JPS62188184A - Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials - Google Patents

Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials

Info

Publication number
JPS62188184A
JPS62188184A JP61031088A JP3108886A JPS62188184A JP S62188184 A JPS62188184 A JP S62188184A JP 61031088 A JP61031088 A JP 61031088A JP 3108886 A JP3108886 A JP 3108886A JP S62188184 A JPS62188184 A JP S62188184A
Authority
JP
Japan
Prior art keywords
adhesive
circuit connection
core material
conductive particles
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61031088A
Other languages
Japanese (ja)
Inventor
功 塚越
豊 山口
中島 敦夫
喜勝 三上
武藤 州輝
善幸 池添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP61031088A priority Critical patent/JPS62188184A/en
Priority to US07/013,904 priority patent/US4740657A/en
Priority to DE8787301263T priority patent/DE3770318D1/en
Priority to EP87301263A priority patent/EP0242025B1/en
Publication of JPS62188184A publication Critical patent/JPS62188184A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回路の接続に用いられる接着剤組成物およびこ
の組成物よりなる接着剤フィルムさらにこの材料を用い
た回路の接続力法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an adhesive composition used for connecting circuits, an adhesive film made of this composition, and a method for connecting circuits using this material.

(従来の技術および問題点) 従来より集積回路類の配線基板への接続1表示累子類と
配線基板への接類、電気回路とIJ −ドとの接続など
のように接続端子が細かいピッチで並んでいる場合の接
続方法として、ハンダ付や導電性接着剤などの接続部材
による方法が広く用いられている。しかしながら、これ
らの方法忙おいては導電回路部のみに眼部して接続部材
を形成しなければならないので、高密度。
(Prior art and problems) Conventionally, connection terminals have been used at fine pitches, such as connection of integrated circuits to wiring boards, connection of display terminals to wiring boards, connection of electrical circuits to IJ-boards, etc. As a connection method when they are lined up in a row, methods using connecting members such as soldering and conductive adhesive are widely used. However, in these methods, it is necessary to form the connecting member only in the conductive circuit part, so the density is high.

高精細化の進む微細回路の接続に困難をきたしていた。Connecting microcircuits, which are becoming increasingly high-definition, has been difficult.

最近回路接続用の接続部材について検討が加えられ、す
でに特開昭51−20941号公報、特開昭51−21
192号公報1%開昭55−104’007号公報1等
により提案されているが、これらはいずれもその基本思
想は、相対峙する回路間に金属粒子等の導電材料を含む
異方導電性の接続部材層を設け、加圧または、加熱加圧
手段を構じることによって1回路間の電気的愛顧と同時
に隣接回路間に絶縁性を付与し、相対峙する回路を接着
固定するといういわゆる異方導電接続材料圧よる方法で
ある。
Recently, connection members for circuit connections have been studied, and have already been published in Japanese Patent Laid-Open No. 51-20941 and Japanese Patent Laid-open No. 51-21.
Publication No. 192 1% Publication No. 55-104'007 No. 1, etc., have been proposed, but the basic idea of all of these is anisotropic conductivity that includes conductive materials such as metal particles between opposing circuits. By providing a connecting member layer and providing pressure or heating/pressing means, electrical protection between one circuit and insulation between adjacent circuits is provided, and opposing circuits are bonded and fixed. This method uses anisotropic conductive connection material pressure.

しかしながらこれらの方法においては、回路間の導通は
主として複数個の導電性材料、多くの場合には金属粒子
の接触によって得られるものであり、金属粒子が剛直で
あるため粒子/粒子間あるいは粒子/回路間の接触面積
か光分でなく導通の信頼性が不足してい友。
However, in these methods, conduction between circuits is mainly obtained by contact between multiple conductive materials, often metal particles, and because metal particles are rigid, there is no connection between particles or between particles. The contact area between the circuits or the reliability of the conduction is insufficient, rather than the amount of light.

また前記の導通思想と同じではあるが、初期接続信頼性
の向上、あるいは、原価低減等を目的として、導電粒子
あるいは絶縁性粒子を核材とし、その表面に導電層を形
成した粒子を用い。
Although it is the same as the above-mentioned conduction concept, for the purpose of improving initial connection reliability or reducing cost, particles are used in which a conductive particle or an insulating particle is used as a core material and a conductive layer is formed on the surface of the core material.

異方導電接続を得ようとする試みもたとえば特開昭51
−155958号公報、特開昭56−122193号公
報、特開昭58−111202号公報などにみられるが
、金属粒子やアルミナ、ガラスなどを核材とした場合は
前記と同様に核材が剛直であるために粒子/粒子間ある
いは粒子/回路間の接融面積が光分でないため導通の信
頼性が不満足であり、また核材としてプラスチックを用
いるとの知見はあるもの〜、実用化に結びつ〈発明の要
件が明確でなく1本発明者の追試によっても良好な長期
信頼性を有する回路の接続体を得る事が出来なかった。
Attempts to obtain anisotropic conductive connections were also made, for example, in JP-A-51.
As seen in JP-A-155958, JP-A-56-122193, JP-A-58-111202, etc., when metal particles, alumina, glass, etc. are used as the core material, the core material is rigid as described above. Therefore, the reliability of conduction is unsatisfactory because the contact area between particles or between particles and circuits is not the same as that of light, and there is knowledge that plastic is used as a core material. (1) The requirements of the invention were not clear, and even after additional testing by the inventor, it was not possible to obtain a circuit connection body with good long-term reliability.

すなわち以上の従来技術は回路接続時の異方導電性を得
ることは可能であっても、接続部の信頼性などの実用特
性lでは踏みこんでいない。
That is, although it is possible to obtain anisotropic conductivity during circuit connection in the above-mentioned prior art, practical characteristics such as reliability of the connection portion are not considered.

後述するようにこれら従来技術の追試結果を第1表の比
較例1〜2に示したか、満足すべき特性を得ることがで
きなかつ次。
As will be described later, the results of follow-up tests of these conventional techniques are shown in Comparative Examples 1 and 2 in Table 1, or if satisfactory characteristics could not be obtained.

さらに接続信頼性の向上を目的として、たとえば特開昭
60−140790公報に見られるように、絶縁性接着
剤中に分散された金g4E1子を回路間で溶融して接続
することで良好な接続を得る試みもあるか、このものは
金属粒子が熱溶融性であるため接続条作中か狭<、接続
時の信頼性が不満足である欠点を有している。すなわち
金属の融点近傍では良好な接続が得られ【も、融点以上
では従来のハンダ付と同様に金属粒子の溶融により簡単
に流動変形して隣接回路間を連結する几めに隣接回路間
で絶縁性がなくなり(リークという)細から回路ピッチ
に対応出来ない欠点を有し、また融点以下では金属の溶
融が起らない為に、前記し次ように剛直な金属粒子が回
路間に存在するだけであり初期の導通性を得ることが可
能であっても、長期の接続信頼性とくにたとえば冷熱衝
撃試験における信頼性が不満足であった。また融点近傍
においてもその溶融状態を制御することか熱伝導性など
の点から難かしく、たとえ得られた良好な回路接続部に
おいても、接着剤と金属粒子との熱膨張差が大きいこと
から、前記した耐熱衝撃性が低い欠点を有していた。ま
たこれらの熱浴融性金属は液晶をはじめとしてディスプ
レイ用途に多用される透明導電カラス電極等に対しては
その表面張力が極めて大きいことから回路面に対する濡
れ性がなく、良好な接続を得ることが出来なかった。
Furthermore, with the aim of improving connection reliability, for example, as seen in JP-A-60-140790, good connections are achieved by melting gold g4E1 elements dispersed in an insulating adhesive between circuits. However, since the metal particles are heat-fusible, this method has the drawback that the reliability during connection is unsatisfactory due to the short distance between the connecting strips and the connection. In other words, a good connection can be obtained near the melting point of the metal, but above the melting point, the metal particles melt and easily flow and deform, similar to conventional soldering. It has the disadvantage of not being able to adapt to fine circuit pitches (called leakage), and because the metal does not melt below its melting point, rigid metal particles only exist between the circuits as described above. Even if it is possible to obtain initial conductivity, long-term connection reliability, particularly in, for example, a thermal shock test, is unsatisfactory. In addition, it is difficult to control the melting state near the melting point due to thermal conductivity, and even if a good circuit connection is obtained, there is a large difference in thermal expansion between the adhesive and the metal particles. It had the drawback of low thermal shock resistance as described above. In addition, these hot bath meltable metals have extremely high surface tension for transparent conductive glass electrodes, etc., which are often used in display applications such as liquid crystals, so they do not wet the circuit surface, making it difficult to obtain a good connection. I couldn't do it.

本発明者らは先に回路接続用に極めて良好な導電性接着
シートおよび接続部材を提案したが。
The present inventors have previously proposed an extremely good conductive adhesive sheet and connection member for circuit connection.

本発明はさらに上記欠点を改良し接続時および接続後の
信頼性の高い接続を可能とする手段および方法について
鋭意検討の結果1本発明に達したものである。
The present invention was achieved as a result of extensive research into means and methods that further improve the above-mentioned drawbacks and enable highly reliable connections during and after connection.

(問題点を解決するための手段) すなわち本発明は、絶縁性の接着剤成分と導電性粒子と
よりなる回路接続用の接着剤組成物において、導電性粒
子として高分子核材のほゞ全表面が導電性の金属薄層に
より複機された平均粒径α5〜300μm1粒子形状と
しての粒径比α05〜1.0の導電性粒子を前記接着剤
成分中に固形゛公比で[11〜15体積%含有し、接着
剤に対する高分子核材の熱膨張率の比が[15〜15で
ありかつ弾性率の比が1.2〜cL01であることを架
橋硬化する回路接続用の接着剤組成物と、この組成物の
一使用形態としての厚みが1〜600μmで全光線透過
率が40%以上である回路接続用の接着剤フィルム、さ
らにこの組成物ならびにフィルムを用いた長期接続信頼
性に優れた回路の接続方法に関する。
(Means for Solving the Problems) That is, the present invention provides an adhesive composition for circuit connection comprising an insulating adhesive component and conductive particles, in which almost all of the polymer core material is used as the conductive particles. Conductive particles having an average particle size α5 to 300 μm and a particle size ratio α05 to 1.0 in the form of one particle, whose surfaces are compounded by a conductive metal thin layer, are added to the adhesive component in a solid common ratio [11 to 300 μm]. An adhesive for circuit connection that contains 15% by volume and is crosslinked and cured such that the ratio of the thermal expansion coefficient of the polymer core material to the adhesive is [15 to 15] and the ratio of the elastic modulus is 1.2 to cL01. A composition, an adhesive film for circuit connection having a thickness of 1 to 600 μm and a total light transmittance of 40% or more as one form of use of this composition, and long-term connection reliability using this composition and film. Concerning excellent circuit connection methods.

本発明にかかる組成物ならびにフィルムの構成を図面を
用いながら以下に詳しく説明すると。
The structure of the composition and film according to the present invention will be explained in detail below with reference to the drawings.

第1図および第2図は本発明忙使用する導電性粒子を示
す断面模式向であり、第1■においては高分子核材1の
表1iliが金属2で被覆されている様子を示し念もの
であり、第2因においては高分子核材1が中空部3を有
する場合の模式図である。
Figures 1 and 2 are schematic cross-sectional views showing the conductive particles used in the present invention, and Figures 1 and 2 are diagrams showing how the surface 1ili of the polymer core material 1 is coated with the metal 2. This is a schematic diagram in the case where the polymer core material 1 has a hollow part 3 in the second factor.

本発明の高分子核材1は第1図あるいは第2図に代表さ
れる構成の物が単独あるいは複合して使用される。
The polymer core material 1 of the present invention has the structure shown in FIG. 1 or 2, used alone or in combination.

ここで核材とは完全な充填体、内部が気体からなる中空
体、あるいは内部に気泡部を有する発泡体など種々の構
成をとることが可能である。
Here, the core material can have various configurations, such as a completely filled body, a hollow body whose interior is made of gas, or a foam body having air bubbles inside.

高分子核材1の形状ははy球状であることか代表的であ
るが1表面に凸起や凹凸があっても良く、また核材粒子
が凝集した凝集粒子゛としても使用できる。
The shape of the polymeric core material 1 is typically spherical, but it may also have protrusions or irregularities on its surface, and can also be used as agglomerated particles in which core material particles are aggregated.

