particles arranged in a transfer mold recess and the above-mentioned adhesive film 1 are arranged face to face at 50 ° C. and 0.01 MPa (0.1 kgf / cm 2 ). The solder particles were transferred to the adhesive film 1 by heating and pressurizing (see FIG. 7B).

(工程5)異方性導電フィルムの作製
はんだ粒子が転写された側の接着フィルムの表面に、工程3で得た、接着フィルム1を接触させて、50℃、0.1MPa(1kgf/cm)で加熱及び加圧させることで、フィルムの断面視において、平均粒径1.0μmのはんだ粒子が層状に配列された異方性導電フィルムを得た(図7(c)参照)。なお、厚さ4μmのフィルムに対しては4μmを重ね合わせ、同様に、6μmには6μm、8μmには8μmを重ね合わることで、8μm、12μm、16μmの厚さの異方性導電フィルムを作製した。異方性導電フィルムにおけるはんだ粒子が配置されるべき箇所には、一つのはんだ粒子が配置されている箇所と、複数のはんだ粒子からなる粒子群が配置されている箇所があり、一箇所あたりのはんだ粒子の平均個数は1.2個であった。
(Step 5) Production of anisotropic conductive film The adhesive film 1 obtained in Step 3 is brought into contact with the surface of the adhesive film to which the solder particles have been transferred, and the pressure is 50 ° C. and 0.1 MPa (1 kgf / cm 2). ) To obtain an anisotropic conductive film in which solder particles having an average particle diameter of 1.0 μm are arranged in layers in a cross-sectional view of the film (see FIG. 7C). Note that an anisotropic conductive film having a thickness of 8 μm, 12 μm, and 16 μm is produced by superimposing 4 μm on a 4 μm thick film and similarly superposing 6 μm on 6 μm and 8 μm on 8 μm. did. The locations where the solder particles in the anisotropic conductive film are to be disposed include a location where one solder particle is disposed and a location where a group of particles composed of a plurality of solder particles are disposed, The average number of solder particles was 1.2.

[接続構造体の作製]
(工程6)銅バンプ付きチップの準備
下記に示す、5種類の銅バンプ付きチップ(1.7×1.7mm、厚さ:0.5mm)を準備した。
(1)チップC1…面積30μm×30μm、スペース30μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数8
(2)チップC2…面積15μm×15μm、スペース10μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数8
(3)チップC3…面積10μm×10μm、スペース10μm、高さ:7μm、バンプ数362、銅バンプ上導電粒子数4
(4)チップC4…面積5μm×5μm、スペース6μm、高さ:5μm、バンプ数362、銅バンプ上導電粒子数8
(5)チップC5…面積3μm×3μm、スペース3μm、高さ:5μm、バンプ数362、銅バンプ上導電粒子数8
[Production of connection structure]
(Step 6) Preparation of Chips with Copper Bumps Five types of chips with copper bumps (1.7 × 1.7 mm, thickness: 0.5 mm) shown below were prepared.
(1) Chip C1: area 30 μm × 30 μm, space 30 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps 8
(2) Chip C2: area 15 μm × 15 μm, space 10 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps 8
(3) Chip C3: area 10 μm × 10 μm, space 10 μm, height: 7 μm, number of bumps 362, number of conductive particles on copper bump 4
(4) Chip C4: area 5 μm × 5 μm, space 6 μm, height: 5 μm, number of bumps 362, number of conductive particles on copper bumps 8
(5) Chip C5: area 3 μm × 3 μm, space 3 μm, height: 5 μm, number of bumps 362, number of conductive particles on copper bumps 8

(工程7)銅バンプ付き基板の準備
下記に示す、5種類の銅バンプ付き基板(厚さ:0.7mm)を準備した。
(1)基板D1…面積30μm×30μm、スペース30μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数8
(2)基板D2…面積15μm×15μm、スペース10μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数8
(3)基板D3…面積10μm×10μm、スペース10μm、高さ:7μm、バンプ数362、銅バンプ上導電粒子数4
(4)基板D4…面積5μm×5μm、スペース6μm、高さ5μm、バンプ数362、銅バンプ上導電粒子数8
(5)基板D5…面積3μm×3μm、スペース3μm、高さ:5μm、バンプ数362、銅バンプ上導電粒子数8
(Step 7) Preparation of substrate with copper bumps Five types of substrates with copper bumps (thickness: 0.7 mm) shown below were prepared.
(1) Substrate D1: area 30 μm × 30 μm, space 30 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps 8
(2) Substrate D2: area 15 μm × 15 μm, space 10 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps 8
(3) Substrate D3: area 10 μm × 10 μm, space 10 μm, height: 7 μm, number of bumps 362, number of conductive particles on copper bump 4
(4) Substrate D4: area 5 μm × 5 μm, space 6 μm, height 5 μm, number of bumps 362, number of conductive particles on copper bumps 8
(5) Substrate D5: area 3 μm × 3 μm, space 3 μm, height: 5 μm, number of bumps 362, number of conductive particles on copper bumps 8

(工程8)接続構造体の作製
次に、作製した異方性導電フィルムを用いて、銅バンプ付きチップ(1.7×1.7mm、厚さ:0.5mm)と、銅バンプ付き基板(厚さ:0.7mm)との接続を、以下に示すi)〜iii)の手順に従って行うことによって接続構造体を得た。
i)異方性導電フィルム(2×19mm)の片面のセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)を剥がし、異方性導電フィルムと銅バンプ付き基板を接触させ、80℃、0.98MPa(10kgf/cm)で貼り付けた。
ii)セパレータを剥離し、銅バンプ付きチップのバンプと銅バンプ付き基板のバンプの位置合わせを行った。
iii)180℃、40gf/バンプ、30秒の条件でチップ上方から加熱及び加圧を行い、本接続を行った。以下の(1)〜(5)の「チップ/異方性導電フィルム/基板」の組み合わせで、(1)〜(5)に係る計5種類の接続構造体をそれぞれ作製した。
(1)チップC1/厚さ16μmの異方性導電フィルム/基板D1、
(2)チップC2/厚さ16μmの異方性導電フィルム/基板D2、
(3)チップC3/厚さ12μmの異方性導電フィルム/基板D3、
(4)チップC4/厚さ8μmの異方性導電フィルム/基板D4、
(5)チップC5/厚さ8μmの異方性導電フィルム/基板D5、
(Step 8) Production of Connection Structure Next, using the produced anisotropic conductive film, a chip with a copper bump (1.7 × 1.7 mm, thickness: 0.5 mm) and a substrate with a copper bump ( The connection structure was obtained by performing connection with thickness: 0.7 mm) according to the procedures of i) to iii) shown below.
i) The separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) on one side of the anisotropic conductive film (2 × 19 mm) is peeled off, the anisotropic conductive film and the substrate with copper bumps are brought into contact with each other at 80 ° C., 0. Affixed at 98 MPa (10 kgf / cm 2 ).
ii) The separator was peeled off and the bumps of the chip with copper bumps and the bumps of the substrate with copper bumps were aligned.
iii) The main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 40 gf / bump, and 30 seconds. A total of five types of connection structures according to (1) to (5) were produced by the combinations of “chip / anisotropic conductive film / substrate” in the following (1) to (5).
(1) Chip C1 / anisotropic conductive film / substrate D1 having a thickness of 16 μm,
(2) Chip C2 / anisotropic conductive film / substrate D2 with a thickness of 16 μm,
(3) Chip C3 / anisotropic conductive film / substrate D3 having a thickness of 12 μm,
(4) Chip C4 / anisotropic conductive film / substrate D4 with a thickness of 8 μm,
(5) Chip C5 / anisotropic conductive film / substrate D5 having a thickness of 8 μm,

[接続構造体の評価]
得られた接続構造体の導通抵抗試験及び絶縁抵抗試験を以下のように行った。
[Evaluation of connection structure]
The conduction resistance test and the insulation resistance test of the obtained connection structure were performed as follows.

(導通抵抗試験−吸湿耐熱試験)
銅バンプ付きチップ(バンプ)/銅バンプ付き基板(バンプ)間の導通抵抗に関して、導通抵抗の初期値と吸湿耐熱試験(温度85℃、湿度85%の条件で100、500、1000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。なお、前述の、チップC1と基板D1、チップC2と基板D2、チップC3と基板D3、チップC4と基板D4、チップC5と基板D5、を組み合わせて接続した接続構造体を用いて評価した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表1に示す。なお、吸湿耐熱試験1000時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が2Ω未満
B:導通抵抗の平均値が2Ω以上5Ω未満
C:導通抵抗の平均値が5Ω以上10Ω未満
D:導通抵抗の平均値が10Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
(Conduction resistance test-moisture absorption heat resistance test)
Regarding the conduction resistance between the chip (bump) with copper bumps and the substrate (bump) with copper bumps, after the initial value of the conduction resistance and the moisture absorption heat test (temperature, 85 ° C, humidity 85%, left for 100, 500, 1000 hours) Was measured for 20 samples, and the average value thereof was calculated. The evaluation was performed using the above-described connection structure in which the chip C1 and the substrate D1, the chip C2 and the substrate D2, the chip C3 and the substrate D3, the chip C4 and the substrate D4, and the chip C5 and the substrate D5 were connected in combination. The conduction resistance was evaluated from the average value obtained according to the following criteria. The results are shown in Table 1. In addition, it can be said that conduction | electrical_connection resistance is favorable when the reference | standard of following A or B is satisfy | filled 1000 hours after a moisture absorption heat test.
A: Average value of conduction resistance is less than 2Ω B: Average value of conduction resistance is 2Ω or more and less than 5Ω C: Average value of conduction resistance is 5Ω or more and less than 10Ω D: Average value of conduction resistance is 10Ω or more and less than 20Ω E: Conduction resistance The average value of 20Ω or more

