JP2008103343A - Conductive fine particulate, board constituent, and fine particulate soldering method - Google Patents

Conductive fine particulate, board constituent, and fine particulate soldering method Download PDF

Info

Publication number
JP2008103343A
JP2008103343A JP2007285271A JP2007285271A JP2008103343A JP 2008103343 A JP2008103343 A JP 2008103343A JP 2007285271 A JP2007285271 A JP 2007285271A JP 2007285271 A JP2007285271 A JP 2007285271A JP 2008103343 A JP2008103343 A JP 2008103343A
Authority
JP
Japan
Prior art keywords
fine particles
plating
particles
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007285271A
Other languages
Japanese (ja)
Other versions
JP5108456B2 (en
Inventor
Hiroshi Kuroda
広志 黒田
Nobuyuki Okinaga
信幸 沖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007285271A priority Critical patent/JP5108456B2/en
Publication of JP2008103343A publication Critical patent/JP2008103343A/en
Application granted granted Critical
Publication of JP5108456B2 publication Critical patent/JP5108456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fine particulate having an ability for easing a force applied to circuitry including a board, and a method for keeping the distance between boards constant. <P>SOLUTION: The conductive fine particulate is made by coating the surface of a base material particulate made of a resin with one or more metal layers. The resin has a thermal decomposition temperature of 300°C or higher, and at least one of metals composing the metal layer is an alloy and/or metal having a melting point of 150 to 300°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気回路の2つ以上の電極を接続するのに使用され、回路中にかかる力を緩和することにより、接続信頼性が向上した導電性微粒子、及び、基板構成体に関する。 The present invention relates to a conductive fine particle that is used to connect two or more electrodes of an electric circuit and has improved connection reliability by relaxing a force applied in the circuit, and a substrate structure.

従来、電子回路基板において、ICやLSIを接続するためには、それぞれのピンをプリント基板上にハンダ付けする方法が用いられていたが、この方法は生産効率が悪く、また、高密度化には適さないものであった。 Conventionally, in order to connect ICs and LSIs on electronic circuit boards, a method of soldering each pin on a printed circuit board has been used, but this method is inferior in production efficiency and increases the density. Was unsuitable.

接続信頼性を向上させるためには、ハンダを球状にしたいわゆるハンダボールで基板間を接続するBGA(ボールグリッドアレイ)等の技術が開発された。この技術によれば、基板とチップ、及び、基板上に実装されたハンダボールを高温で溶融しながら接続することにより、高生産性、高接続信頼性を両立させて、電子回路を製造することができた。 In order to improve the connection reliability, a technology such as BGA (ball grid array) for connecting substrates with so-called solder balls having a spherical solder shape has been developed. According to this technology, an electronic circuit can be manufactured while achieving both high productivity and high connection reliability by connecting a substrate, a chip, and a solder ball mounted on the substrate while melting at a high temperature. I was able to.

しかしながら、最近基板の多層化が進み、基板自体の外環境変化による歪みや伸縮が発生し、結果としてこれらの力が基板間の接続部に掛かることにより、断線が発生することが問題となっている。また、多層化によって、基板間の距離を維持することが困難になり、これを維持するために別途スペーサ等を置かなければならず手間や費用がかかることが問題となっている。 However, recently, the number of multilayered substrates has increased, and distortion and expansion / contraction due to changes in the external environment of the substrate itself have occurred. As a result, these forces are applied to the connection part between the substrates, causing disconnection. Yes. In addition, it becomes difficult to maintain the distance between the substrates due to the multi-layered structure, and there is a problem that a separate spacer or the like has to be placed in order to maintain this distance, which is troublesome and expensive.