高分子核材はプラスチック類またはゴム類や天然高分子
類がありこれらの複合体としての混合物あるいは共重合
物などでも良く、これらを主成分とし必要に応じて架橋
剤、硬化剤およびその他の添加剤を用いる。これらの高
分子類を例示すると、ポリエチレン、ポリプロピレン。
The polymer core material may be plastics, rubbers, or natural polymers, and may be a composite mixture or copolymer of these materials, with these as the main component, and crosslinking agents, curing agents, and other additives as necessary. using an agent. Examples of these polymers include polyethylene and polypropylene.

ポリスチレン、アクリロニトリル−スチレン共重合体、
アクリロニトリル−ブタジェン−スチレン共重合体、ポ
リカーボネート、ポリメチルメタアクリレート等の各種
アクリレート、ポリビニルプfラール、ホリビニルホル
マール、ポリイミド、ポリ1ミド、ポリエステル、ポリ
塩化ビニル、ポリ塩化ビニリデン、フッ素a+脂。
polystyrene, acrylonitrile-styrene copolymer,
Acrylonitrile-butadiene-styrene copolymer, polycarbonate, various acrylates such as polymethyl methacrylate, polyvinyl plaal, holvinyl formal, polyimide, poly1mide, polyester, polyvinyl chloride, polyvinylidene chloride, fluorine a+ fat.

ボリフェニレンオ命ティド、ポリフェニレンナルファイ
ド、ポリメチルペンテン、尿素樹脂。
Polyphenylene oxide, polyphenylene nalphide, polymethylpentene, urea resin.

メラミン樹脂、ベンゾグアナミン樹脂、フェノール樹脂
、ホルマリン樹脂、キシレン樹脂、フラン樹脂、ジアリ
ル2タレート樹脂、エポキシ樹脂、ポリイソシアネート
樹脂、フェノキシ樹脂、シリコーン樹脂などがあり、こ
れらを適宜変性してもよい。
Examples include melamine resin, benzoguanamine resin, phenol resin, formalin resin, xylene resin, furan resin, diallyl ditalate resin, epoxy resin, polyisocyanate resin, phenoxy resin, and silicone resin, and these may be modified as appropriate.

ここで熱硬化性の物にありては、接着剤成分との混合等
忙支障のない範囲であればその硬化度合は問わないもの
とする。
In the case of thermosetting materials, the degree of curing is not critical as long as it does not interfere with mixing with adhesive components.

これらの単体や2株以上の複合物を用いることができる
か、さらに次の点を加味して決定する。
Whether a single strain or a combination of two or more of these strains can be used is determined by taking into account the following points.

(リ 回路接続時の温度すなわち常温から400℃の間
で10okg、/―以下の圧力で軟化あるいは変形可能
であること。
(It must be possible to soften or deform at a pressure of 10 kg/- or less at the temperature during recircuit connection, that is, between room temperature and 400°C.

(2)常温付近における熱膨張率は2”OX 10−’
〜2 X I P’ (’ ”Cンであること。
(2) The coefficient of thermal expansion near normal temperature is 2"OX 10-'
〜2

(3)弾性率が接着剤成分の値と略同等以上であること
(3) The elastic modulus is approximately equal to or higher than the value of the adhesive component.

(4)  金属被覆層との密着性の良好なこと。(4) Good adhesion to the metal coating layer.

ここで接続時の加圧および加熱加圧により軟化あるいは
変形可能である理由は1回路接続時に導電性粒子同士あ
るいは導電性粒子と回路との接触面積を増加するために
必要てあり、常温においてのいわゆる感圧接着剤による
感圧接続および400℃迄の加熱を併用した感熱接続に
よることも可能である。400℃以上では回路基板に対
して熱損傷を与える恐れがあり2本発明忙は適用できな
い。また常温貼付の場合には回路の実装上耐熱性が問題
となる場合かある之め忙、より好ましくは高分子核材は
100〜250℃で軟化あるいは変形可能であることが
好ましい。
The reason why it can be softened or deformed by applying pressure and heating during connection is that it is necessary to increase the contact area between conductive particles or between conductive particles and the circuit when one circuit is connected. It is also possible to use a pressure-sensitive connection using a so-called pressure-sensitive adhesive and a heat-sensitive connection using heating up to 400°C. If the temperature exceeds 400° C., there is a risk of thermal damage to the circuit board, so the method of the present invention cannot be applied. Further, in the case of pasting at room temperature, heat resistance may be a problem in mounting the circuit, so it is more preferable that the polymer core material is softened or deformable at 100 to 250°C.

圧力は接続を要する回路部に悪影響を及ぼさぬよう忙、
出来れば低圧が望ましく通常は100kg/aIP以下
がこの椙の回路接続に多用され。
The pressure should be adjusted so as not to adversely affect the circuit parts that need to be connected.
Low pressure is desirable if possible, and usually 100 kg/aIP or less is often used for this type of circuit connection.

本発明においても準用できる。This can also be applied mutatis mutandis to the present invention.

高分子核材の熱膨張率の規定は、熱変化時における被覆
金属との密着性の点から必要であり。
It is necessary to specify the coefficient of thermal expansion of the polymer core material from the viewpoint of adhesion to the coating metal during thermal changes.

上限の20 X 10−’ (’/’C)以上では!I
P1に張収縮量が大きすぎることから金属被61/@l
の割れや剥離を生じ易く好ましくない。
Above the upper limit of 20 x 10-'('/'C)! I
Because the amount of tension and contraction in P1 is too large, metal covering 61/@l
This is undesirable as it tends to cause cracking and peeling.

弾性率を接着剤成分と略同等以上とする理由は1回路接
続時の加圧もしくは加熱加圧下において適切な接続状態
を得るために必要であり。
The reason why the modulus of elasticity is approximately equal to or higher than that of the adhesive component is necessary in order to obtain an appropriate connection state under pressure or heating and pressure during connection of one circuit.

この点に関してはさらに後述する。This point will be discussed further later.

金属被覆層と高分子核材との密着性は、高分子核材の極
性や前述の熱膨張率に留意する他に。
Regarding the adhesion between the metal coating layer and the polymer core material, in addition to paying attention to the polarity of the polymer core material and the above-mentioned coefficient of thermal expansion.

高分子核材へのプラズマやコロナ処理などの表面活性化
手段、あるいは各種カップリング剤。
Surface activation methods such as plasma or corona treatment for polymer core materials, or various coupling agents.

キレート剤、極性付与剤などの表面処理手段を必要に応
じて処すことにより、密着性を向上することが可能であ
る。密着性が向上すると、被覆層の脱落を防止すること
ができ良好な導電および絶縁特性を合せて得ることがで
きる。
Adhesion can be improved by applying surface treatment means such as a chelating agent and a polarizing agent as necessary. When the adhesion is improved, the coating layer can be prevented from falling off, and good electrical conductivity and insulation properties can be obtained.

被徨に用いられる金属2としては各種の金属。Various metals can be used as the metal 2 used for wandering.

金属酸化物1合金等が用いられるが、下記を考慮して選
択される。
Metal oxide 1 alloy etc. are used, and are selected in consideration of the following.

(1)  電気の良導体であること力1必須で好ましく
は比抵抗が100X10−’Ω−CHI以下、さらに好
ましくは10 X 1 (1’″6Ω−cm以下である
こと。
(1) Must be a good conductor of electricity, preferably with a specific resistance of 100 x 10-'Ω-CHI or less, more preferably 10 x 1 (1'''6 Ω-cm or less).

(2)常温付近における熱膨張率が1,0X10”5〜
4.0X10−’(’光)であること。
(2) Thermal expansion coefficient near normal temperature is 1.0 x 10"5 ~
4.0x10-'('light).

なおここで言う比抵抗や熱膨張率は各種文献に掲載の値
を用いることが可能であり、たとえば日本機械学会発行
の機械工学便覧改訂第6版。
Note that for the resistivity and coefficient of thermal expansion mentioned here, values published in various documents can be used, such as the revised 6th edition of the Mechanical Engineering Handbook published by the Japan Society of Mechanical Engineers.

5−1〜5−5真所載の金属の物理的性質を参考とする
ことかできる。これら<13121の条件を満足する合
端元素の例としては、Zn、 AJ、 Sb。
The physical properties of metals described in 5-1 to 5-5 may be referred to. Examples of bonding elements that satisfy the condition of <13121 are Zn, AJ, and Sb.

U、 Cd、 Ga、 Ca、 Au、 Ag、 Co
、 Sn、 Se。
U, Cd, Ga, Ca, Au, Ag, Co
, Sn, Se.

Fe、 Cu、 Th、 Pb、 Ni、 Pd、 B
e、 Mg、 Mnなどがあり、これらを単独もしくは
複合して用いることが出来、さらに特殊な目的たとえば
硬度や表面張力改良などのために他の元素あるいは化合
物なども添加できる。
Fe, Cu, Th, Pb, Ni, Pd, B
e, Mg, Mn, etc., and these can be used alone or in combination, and other elements or compounds can also be added for special purposes, such as improving hardness or surface tension.

高分子核材1の表面上に金属2を形成する方法としては
、たとえば蒸N法、スパッタリング法、イオンブレーテ
ィング法、メッキ法などの物理化学的方法や、高分子核
材の合成時に少量の金属をモノマー中に分散させ1重合
後のポリマー粒子表面に金属粉を吸着させたり、官能基
を有する核材と金属を化学結合させたり、果面活性剤や
カップリング剤などにより吸着させるなどの化学的手法
による等の方法力1採用できる。
Methods for forming the metal 2 on the surface of the polymer core material 1 include physicochemical methods such as the vapor N method, sputtering method, ion blating method, and plating method, and methods for forming the metal 2 on the surface of the polymer core material 1. Metal powder is dispersed in a monomer and adsorbed onto the surface of polymer particles after one polymerization, the metal is chemically bonded to a core material having a functional group, or the metal is adsorbed using a fruit surfactant or a coupling agent. Method ability 1, such as chemical methods, can be adopted.

被覆層の厚みは、001〜5μmが適用可能であり、好
ましくはα05〜1μmがさらに良好であるが、この厚
みは導電性粒子の粒径の115〜’/1000に入るも
のとする。ここで厚みに制限を設ける理由は、厚みか薄
いと導電性が低下し、厚みが増すと高分子核材や接着剤
成分との熱膨張収縮の差が大きくなることから温度変化
に対する追随性が少なくなるためである。
The thickness of the coating layer may be 0.001 to 5 μm, preferably α05 to 1 μm, but this thickness should fall within 115 to 1000 of the particle size of the conductive particles. The reason why there is a limit on the thickness is that if the thickness is too thin, the conductivity will decrease, and as the thickness increases, the difference in thermal expansion and contraction between the polymer core material and the adhesive component will increase, making it difficult to follow temperature changes. This is because there will be less.

また金属は変形に対して薄層であることから元号に追随
性を有するが、たとえば伸び率の大きな展延性の材料で
あることがより好ましい。
Further, since metal is a thin layer against deformation, it has the ability to follow the era name, but it is more preferable to use a malleable material with a high elongation rate, for example.

従来このような導電性粒子として、ガラス球(ビーズ)
あるいはガラス中空球(バルーン)にAg等の薄層を設
は友ものもあるが、これらは加熱加圧時に糖化変形する
ことが出来ない為本発明の実施には不適である。
Conventionally, glass spheres (beads) were used as such conductive particles.
Alternatively, a glass hollow sphere (balloon) may be coated with a thin layer of Ag or the like, but these cannot undergo saccharification and deformation when heated and pressurized, and are therefore unsuitable for carrying out the present invention.

゛上記により得られた導電性粒子は平均粒径が0.5〜
300μm1粒子の最少径に対する最大径の比がa、0
5〜1.0であるものとする。粒子径が0.5t1m以
下では多量の導電性粒子を必要とし、また結果的に充填
粒子数か多くなるので回路との接着性が低下し、50o
μm以上になると粒子が大きいために隣接回路間(スペ
ースンが導通(リーク)されるようになり微細回路の接
続に適用できないことがら好ましくない。リークの発生
を防止する九め忙は、接続すべき回路のスペースよりも
最大粒径の小さい導電性粒子を選択することが必要であ
り安全率を考慮してスペース巾の1/2〜1/4の最大
粒径の導電性粒子を用いることが好プしい。
゛The conductive particles obtained above have an average particle size of 0.5 to
The ratio of the maximum diameter to the minimum diameter of 300 μm 1 particle is a, 0
It shall be 5 to 1.0. If the particle size is 0.5t1m or less, a large amount of conductive particles is required, and as a result, the number of packed particles increases, resulting in poor adhesion to the circuit.
Particles larger than μm are undesirable because they are large and cause conduction (leakage) between adjacent circuits (spacens), making them unsuitable for connecting microcircuits. It is necessary to select conductive particles with a maximum particle size smaller than the space of the circuit, and considering the safety factor, it is recommended to use conductive particles with a maximum particle size of 1/2 to 1/4 of the space width. I like it.