(導通抵抗試験−高温放置試験)
銅バンプ付きチップ(バンプ)/銅バンプ付き基板(バンプ)間の導通抵抗に関して、高温放置前と、高温放置試験後(温度100℃の条件で100、500、1000時間放置)のサンプルについて測定した。なお、高温放置後は、落下衝撃を加え、落下衝撃後のサンプルの導通抵抗を測定した。落下衝撃は、前記の接続構造体を、金属板にネジ止め固定し、高さ50cmから落下させた。落下後、最も衝撃の大きいチップコーナーのはんだ接合部(4箇所)において直流抵抗値を測定し、測定値が初期抵抗から5倍以上増加したときに破断が生じたとみなして、評価を行った。なお、20サンプル、4箇所で合計80箇所の測定を行った。結果を表1に示す。落下回数20回後に下記A又はBの基準を満たす場合をはんだ接続信頼性が良好であると評価した。なお、表中の「−」は評価を実施しなかったことを意味する。
A:落下回数20回後において、初期抵抗から5倍以上増加したはんだ接続部が、80箇所全てにおいて認められなかった。
B:落下回数20回後において、初期抵抗から5倍以上増加したはんだ接続部が、1箇所以上5箇所以内で認められた。
C:落下回数20回後において、初期抵抗から5倍以上増加したはんだ接続部が、6箇所以上20箇所以内で認められた。
D:落下回数20回後において、初期抵抗から5倍以上増加したはんだ接続部が、21箇所以上で認められた。
(Conduction resistance test-High temperature storage test)
Regarding the conduction resistance between the chip (bump) with copper bump / substrate (bump) with copper bump, the sample was measured before leaving at high temperature and after being left at high temperature (100, 500, 1000 hours at 100 ° C.). . After leaving at high temperature, a drop impact was applied, and the conduction resistance of the sample after the drop impact was measured. For the drop impact, the connection structure was fixed to a metal plate with screws and dropped from a height of 50 cm. After dropping, DC resistance values were measured at the solder joints (4 locations) at the chip corner having the greatest impact, and evaluation was performed assuming that fracture occurred when the measured value increased more than 5 times from the initial resistance. In addition, the measurement of a total of 80 places was performed by 20 samples and 4 places. The results are shown in Table 1. The case where the following criteria A or B were satisfied after 20 drops was evaluated as having good solder connection reliability. In addition, “-” in the table means that the evaluation was not performed.
A: After 20 times of dropping, no solder joints increased by 5 times or more from the initial resistance were found in all 80 locations.
B: After 20 times of dropping, solder connection portions increased by 5 times or more from the initial resistance were observed at 1 to 5 locations.
C: After 20 drops, solder joints increased by 5 times or more from the initial resistance were observed at 6 or more and 20 or less.
D: After 20 drops, solder joints increased by 5 times or more from the initial resistance were observed at 21 or more locations.

(絶縁抵抗試験)
チップ電極間の絶縁抵抗に関しては、絶縁抵抗の初期値とマイグレーション試験(温度60℃、湿度90%、20V印加の条件で100、500、1000時間放置)後の値を、20サンプルについて測定し、全20サンプル中、絶縁抵抗値が10Ω以上となるサンプルの割合を算出した。なお、前述のチップC1と基板D1、チップC2と基板D2、チップC3と基板D3、チップC4と基板D4、チップC5と基板D5、を組み合わせて接続した接続構造体を用いて評価した。得られた割合から下記基準に従って絶縁抵抗を評価した。結果を表2に示す。なお、吸湿耐熱試験1000時間後に、下記A又はBの基準を満たした場合は絶縁抵抗が良好といえる。
A:絶縁抵抗値10Ω以上の割合が100%
B:絶縁抵抗値10Ω以上の割合が90%以上100%未満
C:絶縁抵抗値10Ω以上の割合が80%以上90%未満
D:絶縁抵抗値10Ω以上の割合が50%以上80%未満
E:絶縁抵抗値10Ω以上の割合が50%未満
(Insulation resistance test)
Regarding the insulation resistance between the chip electrodes, the initial value of the insulation resistance and the value after migration test (temperature, 60 ° C., humidity 90%, 20 V application for 100, 500, 1000 hours) were measured for 20 samples, The ratio of samples with an insulation resistance value of 10 9 Ω or more was calculated among all 20 samples. The evaluation was performed using a connection structure in which the above-described chip C1 and substrate D1, chip C2 and substrate D2, chip C3 and substrate D3, chip C4 and substrate D4, and chip C5 and substrate D5 were connected in combination. The insulation resistance was evaluated from the obtained ratio according to the following criteria. The results are shown in Table 2. In addition, it can be said that insulation resistance is favorable when the following A or B standard is satisfied after 1000 hours of the moisture absorption heat test.
A: Ratio of insulation resistance value of 10 9 Ω or more is 100%
B: Ratio of insulation resistance value 10 9 Ω or more is 90% or more and less than 100% C: Ratio of insulation resistance value 10 9 Ω or more is 80% or more and less than 90% D: Ratio of insulation resistance value 10 9 Ω or more is 50% More than 80% and less than E: Insulation resistance of 10 9 Ω or more is less than 50%

Figure 2019029135
Figure 2019029135

<実施例2>
実施例1の(工程1)と同様に、平均粒径5.0μm以下(d90=5μm)のSn−Biはんだ粒子(5N Plus社製、Type8)100gを、蒸留水に浸漬した後、超音波分散させ、次に、φ1.2μmのメンブレンフィルタ(メルク株式会社製)で濾過した後、濾液を回収した。その後、濾液を遠心分離にかけ、水溶液中のはんだ粒子を回収した。回収したはんだ粒子は7gであり、平均粒径は、0.8μmであった。
続いて、実施例1の(工程2)及び(工程3)を行った。このとき、複数個のはんだ粒子が転写型の凹部に収容された。(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は2.5個であった。実施例1と同様に、接続構造体の評価を行った。表2に結果を示す。
<Example 2>
Similarly to Example 1 (Step 1), 100 g of Sn-Bi solder particles (Type 90, manufactured by 5N Plus, Inc.) having an average particle size of 5.0 μm or less (d90 = 5 μm) were immersed in distilled water, and then subjected to ultrasonic waves. Next, the solution was dispersed and then filtered through a membrane filter of φ1.2 μm (manufactured by Merck & Co., Inc.), and the filtrate was recovered. Thereafter, the filtrate was centrifuged to collect solder particles in the aqueous solution. The collected solder particles were 7 g, and the average particle size was 0.8 μm.
Subsequently, (Step 2) and (Step 3) of Example 1 were performed. At this time, a plurality of solder particles were accommodated in the transfer type recess. In (Step 4), by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and applying pressure, the adhesive component of the adhesive film enters the recess, and a plurality of solder particles are applied to the adhesive film. Immobilized (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 2.5. In the same manner as in Example 1, the connection structure was evaluated. Table 2 shows the results.

Figure 2019029135
Figure 2019029135

<実施例3>
実施例1の(工程1)と同様に、平均粒径5.0μm以下(d90=5μm)のSn−Biはんだ粒子(5N Plus社製、Type8)100gを、蒸留水に浸漬した後、超音波分散させ、次に、φ0.8μmのメンブレンフィルタ(メルク株式会社製)で濾過した後、濾液を回収した。その後、濾液を遠心分離にかけ、水溶液中のはんだ粒子を回収した。回収したはんだ粒子は5gであり、平均粒径は、0.6μmであった。
続いて、実施例1の(工程2)及び(工程3)を行った。このとき、複数個のはんだ粒子が転写型の凹部に収容された。(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程e)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は5.1個であった。実施例1と同様に、接続構造体の評価を行った。表3に結果を示す。
<Example 3>
Similarly to Example 1 (Step 1), 100 g of Sn-Bi solder particles (Type 90, manufactured by 5N Plus, Inc.) having an average particle size of 5.0 μm or less (d90 = 5 μm) were immersed in distilled water, and then subjected to ultrasonic waves. Next, the solution was dispersed and then filtered through a membrane filter (manufactured by Merck & Co., Inc.) having a diameter of 0.8 μm, and the filtrate was recovered. Thereafter, the filtrate was centrifuged to collect solder particles in the aqueous solution. The collected solder particles were 5 g, and the average particle size was 0.6 μm.
Subsequently, (Step 2) and (Step 3) of Example 1 were performed. At this time, a plurality of solder particles were accommodated in the transfer type recess. In (Step 4), by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and applying pressure, the adhesive component of the adhesive film enters the recess, and a plurality of solder particles are applied to the adhesive film. Immobilized (see FIG. 9B).
Subsequently, (step e) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 5.1. In the same manner as in Example 1, the connection structure was evaluated. Table 3 shows the results.

Figure 2019029135
Figure 2019029135

<実施例4>
実施例1の(工程2)において、転写型の凹部の形状は同じ(開口部1.0μm)で、2.0μmのスペースにすることで、凹部の密度を下げた転写型を用いたこと以外は、実施例1と同様に異方性導電フィルムを作製するとともに、これらを使用して接続構造体を作製し、それらの評価を行った。表4に結果を示す。
<Example 4>
In Example 1 (Step 2), the shape of the recess of the transfer mold was the same (opening 1.0 μm), and a transfer mold having a density of the recess was reduced by using a space of 2.0 μm. Produced anisotropic conductive films in the same manner as in Example 1, and produced connection structures using these films, and evaluated them. Table 4 shows the results.