これらを解決する手段として、基板等の回路に掛かる力の緩和に対しては、基板接続部に樹脂等を塗布することにより補強することが行われており、これは接続信頼性の向上には一定の効果を示したが、手間がかかり、また塗布工程が増えることによる費用が増大するという問題がある。また、基板間の距離の維持に対しては、銅の周りにハンダをコーティングしたボールを用いることにより、ハンダのように溶融しない銅が支えとなり、基板間の距離を維持することが可能となる。しかし、銅は高価であり、また、重量もあることから、安価で、かつ、軽量な材料が求められている。 As means for solving these problems, the force applied to the circuit such as the board is reinforced by applying resin or the like to the board connection part, which is to improve the connection reliability. Although a certain effect was shown, there is a problem that it takes time and costs increase due to an increase in the coating process. Also, for maintaining the distance between the substrates, by using a ball coated with solder around copper, copper that does not melt like solder is supported, and the distance between the substrates can be maintained. . However, since copper is expensive and heavy, an inexpensive and lightweight material is required.

本発明は、上記現状に鑑み、基板等の回路にかかる力を緩和する能力を有する導電性微粒子、及び、基板間の距離を一定に維持する方法を提供することを目的とする。 An object of the present invention is to provide a conductive fine particle having an ability to relieve a force applied to a circuit such as a substrate, and a method for maintaining a constant distance between the substrates.

参考発明は、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われてなる導電性微粒子であって、上記樹脂の線膨張率が3×10−5〜7×10−5(1/K)である導電性微粒子である。
第1の本発明は、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われてなる導電性微粒子であって、上記樹脂の熱分解温度が300℃以上であり、かつ、上記金属層を構成する金属のうち少なくとも1つが融点150〜300℃の合金及び/又は金属である導電性微粒子である。
第2の本発明は、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われてなる導電性微粒子であって、上記金属層の全ての層の熱膨張率がそれぞれ1×10−5〜3×10−5(1/K)であり、かつ、各金属層と上記基材微粒子との熱膨張率の比(基材微粒子の熱膨張率/金属層の熱膨張率)がそれぞれ0.1〜10である導電性微粒子である。
第3の本発明は、基材微粒子の表面を少なくとも2種以上の金属合金層で覆う微粒子のめっき方法であって、上記金属合金層は、少なくとも一種の金属が電気めっきにより析出されたものであり、少なくとも他の一種の金属がめっき浴中に分散状態にある金属を取り込ませることにより形成されたものである微粒子のめっき方法である。
第4の本発明は、基材微粒子の表面が、1層以上の金属層に覆われてなる導電性微粒子であって、上記金属層のうち、少なくとも1つの層が、2つ以上の金属層を熱拡散させることにより得られる合金層である導電性微粒子である。
第5の本発明は、微粒子のめっき方法であって、外周部に陰極を有し、めっき液を通過させて排出するフィルター部を有する回転可能なドームと、該ドームの中に該陰極と接触しないように設置された陽極とを有し、ドームの回転による遠心力によって微粒子を陰極に接触させながら通電と撹拌とを繰り返す回転型めっき装置を用いるものであり、めっきする基材微粒子と同等の硬さを有しており、かつその粒径がめっきする基材微粒子の1.5〜30倍であるダミー粒子を同時に加えてめっきを行う微粒子のめっき方法である。
以下に本発明を詳述する。
The reference invention is a conductive fine particle in which the surface of a substrate fine particle made of resin is covered with one or more metal layers, and the linear expansion coefficient of the resin is 3 × 10 −5 to 7 × 10 −5 ( 1 / K).
1st this invention is the electroconductive fine particles by which the surface of the base-material microparticles | fine-particles which consist of resin is covered with one or more metal layers, The thermal decomposition temperature of the said resin is 300 degreeC or more, and the said Conductive fine particles in which at least one of the metals constituting the metal layer is an alloy and / or metal having a melting point of 150 to 300 ° C.
The second aspect of the present invention is conductive fine particles in which the surface of the substrate fine particles made of resin is covered with one or more metal layers, and the thermal expansion coefficient of all the layers of the metal layers is 1 × 10. −5 to 3 × 10 −5 (1 / K), and the ratio of the thermal expansion coefficient between each metal layer and the above-mentioned base particle (thermal expansion coefficient of the base particle / thermal expansion coefficient of the metal layer) is The conductive fine particles are 0.1 to 10, respectively.
A third aspect of the present invention is a method for plating fine particles in which the surface of a fine particle of a substrate is covered with at least two kinds of metal alloy layers, wherein the metal alloy layer is obtained by depositing at least one kind of metal by electroplating. There is a fine particle plating method in which at least another kind of metal is formed by incorporating a metal in a dispersed state into a plating bath.
4th this invention is the electroconductive fine particle by which the surface of base-material microparticles | fine-particles is covered with one or more metal layers, Comprising: At least 1 layer is 2 or more metal layers among the said metal layers. It is the electroconductive fine particle which is an alloy layer obtained by thermally diffusing.
5th this invention is a fine particle plating method, Comprising: A rotatable dome which has a cathode in an outer peripheral part and has a filter part which lets a plating solution pass and discharges, It contacts with this cathode in this dome A rotating plating apparatus that repeats energization and stirring while bringing the fine particles into contact with the cathode by the centrifugal force generated by the rotation of the dome, and is equivalent to the base fine particles to be plated. This is a method of plating fine particles in which plating is performed by simultaneously adding dummy particles having hardness and a particle size of 1.5 to 30 times that of the fine particles of the substrate to be plated.
The present invention is described in detail below.