導電性粒子の形状は前記の如く最少径に対する最大径の
比がa05〜1.0程度とする。
As described above, the shape of the conductive particles is such that the ratio of the maximum diameter to the minimum diameter is about a05 to 1.0.

この範囲外では粒子が余りにもフレーク状となり、本発
明の目的とする回路間の4通性と隣接回路間の絶縁性を
同時に得るには不向きであり、また回路との接着性も低
下する傾向が強くなる。
Outside this range, the particles become too flaky, making it unsuitable for simultaneously achieving the four-way conductivity between circuits and the insulation between adjacent circuits, which are the objectives of the present invention, and the adhesion to the circuits also tends to decrease. becomes stronger.

この範囲を満たす例としては、は2球状であるものが比
表的であるが上記条件な溝たすものであれば特に限定さ
れない。また粒子表面に突起物や凹凸かあっても良(、
また単一粒子に限定されずに凝集体からなる粒子であっ
ても良い。
As an example that satisfies this range, a bispherical shape is representative, but there is no particular limitation as long as the groove satisfies the above conditions. In addition, there may be protrusions or irregularities on the particle surface (,
Further, the particles are not limited to single particles, but may be particles made of aggregates.

粒子径は全体的な平均粒径をとるものとし。The particle size shall be the overall average particle size.

粒子の形状や粒子径の測足は、友とえは走査形電子顕微
鏡などによる方法が便利である。平均粒径りは次式で求
めるものとする。
A convenient method for measuring the shape and diameter of particles is using a scanning electron microscope. The average particle size shall be determined by the following formula.

D=Σnd/Σn ここに、nはdなる粒径の粒子の数を示す。D=Σnd/Σn Here, n indicates the number of particles having a particle size of d.

導電性粒子が球状であると1MI続時の加熱加圧により
粒子相互あるいは粒子と回路面との接触を得やすく高導
性を得やすい。
When the conductive particles are spherical, it is easy to obtain contact with each other or between the particles and the circuit surface by heating and pressurizing during 1 MI, and it is easy to obtain high conductivity.

導電性粒子は接続部材の厚み方向に単層で存在しても良
いし、複数個配列あるいは凝集した構造であっても良い
The conductive particles may exist in a single layer in the thickness direction of the connection member, or may have a structure in which a plurality of conductive particles are arranged or aggregated.

接着剤中に占める導電性粒子はa、1〜15体積%が適
当である。α1体積%以下では満足する導電性が得られ
ず、15体積%以上では隣接回路との絶縁性が低下し接
着剤フィルムの透明性も得られない。上記理由からより
好ましい飽加量は、05〜10体積%である。
The conductive particles in the adhesive preferably account for 1 to 15% by volume a. If α is less than 1% by volume, satisfactory conductivity cannot be obtained, and if it is more than 15% by volume, the insulation with adjacent circuits decreases and the transparency of the adhesive film cannot be obtained. For the above reasons, a more preferable saturation amount is 05 to 10% by volume.

本発明で用いられる接着剤としては、基本的には絶縁性
を示す通常の接着性シート類に用いられている配合か適
用可能であり、常温付近の熱膨張係数が5X 10−’
 (1/C)以下のものから選択される。通常の撤着シ
ート類に用いられる配合は凝集力を付与するポリマーと
、その他必要に応じて用いる粘着付与剤、粘着性調整剤
The adhesive used in the present invention can basically be of a composition used for ordinary adhesive sheets exhibiting insulation properties, and has a thermal expansion coefficient of 5X 10-' at room temperature.
(1/C) Selected from the following: The composition used for normal removable sheets is a polymer that provides cohesive force, and other tackifiers and tackifiers used as necessary.

架橋剤、老化防止剤2分散剤等からなっている。It consists of a crosslinking agent, an anti-aging agent, a dispersing agent, etc.

これらポリマー橿としては、エチレン酢酸ビニル共重合
体、エチレン−酢酸ビニル共重曾体f性物、ポリエチレ
ン、エチレン−プロピレン共重合体、エチレン−アクリ
ル酸共重合体、エチレンーアクリル酸エステル共重合体
、エチレン−アクリル酸塩共重合体、アクリル酸エステ
ル系ゴム、ポリイソブチレン、アタクチックポリプロピ
レン、ポリビニルブチラール、アクリロニトリル−ブタ
ジェン共重合体、スチレン−ブタジェンブロック共重合
体、スチレン−イソプレンブロック共重合体、ポリブタ
ジェン、エチレンセルロース、フェノキシ、ポリエステ
ル。
These polymers include ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, and ethylene-acrylic acid ester copolymer. , ethylene-acrylate copolymer, acrylic ester rubber, polyisobutylene, atactic polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, Polybutadiene, ethylene cellulose, phenoxy, polyester.

エポキシ、ポリアミド、ポ」Jウレタン、天然ゴム、シ
リコーン系ゴム、ポリクロロプレン等ノ合成ゴム類、ポ
リビニルエーテルなどが適用可能であり、単独あるいは
28以上併用して用いられる。
Epoxy, polyamide, polyurethane, natural rubber, silicone rubber, synthetic rubbers such as polychloroprene, polyvinyl ether, and the like can be used alone or in combination of 28 or more.

粘着付与剤としては、ジシクロペンタジェン樹脂、ロジ
ン、変性ロジン、テルペン樹脂、キシレン樹脂、テルペ
ン−フェノール樹脂、アルキルフェノール樹脂、クマロ
ン−インデン樹脂等があり、これらを必要に応じて、単
独あるいは2種以上併用して用いる。粘着性y4整剤と
してはたとえばジオクチルフタレートをはじめとする各
種可塑剤類等が代表的である。
Tackifiers include dicyclopentadiene resin, rosin, modified rosin, terpene resin, xylene resin, terpene-phenol resin, alkylphenol resin, coumaron-indene resin, etc., and these can be used alone or in combination as necessary. Used in combination with the above. Typical adhesive y4 modifiers include various plasticizers including dioctyl phthalate.

架橋剤はポリマーの凝集力を高めることか必要な場合に
用いられ、ポリマの官能基と反応する多官能性物質であ
り、たとえばポリイノシアネート、メラミン樹脂、尿素
樹脂、フェノール樹脂、アミン類、酸無水物、過酸化物
等があげられ、さらに光硬化性の場合の増感剤としてベ
ンゾフェノン、ベンゾキノン等でも良い。
Crosslinking agents are used when necessary to increase the cohesive strength of polymers, and are polyfunctional substances that react with the functional groups of polymers, such as polyinocyanates, melamine resins, urea resins, phenolic resins, amines, and acids. Examples include anhydrides, peroxides, etc., and benzophenone, benzoquinone, etc. may also be used as a sensitizer in the case of photocuring.

老化防止剤は、ポリマーバインダの熱、酸素。Anti-aging agents are polymer binders heat and oxygen.

光等に対する安定性を高めることか必要な場合に用いる
ものでたとえば金属石ケン類を代表とする安定剤や、ア
ルキルフェノール類などの酸化防止剤、ベンゾ2エノン
系、ベンゾトリアゾール系などの紫外線吸収剤等があり
、やはり必要に応じて単独あるいは2m以上併用して用
いられる。
Used when necessary to increase stability against light, etc., such as stabilizers such as metal soaps, antioxidants such as alkylphenols, and ultraviolet absorbers such as benzo2-enone and benzotriazole types. etc., which may be used alone or in combination in lengths of 2m or more, if necessary.

分散剤は、導電性粒子の分散性向上のために用いる場合
がある。この例としてはたとえば界面活性剤があり、ノ
ニオン系、カチオン糸、rニオン系1両性のうち1mあ
るいは2柚以上併用して用いることが出来る。
A dispersant may be used to improve the dispersibility of conductive particles. Examples of this include surfactants, which can be used in combination of 1m or 2 or more of nonionic, cationic, rionic, and amphoteric surfactants.

上記接着剤成分は高分子核材との熱W張率の比接着剤成
分/高分子核材が(15〜15であり同じく弾性率の比
(接着剤成分/高分子核材9が1.2〜α01であるも
のとする。ここで熱膨張率は常温付近のl!ilJ膨張
率1膨張単1弾性率近の引張弾性率を意味するものとす
る。
The above adhesive component has a thermal W elongation ratio of adhesive component/polymer core material of 15 to 15, and a ratio of elastic modulus of adhesive component/polymer core material of 1. 2 to α01.Here, the coefficient of thermal expansion means the tensile modulus of elasticity close to the l!ilJ expansion coefficient of 1 expansion and the single modulus of elasticity near normal temperature.

上記範囲の規定は回路接続部の接続信f64性や長期信
頼性の点から必要である。熱膨張率の規定範囲外では、
高分子核材と接着剤成分との熱膨張収縮差が大きくなり
接着剤の熱膨張による回路の膨張に導電粒子が追隨てき
ず導電粒子と回路との間の接触不良か発生するので好ま
しくない。同じ理由から好ましい範囲はα6〜9である
。高分子核材の弾性率の比を接着剤成分と略同等以上と
する理由は、回路接続時における信頼性の向上から必要
であり、この比がα01以下では高分子核材の弾性が高
過ぎるために回路の接続時に導電性粒子相互および回路
との接触が不十分な点接触となり易く導電性か不満足と
なり、この比が1.2以上であると接着剤成分に較べて
高分子核剤の変形、流動が起り易いため忙隣接回路間忙
絶縁性が無くなり(リーク)微細回路忙対して適応でき
なくなり、また接続時の条件中が小さくなる。−このよ
うな理由から好ましめ範囲は1.0〜α02である。
The above range is necessary from the viewpoint of connection reliability and long-term reliability of the circuit connection portion. Outside the specified range of thermal expansion coefficient,
This is not preferable because the difference in thermal expansion and contraction between the polymer core material and the adhesive component becomes large, and the conductive particles follow the expansion of the circuit due to the thermal expansion of the adhesive, resulting in poor contact between the conductive particles and the circuit. For the same reason, the preferred range is α6 to α9. The reason why the ratio of the elastic modulus of the polymer core material is approximately equal to or higher than that of the adhesive component is necessary for improving reliability during circuit connection.If this ratio is less than α01, the elasticity of the polymer core material is too high. Therefore, when connecting the circuit, the conductive particles tend to have insufficient point contact with each other and with the circuit, resulting in unsatisfactory conductivity. Since deformation and flow are likely to occur, insulation between adjacent circuits is lost (leakage), making it impossible to adapt to minute circuits and reducing the connection conditions. -For these reasons, the preferred range is 1.0 to α02.

本発明にか〜る接着剤組成物の製造方法としては、ポリ
マおよびその他必要に応じて使用する添加剤からなる接
着剤組成物を溶剤に溶解するか懸濁状に媒体中に分散し
あるいは熱沼融させて液状とした後に導電性粒子をボー
ルミルや攪拌装置などの通常の分散方法により混合し、
導電性粒子混合接着剤組成物を得る。
The method for producing the adhesive composition according to the present invention includes dissolving the adhesive composition consisting of a polymer and other additives used as necessary in a solvent, dispersing it in a suspension state in a medium, or heating it. After melting to a liquid state, conductive particles are mixed using a conventional dispersion method such as a ball mill or stirring device.
A conductive particle mixed adhesive composition is obtained.

溶剤を用いる場合については、高分子核材上に金属層の
形成された導電性粒子は溶剤に対する溶解性かはとんど
ないため溶剤を用いることも可能であるが、接着剤を溶
解し高分子核材を溶解しない溶剤を選択することがさら
に好fしい。この手段とし【は、たとえば接着剤をエマ
ルシ冒ン化して水媒体中に導電性粒子を分散することも
よい方法である。
When using a solvent, it is possible to use a solvent because conductive particles with a metal layer formed on a polymer core material are hardly soluble in solvents, but it is possible to use a solvent to dissolve the adhesive. It is further preferable to select a solvent that does not dissolve the molecular core material. A good way to do this is, for example, to emulsify the adhesive and disperse the conductive particles in an aqueous medium.