Figure 2019029135
Figure 2019029135

<実施例5>
実施例1の(工程1)と同様にして得たはんだ粒子を、実施例1の(工程2)の開口径1.0μmφの転写型に配置し、転写型上のはんだ粒子を刷けでなぞることで、1.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は1.9μmであった。
続いて、開口径2.0μmφ、底部径1.8μmφ、深さ2μm(底部径1.8μmφは、凹部を上面からみると、開口径2.0μmφの中央に位置するものとする)の凹部が2.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径1.9μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)以降を同様に行うことで、はんだ粒子がほぼ単体で、層状に配列された異方性導電フィルムを得た(図7(c)参照)。異方性導電フィルムにおけるはんだ粒子が配置されるべき箇所の一箇所あたりのはんだ粒子の平均個数は1.1個であった。実施例1と同様に、接続構造体の評価を行った。表5に結果を示す。
<Example 5>
Solder particles obtained in the same manner as in (Step 1) of Example 1 are placed in the transfer mold having an opening diameter of 1.0 μmφ in (Step 2) of Example 1, and the solder particles on the transfer mold are traced by printing. As a result, solder particles having a particle diameter of 1.0 μmφ or less were collected in the recesses. The average particle size of the solder particles that remained without being collected was 1.9 μm.
Subsequently, a recess having an opening diameter of 2.0 μmφ, a bottom diameter of 1.8 μmφ, and a depth of 2 μm (the bottom diameter of 1.8 μmφ is located at the center of the opening diameter of 2.0 μmφ when the recess is viewed from above). A transfer mold regularly arranged with a space interval of 2.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. Solder particles having an average particle diameter of 1.9 μm were arranged in the concave portion of the transfer mold.
Then, the anisotropic conductive film in which the solder particles are substantially single and arranged in layers is obtained by carrying out the same process as in Step 1 of Example 1 (see FIG. 7C). The average number of solder particles per location where solder particles should be placed in the anisotropic conductive film was 1.1. In the same manner as in Example 1, the connection structure was evaluated. Table 5 shows the results.

Figure 2019029135
Figure 2019029135

<実施例6>
実施例1の(工程1)と同様にして得たはんだ粒子を、実施例1の(工程2)の開口径1.0μmφの転写型に配置し、転写型上のはんだ粒子を刷けでなぞることで、1.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は1.6μmであった。
続いて、開口径2.0μmφ、底部径1.8μmφ、深さ2μm(底部径1.8μmφは、凹部を上面からみると、開口径2.0μmφの中央に位置するものとする)の凹部が2.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径1.6μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は2.5個であった。実施例1と同様に、接続構造体の評価を行った。表6に結果を示す。
<Example 6>
Solder particles obtained in the same manner as in (Step 1) of Example 1 are placed in the transfer mold having an opening diameter of 1.0 μmφ in (Step 2) of Example 1, and the solder particles on the transfer mold are traced by printing. As a result, solder particles having a particle diameter of 1.0 μmφ or less were collected in the recesses. The average particle size of the solder particles that remained without being recovered was 1.6 μm.
Subsequently, a recess having an opening diameter of 2.0 μmφ, a bottom diameter of 1.8 μmφ, and a depth of 2 μm (the bottom diameter of 1.8 μmφ is located at the center of the opening diameter of 2.0 μmφ when the recess is viewed from above). A transfer mold regularly arranged with a space interval of 2.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the average particle diameter of 1.6 μm were arranged in the concave portion of the transfer mold.
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 2.5. In the same manner as in Example 1, the connection structure was evaluated. Table 6 shows the results.

Figure 2019029135
Figure 2019029135

<実施例7>
実施例1の(工程1)と同様にして得たはんだ粒子を、実施例1の(工程2)の開口径1.0μmφの転写型に配置し、転写型上のはんだ粒子を刷けを用いてでなぞることで、1.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は1.3μmであった。
続いて、開口径2.0μmφ、底部径1.8μmφ、深さ2μm(底部径1.8μmφは、凹部を上面からみると、開口径2.0μmφの中央に位置するものとする)の凹部が2.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径1.3μmのはんだ粒子を配列した。
実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は4.5個であった。実施例1と同様に、接続構造体の評価を行った。表7に結果を示す。
<Example 7>
Solder particles obtained in the same manner as in (Step 1) of Example 1 are placed in the transfer mold having an opening diameter of 1.0 μmφ in (Step 2) of Example 1, and the solder particles on the transfer mold are printed. By tracing, solder particles having a particle size of 1.0 μmφ or less were collected in the recesses. The average particle size of the solder particles that remained without being recovered was 1.3 μm.
Subsequently, a recess having an opening diameter of 2.0 μmφ, a bottom diameter of 1.8 μmφ, and a depth of 2 μm (the bottom diameter of 1.8 μmφ is located at the center of the opening diameter of 2.0 μmφ when the recess is viewed from above). A transfer mold regularly arranged with a space interval of 2.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the above average particle diameter of 1.3 μm were arranged in the concave portion of the transfer mold.
After performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and applying pressure, The adhesive component was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 4.5. In the same manner as in Example 1, the connection structure was evaluated. Table 7 shows the results.

Figure 2019029135
Figure 2019029135

<実施例8>
実施例1の(工程1)と同様に、平均粒径5.0μm以下(d90=5μm)のSn−Biはんだ粒子(5N Plus社製、Type8)100gを、蒸留水に浸漬した後、超音波分散させ、次に、φ5μmのメンブレンフィルタ(メルク株式会社製)で濾過した後、濾液を回収した。その後、濾液を遠心分離にかけ、水溶液中のはんだ粒子を回収した。回収したはんだ粒子は20gであった。
得られたはんだ粒子を、開口径2.0μmφ、底部径1.8μmφ、深さ2μm(底部径1.8μmφは、凹部を上面からみると、開口径2.0μmφの中央に位置するものとする)の転写型に配置した。転写型上のはんだ粒子を刷けでなぞることで、2.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は2.8μmであった。
続いて、開口径3.0μmφ、底部径2.5μmφ、深さ3μm(底部径2.5μmφは、凹部を上面からみると、開口径3.0μmφの中央に位置するものとする)の凹部が3.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径2.8μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)以降を同様に行うことで、はんだ粒子がほぼ単体で、層状に配列された異方性導電フィルムを得た(図7(c)参照)。異方性導電フィルムにおけるはんだ粒子が配置されるべき箇所の一箇所あたりのはんだ粒子の平均個数は1.3個であった。実施例1と同様に、接続構造体の評価を行った。表8に結果を示す。
<Example 8>
Similarly to Example 1 (Step 1), 100 g of Sn-Bi solder particles (Type 90, manufactured by 5N Plus, Inc.) having an average particle size of 5.0 μm or less (d90 = 5 μm) were immersed in distilled water, and then subjected to ultrasonic waves. Then, the mixture was filtered and filtered through a membrane filter (manufactured by Merck & Co., Inc.) having a diameter of 5 μm, and the filtrate was recovered. Thereafter, the filtrate was centrifuged to collect solder particles in the aqueous solution. The collected solder particles were 20 g.
The obtained solder particles have an opening diameter of 2.0 μmφ, a bottom diameter of 1.8 μmφ, and a depth of 2 μm (the bottom diameter of 1.8 μmφ is located at the center of the opening diameter of 2.0 μmφ when the concave portion is viewed from the top. ). By tracing the solder particles on the transfer mold by printing, the solder particles having a particle size of 2.0 μmφ or less were collected in the recesses. The average particle size of the solder particles that remained without being collected was 2.8 μm.
Subsequently, a recess having an opening diameter of 3.0 μmφ, a bottom diameter of 2.5 μmφ, and a depth of 3 μm (the bottom diameter of 2.5 μmφ is located at the center of the opening diameter of 3.0 μmφ when the recess is viewed from above). A transfer mold regularly arranged with a space interval of 3.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the average particle diameter of 2.8 μm were arranged in the concave portion of the transfer mold.
Then, the anisotropic conductive film in which the solder particles are substantially single and arranged in layers is obtained by carrying out the same process as in Step 1 of Example 1 (see FIG. 7C). The average number of solder particles per place where the solder particles should be placed in the anisotropic conductive film was 1.3. In the same manner as in Example 1, the connection structure was evaluated. Table 8 shows the results.

Figure 2019029135
Figure 2019029135

<実施例9>
実施例1の(工程1)と同様にして得たはんだ粒子を、実施例1の(工程2)の開口径2.0μmφの転写型に配置し、転写型上のはんだ粒子を刷けでなぞることで、2.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は2.5μmであった。
続いて、開口径3.0μmφ、底部径2.5μmφ、深さ3μm(底部径2.5μmφは、凹部を上面からみると、開口径3.0μmφの中央に位置するものとする)の凹部が3.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径2.5μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は2.3個であった。実施例1と同様に、接続構造体の評価を行った。表9に結果を示す。
<Example 9>
Solder particles obtained in the same manner as in (Step 1) of Example 1 are placed in the transfer mold having an opening diameter of 2.0 μmφ in (Step 2) of Example 1, and the solder particles on the transfer mold are traced by printing. Thus, solder particles having a particle diameter of 2.0 μmφ or less were collected in the recesses. The average particle size of the solder particles that remained without being recovered was 2.5 μm.
Subsequently, a recess having an opening diameter of 3.0 μmφ, a bottom diameter of 2.5 μmφ, and a depth of 3 μm (the bottom diameter of 2.5 μmφ is located at the center of the opening diameter of 3.0 μmφ when the recess is viewed from above). A transfer mold regularly arranged with a space interval of 3.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having an average particle diameter of 2.5 μm were arranged in the concave portion of the transfer mold.
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 2.3. In the same manner as in Example 1, the connection structure was evaluated. Table 9 shows the results.

Figure 2019029135
Figure 2019029135

<実施例10>
実施例1の(工程1)と同様にして得たはんだ粒子を、実施例1の(工程2)の開口径2.0μmφの転写型に配置し、転写型上のはんだ粒子を刷けでなぞることで、2.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は2.3μmであった。
続いて、開口径3.0μmφ、底部径2.5μmφ、深さ3μm(底部径2.5μmφは、凹部を上面からみると、開口径3.0μmφの中央に位置するものとする)の凹部が3.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径2.3μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は4.6個であった。実施例1と同様に、接続構造体の評価を行った。表10に結果を示す。
<Example 10>
Solder particles obtained in the same manner as in (Step 1) of Example 1 are placed in the transfer mold having an opening diameter of 2.0 μmφ in (Step 2) of Example 1, and the solder particles on the transfer mold are traced by printing. Thus, solder particles having a particle diameter of 2.0 μmφ or less were collected in the recesses. The average particle size of the solder particles remaining without being recovered was 2.3 μm.
Subsequently, a recess having an opening diameter of 3.0 μmφ, a bottom diameter of 2.5 μmφ, and a depth of 3 μm (the bottom diameter of 2.5 μmφ is located at the center of the opening diameter of 3.0 μmφ when the recess is viewed from above). A transfer mold regularly arranged with a space interval of 3.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. Solder particles having an average particle size of 2.3 μm were arranged in the concave portion of the transfer mold.
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 4.6. In the same manner as in Example 1, the connection structure was evaluated. Table 10 shows the results.