参考発明、第1の本発明及び第2の本発明は、樹脂からなる基材微粒子の表面が1層以上の金属層に覆われてなる導電性微粒子である。 The reference invention, the first invention, and the second invention are conductive fine particles in which the surface of the substrate fine particles made of resin is covered with one or more metal layers.

参考発明で用いられる樹脂は線膨張係数が3×10−5〜7×10−5(1/K)であるものである。なお、上記線膨張率とは、圧縮荷重法により60〜280℃について測定するものである。線膨張係数が7×10−5未満であると、一般に樹脂が固くなるために、応力緩和効果が小さくなり、3×10−5を超えると、樹脂の変形が大きいため、回路の歪みが無視できない。参考発明の導電性微粒子は、基材微粒子に用いる樹脂の線膨張率が上記の範囲内であるので、温度変化の影響を受けずに、基板間の距離を一定に維持することができる。 The resin used in the reference invention has a linear expansion coefficient of 3 × 10 −5 to 7 × 10 −5 (1 / K). In addition, the said linear expansion coefficient is measured about 60-280 degreeC by the compression load method. If the linear expansion coefficient is less than 7 × 10 −5 , the resin is generally hardened, so the stress relaxation effect is small, and if it exceeds 3 × 10 −5 , the deformation of the resin is large and the circuit distortion is ignored. Can not. In the conductive fine particles of the reference invention, since the linear expansion coefficient of the resin used for the base fine particles is within the above range, the distance between the substrates can be kept constant without being affected by the temperature change.

第1の本発明で用いられる樹脂は熱分解温度が300℃以上であるものである。なお、上記熱分解温度とは、TGA(熱重量分析)を用いて測定されるものであり、対象物の減量の始まる温度である。熱分解温度が300℃未満であると、導通により基板等の温度が上昇した場合に、導電性微粒子が破損し、導通を確保することができなくなる。
参考発明、第1の本発明及び第2の本発明で用いられる樹脂としては、上記の各条件を満たすものであれば特に限定されず、例えば、フェノール樹脂、アミノ樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又は非架橋型合成樹脂;有機−無機ハイブリッド重合体等が挙げられる。これらは単独で用いられても良く、2種以上が共重合体等として併用されても良い。
The resin used in the first invention has a thermal decomposition temperature of 300 ° C. or higher. The thermal decomposition temperature is measured using TGA (thermogravimetric analysis) and is a temperature at which the weight loss of the object starts. When the thermal decomposition temperature is less than 300 ° C., when the temperature of the substrate or the like rises due to conduction, the conductive fine particles are damaged, and conduction cannot be ensured.
The resin used in the reference invention, the first invention, and the second invention is not particularly limited as long as the above conditions are satisfied. For example, a phenol resin, an amino resin, an acrylic resin, a polyester resin, Examples include urea resins, melamine resins, alkyd resins, polyimide resins, urethane resins, epoxy resins and other crosslinked or non-crosslinked synthetic resins; organic-inorganic hybrid polymers. These may be used alone or two or more of them may be used in combination as a copolymer or the like.