上記導電性粒子混合接着剤組成物は、接続を要する一方
あるいは双方の回路上にスクリーン印刷やロールコータ
等の手段を用いて直接回路上に接着剤層を形成しても良
く、またフィルム状の連続長尺体とにもよい。連続長尺
体としての接着剤フィルムを得るには紙やプラスチック
フィルム等に必要に応じて剥離処理を行なったセパレー
タ上に前記手段により接続部材層を形成後連続的に巻重
しても良いし、接着層の粘着性が無い場合においてはセ
パレータを用いずに巻重することも可能であり、さらに
接着剤の補強用として、たとえば不織布等の芯材を用い
ることも可能である。
The above-mentioned conductive particle mixed adhesive composition may be used to form an adhesive layer directly on one or both of the circuits requiring connection by using means such as screen printing or a roll coater, or may be used in the form of a film. It can also be used as a continuous long body. In order to obtain an adhesive film as a continuous elongated body, a connecting member layer may be formed by the above method on a separator made of paper, plastic film, etc., which has been subjected to a peeling treatment as necessary, and then continuously rolled up. If the adhesive layer has no tackiness, it is possible to roll the adhesive layer without using a separator, and it is also possible to use a core material such as a non-woven fabric to reinforce the adhesive.

上記製法において接着剤組成物中に溶剤あるいは分散媒
を含む場合においては溶剤乾燥時の厚み方向の体積収縮
現象を利用して導電性粒子が厚み方向により密な配列を
有する接着剤フィルムを得ることが可能であり、又無溶
剤下のホットメルト塗工においては、製造時の溶剤によ
る環境汚染を防止することができる。
In the above manufacturing method, when the adhesive composition contains a solvent or a dispersion medium, the volume shrinkage phenomenon in the thickness direction when the solvent dries is used to obtain an adhesive film in which the conductive particles are arranged more densely in the thickness direction. Moreover, in hot-melt coating without a solvent, environmental pollution caused by solvents during production can be prevented.

接着剤フィルムの厚みは、導電性粒子の粒径および接続
部材の時性゛雀考□慮して相対的に決定するが、1〜3
00μmの厚みが好ましい。
The thickness of the adhesive film is relatively determined by taking into account the particle size of the conductive particles and the temporal characteristics of the connecting member, but it is 1 to 3.
A thickness of 00 μm is preferred.

1μm以下では充分なfjIyIl性が得らnず、30
0μm以上では充分な導電性を得る為に多量の導電性粒
子の混合な必要とすることから実用的でない。この理由
からさらに好ましい厚みは555−1O0aである。
If it is less than 1 μm, sufficient fjIyIl properties cannot be obtained, and 30
If the diameter is 0 μm or more, it is not practical because a large amount of conductive particles must be mixed in order to obtain sufficient conductivity. For this reason, a more preferable thickness is 555-100a.

このようにして得られた接着剤フィルムはかなりの透明
性を有する。接着剤フィルムが透明性を有すると製造時
の品備管理が行い易く外観上の見映えも良い。また表示
素子類の接層等においては、被着体を透視できる構成を
とることも可能となる。
The adhesive film thus obtained has considerable transparency. If the adhesive film is transparent, it will be easier to manage the inventory during manufacturing and will have a good appearance. In addition, it is also possible to adopt a structure in which the adherend can be seen through the contact layer of display elements.

得られた接着剤フィルムを用いて回路を接続する方法と
しては、たとえば回路に接着剤フィルムを仮貼付した状
態でセパレータのある場合にはセパレータを剥離し、あ
るいは接着剤組成物を回路上に塗−布し必要に応じて溶
剤除去後の状態で、その面に他の接続すべき回路を熱プ
レスあるいは加熱ロール等で貼付ければよい。
A method for connecting a circuit using the obtained adhesive film is, for example, by temporarily attaching the adhesive film to the circuit and peeling off the separator if there is a separator, or by applying an adhesive composition onto the circuit. - If necessary, after removing the solvent from the fabric, other circuits to be connected may be attached to that surface using a hot press or a heating roll.

第3向および@4図はかXる方法により回路を接続した
状態を模式的に示したもので、熱と圧力によって接着剤
4が軟化流動するとともに導電性粒子8も軟化変形し相
互に接触するので両回路5,6間の導通接着か可能とな
る。
The third direction and the diagram @4 schematically show the state in which the circuits are connected by the method described above. As the adhesive 4 softens and flows due to heat and pressure, the conductive particles 8 also soften and deform, and come into contact with each other. Therefore, conductive adhesion between both circuits 5 and 6 becomes possible.

第3図は回路5,6曲に導電性粒子8が複層ないしそれ
以上存在する場合の例で粒子表面の金IJ4/11同士
で接触して4m路を形成するので高導電性が得られる。
Figure 3 is an example where there are multiple or more layers of conductive particles 8 in circuits 5 and 6. Gold IJ4/11 on the surface of the particles contact each other to form a 4m path, resulting in high conductivity. .

接続時の加熱加圧に際し、波峰金属は薄ノーであるため
に高分子核材の変形に光分追随可能であり、もしや変形
に追随できずに金属膚にヒビ割れ等の欠陥か生じても2
回路あるいは、他の粒子との接触により導電路は保持で
きる。
When applying heat and pressure during connection, since the corrugated metal is thin, it can optically follow the deformation of the polymer core material, and even if it cannot follow the deformation and defects such as cracks occur on the metal skin. 2
The conductive path can be maintained by contact with circuits or other particles.

最適な接続状態を得るには接続前の接着剤組成物(フィ
ルム)厚みTに対する接続後の回路間の厚みtを、【/
T=α02へ095の範囲とすることが必要がある。こ
のとき、接続前の粒径りなる導電性粒子か厚み方向に単
粒子状で存在している場合には接続後の粒径をdとして
d/Dの比を【今と同様に用いることができる。
To obtain the optimal connection state, the thickness t between the circuits after connection is determined by the thickness t of the adhesive composition (film) before connection.
It is necessary to set T=α02 to 095. At this time, if the conductive particles have a particle size before connection and exist in the form of a single particle in the thickness direction, the particle size after connection is d, and the ratio d/D can be calculated as follows. can.

【今か(LO2以下では導電性粒子が破壊して金属薄片
が脱落し易くなり゛またこの比が195以上では回路あ
るいは導電性粒子との充分な面接触が得られないことか
ら、満足すべき接続信頼性ン得ることが出来ないので本
発明の実施には不適である。
[If the ratio is lower than LO2, the conductive particles will be destroyed and the metal flakes will easily fall off.If this ratio is higher than 195, sufficient surface contact with the circuit or conductive particles cannot be obtained, so it should be satisfied. Since connection reliability cannot be obtained, this method is unsuitable for implementing the present invention.

上記理由から【/rのより好ましい範囲は0.10〜a
90である。
For the above reasons, the more preferable range of /r is 0.10 to a
It is 90.

この最適な接続状態を簡単に得る方法として。As an easy way to get this optimal connection.

接続操作時に回路間に所望厚みの剛体よりなるスペーサ
を神入したり、接着剤組成物あるいは接着剤フィルム中
に導電性粒子より小さな所望の接続後の回路間厚みに等
しいスペーサ粒子を混入すれば1本発明の導電性粒子は
間怠に変形可能であるために所望の厚みを簡単に得るこ
とも可能である。
If a spacer made of a rigid body with a desired thickness is inserted between the circuits during the connection operation, or spacer particles smaller than the conductive particles and equal to the thickness between the circuits after the desired connection are mixed into the adhesive composition or adhesive film. 1. Since the conductive particles of the present invention can be deformed inadvertently, a desired thickness can be easily obtained.

(作用) ゛本発明Kかかる接着剤組成動圧おいては、高分子核材
に複機された金属は接続時の加圧あるいは加熱加圧によ
り、導電性粒子相互あるいは導電回路部と接触して導通
路を形成する。
(Function) ゛In the dynamic pressure of the adhesive composition according to the present invention, the metal bonded to the polymer core material comes into contact with each other or with the conductive circuit part due to pressure applied during connection or heating and pressure. to form a conductive path.

この時、高分子核材は加圧あるいは加熱加圧による接続
操作時に軟化あるいは変形可能であるために回路面ある
いは導電粒子相互間で押付けるように適度に変形し接触
面積を大き(保つことが出来、良好な導電性と信頼性を
得ることかできる。一方絶縁回路部における粒子には。
At this time, since the polymer core material can be softened or deformed during the connection operation by applying pressure or heating and pressurizing, it deforms appropriately so as to press against the circuit surface or between the conductive particles, increasing (maintaining) the contact area. It is possible to obtain good conductivity and reliability.On the other hand, particles in the insulated circuit part.

回路間の粒子はどには圧力かかからない為、導電性粒子
の粒径や飽加量を選択することと合わせて隣接回路との
絶縁性は光分に保たれる。
Since no pressure is applied to the particles between the circuits, by selecting the particle size and saturation amount of the conductive particles, insulation from adjacent circuits can be maintained to a certain level.

さら圧扁分子核材は軟化変形域を、その材料の熱的特性
の選定あるいは組み合せにより、任意に設定すること力
五可能である為に接続時の条件中を広くとることかでき
る。たとえば一定融点を示さない非晶性の高分子を核材
とした場合やゴム状領域の広い架橋物の場合には、t¥
!にその軟化流動域(ガラス状〜ゴム状へ液状域まで)
が広く、回路接続時の条件(温度、圧力1時間)も広く
とることが可能で接続時の信頼性が著しく向上しあわせ
て接続作業性も良好となる。
Since the softening deformation range of the flattened molecular core material can be arbitrarily set by selecting or combining the thermal characteristics of the material, it is possible to set a wide range of conditions during connection. For example, when the core material is an amorphous polymer that does not have a constant melting point, or when a crosslinked product with a wide rubbery region is used, t\
! Its softening flow range (from glassy to rubbery to liquid range)
It is possible to have a wide range of conditions for circuit connection (temperature, pressure for 1 hour), and the reliability during connection is significantly improved, as well as the connection workability is also good.

また高分子核材は軟化変形の度合を、その接続条件によ
り任嫌に設定することが可能であり。
Furthermore, the degree of softening and deformation of the polymer core material can be set as desired depending on the connection conditions.

接続状態を管理することか可能となる。たとえば接続部
における導電性粒子の粒径が不一致の場合でも第4図の
ようにその接続条件を管理することで、大きな導電性粒
子8を小さな導電性粒子8′の大きさかそれ以上に圧着
し″C接続することが可能で導電性粒子は導通に有効に
寄与できる。これに対して従来の金属粒子の場合は第5
図に示すように、大きな導電性粒子9かスベーナー状に
作用し、他の小さな粒子9′は導通に寄与しないために
導通点像j五減少し接続信頼性が低かった。
It is possible to manage the connection status. For example, even if the particle sizes of the conductive particles at the connection part do not match, by controlling the connection conditions as shown in Figure 4, the large conductive particles 8 can be crimped to the size of the small conductive particles 8' or larger. ``C connection is possible, and conductive particles can effectively contribute to conduction.On the other hand, in the case of conventional metal particles, the fifth
As shown in the figure, the large conductive particles 9 act in a Svener-like manner, and the other small particles 9' do not contribute to conduction, resulting in a decrease in the conduction point image and poor connection reliability.

回路間において適度に押しつけられ几導電性粒子は、高
分子核材が接着剤成分と熱膨張率か近似していることか
ら、接続後の温IIL変化に対する追随性が高く、耐冷
熱衝撃性に代表される長期接続信頼性に優れる。
The conductive particles that are moderately pressed between the circuits have a polymer core material with a thermal expansion coefficient similar to that of the adhesive component, so they have a high ability to follow changes in temperature after connection, and have excellent cold shock resistance. Excellent long-term connection reliability.

この様子を第6図の接続模式図で説明する。This situation will be explained using the connection schematic diagram in FIG.