Figure 2019029135
Figure 2019029135

<実施例11>
実施例8で作製した異方性導電フィルムを用い、異方性導電フィルムに形成したはんだ粒子がチップC5のバンプのバンプと、基板D5のバンプの間にくるように、位置あわせを行い、上記(5)に係る構成(チップC5/厚さ8μmの異方性導電フィルム/基板D5)の接続構造体を作製した。それ以外は、実施例1と同様に、接続構造体の評価を行った(ただし「導通抵抗試験−高温放置試験」は未実施)。表11に結果を示す。
<Example 11>
Using the anisotropic conductive film produced in Example 8, alignment was performed so that the solder particles formed on the anisotropic conductive film were located between the bumps of the bumps of the chip C5 and the substrate D5, and A connection structure having the configuration according to (5) (chip C5 / an anisotropic conductive film having a thickness of 8 μm / substrate D5) was produced. Otherwise, the connection structure was evaluated in the same manner as in Example 1 (however, the “conducting resistance test-high temperature storage test” was not performed). Table 11 shows the results.

<実施例12>
実施例9で作製した異方性導電フィルムを用い、異方性導電フィルムに形成したはんだ粒子がチップC5のバンプのバンプと、基板D5のバンプの間にくるように、位置あわせを行い、上記(5)に係る構成の接続構造体を作製した。それ以外は、実施例1と同様に、接続構造体の評価を行った(ただし、「導通抵抗試験−高温放置試験」は未実施)。表11に結果を示す。
<Example 12>
Using the anisotropic conductive film produced in Example 9, alignment is performed so that the solder particles formed on the anisotropic conductive film are between the bumps of the bumps of the chip C5 and the substrate D5. A connection structure having the configuration according to (5) was produced. Otherwise, the connection structure was evaluated in the same manner as in Example 1 (however, the “conducting resistance test-high temperature storage test” was not performed). Table 11 shows the results.

<実施例13>
実施例10で作製した異方性導電フィルムを用い、異方性導電フィルムに形成したはんだ粒子がチップC5のバンプのバンプと、基板D5のバンプの間にくるように、位置あわせを行い、上記(5)に係る構成の接続構造体を作製した。それ以外は、実施例1と同様に、接続構造体の評価を行った(ただし、「導通抵抗試験−高温放置試験」は未実施)。表11に結果を示す。
<Example 13>
Using the anisotropic conductive film produced in Example 10, alignment was performed so that the solder particles formed on the anisotropic conductive film were located between the bumps of the bumps of the chip C5 and the substrate D5, and A connection structure having the configuration according to (5) was produced. Otherwise, the connection structure was evaluated in the same manner as in Example 1 (however, the “conducting resistance test-high temperature storage test” was not performed). Table 11 shows the results.

Figure 2019029135
Figure 2019029135

<実施例14>
粒径2.0μm〜14.0μm以下(d90=12μm)のSn−Biはんだ粒子(5N Plus、Type7)100gを、開口寸法4μmの高精度電鋳篩(アズワン株式会社、商品名)により篩をかけて、通過しないものを回収した。続いて、回収したはんだ粒子を、開口寸法6μmの高精度電鋳篩(アズワン株式会社、商品名)により篩にかけ、篩を通過したはんだ粒子を回収した。
<Example 14>
100 g of Sn—Bi solder particles (5N Plus, Type 7) having a particle size of 2.0 μm to 14.0 μm or less (d90 = 12 μm) are sieved with a high-precision electroformed sieve (As One Corporation, trade name) having an opening size of 4 μm. Over time, those that did not pass were collected. Subsequently, the collected solder particles were sieved with a high-precision electroformed sieve having an opening size of 6 μm (As One Corporation, trade name), and the solder particles that passed through the sieve were collected.

得られたはんだ粒子を、開口径3.0μmφ、底部径2.5μmφ、深さ3μm(底部径2.5μmφは、凹部を上面からみると、開口径3.0μmφの中央に位置するものとする)の凹部を有する転写型に配置した。そして、転写型上のはんだ粒子を刷けでなぞることで、3.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は4.6μmであった。
続いて、開口径5.0μmφ、底部径4.0μmφ、深さ5μm(底部径4.0μmφは、凹部を上面からみると、開口径5.0μmφの中央に位置するものとする)の凹部が5.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径4.6μmのはんだ粒子を配列した。
The obtained solder particles have an opening diameter of 3.0 μmφ, a bottom diameter of 2.5 μmφ, and a depth of 3 μm (the bottom diameter of 2.5 μmφ is located at the center of the opening diameter of 3.0 μmφ when the concave portion is viewed from the top. ) Was placed in a transfer mold having a recess. Then, the solder particles on the transfer mold were traced by printing to collect solder particles having a particle size of 3.0 μmφ or less in the recesses. The average particle size of the solder particles that remained without being recovered was 4.6 μm.
Subsequently, a recess having an opening diameter of 5.0 μmφ, a bottom diameter of 4.0 μmφ, and a depth of 5 μm (the bottom diameter of 4.0 μmφ is located at the center of the opening diameter of 5.0 μmφ when the recess is viewed from the top). A transfer mold regularly arranged with a space interval of 5.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the average particle diameter of 4.6 μm were arranged in the concave portion of the transfer mold.

続いて、実施例1の(工程3)以降を同様に行うことで、はんだ粒子がほぼ単体で、層状に配列された異方性導電フィルムを得た(図7(c)参照)。異方性導電フィルムにおけるはんだ粒子が配置されるべき箇所の一箇所あたりのはんだ粒子の平均個数は1.2個であった。実施例1と同様に、下記(1)〜(4)の接続構造体の評価を行った。表12に結果を示す。
(1)チップC1/16μmの厚みの異方性導電フィルム/基板D1、
(2)チップC2/16μmの厚みの異方性導電フィルム/基板D2、
(3)チップC3/12μmの厚みの異方性導電フィルム/基板D3、
(4)チップC4/8μmの厚みの異方性導電フィルム/基板D4、
Then, the anisotropic conductive film in which the solder particles are substantially single and arranged in layers is obtained by carrying out the same process as in Step 1 of Example 1 (see FIG. 7C). The average number of solder particles per location where the solder particles should be disposed in the anisotropic conductive film was 1.2. In the same manner as in Example 1, the following connection structures (1) to (4) were evaluated. Table 12 shows the results.
(1) Chip C1 / 16 μm thick anisotropic conductive film / substrate D1,
(2) Chip C2 / 16 μm thick anisotropic conductive film / substrate D2,
(3) Chip C3 / 12 μm thick anisotropic conductive film / substrate D3,
(4) Chip C4 / 8 μm thick anisotropic conductive film / substrate D4,

Figure 2019029135
Figure 2019029135

<実施例15>
粒径2.0μm〜14.0μm以下(d90=12μm)のSn−Biはんだ粒子(5N Plus、Type7)100gを、開口寸法4μmの高精度電鋳篩(アズワン株式会社、商品名)により篩をかけて、通過しないものを回収した。続いて、回収したはんだ粒子を、開口寸法5μmの高精度電鋳篩(アズワン株式会社、商品名)により篩にかけ、篩を通過したはんだ粒子を回収した。
<Example 15>
100 g of Sn—Bi solder particles (5N Plus, Type 7) having a particle size of 2.0 μm to 14.0 μm or less (d90 = 12 μm) are sieved with a high-precision electroformed sieve (As One Corporation, trade name) having an opening size of 4 μm. Over time, those that did not pass were collected. Subsequently, the collected solder particles were passed through a high-precision electroformed sieve (As One Co., Ltd., trade name) with an opening size of 5 μm, and the solder particles that passed through the sieve were collected.

得られたはんだ粒子を、開口径3.0μmφ、底部径2.5μmφ、深さ3μm(底部径2.5μmφは、凹部を上面からみると、開口径3.0μmφの中央に位置するものとする)の凹部を有する転写型に配置した。そして、転写型上のはんだ粒子を刷けでなぞることで、3.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は3.7μmであった。
続いて、開口径5.0μmφ、底部径4.0μmφ、深さ5μm(底部径4.0μmφは、凹部を上面からみると、開口径5.0μmφの中央に位置するものとする)の凹部が5.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径3.7μmのはんだ粒子を配列した。
The obtained solder particles have an opening diameter of 3.0 μmφ, a bottom diameter of 2.5 μmφ, and a depth of 3 μm (the bottom diameter of 2.5 μmφ is located at the center of the opening diameter of 3.0 μmφ when the concave portion is viewed from the top. ) Was placed in a transfer mold having a recess. Then, the solder particles on the transfer mold were traced by printing to collect solder particles having a particle size of 3.0 μmφ or less in the recesses. The average particle size of the solder particles remaining without being collected was 3.7 μm.
Subsequently, a recess having an opening diameter of 5.0 μmφ, a bottom diameter of 4.0 μmφ, and a depth of 5 μm (the bottom diameter of 4.0 μmφ is located at the center of the opening diameter of 5.0 μmφ when the recess is viewed from the top). A transfer mold regularly arranged with a space interval of 5.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the average particle diameter of 3.7 μm were arranged in the concave portion of the transfer mold.

続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は3.4個であった。実施例1と同様に、(1)〜(4)に係る構成の接続構造体の評価を行った。表13に結果を示す。
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 3.4. In the same manner as in Example 1, the connection structure having the configuration according to (1) to (4) was evaluated. Table 13 shows the results.