参考発明、第1の本発明及び第2の本発明における金属層としては特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、アンチモン、ビスマス、ゲルマニウム、カドミウム、及び、珪素からなる群より選ばれる少なくとも1種以上の金属からなるものが挙げられる。上記金属層は一層からなるものであっても、多層からなるものであってもよく、これらの金属が単独で用いられても良く、2種以上が併用されても良い。上記の金属が2種以上併用される場合は、複数の層状構造を形成するように用いられても良く、合金として用いられても良い。 The metal layer in the reference invention, the first invention, and the second invention is not particularly limited. For example, gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, Examples thereof include those made of at least one metal selected from the group consisting of chromium, antimony, bismuth, germanium, cadmium, and silicon. The metal layer may be composed of one layer or may be composed of multiple layers, and these metals may be used alone or in combination of two or more. When two or more kinds of the above metals are used in combination, they may be used to form a plurality of layered structures, or may be used as an alloy.

第1の本発明は、金属層を構成する金属のうち少なくとも1つが融点150〜300℃の合金及び/又は金属であるものである。金属層を構成する金属のうち少なくとも1つが融点150〜300℃の合金及び/又は金属であると、合金及び/又は金属が溶融することにより、温度の上昇により生じた基板の歪みや収縮を吸収し、基板間にかかる力を緩和することができる。融点150〜300℃の合金及び/又は金属としては特に限定されないが、上記で列挙した金属及び合金のうちでは、ハンダ合金や錫等が該当する。 In the first aspect of the present invention, at least one of the metals constituting the metal layer is an alloy and / or metal having a melting point of 150 to 300 ° C. When at least one of the metals constituting the metal layer is an alloy and / or metal having a melting point of 150 to 300 ° C., the alloy and / or metal melts to absorb the distortion and shrinkage of the substrate caused by the rise in temperature. In addition, the force applied between the substrates can be reduced. Although it does not specifically limit as an alloy and / or metal with melting | fusing point 150-300 degreeC, Among the metals and alloys enumerated above, solder alloy, tin, etc. correspond.

第2の本発明は、金属層の全ての層の熱膨張率がそれぞれ1×10−5〜3×10−5(1/K)であり、かつ、各金属層と基材微粒子との熱膨張率の比(基材微粒子の熱膨張率/金属層の熱膨張率)がそれぞれ0.1〜10であるものである。第2の本発明の導電性微粒子は、上記の条件を満たすものであるので、温度変化によっても、基材微粒子の膨張・収縮により、金属層が破壊されず、基材微粒子と金属層とが剥離することがなく、接続安定性を担保することができる。 In the second aspect of the present invention, the thermal expansion coefficients of all the metal layers are 1 × 10 −5 to 3 × 10 −5 (1 / K), respectively, and the heat of each metal layer and the substrate fine particles The ratio of the expansion coefficients (the thermal expansion coefficient of the substrate fine particles / the thermal expansion coefficient of the metal layer) is 0.1 to 10, respectively. Since the conductive fine particles of the second aspect of the present invention satisfy the above-mentioned conditions, the metal layer is not destroyed by the expansion / contraction of the base fine particles even when the temperature changes, and the base fine particles and the metal layer are not destroyed. Connection stability can be ensured without peeling.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、外径が200〜1000μmである場合は、金属層の厚みが基材微粒子の半径の0.5〜30%であることが好ましい。0.5%未満であると、導電性微粒子の運搬時の耐久性や初期の接続信頼性が低下することがあり、30%を超えると、応力緩和効果が低下することがある。金属層の厚みが基材微粒子の半径に対して上記の範囲内にあることで、導電性微粒子の応力緩和効果、及び、粒子自体の耐久性が最も強くなる。 When the outer diameter of the conductive fine particles of the reference invention, the first invention and the second invention is 200 to 1000 μm, the thickness of the metal layer is 0.5 to 30% of the radius of the substrate fine particles. It is preferable. If it is less than 0.5%, the durability during transport of the conductive fine particles and the initial connection reliability may be lowered, and if it exceeds 30%, the stress relaxation effect may be lowered. When the thickness of the metal layer is within the above range with respect to the radius of the base fine particles, the stress relaxation effect of the conductive fine particles and the durability of the particles themselves are the strongest.