本発明になる回路接続部く温度変化を与えた場合1回路
5,6の材料に較べて相対的に熱膨張率の大きな接着剤
4によるy軸方向の熱膨張収縮により回路5.6閾には
お豆−に離れようとする応力が働くが、高分子核材/と
接着剤4は熱膨張係数が頌似しており、金属2は光分に
薄いことから、回路5,6の厚み方向に充分追随変形か
可能であり1回路の導通接続は良好に保たれる。
When a temperature change is applied to the circuit connection part of the present invention, the circuit 5.6 threshold is reached due to thermal expansion and contraction in the y-axis direction due to the adhesive 4 having a relatively large coefficient of thermal expansion compared to the materials of the circuits 5 and 6. However, since the polymer core material and the adhesive 4 have similar coefficients of thermal expansion, and the metal 2 is thinner than light, the thickness direction of the circuits 5 and 6 It is possible to sufficiently follow the deformation, and the conductive connection of one circuit can be maintained well.

このとき接着剤4は、X軸方向くも熱膨張収縮しようと
するが、金属回路に較べてその弾性率は相対的に充分小
さく実質的に変形が抑制され、また弾性率が小さい事か
ら熱応力は容易に緩和してしまう。
At this time, the adhesive 4 tries to thermally expand and contract in the X-axis direction, but its elastic modulus is relatively sufficiently small compared to the metal circuit, and deformation is substantially suppressed. is easily relieved.

(実施例) 以下本発明を実施例によりさらに詳細に説明する。(Example) The present invention will be explained in more detail below using examples.

実施例1〜9および比較例−1 (11!a着剤組成物の作製 表面がAuでメッキ被櫟された粒径および被橿層厚みの
異なるポリスチレン樹脂の球状粒子を、スチレンブタジ
ェンブロック共重合体(Ml2.6)100部と軟化点
120℃のテルペン系粘着付与剤40部およびトルエン
200部よりなる接着剤浴液中に龜加量を変えて配合し
、この配合物を超音波分散して導電性粒子混合の接着剤
組成物を得九〇 (2)フィルムの作成 このM着剤組成物をバーコータを用いて。
Examples 1 to 9 and Comparative Example-1 (11!a Preparation of adhesive composition) Spherical particles of polystyrene resin whose surfaces were plated with Au and which had different particle sizes and coated layer thicknesses were mixed with a styrene-butadiene block. A polymer (Ml2.6) of 100 parts, 40 parts of a terpene tackifier with a softening point of 120°C, and 200 parts of toluene are mixed in an adhesive bath solution with varying amounts, and this mixture is subjected to ultrasonic dispersion. 90(2) Preparation of film This adhesive composition was coated with a bar coater to obtain an adhesive composition containing conductive particles.

セパレータ(シリコーン処理ポリエステルフィルム)上
に塗布し、100℃で厚みに応じて5分間〜30分間の
乾燥により溶剤を除去して接着剤フィルム化した。
It was coated on a separator (silicone-treated polyester film) and dried at 100° C. for 5 to 30 minutes depending on the thickness to remove the solvent and form an adhesive film.

(3)評価 ライン巾α1ava、ピッチQ、21+1111.厚み
35μmの 回路を有する全回路幅100111111
のフレキシブル回路板(FPC)に、N1着巾5關。
(3) Evaluation line width α1ava, pitch Q, 21+1111. Total circuit width 100111111 with circuit thickness 35μm
Flexible circuit board (FPC) with N1 width 5 connections.

長さ100關に切断した上記接着フィルムを載蓋して1
20℃−10kg/al’−5秒の加熱加圧により仮貼
付して接続部材付FPCを得た。
Place the above adhesive film cut into 100 length pieces on the lid.
Temporary attachment was carried out by heating and pressurizing at 20° C. and 10 kg/al′ for 5 seconds to obtain an FPC with a connecting member.

そのあとセパレータを剥離して、他の同一ピッチを有す
るFPCをセパレータ剥離面に載せて顕微鏡でFPC回
路の位置合せなした後、温度150℃、圧力20kg/
aII+で20秒間加熱加圧して回路を接続した。
After that, the separator was peeled off, another FPC with the same pitch was placed on the separator peeled surface, and the FPC circuit was aligned using a microscope.
The circuit was connected by heating and pressurizing with aII+ for 20 seconds.

評価結果を第1表に示し九が、各実施例において接着シ
ートは透明性を有してiるため。
The evaluation results are shown in Table 1. In each of the Examples, the adhesive sheet had transparency.

透過光の助けにより回路の位置合せdi容易であった。The alignment of the circuit was easy with the help of transmitted light.

特性を第1表に示した。各実施例において得られた接続
体は良好なる導通抵抗および隣接回路との絶縁性を示し
信頼性試験後もその特性は良好であった。
The properties are shown in Table 1. The connectors obtained in each example exhibited good conduction resistance and insulation from adjacent circuits, and the characteristics were good even after the reliability test.

なお比較例−1においては導電性粒子の充填量が20体
積%と多い場合であるか、回路の位置合せは容易であり
次が回路接続後にリークが発生した。
In Comparative Example 1, the amount of conductive particles filled was as high as 20% by volume, or the circuit alignment was easy, and leakage occurred after the circuit was connected.

実施例−10〜15 実施例1〜9と同様であるが、導電性粒子の・種類を変
えた。すなわちエポキシ球状粒子を高分子核材とし、実
施例−10〜11においてはα2μmの厚みのCu M
lを設け、その上にさらに(L2μm厚みのNi層を設
けて金属の複合層とし次。
Examples 10 to 15 Same as Examples 1 to 9, but the type of conductive particles was changed. That is, epoxy spherical particles were used as the polymer core material, and in Examples 10 and 11, Cu M with a thickness of α2 μm was used.
On top of that, a Ni layer with a thickness of (L) of 2 μm was provided to form a metal composite layer.

実施例12〜13においては被a層は厚みα2IIII
IIのAu層とした。接着剤成分および評1曲はは実施
例1〜9と同様である。評価結果を第1表に示したか、
各実施例とも良好な初期および信頼性評Idfi後の特
性を有していた。
In Examples 12 and 13, the a layer has a thickness α2III
It was set as the Au layer of II. The adhesive components and the evaluation score were the same as in Examples 1-9. Are the evaluation results shown in Table 1?
Each of the examples had good initial and post-reliability evaluation characteristics.

なお実施例10〜11のフィルムは導電性粒子が厚み方
向に連鎖状に#果している様子力1確認できた。
In the films of Examples 10 to 11, it was confirmed that the conductive particles formed in a chain in the thickness direction.

この現象はフィルム作製時の溶剤乾燥工程においてフィ
ルム厚み方向に接着剤成分力1優先的に収縮したことに
よると思われ、異方導1!性の材料としては好ましい形
態であり、導電性粒子径がフィルム厚みに較べて相対的
に小さい場合忙発生し易い現象である。
This phenomenon is thought to be due to preferential contraction of the adhesive component force 1 in the film thickness direction during the solvent drying process during film production, and the anisotropic conduction 1! This is a preferable form for conductive materials, and this phenomenon is likely to occur when the conductive particle diameter is relatively small compared to the film thickness.

比較例2〜4 実施例−12と同様にフィルムを作成し評価したが、導
電性粒子の種類を変えた。すなわち導電性粒子としてA
u被覆の1トマイズNi球、Ag被榎ガラス球、および
融点150℃の/Sンダ粒子をそれぞれ使用した。
Comparative Examples 2 to 4 Films were created and evaluated in the same manner as in Example 12, but the types of conductive particles were changed. That is, A as a conductive particle
U-coated 1-tomized Ni spheres, Ag-coated glass spheres, and /Sunda particles with a melting point of 150°C were used, respectively.

これらの結果を第1表に示したか、いずILも初期の抵
抗は良好であるか、信頼性試験に#いて導通不良(オー
プン)が発生した。
These results are shown in Table 1. In all ILs, the initial resistance was good, or continuity failure (open) occurred during the reliability test.

以上の比較例1へ3における回路接続部の断面を走置型
電子顕微鏡で観衆したところ、導電性粒子の変形は見ら
れず、回路に点状に接触していた。
When the cross section of the circuit connection portion in Comparative Examples 1 to 3 was observed using a scanning electron microscope, no deformation of the conductive particles was observed, and the conductive particles were in point contact with the circuit.

L月、11 実施例14へ16 二トリルブタジエンゴム(アクリロニトリルj155%
ムーニー粘度78)の球状粒子にAlを蒸着被覆してs
’rt性粒子を得た。
L month, 11 To Example 14 16 Nitrile butadiene rubber (acrylonitrile j 155%
Spherical particles with a Mooney viscosity of 78) are coated with Al by vapor deposition.
'rt particles were obtained.

この導電性粒子を第2表に示すようにそれぞれ硬化系を
変えたアクリル系粘着剤(官能基としてアクリル酸5%
含有、Tg=−40℃ 粘度1000cps/20%ト
ルエン液、25℃ン中に混合分散し、常温でFPCに仮
貼付し次後。
These conductive particles are used in acrylic adhesives with different curing systems as shown in Table 2 (5% acrylic acid as a functional group).
Contains, Tg=-40℃, viscosity 1000cps/20% toluene solution, mixed and dispersed in 25℃, and temporarily attached to FPC at room temperature.

FPCと同ピツチの回路を有する厚み05mmの透明導
電ガラスに25℃−5kg/ar−2秒間の条件で2本
のロール間で圧着した。さらにその後第2表に示した後
硬化を行ない、*施例−1〜9と同様な評価を行なった
結果を第3表に示す。
It was pressed between two rolls at 25° C. and 5 kg/ar for 2 seconds on a transparent conductive glass having a circuit pitch of the same pitch as the FPC and having a thickness of 05 mm. After that, post-curing as shown in Table 2 was carried out, and the same evaluations as in Examples 1 to 9 were carried out.The results are shown in Table 3.

第2表 実施例14〜16においては、感圧性の粘着剤を接着剤
主成分としたので、常温における回路接続が可能であり
またロール間での圧ytt接続が可能な為に接続を短時
間で行うことか可能であった。
In Examples 14 to 16 of Table 2, pressure-sensitive adhesive was used as the main component of the adhesive, so it was possible to connect circuits at room temperature, and since pressure-sensitive connections between rolls were possible, connections could be made in a short time. It was possible to do so.

実施例14の信頼性試験におりては抵抗値の上昇が比較
的大きかったが、実用上間部のない範囲であった。
In the reliability test of Example 14, the increase in resistance value was relatively large, but within a practical range.

実施例15〜16は接続部を熱あるいは紫外線により架
橋硬化させることで耐熱性を付与した定めに、実施例1
4JC較べ信M性試験後の抵抗値の上昇は少かった。
In Examples 15 and 16, heat resistance was imparted by crosslinking and curing the connection part with heat or ultraviolet rays, and Example 1
The increase in resistance value after the 4JC comparison test was small.

なお実施例14〜16において抵抗値のレベルが前述の
実施例1へ13に較べて高い理由は透明導電ガラスの回
路抵抗を含むためであり。
The reason why the resistance values in Examples 14 to 16 are higher than those in Examples 1 to 13 is that they include the circuit resistance of the transparent conductive glass.

また実施例16はガラス回路側より紫外線を照射した。Further, in Example 16, ultraviolet rays were irradiated from the glass circuit side.

実施例−17−19および比較例−5 高分子核材およびH8着剤成分の物性値を変えるために
各材料の組み合せを変えて検討し友。
Examples 17-19 and Comparative Example 5 In order to change the physical property values of the polymer core material and H8 adhesive component, different combinations of materials were studied.

材料の組み合せおよび計画結果を第3表に示した。The material combinations and planning results are shown in Table 3.

高分子核材への被覆はメッキによりAgをα2μm形成
し友。高分子核材としては粉末ポリイミドを使用した。
The polymer core material is coated with Ag with a thickness of α2 μm by plating. Powdered polyimide was used as the polymer core material.

ま九ポリエステルは熱可塑性ポリエステル(分子量約2
o、oac+rgy℃)であり、NBRは実施例14〜
16と同材料である。接着剤成分としてのアクリルゴム
は実施例14〜16と同材料であり、ポリエステルは高
分子核材に用いた熱可塑性ポリエステルである。
Maku polyester is a thermoplastic polyester (molecular weight approximately 2
o, oac + rgy °C), and NBR is Example 14~
It is the same material as No. 16. The acrylic rubber used as the adhesive component was the same material as in Examples 14 to 16, and the polyester was the thermoplastic polyester used for the polymer core material.