Figure 2019029135
Figure 2019029135

<実施例16>
粒径2.0μm〜14.0μm以下(d90=12μm)のSn−Biはんだ粒子(5N Plus、Type7)100gを、開口寸法4μmの高精度電鋳篩(アズワン株式会社、商品名)により篩をかけて、通過しないものを回収した。続いて、回収したはんだ粒子を、開口寸法5μmの高精度電鋳篩(アズワン株式会社、商品名)により篩にかけ、篩を通過したはんだ粒子を回収した。
<Example 16>
100 g of Sn—Bi solder particles (5N Plus, Type 7) having a particle size of 2.0 μm to 14.0 μm or less (d90 = 12 μm) are sieved with a high-precision electroformed sieve (As One Corporation, trade name) having an opening size of 4 μm. Over time, those that did not pass were collected. Subsequently, the collected solder particles were passed through a high-precision electroformed sieve (As One Co., Ltd., trade name) with an opening size of 5 μm, and the solder particles that passed through the sieve were collected.

得られたはんだ粒子を、開口径3.0μmφ、底部径2.5μmφ、深さ3μm(底部径2.5μmφは、凹部を上面からみると、開口径3.0μmφの中央に位置するものとする)の凹部を有する転写型に配置した。そして、転写型上のはんだ粒子を刷けでなぞることで、3.0μmφ以下の粒径のはんだ粒子を凹部内に回収した。回収されずに残ったはんだ粒子の平均粒径は3.2μmであった。
続いて、開口径5.0μmφ、底部径4.0μmφ、深さ5μm(底部径4.0μmφは、凹部を上面からみると、開口径5.0μmφの中央に位置するものとする)の凹部が5.0μmのスペースの間隔で規則的に配列している転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径3.2μmのはんだ粒子を配列した。
The obtained solder particles have an opening diameter of 3.0 μmφ, a bottom diameter of 2.5 μmφ, and a depth of 3 μm (the bottom diameter of 2.5 μmφ is located at the center of the opening diameter of 3.0 μmφ when the concave portion is viewed from the top. ) Was placed in a transfer mold having a recess. Then, the solder particles on the transfer mold were traced by printing to collect solder particles having a particle size of 3.0 μmφ or less in the recesses. The average particle size of the solder particles remaining without being collected was 3.2 μm.
Subsequently, a recess having an opening diameter of 5.0 μmφ, a bottom diameter of 4.0 μmφ, and a depth of 5 μm (the bottom diameter of 4.0 μmφ is located at the center of the opening diameter of 5.0 μmφ when the recess is viewed from the top). A transfer mold regularly arranged with a space interval of 5.0 μm was prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the above average particle diameter of 3.2 μm were arranged in the concave portion of the transfer mold.

続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は4.2個であった。実施例1と同様に、(1)〜(4)に係る構成の接続構造体の評価を行った。表14に結果を示す。
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 4.2. In the same manner as in Example 1, the connection structure having the configuration according to (1) to (4) was evaluated. Table 14 shows the results.

Figure 2019029135
Figure 2019029135

<実施例17>
5.0μmのスペースの間隔で規則的に配列している凹部を有する転写型の代わりに、バンプの位置及びサイズに対応した位置に凹部を有する転写型を使用したことの他は、実施例14と同様にして異方性導電フィルムを作製した。なお、図22は、異方性導電フィルムのはんだ粒子の位置と、バンプ(サイズ30μm×30μm)の位置との関係を模式的に示す平面図である。図23は、異方性導電フィルムのはんだ粒子の位置と、バンプ(サイズ15μm×15μm)の位置との関係を模式的に示す平面図である。図24は、異方性導電フィルムのはんだ粒子の位置と、バンプ(サイズ10μm×10μm)の位置との関係を模式的に示す平面図である。図25は、異方性導電フィルムのはんだ粒子の位置と、バンプ(サイズ5μm×5μm)の位置との関係を模式的に示す平面図である。
作製した異方性導電フィルムを使用し、実施例1と同様に、(1)〜(4)に係る接続構造体の評価を行った。表15に結果を示す。
<Example 17>
Example 14 except that a transfer mold having recesses at positions corresponding to the positions and sizes of the bumps was used instead of the transfer mold having recesses regularly arranged with a space of 5.0 μm. In the same manner, an anisotropic conductive film was produced. FIG. 22 is a plan view schematically showing the relationship between the positions of the solder particles of the anisotropic conductive film and the positions of the bumps (size 30 μm × 30 μm). FIG. 23 is a plan view schematically showing the relationship between the position of the solder particles of the anisotropic conductive film and the position of the bump (size 15 μm × 15 μm). FIG. 24 is a plan view schematically showing the relationship between the position of the solder particles of the anisotropic conductive film and the position of the bump (size 10 μm × 10 μm). FIG. 25 is a plan view schematically showing the relationship between the position of the solder particles of the anisotropic conductive film and the position of the bump (size 5 μm × 5 μm).
Using the produced anisotropic conductive film, the connection structures according to (1) to (4) were evaluated in the same manner as in Example 1. Table 15 shows the results.

Figure 2019029135
Figure 2019029135

<実施例18>
凹部が5.0μmのスペースの間隔で規則的に配列している転写型の代わりに、バンプの位置及びサイズに対応した位置に凹部を有する転写型を使用したことの他は、実施例15と同様にして異方性導電フィルムを作製した(図22〜25参照)。作製した異方性導電フィルムを使用し、実施例1と同様に、(1)〜(4)に係る接続構造体の評価を行った。表16に結果を示す。
<Example 18>
Example 15 except that a transfer mold having recesses at positions corresponding to the positions and sizes of the bumps was used instead of the transfer mold in which the recesses were regularly arranged at a space interval of 5.0 μm. Similarly, an anisotropic conductive film was produced (see FIGS. 22 to 25). Using the produced anisotropic conductive film, the connection structures according to (1) to (4) were evaluated in the same manner as in Example 1. Table 16 shows the results.

Figure 2019029135
Figure 2019029135

<実施例19>
凹部が5.0μmのスペースの間隔で規則的に配列している転写型の代わりに、バンプの位置及びサイズに対応した位置に凹部を有する転写型を使用したことの他は、実施例16と同様にして異方性導電フィルムを作製した(図22〜25参照)。作製した異方性導電フィルムを使用し、実施例1と同様に、(1)〜(4)に係る接続構造体の評価を行った。表17に結果を示す。
<Example 19>
Example 16 is different from the transfer mold in which the concave portions are regularly arranged at a space interval of 5.0 μm, except that a transfer die having concave portions at positions corresponding to the positions and sizes of the bumps is used. Similarly, an anisotropic conductive film was produced (see FIGS. 22 to 25). Using the produced anisotropic conductive film, the connection structures according to (1) to (4) were evaluated in the same manner as in Example 1. Table 17 shows the results.

Figure 2019029135
Figure 2019029135

<実施例20>
粒径サイズ2.0μm〜14.0μm以下(d90=12μm)のSn−Biはんだ粒子(5N Plus、Type7)100gを、開口寸法5μmの高精度電鋳篩(アズワン株式会社、商品名)により篩をかけて、通過しないものを回収した。続いて、回収したはんだ粒子を、開口寸法7μmの高精度電鋳篩(アズワン株式会社、商品名)により篩にかけ、篩を通過したはんだ粒子を回収した。回収されたはんだ粒子の平均粒径は5.7μmであった。
<Example 20>
100 g of Sn—Bi solder particles (5N Plus, Type 7) having a particle size of 2.0 μm to 14.0 μm or less (d90 = 12 μm) are sieved with a high-precision electroformed sieve (As One Co., Ltd., trade name) having an opening size of 5 μm. The thing that did not pass was collected. Subsequently, the collected solder particles were passed through a high-precision electroformed sieve (As One Co., Ltd., trade name) with an opening size of 7 μm, and the solder particles that passed through the sieve were collected. The average particle diameter of the collected solder particles was 5.7 μm.

続いて、開口径10.0μmφ、底部径8.0μmφ、深さ7μm(底部径8.0μmφは、凹部を上面からみると、開口径10.0μmφの中央に位置するものとする)の凹部がチップC1、C2及びC3のバンプの中央にそれぞれ対応する位置に設けられた転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径5.7μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は3.5個であった。実施例1と同様に、(1)〜(3)に係る構成の接続構造体の評価を行った。表18に結果を示す。
Subsequently, a recess having an opening diameter of 10.0 μmφ, a bottom diameter of 8.0 μmφ, and a depth of 7 μm (the bottom diameter of 8.0 μmφ is located at the center of the opening diameter of 10.0 μmφ when the recess is viewed from above). Transfer molds provided at positions corresponding to the centers of the bumps of the chips C1, C2, and C3 were prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the above average particle diameter of 5.7 μm were arranged in the concave portion of the transfer mold.
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 3.5. In the same manner as in Example 1, the connection structure having the configuration according to (1) to (3) was evaluated. Table 18 shows the results.

Figure 2019029135
Figure 2019029135

<実施例21>
実施例14で得た平均粒径4.6μmのはんだ粒子を用いるとともに、実施例20と同様の転写型を用いて異方性導電フィルムを作製した。粒子群を構成するはんだ粒子の平均個数は5.7個であった。実施例1と同様に、(1)〜(3)に係る構成の接続構造体の評価を行った。表19に結果を示す。
<Example 21>
While using the solder particles having an average particle diameter of 4.6 μm obtained in Example 14, an anisotropic conductive film was produced using the same transfer mold as in Example 20. The average number of solder particles constituting the particle group was 5.7. In the same manner as in Example 1, the connection structure having the configuration according to (1) to (3) was evaluated. Table 19 shows the results.

Figure 2019029135
Figure 2019029135

<実施例22>
実施例15で得た平均粒径3.7μmのはんだ粒子を用いるとともに、実施例20と同様の転写型を用いて異方性導電フィルムを作製した。粒子群を構成するはんだ粒子の平均個数は9.5個であった。実施例1と同様に、(1)〜(3)に係る接続構造体の評価を行った。表20に結果を示す。
<Example 22>
While using the solder particles having an average particle diameter of 3.7 μm obtained in Example 15, an anisotropic conductive film was produced using the same transfer mold as in Example 20. The average number of solder particles constituting the particle group was 9.5. In the same manner as in Example 1, the connection structures according to (1) to (3) were evaluated. Table 20 shows the results.