更に、金属層の厚みが基材微粒子の半径に対して、下記式(1)で表される関係を有することが好ましい。
Y=(−25/10万・X+c)×100 (1)
式中、Yは金属層の厚みの基材微粒子の半径に対する比率(%)を表し、Xは導電性微粒子の外径(μm)を表し、cは0.10〜0.35の定数を表す。但し、Y>0である。
上記式(1)を満たすと、導電性微粒子の応力緩和効果、及び、粒子自体の耐久性がより強くなる。
Furthermore, it is preferable that the thickness of the metal layer has a relationship represented by the following formula (1) with respect to the radius of the base particle.
Y = (− 25 / 100,000 · X + c) × 100 (1)
In the formula, Y represents the ratio (%) of the thickness of the metal layer to the radius of the substrate fine particles, X represents the outer diameter (μm) of the conductive fine particles, and c represents a constant of 0.10 to 0.35. . However, Y> 0.
When the above formula (1) is satisfied, the stress relaxation effect of the conductive fine particles and the durability of the particles themselves become stronger.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、外径が50〜200μmである場合は、金属層の厚みが基材微粒子の半径の1〜100%であることが好ましい。1%未満であると、粒子の運搬時の耐久性や初期の接続信頼性が低下することがあり、100%を超えると、応力緩和効果が低下することがある。金属層の厚みが基材微粒子の半径に対して上記の範囲内にあることで、導電性微粒子の応力緩和効果、及び、粒子自体の耐久性が最も強くなる。より好ましくは、4〜40%である。 When the outer diameter of the conductive fine particles of the reference invention, the first invention, and the second invention is 50 to 200 μm, the thickness of the metal layer is 1 to 100% of the radius of the substrate fine particles. preferable. If it is less than 1%, the durability during transport of particles and the initial connection reliability may be lowered, and if it exceeds 100%, the stress relaxation effect may be lowered. When the thickness of the metal layer is within the above range with respect to the radius of the base fine particles, the stress relaxation effect of the conductive fine particles and the durability of the particles themselves are the strongest. More preferably, it is 4 to 40%.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、基材微粒子の中に気泡がある粒子が全体数の1%以下であることが好ましい。基材微粒子の中に気泡がある粒子は、表面が凹凸を持っているため、その部分での金属被膜の剥がれが生じやすく、基板実装時に断線等の原因となる。また、気泡がリフロー等の加熱時に膨張し、ハンダ等にマイクロクラックが発生する原因となる。気泡は断線やマイクロクラックの原因となるので、気泡がある粒子の数は少ないほど好ましいが、1%を超えると、無視し得ないほどの不良率となり、好ましくない。より好ましくは、0.5%以下である。 In the conductive fine particles of the reference invention, the first invention, and the second invention, it is preferable that particles having bubbles in the substrate fine particles are 1% or less of the total number. Particles having bubbles in the substrate fine particles have irregularities on the surface, so that the metal coating is easily peeled off at the portions, which may cause disconnection or the like when mounted on the substrate. In addition, bubbles expand during heating such as reflow, which causes micro cracks in solder and the like. Since bubbles cause disconnection and microcracks, the smaller the number of particles with bubbles, the better. However, if it exceeds 1%, the defect rate cannot be ignored, which is not preferable. More preferably, it is 0.5% or less.

更に、参考発明、第1の本発明及び第2の本発明の導電性微粒子の基材微粒子の外径が50〜1000μmである場合、基材微粒子の半径の1%以上の径をもつ気泡がある粒子が全体数の1%以下であることが好ましい。 Furthermore, when the outer diameter of the base fine particles of the conductive fine particles of the reference invention, the first invention and the second invention is 50 to 1000 μm, bubbles having a diameter of 1% or more of the radius of the base fine particles It is preferable that a certain particle is 1% or less of the total number.