なお実施例−19ICおいてはピッチ[14mm(回路
中α2mm)のFPC(Cu厚み55am)および透明
導電ガラスを使用した。
In the IC of Example 19, an FPC (Cu thickness 55 am) with a pitch of 14 mm (α2 mm in the circuit) and transparent conductive glass were used.

これらの評価は実施例14〜16と同様に行なったが、
実施例18〜19および比較例−5においてはMNN酸
成分接着性を得るために170℃−20kg/aIP−
20秒と温度を上げて接続し友。
These evaluations were conducted in the same manner as Examples 14 to 16, but
In Examples 18 to 19 and Comparative Example-5, in order to obtain MNN acid component adhesion, the temperature was 170°C-20kg/aIP-
Raise the temperature for 20 seconds and connect.

結果を第3表に示したが、各実施例とも良好な特性であ
り九。実施例−19においては高分子核材と接着剤成分
を同一材料とし九ので熱膨張収縮時の追随性が特に良好
であり信頼性試験において特に優れた特性を示した。
The results are shown in Table 3, and each example had good characteristics. In Example 19, since the polymer core material and the adhesive component were made of the same material, the followability during thermal expansion and contraction was particularly good, and particularly excellent characteristics were exhibited in the reliability test.

なお比較例5は接着剤成分に戟べて高分子核材の熱膨張
率が大きくさら忙弾性率も低い組み合せであるが接着剤
成分を流動させるために加熱し次ところ、高分子核材の
流動性が大きいためにリークを発生した。
Comparative Example 5 is a combination in which the polymer core material has a high coefficient of thermal expansion and a low modulus of elasticity compared to the adhesive component. Leakage occurred due to high liquidity.

実施例20〜21 導電性粒子として平均粒径300μm(最大粒径550
μm)の粒子を用い、接着剤組成物および2イルムのS
法を変えた。
Examples 20 to 21 Conductive particles having an average particle size of 300 μm (maximum particle size of 550 μm)
The adhesive composition and 2 ilms of S
changed the law.

すなわち高分子核材としてエポキシ粒子を用い、Niを
無電解メッキで形成し接着剤成分として実施例−18に
趙い九ポリエステルを使用した。
That is, epoxy particles were used as the polymer core material, Ni was formed by electroless plating, and Zhaojiu polyester was used as the adhesive component in Example-18.

実施例−20においては接着剤組成物を190℃に加熱
し加熱ロール間より流延してホットメルトコーティング
によりフィルムを作段し、FPC上に仮貼付をした。
In Example 20, the adhesive composition was heated to 190° C. and cast between heated rolls to form a film by hot melt coating, which was then temporarily pasted onto an FPC.

実施例−21においては実施例1〜9と同様に溶剤(こ
の場合はメチルエテルケトンの30%溶液)に溶解した
接着剤組成物をFPOの回路面にシルクスクリーン印刷
によりFPCに直接塗布し溶剤を乾燥して接着剤組成物
付きのFpcを得た。
In Example 21, as in Examples 1 to 9, an adhesive composition dissolved in a solvent (in this case, a 30% solution of methyl ether ketone) was applied directly to the FPC by silk screen printing on the circuit surface of the FPO. was dried to obtain an FPC with an adhesive composition.

なお実施例20〜21においてはピッチ1.27 mm
 (回路中0.655ff1ml、回路厚み55 am
のCu箔)のFPCを用いた。このFPCと同一ピッチ
の透明導電ガラスを接続(170℃−50kg/aIF
−20秒)したときの特性を第3表に示す。
In Examples 20 to 21, the pitch was 1.27 mm.
(0.655ff1ml in circuit, circuit thickness 55 am
An FPC (Cu foil) was used. Connect transparent conductive glass with the same pitch as this FPC (170℃-50kg/aIF
-20 seconds) are shown in Table 3.

実施例20.21ともに良好な特性を有していることか
わかる。実施例20においては溶剤を使用しなかったの
で1作業環境が良好であり。
It can be seen that both Examples 20 and 21 have good characteristics. In Example 20, no solvent was used, so the working environment was favorable.

実施例−21においては回路上に直接塗布したので回路
接続時の仮貼付操作が不要であった。
In Example 21, since it was applied directly onto the circuit, there was no need for a temporary pasting operation when connecting the circuit.

−!念接着剤組成物層のみの全光線透過率の測定は不可
能であったか、FPCに仮貼付後の実施例−21と同様
な透明性を有しており1回路の位置合せは簡単でありた
-! Either it was impossible to measure the total light transmittance of only the adhesive composition layer, or it had the same transparency as Example-21 after temporary attachment to the FPC, and alignment of one circuit was easy. .

以上の実施例および比較例に用いた高分子核材および接
着剤成分の材料の組み合せと各材料の物性値(熱膨張率
と弾性率)の関係を第4表にまとめた。第4表によれば
接着剤成分に対する高分子核材の熱膨張率の比がα66
へα95でかつ弾性率の比が102〜1.2のものが以
上述べてきたよ5忙良好な結果を示した。
Table 4 summarizes the relationship between the material combinations of the polymer core material and adhesive component used in the above Examples and Comparative Examples and the physical property values (thermal expansion coefficient and elastic modulus) of each material. According to Table 4, the ratio of the coefficient of thermal expansion of the polymer core material to the adhesive component is α66.
As described above, those having an α of 95 and an elastic modulus ratio of 102 to 1.2 showed good results.

以下≦−白 実施例22へ25 実施例−11で得たフィルムを用いて実施例−14と同
様な回路(FPC/透明導電ガラス。
Below - White Example 22 25 A circuit similar to Example 14 using the film obtained in Example 11 (FPC/transparent conductive glass).

ピッチα21111+ )の組み合せで、接続時の条件
による影響をみた。結果を第5表に示したが温度で15
0〜180℃、圧力5 kg/cm 〜50 kg/−
、時間5秒〜50秒と広範囲の接続条件で良好な結果を
得た。このときの接着剤フィルム厚みの接続前後の比率
はClO2−−Q、50であった。
We examined the effects of connection conditions on the combination of pitch α21111+). The results are shown in Table 5, and the temperature was 15.
0 to 180℃, pressure 5 kg/cm to 50 kg/-
, good results were obtained under a wide range of connection conditions, ranging from 5 seconds to 50 seconds. At this time, the ratio of the adhesive film thickness before and after connection was ClO2--Q, 50.

実施例22〜25の場合には接続回路間において導電性
粒子が数個フィルム厚み方向に連なり変形圧縮し回路と
接触していた。
In Examples 22 to 25, several conductive particles were connected in the film thickness direction between the connecting circuits, deformed and compressed, and came into contact with the circuits.

実施例−24の場合は接続回路間において導電性粒子の
平均粒子径に等しい厚みである3μmまで圧縮さn回路
との接触点数およ゛θ面積とも罠大巾に増加しており実
施例−25の場合はその単粒子かさらに光分に変形圧縮
され回路との接触面積が増加した。
In the case of Example 24, the thickness between the connected circuits was compressed to 3 μm, which is equal to the average particle diameter of the conductive particles, and both the number of contact points with the n circuit and the area of θ increased significantly. In the case of No. 25, the single particle was further deformed and compressed into light, increasing the contact area with the circuit.

各実施例において導通抵抗、絶縁抵抗ともに良好な初期
特性と、信頼性試験後にほとんど抵抗上昇のない良好な
回路接続を得ることか可能であった。
In each example, it was possible to obtain good initial characteristics in both conduction resistance and insulation resistance, and good circuit connection with almost no increase in resistance after the reliability test.

実施例26〜32 実施例−12で得たフィルムを用いて、!i!施例−2
2〜25と同様な回路(FPC/透明導電ガラス)の組
み合せで、 mll5I!時の条件による影響をみた。
Examples 26-32 Using the film obtained in Example-12,! i! Example-2
With a combination of circuits (FPC/transparent conductive glass) similar to 2 to 25, mll5I! We looked at the effects of time conditions.

結果を第5表に示したか、実施例22〜25と同様に広
い接続条作中において信頼性の高い接続を得ることか可
能であっ几。
The results are shown in Table 5. As in Examples 22-25, it was possible to obtain a highly reliable connection in a wide connection strip.

実施例−26〜52においてはフィルム厚みと導電性粒
子径が等しい九めに1回路間において単粒子状で変形し
てい九〇この厚みの変化比はα30〜α90であった。
In Examples 26 to 52, when the film thickness and the conductive particle diameter were equal, the film was deformed in a single particle form during one circuit.90 The ratio of change in thickness was α30 to α90.

比較例−6〜12 比較例−4で得たフィルムを用いて、実施例26へ52
と同様な評価を行ない、結果を第5表に示した。
Comparative Examples-6 to 12 Using the film obtained in Comparative Example-4, 52 to Example 26
Similar evaluations were conducted and the results are shown in Table 5.

接続時の温度がハンダ粒子の融点150℃より低い場合
には熱衝撃試験における信頼性が低(,180℃と融点
より高い接続温度の*@rにはハンダ粒子は溶融し隣接
回路間にまたがりリークを発生した。・・ンダ粒子の融
点と同じの150℃接続の場合には1時間あるいは圧力
か低い場合は信頼性が低く、過剰であるとリークの発生
がみられ友。最適暴続条件は非常に狭い範囲にあるもの
と見らnる。
If the temperature at the time of connection is lower than the melting point of the solder particles (150℃), the reliability in the thermal shock test will be low. A leak occurred. If the connection is at 150°C, which is the same as the melting point of the powder particles, the reliability is low if the pressure is low or for 1 hour, and leaks may occur if the pressure is too low.Optimal violence conditions appears to be within a very narrow range.

以下余白 以上の第1. 5. 5表の評価における測定条件を以
下に示す。
Below is the first part above the margin. 5. The measurement conditions for the evaluation in Table 5 are shown below.

(1)導通抵抗は、接続した2枚の回路の対向電纂間の
抵抗をマルチメータにて測定(接続面積0.1nIII
+×5mff1)。103Ω以上はオープンとした。
(1) Continuity resistance is measured by using a multimeter to measure the resistance between opposing wires of two connected circuits (connection area 0.1nIII
+×5mff1). 103Ω or more was left open.

(2)絶縁抵抗は、接続した2枚の回路の隣接回路間の
抵抗な−イメグオームメータにて測定。
(2) Insulation resistance is the resistance between adjacent circuits of two connected circuits - measured with an image ohmmeter.

I Q”Ω以下はリークとじ九。I Q"Ω or less is a leak.

(3)信頼性は、接着剤フィルム等により接続し九2枚
の回路を一40℃−30分/100℃−30分の冷熱衝
撃を1ナイクルとして100サイクル処理後に抵抗を測
定して初期抵九と比較することで評価した。冷熱衝撃試
験は。
(3) Reliability is determined by measuring the initial resistance after 100 cycles of thermal shock at 140°C for 30 minutes and 100°C for 30 minutes by connecting 92 circuits using adhesive films, etc. Evaluation was made by comparing with 9. Thermal shock test.

短期間の評価で長期寿命を推定する最も苛酷な信頼性の
評価法であり、実用試験として最重要視される試験方法
である。
It is the most severe reliability evaluation method that estimates long-term life from short-term evaluation, and is the most important test method for practical tests.

(4)全光線透過率はJIS  K−6714に準拠し
て日本電色工業−裳デジタル濁度計ND1(−20Dに
より測定した。
(4) Total light transmittance was measured using a Nippon Denshoku Kogyo Digital Turbidity Meter ND1 (-20D) in accordance with JIS K-6714.

(5)  熱膨張率および弾性率の測定試料は、厚さ約
300μmのシートを加熱プレスあるいは熱反応性の系
にあっては溶剤除去法により作製した。この試料を用い
て熱膨張率は真空理工四裂熱機械試験機TMA−130
0により。
(5) Measurement of coefficient of thermal expansion and modulus of elasticity A sample of a sheet approximately 300 μm thick was prepared by hot pressing or, in the case of a thermally reactive system, by a solvent removal method. Using this sample, the thermal expansion coefficient was determined using the Shinku Riko Shifi Thermomechanical Testing Machine TMA-130.
By 0.

また弾性率&tASTM  D882−64TK準拠し
て東洋ボールドツイン@製テンシロンUTM−1にて測
定し友。
In addition, the elastic modulus and t were measured using Tensilon UTM-1 manufactured by Toyo Bold Twin@ in accordance with ASTM D882-64TK.