Figure 2019029135
Figure 2019029135

<実施例23>
粒径サイズ5.0μm〜23.0μm以下(d90=16μm)のSn−Biはんだ粒子(5N Plus、Type6)100gを、開口寸法5μmの高精度電鋳篩(アズワン株式会社、商品名)により篩をかけて、通過しないものを回収した。続いて、回収したはんだ粒子を、開口寸法7μmの高精度電鋳篩(アズワン株式会社、商品名)により篩にかけ、篩を通過したはんだ粒子を回収した。回収されたはんだ粒子の平均粒径は6.7μmであった。
<Example 23>
100 g of Sn—Bi solder particles (5N Plus, Type 6) having a particle size of 5.0 μm to 23.0 μm or less (d90 = 16 μm) are sieved with a high-precision electroformed sieve (As One Corporation, trade name) having an opening size of 5 μm. The thing that did not pass was collected. Subsequently, the collected solder particles were passed through a high-precision electroformed sieve (As One Co., Ltd., trade name) with an opening size of 7 μm, and the solder particles that passed through the sieve were collected. The average particle size of the collected solder particles was 6.7 μm.

続いて、開口径10.0μmφ、底部径8.0μmφ、深さ7μm(底部径8.0μmφは、凹部を上面からみると、開口径10.0μmφの中央に位置するものとする)の凹部がチップC1及びC2のバンプの中央にそれぞれ対応する位置に設けられた転写型を準備した。転写型のフィルムとして、ポリイミドフィルム(厚さ100μm)を用いた。この転写型の凹部に、上記の平均粒径6.7μmのはんだ粒子を配列した。
続いて、実施例1の(工程3)と同様に行った後、実施例1の(工程4)において、圧力を0.1MPa(1.0kgf/cm)に変更して加圧することで、接着フィルムの接着剤成分を凹部内に入り込ませ、複数個のはんだ粒子を接着フィルムに固定化した(図9(b)参照)。
続いて、実施例1の(工程5)を行い、複数個のはんだ粒子からなる粒子群が層状に配列された異方性導電フィルムを得た(図9(c)参照)。粒子群を構成するはんだ粒子の平均個数は4.2個であった。実施例1と同様に、(1)及び(2)に係る構成の接続構造体の評価を行った。表21に結果を示す。
Subsequently, a recess having an opening diameter of 10.0 μmφ, a bottom diameter of 8.0 μmφ, and a depth of 7 μm (the bottom diameter of 8.0 μmφ is located at the center of the opening diameter of 10.0 μmφ when the recess is viewed from above). Transfer molds provided at positions corresponding to the centers of the bumps of the chips C1 and C2 were prepared. A polyimide film (thickness: 100 μm) was used as a transfer type film. The solder particles having the above average particle diameter of 6.7 μm were arranged in the concave portion of the transfer mold.
Subsequently, after performing in the same manner as in (Step 3) of Example 1, in (Step 4) of Example 1, by changing the pressure to 0.1 MPa (1.0 kgf / cm 2 ) and pressurizing, The adhesive component of the adhesive film was allowed to enter the recess, and a plurality of solder particles were fixed to the adhesive film (see FIG. 9B).
Subsequently, (Step 5) of Example 1 was performed to obtain an anisotropic conductive film in which particle groups composed of a plurality of solder particles were arranged in a layered manner (see FIG. 9C). The average number of solder particles constituting the particle group was 4.2. In the same manner as in Example 1, the connection structure having the configuration according to (1) and (2) was evaluated. Table 21 shows the results.

Figure 2019029135
Figure 2019029135

<実施例24>
実施例14で得た平均粒径4.6μmのはんだ粒子を用いるとともに、実施例23と同様の転写型を用いて異方性導電フィルムを作製した。粒子群を構成するはんだ粒子の平均個数は6.5個であった。実施例1と同様に、(1)及び(2)に係る構成の接続構造体の評価を行った。表22に結果を示す。
<Example 24>
While using the solder particles having an average particle diameter of 4.6 μm obtained in Example 14, an anisotropic conductive film was produced using the same transfer mold as that in Example 23. The average number of solder particles constituting the particle group was 6.5. In the same manner as in Example 1, the connection structure having the configuration according to (1) and (2) was evaluated. Table 22 shows the results.

Figure 2019029135
Figure 2019029135

<実施例25>
実施例15で得た平均粒径3.7μmのはんだ粒子を用いるとともに、実施例23と同様の転写型を用いて異方性導電フィルムを作製した。粒子群を構成するはんだ粒子の平均個数は9.3個であった。実施例1と同様に、(1)及び(2)に係る構成の接続構造体の評価を行った。表23に結果を示す。
<Example 25>
While using the solder particles having an average particle diameter of 3.7 μm obtained in Example 15, an anisotropic conductive film was produced using the same transfer mold as in Example 23. The average number of solder particles constituting the particle group was 9.3. In the same manner as in Example 1, the connection structure having the configuration according to (1) and (2) was evaluated. Table 23 shows the results.

Figure 2019029135
Figure 2019029135

<比較例1> <Comparative Example 1>

下記の成分を下記の質量部で含んだ、はんだ粒子含有異方性導電ペーストを作製した。
(ポリマー):12質量部
(熱硬化性化合物):29質量部
(高誘電率硬化剤):20質量部
(熱硬化剤):11.5質量部
(フラックス):2質量部
(はんだ粒子)34質量部
A solder particle-containing anisotropic conductive paste containing the following components in the following parts by mass was prepared.
(Polymer): 12 parts by mass (thermosetting compound): 29 parts by mass (high dielectric constant curing agent): 20 parts by mass (thermosetting agent): 11.5 parts by mass (flux): 2 parts by mass (solder particles) 34 parts by mass

(ポリマー)
ビスフェノールFと1,6−ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂との反応物(ポリマーA)の合成:
ビスフェノールF(4,4’−メチレンビスフェノールと2,4’−メチレンビスフェノールと2,2’−メチレンビスフェノールとを質量比で2:3:1で含む)72質量部、1,6−ヘキサンジオールジグリシジルエーテル70質量部、ビスフェノールF型エポキシ樹脂(DIC株式会社製「EPICLON EXA−830CRP」)30質量部を、三つ口フラスコに入れ、窒素フロー下にて、150℃で溶解させた。その後、水酸基とエポキシ基との付加反応触媒であるテトラーn−ブチルスルホニウムブロミド0.1質量部を添加し、窒素フロー下にて、150℃で6時間、付加重合反応させることにより反応物(ポリマー)を得た。
(polymer)
Synthesis of reaction product (polymer A) of bisphenol F with 1,6-hexanediol diglycidyl ether and bisphenol F type epoxy resin:
72 parts by mass of bisphenol F (containing 4,4′-methylene bisphenol, 2,4′-methylene bisphenol and 2,2′-methylene bisphenol in a mass ratio of 2: 3: 1), 1,6-hexanediol 70 parts by mass of glycidyl ether and 30 parts by mass of a bisphenol F type epoxy resin (“EPICLON EXA-830CRP” manufactured by DIC Corporation) were placed in a three-necked flask and dissolved at 150 ° C. under a nitrogen flow. Thereafter, 0.1 part by mass of tetra-n-butylsulfonium bromide, which is an addition reaction catalyst between a hydroxyl group and an epoxy group, was added, and an addition polymerization reaction was performed at 150 ° C. for 6 hours under a nitrogen flow. )

(熱硬化性化合物):レゾルシノール型エポキシ化合物、ナガセケムテックス株式会社製「EX−201」
(高誘電率硬化剤):ペンタエリスリトールテトラキス(3−メルカプトブチレート)
(Thermosetting compound): Resorcinol type epoxy compound, “EX-201” manufactured by Nagase ChemteX Corporation
(High dielectric constant curing agent): Pentaerythritol tetrakis (3-mercaptobutyrate)

(熱硬化剤):昭和電工株式会社製「カレンズMT PE1」 (Thermosetting agent): “Karenz MT PE1” manufactured by Showa Denko KK

(フラックス):アジピン酸、和光純薬工業株式会社製 (Flux): Adipic acid, Wako Pure Chemical Industries, Ltd.

(はんだ粒子):
SnBiはんだ粒子200g(三井金属鉱業株式会社製「ST−3」)と、アジピン酸40gと、アセトン70gとを三つ口フラスコに秤量し、次にはんだ粒子本体の表面の水酸基とアジピン酸のカルボキシル基との脱水縮合触媒であるジブチル錫オキサイド0.3gを添加し、60℃で4時間反応させた。その後、はんだ粒子を濾過することで回収した。回収したはんだ粒子と、アジピン酸50gと、トルエン200gと、パラトルエンスルホン酸0.3gとを三つ口フラスコに秤量し、真空引き、及び還流を行いながら、120℃で、3時間反応させた。この際、ディーンスターク抽出装置を用いて、脱水縮合により生成した水を除去しながら反応させた。その後、濾過によりはんだ粒子を回収し、ヘキサンにて洗浄し、乾燥した。その後、得られたはんだ粒子をボールミルで解砕した後、所定のCV値となるように篩を選択した。得られたSnBiはんだ粒子の平均粒子径は4μm、CV値7%であった。
(Solder particles):
200 g of SnBi solder particles (“ST-3” manufactured by Mitsui Mining & Smelting Co., Ltd.), 40 g of adipic acid and 70 g of acetone are weighed in a three-necked flask, and then the hydroxyl group on the surface of the solder particle body and the carboxyl of adipic acid 0.3 g of dibutyltin oxide which is a dehydration condensation catalyst with a group was added and reacted at 60 ° C. for 4 hours. Thereafter, the solder particles were collected by filtration. The collected solder particles, 50 g of adipic acid, 200 g of toluene, and 0.3 g of paratoluenesulfonic acid were weighed in a three-necked flask and reacted at 120 ° C. for 3 hours while evacuating and refluxing. . At this time, the reaction was carried out while removing water produced by dehydration condensation using a Dean-Stark extraction device. Thereafter, the solder particles were collected by filtration, washed with hexane, and dried. Thereafter, the obtained solder particles were crushed with a ball mill, and then a sieve was selected so as to obtain a predetermined CV value. The average particle diameter of the obtained SnBi solder particles was 4 μm, and the CV value was 7%.