気泡と同様に、基材微粒子の中に水等の沸点が300℃以下である物質が含まれている場合も、リフロー等の加熱時に膨張し、ハンダ等にマイクロクラックが発生する原因となる。このため、参考発明、第1の本発明及び第2の本発明の導電性微粒子は、基材微粒子の中に含有される水等の沸点が300℃以下の物質の総計が粒子全体重量の1重量%以下であることが好ましい。1重量%を超えると、無視し得ないほどの不良率となり、好ましくない。 Similarly to the bubbles, when the substrate fine particles contain a substance having a boiling point of 300 ° C. or less, such as water, it expands during heating such as reflow and causes micro cracks in the solder. For this reason, in the conductive fine particles of the reference invention, the first invention, and the second invention, the total of substances having a boiling point of 300 ° C. or less such as water contained in the substrate fine particles is 1 of the total weight of the particles. It is preferable that it is less than weight%. If it exceeds 1% by weight, the defective rate is not negligible, which is not preferable.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、真球度が1.5%以下であることが好ましい。なお、上記真球度とは、下記式(2)で表されるパラメータである。
真球度(%)=
(球の最大径−球の最小径)/(球の最大径+球の最小径)×2×100 (2)
真球度が1.5%以下であれば、導電性微粒子のハンドリングがよく、輸送中の破損や実装工程中の粒子の破損も少ない。一方、真球度が1.5%を超えると、輸送中の破損が多く、破片が工程中に散乱する危険がある。
The conductive fine particles of the reference invention, the first invention, and the second invention preferably have a sphericity of 1.5% or less. The sphericity is a parameter represented by the following formula (2).
Sphericality (%) =
(Maximum diameter of sphere−minimum diameter of sphere) / (maximum diameter of sphere + minimum diameter of sphere) × 2 × 100 (2)
When the sphericity is 1.5% or less, the handling of the conductive fine particles is good, and the damage during transportation and the damage during the mounting process are small. On the other hand, when the sphericity exceeds 1.5%, there is a lot of damage during transportation, and there is a risk that debris is scattered during the process.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、抵抗値が100mΩ以下であることが好ましい。100mΩ以下であれば、回路中に熱を発生することもなく、低消費電力のモジュールを製することができる。100mΩを超えると、導電惟微粒子を用いたモジュールの消費電力が飛躍的に上昇し、また、それによる発熱も無視できず、好ましくない。 The conductive fine particles of the reference invention, the first invention, and the second invention preferably have a resistance value of 100 mΩ or less. If it is 100 mΩ or less, a module with low power consumption can be manufactured without generating heat in the circuit. If it exceeds 100 mΩ, the power consumption of the module using the conductive fine particles will increase dramatically, and the resulting heat generation is not negligible.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、基材微粒子の−60〜200℃の温度範囲におけるE’の最大値と最小値との比が1〜2であることが好ましい。上記の温度範囲で最大値と最小値の比が1〜2であれば、粘弾性の変化が少なく、実装に用いても、製品の熱による劣化等は少ない。しかし、所定の比を超えるようであれば、粘弾性が低下したところで、製品の破損や劣化等が起こることがある。 In the conductive fine particles of the reference invention, the first invention, and the second invention, the ratio of the maximum value and the minimum value of E ′ in the temperature range of −60 to 200 ° C. of the substrate fine particles is 1-2. It is preferable. If the ratio between the maximum value and the minimum value in the above temperature range is 1 to 2, the change in viscoelasticity is small, and even when used for mounting, there is little deterioration of the product due to heat. However, if it exceeds a predetermined ratio, the product may be damaged or deteriorated when the viscoelasticity is lowered.