(発明の効果) 以上詳述したように本発明になる回路接続用の接着剤組
成物および接着剤フィルムおよびそれを用い九接続力法
においては、高分子核材の表面に導電性を有する金属薄
層を形成した導電性粒子を用いることにより、回路従続
時に導電性粒子が回路面あるいは導電性粒子相互で押し
付けるように適度に変形するために、接触面積を大きく
保つことが出来優れた導電性と良好な信頼性が得られる
。一方絶縁回路部においては。
(Effects of the Invention) As detailed above, in the adhesive composition and adhesive film for circuit connection according to the present invention, and in the nine connection force method using the same, the surface of the polymer core material has a conductive metal. By using conductive particles formed in a thin layer, the conductive particles deform appropriately so as to press against the circuit surface or each other when the circuit is connected, so the contact area can be kept large, resulting in excellent conductivity. performance and good reliability. On the other hand, in the isolated circuit section.

回路間の粒子はど罠は圧力がかからないため罠。Particles between the circuits are traps because no pressure is applied to them.

隣接回路との絶縁性は光分に保交れるりで、微細回路の
接続に適用できる。
Insulation from adjacent circuits is maintained by light beams, so it can be applied to connect microcircuits.

さらに高分子核材の軟化変形域は、一定融点を示す金属
に較べて光分に広いために、接続作業時の条件中を広く
とることか可能となり接続時の信頼性か向上する。
Furthermore, since the softening deformation range of the polymer core material is optically wider than that of metals which exhibit a constant melting point, it is possible to have a wider range of conditions during the bonding process, which improves the reliability during the bonding process.

また高分子核材gk7II剤成分と黒成分係数が近似し
ていることから接着剤の熱膨張により接続回路間隔が太
き(なっても、導電性粒子の熱膨張により粒子と回路と
の接触状態か良好に保几れるので長期接続信頼性に優れ
る。
In addition, since the polymer core material GK7II agent component and black component coefficient are similar, the thermal expansion of the adhesive increases the distance between the connected circuits (even if the thermal expansion of the conductive particles causes the contact between the particles and the circuit to It is well maintained and has excellent long-term connection reliability.

さらに接続状態の管理を厚み測定といつ友比較的簡単な
方法で行うことがoJ能であり、接着剤フィルムは透明
性を有しているので微細回路の位置合せを透過光の助け
をかりて簡単に行なえるなどの利点を有している。また
導電性粒子は金属な宵効利用しており省資源上からもき
わめて有意義である。
Furthermore, it is possible to manage the connection status using a relatively simple method such as thickness measurement, and since the adhesive film is transparent, it is possible to align the fine circuits with the help of transmitted light. It has the advantage of being easy to perform. In addition, the conductive particles are extremely useful from the standpoint of resource conservation, as they utilize metal properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2内は本発明に係る導電性粒子の模式断
面図、rpJs図および第4図は本発明に係る接着フィ
ルムを用いて回路接続した状態を示模式断面図、第5白
は従来の導電性粒子を用りた回路接続部の模式断面図、
第6図は本発明に係る導電性粒子を用いた回路接続部の
模式断面図である。 符号の説明 1 高分子核材     2 金篇 3 中空部       4 接着剤 5 回路         6 回路 7 !e縁注性基板    8 導電性粒子9 導!!
tJ2子(従来) 手続補正書(自発) 昭和 6118月23
Figures 1 and 2 are schematic cross-sectional views of conductive particles according to the present invention, rpJs diagrams and Figure 4 are schematic cross-sectional views showing a state in which a circuit is connected using the adhesive film according to the present invention. A schematic cross-sectional view of a circuit connection using conventional conductive particles,
FIG. 6 is a schematic cross-sectional view of a circuit connection part using conductive particles according to the present invention. Explanation of symbols 1 Polymer core material 2 Gold plate 3 Hollow part 4 Adhesive 5 Circuit 6 Circuit 7! e Edge pouring substrate 8 Conductive particles 9 Conductive! !
tJ2 children (conventional) Procedural amendment (voluntary) Showa 6118/23

Claims (1)

【特許請求の範囲】 1、絶縁性の接着剤成分と導電性粒子とよりなる回路接
続用の接着剤組成物において、以下(イ)、(ロ)の条
件を満足する導電性粒子を0.1〜15体積%含有する
ことを特徴とする回路接続用接着剤組成物。 (イ)導電性粒子は高分子物質を核材としてそのほゞ全
表面が導電性の金属薄層により被 覆された0.05〜1.0のアスペクト比と0.5〜3
00μmの平均粒径を有し、 (ロ)接着剤成分に対する前記核材の熱膨脹率の比が0
.5〜15であり、かつ弾性率の比が1.2〜0.01
であること。 2、核材が加圧あるいは加熱加圧により塑性変形性を有
するものである特許請求の範囲第1項記載の回路接続用
接着剤組成物。 3、核材の熱膨張率が20×10^−^6(l/℃)の
値を有するものである特許請求の範囲第1項または第2
項記載の回路接続用接着剤組成物。 4、核材表面に形成された金属薄層の厚みが0.01〜
5μmであり、導電性粒子の粒径の 1/5〜1/1000である特許請求の範囲第1項ない
し第3項のいずれかに記載の回路接続用接着剤組成物。 5、接着剤成分が感熱貼付性を有するものである特許請
求の範囲第1項記載の回路接続用接着剤組成物。 6、接着剤成分が感圧貼付性を有するものである特許請
求の範囲第1項記載の回路接続用接着剤組成物。 7、接着剤成分が熱硬化型および/または光硬化型であ
る特許請求の範囲第1項または第5項または第6項記載
の回路接続用接着剤組成物。 8、絶縁性の接着剤成分と導電性粒子とよりなる回路接
続用の接着フィルムにおいて、以下(イ)、(ロ)の条
件を満足する導電性粒子を0.1〜15体積%含有する
ことを特徴とする回路接続用接着フィルム。 (イ)導電性粒子は高分子物質を核材としてそのほど全
表面が導電性の金属薄層により被 覆された0.05〜1.0のアスペクト比と0.5〜3
00μmの平均粒径を有し、 (ロ)接着剤成分に対する前記核材の熱膨脹率の比が0
.5〜15であり、かつ弾性率の比が1.2〜0.01
であること。 9、核材が加圧あるいは加熱加圧により塑性変形性を有
するものである特許請求の範囲第8項記載の回路接続用
接着フィルム。 10、核材の熱膨張率が20×10^−^5〜2×10
^−^5(l/℃)の値を有するものである特許請求の
範囲第8項または第9項記載の回路接続用接着フィルム
。 11、核材表面に形成された金属薄層の厚みが0.01
〜5μmであり、導電性粒子の粒径の 1/5〜1/1000である特許請求の範囲第8項ない
し第10項のいずれかに記載の回路接続用接着フィルム
。 12、接着剤成分が感熱貼付性を有するものである特許
請求の範囲第8項記載の回路接続用接着フィルム。 13、接着剤成分が感圧貼付性を有するものである特許
請求の範囲第8項記載の回路接続用接着フィルム。 14、接着剤成分が熱硬化型および/または光硬化型で
ある特許請求の範囲第8項または第12項または第13
項記載の回路接続用接着フィルム。 15、フィルムの厚みが1〜300μmである特許請求
の範囲第8項または第12項乃至第14項のいずれかに
記載の回路接続用接着フィルム。 16、JIS K−61714による全光線透過率が4
0%以上である特許請求の範囲第8項または第12項乃
至第15項記載の回路接続用接着フィルム。 17、加圧あるいは加熱加圧により塑性変形性を有する
高分子核材のほゞ全表面を導電性の金属薄層により被覆
した導電性粒子を、熱硬化型および/または光硬化型接
着剤中に0.1〜15体積分散させてなる接着剤組成物
または接着フィルムを相対峙する電極回路間に介在せし
め、回路間の接着剤層厚みが初期厚みの0.02〜0.
95の範囲になるよう加圧あるいは加熱加圧することに
より回路間の電気的接続と機械的結合をおこなうことを
特徴とする回路の接続方法。 18、接続的および/または接続後に加熱および/また
は光照射することにより回路接続部を架橋硬化する特許
請求の範囲第17項記載の回路の接続方法。
[Claims] 1. In an adhesive composition for circuit connection comprising an insulating adhesive component and conductive particles, the conductive particles satisfying the following conditions (a) and (b) are added in an amount of 0. An adhesive composition for circuit connection, characterized in that the adhesive composition contains 1 to 15% by volume. (a) The conductive particles are made of a polymer material as a core material and have an aspect ratio of 0.05 to 1.0 and 0.5 to 3, with almost the entire surface covered with a conductive metal thin layer.
(b) the ratio of the coefficient of thermal expansion of the core material to the adhesive component is 0;
.. 5 to 15, and the ratio of elastic modulus is 1.2 to 0.01
To be. 2. The adhesive composition for circuit connection according to claim 1, wherein the core material has plastic deformability when applied with pressure or heat and pressure. 3. Claim 1 or 2, wherein the core material has a coefficient of thermal expansion of 20 x 10^-^6 (l/°C).
The adhesive composition for circuit connection described in Section 3. 4. The thickness of the metal thin layer formed on the surface of the core material is 0.01~
The adhesive composition for circuit connection according to any one of claims 1 to 3, which has a particle size of 5 μm, which is 1/5 to 1/1000 of the particle size of the conductive particles. 5. The adhesive composition for circuit connection according to claim 1, wherein the adhesive component has heat-sensitive pasting properties. 6. The adhesive composition for circuit connection according to claim 1, wherein the adhesive component has pressure-sensitive pasting properties. 7. The adhesive composition for circuit connection according to claim 1, 5, or 6, wherein the adhesive component is a thermosetting type and/or a photocuring type. 8. An adhesive film for circuit connection consisting of an insulating adhesive component and conductive particles must contain 0.1 to 15% by volume of conductive particles that satisfy the following conditions (a) and (b): Adhesive film for circuit connections featuring: (a) The conductive particles are made of a polymer material as a core material and have an aspect ratio of 0.05 to 1.0 and a surface ratio of 0.5 to 3.
(b) the ratio of the coefficient of thermal expansion of the core material to the adhesive component is 0;
.. 5 to 15, and the ratio of elastic modulus is 1.2 to 0.01
To be. 9. The adhesive film for circuit connection according to claim 8, wherein the core material has plastic deformability when applied with pressure or heat and pressure. 10. The coefficient of thermal expansion of the core material is 20 x 10^-^5 ~ 2 x 10
The adhesive film for circuit connection according to claim 8 or 9, which has a value of ^-^5 (l/°C). 11. The thickness of the metal thin layer formed on the surface of the core material is 0.01
The adhesive film for circuit connection according to any one of claims 8 to 10, wherein the adhesive film has a particle size of 1/5 to 1/1000 of the particle size of the conductive particles. 12. The adhesive film for circuit connection according to claim 8, wherein the adhesive component has heat-sensitive adhesion properties. 13. The adhesive film for circuit connection according to claim 8, wherein the adhesive component has pressure-sensitive adhesion properties. 14. Claim 8, 12 or 13, wherein the adhesive component is thermosetting and/or photocuring.
Adhesive film for circuit connection as described in section. 15. The adhesive film for circuit connection according to claim 8 or any one of claims 12 to 14, wherein the film has a thickness of 1 to 300 μm. 16. Total light transmittance according to JIS K-61714 is 4
The adhesive film for circuit connection according to claim 8 or 12 to 15, which has a content of 0% or more. 17. Conductive particles in which almost the entire surface of a polymer core material having plastic deformability is covered with a conductive metal thin layer by applying pressure or heat and pressure are placed in a thermosetting and/or photocuring adhesive. An adhesive composition or adhesive film prepared by dispersing 0.1 to 15 volumes of the adhesive composition or adhesive film is interposed between opposing electrode circuits, and the thickness of the adhesive layer between the circuits is 0.02 to 0.0 of the initial thickness.
A method for connecting circuits, characterized in that electrical connections and mechanical connections between circuits are made by applying pressure or heating and pressurizing to a range of 95%. 18. The method for connecting a circuit according to claim 17, wherein the circuit connection portion is crosslinked and cured by heating and/or light irradiation during connection and/or after connection.
JP61031088A 1986-02-14 1986-02-14 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials Pending JPS62188184A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61031088A JPS62188184A (en) 1986-02-14 1986-02-14 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
US07/013,904 US4740657A (en) 1986-02-14 1987-02-12 Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
DE8787301263T DE3770318D1 (en) 1986-02-14 1987-02-13 ANISOTROPE ELECTRICITY-CONDUCTING ADHESIVE COMPOSITION, METHOD FOR CONNECTING CIRCUITS AND THE CIRCUITS OBTAINED THEREFORE.
EP87301263A EP0242025B1 (en) 1986-02-14 1987-02-13 Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031088A JPS62188184A (en) 1986-02-14 1986-02-14 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials

Publications (1)

Publication Number Publication Date
JPS62188184A true JPS62188184A (en) 1987-08-17

Family

ID=12321653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031088A Pending JPS62188184A (en) 1986-02-14 1986-02-14 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials

Country Status (1)

Country Link
JP (1) JPS62188184A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243668A (en) * 1986-04-16 1987-10-24 Matsushita Electric Ind Co Ltd Antisotropic electrically conductive adhesive
JPH0329207A (en) * 1988-12-05 1991-02-07 Hitachi Chem Co Ltd Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition
JPH05222346A (en) * 1992-02-10 1993-08-31 Surion Tec:Kk Conductive pressure-sensitive adhesive tape
JPH05279649A (en) * 1991-12-06 1993-10-26 Internatl Business Mach Corp <Ibm> Method and composition for making mechanical and electrical contact
JPH0593077U (en) * 1992-05-21 1993-12-17 株式会社大真空 Surface mount electronic components
JP2000299016A (en) * 1999-04-15 2000-10-24 Koichi Niihara Deformed conductive elastomer and its manufacture
JP2001200232A (en) * 2000-01-14 2001-07-24 Hitachi Chem Co Ltd Adhesive, adhesive film and semiconductor apparatus by use thereof
JP2002121526A (en) * 2000-10-17 2002-04-26 Shin Etsu Polymer Co Ltd Insulating adhesive, anisotropic electro-conductive adhesive, and heat-sealing connector
JPWO2002013205A1 (en) * 2000-08-04 2004-01-15 積水化学工業株式会社 Conductive fine particles, fine particle plating method and substrate structure
JP2005097619A (en) * 2004-10-01 2005-04-14 Sony Chem Corp Anisotropic conductive adhesive and anisotropic conductive adhesive sheet using the same
JP2005510618A (en) * 2001-11-28 2005-04-21 東レ・ダウコーニング・シリコーン株式会社 Anisotropic conductive adhesive film, method for producing the same, and semiconductor device
US6981317B1 (en) 1996-12-27 2006-01-03 Matsushita Electric Industrial Co., Ltd. Method and device for mounting electronic component on circuit board
JP2006339163A (en) * 2006-06-08 2006-12-14 Hitachi Chem Co Ltd Connection method of electrode
JP2006335926A (en) * 2005-06-03 2006-12-14 Shin Etsu Chem Co Ltd Pressure-bonding anisotropic conductive resin composition and elastic anisotropic conductive member
JP2007500455A (en) * 2003-05-23 2007-01-11 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレーション How to use pre-applied underfill encapsulant
JP2007173810A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Contact structure
JP2008103343A (en) * 2000-08-04 2008-05-01 Sekisui Chem Co Ltd Conductive fine particulate, board constituent, and fine particulate soldering method
CN100441613C (en) * 2005-08-19 2008-12-10 湖北省化学研究院 Preparation of polymer composite conductive microsphere for aeolotropic conductive adhensive membrane
WO2009008383A1 (en) * 2007-07-06 2009-01-15 Sekisui Chemical Co., Ltd. Electroconductive fine particles, anisotropic electroconductive material, and connection structure
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2009290231A (en) * 2009-09-01 2009-12-10 Hitachi Chem Co Ltd Method of manufacturing circuit board apparatus
JP2010138317A (en) * 2008-12-12 2010-06-24 Lintec Corp Electroconductive pressure-sensitive adhesive sheet and method for producing the same
JP2012140625A (en) * 2012-01-23 2012-07-26 Nitto Denko Corp Adhesive heat-conducting member and method for producing the same
WO2013146573A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Electroconductive particle, circuit connecting material, mounting body, and method for manufacturing mounting body
WO2014017658A1 (en) 2012-07-24 2014-01-30 株式会社ダイセル Conductive fiber-coated particle, curable composition and cured article derived from curable composition
JP2016108563A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Base material particle, conductive particle, conductive material and connection structure
JP2020033427A (en) * 2018-08-28 2020-03-05 東洋インキScホールディングス株式会社 Conductive hot-melt adhesive composition, and laminate
JP2020107834A (en) * 2018-12-28 2020-07-09 大日本印刷株式会社 Electronic unit
WO2021251386A1 (en) * 2020-06-11 2021-12-16 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022202987A1 (en) * 2021-03-26 2022-09-29 デクセリアルズ株式会社 Filler disposition film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet
JPS60117504A (en) * 1983-11-28 1985-06-25 日立化成工業株式会社 Conductive anisotropic adhesive sheet for connecting high current circuit
JPS628407A (en) * 1985-07-04 1987-01-16 藤倉化成株式会社 Manufacture of anisotropic conducting sheet-like product
JPS62115679A (en) * 1985-11-15 1987-05-27 富士高分子工業株式会社 Electric jointing unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet
JPS60117504A (en) * 1983-11-28 1985-06-25 日立化成工業株式会社 Conductive anisotropic adhesive sheet for connecting high current circuit
JPS628407A (en) * 1985-07-04 1987-01-16 藤倉化成株式会社 Manufacture of anisotropic conducting sheet-like product
JPS62115679A (en) * 1985-11-15 1987-05-27 富士高分子工業株式会社 Electric jointing unit

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243668A (en) * 1986-04-16 1987-10-24 Matsushita Electric Ind Co Ltd Antisotropic electrically conductive adhesive
JPH0329207A (en) * 1988-12-05 1991-02-07 Hitachi Chem Co Ltd Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition
JPH05279649A (en) * 1991-12-06 1993-10-26 Internatl Business Mach Corp <Ibm> Method and composition for making mechanical and electrical contact
JPH05222346A (en) * 1992-02-10 1993-08-31 Surion Tec:Kk Conductive pressure-sensitive adhesive tape
JPH0593077U (en) * 1992-05-21 1993-12-17 株式会社大真空 Surface mount electronic components
US6981317B1 (en) 1996-12-27 2006-01-03 Matsushita Electric Industrial Co., Ltd. Method and device for mounting electronic component on circuit board
JP2000299016A (en) * 1999-04-15 2000-10-24 Koichi Niihara Deformed conductive elastomer and its manufacture
JP2001200232A (en) * 2000-01-14 2001-07-24 Hitachi Chem Co Ltd Adhesive, adhesive film and semiconductor apparatus by use thereof
JPWO2002013205A1 (en) * 2000-08-04 2004-01-15 積水化学工業株式会社 Conductive fine particles, fine particle plating method and substrate structure
JP4660065B2 (en) * 2000-08-04 2011-03-30 積水化学工業株式会社 Conductive fine particles and substrate structure
JP2008103343A (en) * 2000-08-04 2008-05-01 Sekisui Chem Co Ltd Conductive fine particulate, board constituent, and fine particulate soldering method
JP2002121526A (en) * 2000-10-17 2002-04-26 Shin Etsu Polymer Co Ltd Insulating adhesive, anisotropic electro-conductive adhesive, and heat-sealing connector
JP2005510618A (en) * 2001-11-28 2005-04-21 東レ・ダウコーニング・シリコーン株式会社 Anisotropic conductive adhesive film, method for producing the same, and semiconductor device
JP2007500455A (en) * 2003-05-23 2007-01-11 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレーション How to use pre-applied underfill encapsulant
JP2013110420A (en) * 2003-09-05 2013-06-06 Hitachi Chemical Co Ltd Solar cell with conductive material, connection structure, and method for connecting solar cells
JP2014197700A (en) * 2003-09-05 2014-10-16 日立化成株式会社 Solar cell unit
JP2012199240A (en) * 2003-09-05 2012-10-18 Hitachi Chem Co Ltd Conduction material for connection of solar cells
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2012147008A (en) * 2003-09-05 2012-08-02 Hitachi Chem Co Ltd Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage method of conduction material for connection of solar cell
JP2016201577A (en) * 2003-09-05 2016-12-01 日立化成株式会社 Solar cell unit
JP2005097619A (en) * 2004-10-01 2005-04-14 Sony Chem Corp Anisotropic conductive adhesive and anisotropic conductive adhesive sheet using the same
JP2006335926A (en) * 2005-06-03 2006-12-14 Shin Etsu Chem Co Ltd Pressure-bonding anisotropic conductive resin composition and elastic anisotropic conductive member
CN100441613C (en) * 2005-08-19 2008-12-10 湖北省化学研究院 Preparation of polymer composite conductive microsphere for aeolotropic conductive adhensive membrane
JP2007173810A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Contact structure
JP2006339163A (en) * 2006-06-08 2006-12-14 Hitachi Chem Co Ltd Connection method of electrode
JPWO2009008383A1 (en) * 2007-07-06 2010-09-09 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure
WO2009008383A1 (en) * 2007-07-06 2009-01-15 Sekisui Chemical Co., Ltd. Electroconductive fine particles, anisotropic electroconductive material, and connection structure
JP2010138317A (en) * 2008-12-12 2010-06-24 Lintec Corp Electroconductive pressure-sensitive adhesive sheet and method for producing the same
JP2009290231A (en) * 2009-09-01 2009-12-10 Hitachi Chem Co Ltd Method of manufacturing circuit board apparatus
JP2012140625A (en) * 2012-01-23 2012-07-26 Nitto Denko Corp Adhesive heat-conducting member and method for producing the same
JP2013206823A (en) * 2012-03-29 2013-10-07 Dexerials Corp Conductive particle, circuit connection material, mounting body, and manufacturing method of mounting body
WO2013146573A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Electroconductive particle, circuit connecting material, mounting body, and method for manufacturing mounting body
WO2014017658A1 (en) 2012-07-24 2014-01-30 株式会社ダイセル Conductive fiber-coated particle, curable composition and cured article derived from curable composition
KR20150038013A (en) 2012-07-24 2015-04-08 주식회사 다이셀 Conductive fiber-coated particle, curable composition and cured article derived from curable composition
US10839977B2 (en) 2012-07-24 2020-11-17 Daicel Corporation Conductive fiber-coated particle, curable composition and cured article derived from curable composition
JP2016108563A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Base material particle, conductive particle, conductive material and connection structure
JP2020033427A (en) * 2018-08-28 2020-03-05 東洋インキScホールディングス株式会社 Conductive hot-melt adhesive composition, and laminate
JP2020107834A (en) * 2018-12-28 2020-07-09 大日本印刷株式会社 Electronic unit
WO2021251386A1 (en) * 2020-06-11 2021-12-16 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022202987A1 (en) * 2021-03-26 2022-09-29 デクセリアルズ株式会社 Filler disposition film

Similar Documents

Publication Publication Date Title
JPS62188184A (en) Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
EP0242025B1 (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
JP2586154B2 (en) Circuit connection composition, connection method using the same, and semiconductor chip connection structure
JP2748705B2 (en) Circuit connection members
CN101669258B (en) The method of attachment of electric conductor, conductor connection member, syndeton and solar module
US20050211464A1 (en) Method of microelectrode connection and connected structure of use threof
JPS63237372A (en) Connection member for circuit
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JPS6177278A (en) Connection member for circuit
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JPH07157720A (en) Film having anisotropic electrical conductivity
JPS6177279A (en) Connection member for circuit
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JPS6178069A (en) Connection member for circuit
JPH0773066B2 (en) Circuit connection member
JPH0340899B2 (en)
JPH10226770A (en) Adhesive for connecting circuit members to each other
JP3026432B2 (en) Circuit connection structure
JP5143329B2 (en) Manufacturing method of circuit connection body
JP2954241B2 (en) Anisotropic conductive film
JPH1125760A (en) Anisotropic conductive film
JPH083963B2 (en) Circuit connection member
JPH08249922A (en) Coated particle
JPS6174275A (en) Connection member for circuit
KR101117768B1 (en) Anisotropic Conductive Film