実施例1の(工程6)と(工程7)と同様の銅バンプ付きチップと銅バンプ付き基板の準備を行った。下記の構造の接続構造体を作製した。なお、基板の上部に、はんだ粒子含有異方性導電ペースト、さらにチップが構成されている。銅バンプ付きチップのバンプと銅バンプ付き基板のバンプの位置合わせを行った。180℃、4gf/バンプ、30秒の条件でチップ上方から加熱及び加圧を行い、本接続を行った。以下の(1)〜(5)の「チップ/はんだ粒子含有異方性導電ペーストム/基板」の組み合わせで、(1)〜(5)に係る計5種類の接続構造体をそれぞれ作製した。実施例1と同様に、接続構造体の評価を行った。表24に結果を示す。
(1)チップC1/16μmの厚み(銅バンプ上)のはんだ粒子含有異方性導電ペースト/基板D1、
(2)チップC2/16μmの厚み(銅バンプ上)のはんだ粒子含有異方性導電ペースト/基板D2、
(3)チップC3/12μmの厚み(銅バンプ上)のはんだ粒子含有異方性導電ペースト/基板D3、
(4)チップC4/8μmの厚み(銅バンプ上)のはんだ粒子含有異方性導電ペースト/基板D4、
(5)チップC5/8μmの厚み(銅バンプ上)のはんだ粒子含有異方性導電ペースト/基板D5、
A chip with a copper bump and a substrate with a copper bump were prepared in the same manner as in (Step 6) and (Step 7) of Example 1. A connection structure having the following structure was produced. A solder particle-containing anisotropic conductive paste and a chip are formed on the upper part of the substrate. The bumps of the chip with the copper bump and the bump of the substrate with the copper bump were aligned. The main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 4 gf / bump, and 30 seconds. A total of five types of connection structures according to (1) to (5) were produced by the combinations of “chip / solder particle-containing anisotropic conductive paste / substrate” in the following (1) to (5). In the same manner as in Example 1, the connection structure was evaluated. Table 24 shows the results.
(1) Chip C1 / 16 μm thick (on copper bump) solder particle-containing anisotropic conductive paste / substrate D1,
(2) Solder particle-containing anisotropic conductive paste / substrate D2 having a thickness of chip C2 / 16 μm (on the copper bump),
(3) Solder particle-containing anisotropic conductive paste / substrate D3 having a thickness of chip C3 / 12 μm (on the copper bump),
(4) Solder particle-containing anisotropic conductive paste / substrate D4 having a thickness of chip C4 / 8 μm (on the copper bumps),
(5) Chip C5 / 8 μm thick (on copper bump) solder particle-containing anisotropic conductive paste / substrate D5,

Figure 2019029135
Figure 2019029135

<比較例2> <Comparative example 2>

比較例1で用いた、SnBiはんだ粒子200g(三井金属鉱業株式会社製「ST−3」)の代わりに、SnBiはんだ粒子200g(三井金属鉱業株式会社製「ST−5」)を用い、平均粒子径6μm、CV値10%のSnBiはんだ粒子を用いたことの他は、比較例1と同様にて接続構造体の評価を行った。表25に結果を示す。   Instead of 200 g of SnBi solder particles (“ST-3” manufactured by Mitsui Kinzoku Mining Co., Ltd.) used in Comparative Example 1, 200 g of SnBi solder particles (“ST-5” manufactured by Mitsui Kinzoku Mining Co., Ltd.) were used, and the average particles were used. The connection structure was evaluated in the same manner as Comparative Example 1 except that SnBi solder particles having a diameter of 6 μm and a CV value of 10% were used. Table 25 shows the results.

Figure 2019029135
Figure 2019029135

1…はんだ粒子、1A…粒子群、2…絶縁性フィルム(接着剤成分)、2a…フィルム(接着剤成分)、2b…第一のフィルム、2c…第一のフィルムの表面、2d…第二のフィルム(接着剤成分)、10,20…異方性導電フィルム、30…第一の回路部材、31…第一の基板、32…第一の電極、40…第二の回路部材、41…第二の基板、42…第二の電極、50A〜50F…接続構造体、55…絶縁樹脂層(接着剤成分又はその硬化物)、60…転写型、62…凹部(開口部)、70…はんだ層、71…金属間化合物の層。 DESCRIPTION OF SYMBOLS 1 ... Solder particle, 1A ... Particle group, 2 ... Insulating film (adhesive component), 2a ... Film (adhesive component), 2b ... First film, 2c ... First film surface, 2d ... Second Film (adhesive component), 10, 20 ... anisotropic conductive film, 30 ... first circuit member, 31 ... first substrate, 32 ... first electrode, 40 ... second circuit member, 41 ... 2nd board | substrate, 42 ... 2nd electrode, 50A-50F ... connection structure, 55 ... insulating resin layer (adhesive agent component or its hardened | cured material), 60 ... transcription | transfer type, 62 ... recessed part (opening part), 70 ... Solder layer, 71 ... intermetallic compound layer.

Claims (15)

異方性導電フィルムの製造方法であって、
(a)転写型に設けられた複数の開口部に、一個又は複数個のはんだ粒子をそれぞれ収容する工程と、
(b)前記転写型の前記開口部が設けられている側に、絶縁性を有する接着剤成分を接触させることにより、前記はんだ粒子が転写された第一のフィルムを得る工程と、
(c)前記はんだ粒子が転写された側の前記第一のフィルムの表面上に、絶縁性を有する接着剤成分からなる第二のフィルムを形成することにより、異方性導電フィルムを得る工程と、
をこの順序で含む、異方性導電フィルムの製造方法。
A method for producing an anisotropic conductive film, comprising:
(A) storing one or a plurality of solder particles in a plurality of openings provided in the transfer mold, and
(B) obtaining a first film to which the solder particles are transferred by bringing an insulating adhesive component into contact with the side of the transfer mold on which the opening is provided;
(C) a step of obtaining an anisotropic conductive film by forming a second film comprising an adhesive component having insulating properties on the surface of the first film on the side to which the solder particles are transferred; ,
The manufacturing method of an anisotropic conductive film containing these in this order.
(b)工程で得られる前記第一のフィルムの前記表面に、前記はんだ粒子が露出している、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the solder particles are exposed on the surface of the first film obtained in the step (b). (b)工程において、前記開口部の内部にまで前記接着剤成分を侵入させることにより、前記第一のフィルムの前記表面側に前記はんだ粒子が埋設されている、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein in the step (b), the solder particles are embedded on the surface side of the first film by allowing the adhesive component to penetrate into the opening. . (b)工程は、前記はんだ粒子の転写後に、前記接着剤成分を硬化させるステップを有する、請求項1〜3のいずれか一項に記載の製造方法。   (B) A process is a manufacturing method as described in any one of Claims 1-3 which has the step which hardens the said adhesive agent component after the transfer of the said solder particle. 異方性導電フィルムであって、
絶縁性を有する接着剤成分からなる絶縁性フィルムと、
前記絶縁性フィルム中に配置されている複数のはんだ粒子と、
を含み、
当該異方性導電フィルムの縦断面において、一個の前記はんだ粒子又は複数個の前記はんだ粒子からなる粒子群が隣接する一個の前記はんだ粒子又は前記粒子群と離隔した状態で横方向に並ぶように配置されている、異方性導電フィルム。
An anisotropic conductive film comprising:
An insulating film comprising an adhesive component having insulating properties;
A plurality of solder particles disposed in the insulating film;
Including
In the longitudinal cross-section of the anisotropic conductive film, one solder particle or a group of particles composed of a plurality of the solder particles is arranged in a lateral direction in a state of being separated from one adjacent solder particle or the group of particles. An anisotropic conductive film is disposed.
当該異方性導電フィルムの横断面において、前記粒子群が規則的に配置されている、請求項5に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 5, wherein the particle groups are regularly arranged in a cross section of the anisotropic conductive film. 前記はんだ粒子の平均粒径が0.6〜15μmである、請求項5又は6に記載の異方性導電フィルム。   The anisotropic conductive film of Claim 5 or 6 whose average particle diameter of the said solder particle is 0.6-15 micrometers. 前記はんだ粒子が、スズ又はスズ合金を含む、請求項5〜7のいずれか一項に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 5, wherein the solder particles include tin or a tin alloy. 前記はんだ粒子が、In−Sn合金、In−Sn−Ag合金、Sn−Bi合金、Sn−Bi−Ag合金、Sn−Ag−Cu合金又はSn−Cu合金からなる、請求項5〜8のいずれか一項に記載の異方性導電フィルム。   The said solder particle consists of In-Sn alloy, In-Sn-Ag alloy, Sn-Bi alloy, Sn-Bi-Ag alloy, Sn-Ag-Cu alloy, or Sn-Cu alloy, Any one of Claims 5-8 An anisotropic conductive film according to claim 1. 前記はんだ粒子の表面が、フラックス成分によって被覆されている、請求項5〜9のいずれか一項に記載の異方性導電フィルム。   The anisotropic conductive film as described in any one of Claims 5-9 with which the surface of the said solder particle is coat | covered with the flux component. 第一の基板と当該第一の基板に設けられた第一の電極とを有する第一の回路部材を準備すること;
前記第一の電極と電気的に接続される第二の電極を有する第二の回路部材を準備すること;
前記第一の回路部材の前記第一の電極を有する面と、前記第二の回路部材の前記第二の電極を有する面との間に、請求項5〜10のいずれか一項に記載の異方性導電フィルムを配置すること;
前記第一の回路部材と前記異方性導電フィルムと前記第二の回路部材とを含む積層体を前記積層体の厚さ方向の押圧した状態で、前記はんだ粒子の融点以上に加熱することによって前記第一の電極と前記第二の電極とをはんだを介して電気的に接続し且つ前記第一の回路部材と前記第二の回路部材と接着すること;
を含む接続構造体の製造方法。
Providing a first circuit member having a first substrate and a first electrode provided on the first substrate;
Providing a second circuit member having a second electrode electrically connected to the first electrode;
The surface of the first circuit member having the first electrode and the surface of the second circuit member having the second electrode according to any one of claims 5 to 10. Disposing an anisotropic conductive film;
By heating the laminated body including the first circuit member, the anisotropic conductive film, and the second circuit member to a temperature equal to or higher than the melting point of the solder particles in a pressed state in the thickness direction of the laminated body. Electrically connecting the first electrode and the second electrode via solder and bonding the first circuit member and the second circuit member;
A method for manufacturing a connection structure including:
第一の基板と当該第一の基板に設けられた第一の電極とを有する第一の回路部材と、
前記第一の電極と電気的に接続されている第二の電極を有する第二の回路部材と、
前記第一の電極と前記第二の電極との間に介在するはんだ接合部と、
前記第一の回路部材と前記第二の回路部材との間に設けられ、前記第一の回路部材と前記第二の回路部材と接着している絶縁樹脂層と、
を備える接続構造体。
A first circuit member having a first substrate and a first electrode provided on the first substrate;
A second circuit member having a second electrode electrically connected to the first electrode;
A solder joint interposed between the first electrode and the second electrode;
An insulating resin layer provided between the first circuit member and the second circuit member, and being bonded to the first circuit member and the second circuit member;
A connection structure comprising:
前記第一の電極及び前記第二の電極の少なくとも一方が、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物からなる群から選ばれる材質からなる、請求項12に記載の接続構造体。   The at least one of the first electrode and the second electrode is made of a material selected from the group consisting of copper, nickel, palladium, gold, silver and alloys thereof, and indium tin oxide. The connection structure described. 前記第一の電極及び前記第二の電極の少なくとも一方が銅からなり、
前記第一の電極と前記第二の電極が金属間化合物からなる層を介して接続されている、請求項12又は13に記載の接続構造体。
At least one of the first electrode and the second electrode is made of copper,
The connection structure according to claim 12 or 13, wherein the first electrode and the second electrode are connected via a layer made of an intermetallic compound.
前記金属間化合物からなる層の厚さが、0.1〜10.0μmである、請求項14に記載の接続構造体。   The connection structure according to claim 14, wherein the layer made of the intermetallic compound has a thickness of 0.1 to 10.0 μm.
JP2017145591A 2017-07-27 2017-07-27 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof Pending JP2019029135A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017145591A JP2019029135A (en) 2017-07-27 2017-07-27 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof
JP2022164228A JP2022186787A (en) 2017-07-27 2022-10-12 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017145591A JP2019029135A (en) 2017-07-27 2017-07-27 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022164228A Division JP2022186787A (en) 2017-07-27 2022-10-12 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019029135A true JP2019029135A (en) 2019-02-21

Family

ID=65478621

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017145591A Pending JP2019029135A (en) 2017-07-27 2017-07-27 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof
JP2022164228A Pending JP2022186787A (en) 2017-07-27 2022-10-12 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022164228A Pending JP2022186787A (en) 2017-07-27 2022-10-12 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP2019029135A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
WO2020235573A1 (en) * 2019-05-20 2020-11-26 タツタ電線株式会社 Conductive adhesive sheet
JP2021002446A (en) * 2019-06-20 2021-01-07 積水化学工業株式会社 Electroconductive material, connection structure, and method for manufacturing connection structure
WO2021131620A1 (en) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 Connection structure and manufucturing method therefor
WO2023189611A1 (en) * 2022-03-29 2023-10-05 日東電工株式会社 Connecting structure
WO2023219363A1 (en) * 2022-05-09 2023-11-16 주식회사 마이다스에이치앤티 Stretchable anisotropic conductive film, method for manufacturing same, and stretchable electronic device comprising same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPH04301382A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Connecting member
JPH06223943A (en) * 1993-01-29 1994-08-12 Hitachi Chem Co Ltd Manufacture of connecting member and its manufacturing device
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JP2002519473A (en) * 1998-06-30 2002-07-02 ミネソタ マイニング アンド マニュファクチャリング カンパニー Fine pitch anisotropic conductive adhesive
JP2003286457A (en) * 2002-03-28 2003-10-10 Asahi Kasei Corp Anisotropic conductive adhesive sheet and its manufacturing method
US20100101700A1 (en) * 2005-06-13 2010-04-29 Trillion Science Inc. Non-random array anisotropic conductive film (acf) and manufacturing processes
WO2014033983A1 (en) * 2012-08-31 2014-03-06 パナソニック株式会社 Component-carrying structure
WO2015029696A1 (en) * 2013-08-27 2015-03-05 日東電工株式会社 Electrically conductive joining composition, electrically conductive joining sheet, electronic component, and production method for same
JP2016085983A (en) * 2014-10-28 2016-05-19 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
JP2016131082A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Anisotropically conductive film, method for manufacturing the same and connection structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPH04301382A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Connecting member
JPH06223943A (en) * 1993-01-29 1994-08-12 Hitachi Chem Co Ltd Manufacture of connecting member and its manufacturing device
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JP2002519473A (en) * 1998-06-30 2002-07-02 ミネソタ マイニング アンド マニュファクチャリング カンパニー Fine pitch anisotropic conductive adhesive
JP2003286457A (en) * 2002-03-28 2003-10-10 Asahi Kasei Corp Anisotropic conductive adhesive sheet and its manufacturing method
US20100101700A1 (en) * 2005-06-13 2010-04-29 Trillion Science Inc. Non-random array anisotropic conductive film (acf) and manufacturing processes
WO2014033983A1 (en) * 2012-08-31 2014-03-06 パナソニック株式会社 Component-carrying structure
WO2015029696A1 (en) * 2013-08-27 2015-03-05 日東電工株式会社 Electrically conductive joining composition, electrically conductive joining sheet, electronic component, and production method for same
JP2016085983A (en) * 2014-10-28 2016-05-19 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
JP2016131082A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Anisotropically conductive film, method for manufacturing the same and connection structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
JP7452418B2 (en) 2018-06-26 2024-03-19 株式会社レゾナック Anisotropic conductive film and method for producing the same, and method for producing a connected structure
JPWO2020004510A1 (en) * 2018-06-26 2021-08-05 昭和電工マテリアルズ株式会社 Anisotropic conductive film and its manufacturing method and manufacturing method of connecting structure
KR102404193B1 (en) 2019-05-20 2022-05-30 타츠타 전선 주식회사 conductive adhesive sheet
WO2020235573A1 (en) * 2019-05-20 2020-11-26 タツタ電線株式会社 Conductive adhesive sheet
JP6794591B1 (en) * 2019-05-20 2020-12-02 タツタ電線株式会社 Conductive adhesive sheet
KR20210153767A (en) * 2019-05-20 2021-12-17 타츠타 전선 주식회사 conductive adhesive sheet
JP2021002446A (en) * 2019-06-20 2021-01-07 積水化学工業株式会社 Electroconductive material, connection structure, and method for manufacturing connection structure
JP7280758B2 (en) 2019-06-20 2023-05-24 積水化学工業株式会社 Conductive material, connection structure, and method for manufacturing connection structure
EP4084020A4 (en) * 2019-12-27 2023-07-05 Resonac Corporation Connection structure and manufucturing method therefor
WO2021131620A1 (en) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 Connection structure and manufucturing method therefor
WO2023189611A1 (en) * 2022-03-29 2023-10-05 日東電工株式会社 Connecting structure
WO2023219363A1 (en) * 2022-05-09 2023-11-16 주식회사 마이다스에이치앤티 Stretchable anisotropic conductive film, method for manufacturing same, and stretchable electronic device comprising same

Also Published As

Publication number Publication date
JP2022186787A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP2019029135A (en) Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof
JP7452418B2 (en) Anisotropic conductive film and method for producing the same, and method for producing a connected structure
JP5311772B2 (en) Adhesive film
TWI672710B (en) Conductive paste, method for producing conductive paste, connection structure, and method for manufacturing connection structure
KR102411356B1 (en) Electrically conductive paste, joined structure, and method for manufacturing joined structure
CN1498520A (en) Method of manufacturing electronic part and electronic part obtained by the method
JP5783329B2 (en) Anisotropic conductive sheet and electrode joining method using the same
CN106068059B (en) Connection structure, connection method, and connection material for circuit components
JP6496431B2 (en) Conductive material and connection structure
JP5767792B2 (en) Method for manufacturing mounting body, connection method, and anisotropic conductive film
KR102393302B1 (en) Conductive paste, connection structure, and production method for connection structure
Lee et al. Study on fine pitch flex-on-flex assembly using nanofiber/solder anisotropic conductive film and ultrasonic bonding method
JP2010037389A (en) Adhesive and electrode-connecting method using the same
JP2010067360A (en) Anisotropic conductive film and its use method
KR101988903B1 (en) self-assembled conductive bonding film and manufacturing method thereof
KR20120022580A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP2010024416A (en) Adhesive for connecting electrodes
WO2021131620A1 (en) Connection structure and manufucturing method therefor
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
JP6064399B2 (en) Circuit connection member, circuit connection method using the same, and circuit connection structure
JP6047437B2 (en) Conductive material, connection structure, and manufacturing method of connection structure
JP2018133331A (en) Anisotropic conductive connection structure, manufacturing method of anisotropic conductive connection structure, anisotropic conductive film, and anisotropic conductive paste
JP6536968B2 (en) Connection material
JP6474008B2 (en) Connecting material
JP2021108269A (en) Core-shell type solder particle, method for producing core-shell type solder particle, anisotropic conductive film, and method for producing anisotropic conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712