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、基材微粒子のK値が1000〜1万(MPa)であることが好ましい。なお、上記K値(MPa)は10%変形時における圧縮硬さを意味するものであり、(3/√2)・F・S−3/2・R−1/2で表され、Fは20℃、10%圧縮変形における荷重値(MPa×mm)、Sは圧縮変位(mm)、Rは半径(mm)で表される値であり、導電性微粒子を、特表平6−503180号公報に準拠して微小圧縮試験器(島津製作所社製、PCT−200)を用いてダイヤモンド製の直径50μmの円柱の平滑端面で、圧縮硬度0.27g/秒、最大試験荷重10gで圧縮して算出される値である。K値が小さい程、変形が容易である。K値が1000MPa未満であると、柔軟すぎるため製造時の合着等の問題を引き起こすことがあり、また、基板間のギャップが維持されず、基板間の接合部分以外での衝突が発生するに実用的でなく、1万MPaを超えると、硬過ぎるために基板間の接合に用いると、接合部分に応力が掛かりやすい。より好ましくは、1500〜6500(MPa)である。 In the conductive fine particles of the reference invention, the first invention, and the second invention, the K value of the substrate fine particles is preferably 1000 to 10,000 (MPa). The above K value (MPa) is intended to mean the compression hardness at 10% deformation, expressed in (3 / √2) · F · S -3/2 · R -1/2, F is The load value (MPa × mm 2 ) at 20 ° C. and 10% compression deformation, S is the compression displacement (mm), and R is the value expressed by the radius (mm). Compressed with a smooth end face of a 50 μm diameter cylinder made of diamond with a compression hardness of 0.27 g / sec and a maximum test load of 10 g using a micro compression tester (PCT-200, manufactured by Shimadzu Corporation) This is a calculated value. The smaller the K value, the easier the deformation. If the K value is less than 1000 MPa, it may be too flexible to cause problems such as bonding at the time of manufacture, and the gap between the substrates may not be maintained, and a collision may occur at a portion other than the bonded portion between the substrates. It is not practical, and when it exceeds 10,000 MPa, it is too hard, and when used for bonding between substrates, stress is easily applied to the bonded portion. More preferably, it is 1500-6500 (MPa).

参考発明、第1の本発明及び第2の本発明の導電性微粒子は、金属層が2層〜4層からなり、かつ、その最外層がハンダ合金及び/又はスズであることが好ましい。基材微粒子の外径としては、用途に従い適宜選択することができ、例えば、700〜800μm、250〜400μm、50〜150μmの外径を有する基材微粒子を用いることができる。
基材微粒子の外径が700〜800μmであり、金属層が4層からなり、最内層が0.1〜0.5μmのニッケル層、その外層が2〜12μmの銅層、その外層が2〜30μmの鉛が82〜98%、錫が2〜18%のハンダ合金層、最外層が2〜30μmの鉛が25〜50%、錫が50〜75%のハンダ合金層である導電性微粒子を用いると、よりいっそう温度の上昇により生じた基板の歪みや収縮を吸収し、基板間にかかる力を緩和することができる。
In the conductive fine particles of the reference invention, the first invention, and the second invention, the metal layer is preferably composed of 2 to 4 layers, and the outermost layer is preferably a solder alloy and / or tin. The outer diameter of the substrate fine particles can be appropriately selected according to the application. For example, the substrate fine particles having outer diameters of 700 to 800 μm, 250 to 400 μm, and 50 to 150 μm can be used.
The outer diameter of the substrate fine particles is 700 to 800 μm, the metal layer is composed of four layers, the innermost layer is a nickel layer of 0.1 to 0.5 μm, the outer layer is a copper layer of 2 to 12 μm, and the outer layer is 2 to 2 Conductive fine particles having a solder alloy layer in which lead of 30 μm is 82 to 98%, tin is 2 to 18%, outermost layer is 25 to 50% of lead of 2 to 30 μm, and solder alloy layer of 50 to 75% of tin When used, the strain and shrinkage of the substrate caused by the temperature rise can be absorbed and the force applied between the substrates can be reduced.

2つ以上の基板間が参考発明、第1の本発明又は第2の本発明の導電性微粒子により接続されてなる基板構成体もまた、本発明の1つである。 A substrate structure in which two or more substrates are connected by the conductive fine particles of the reference invention, the first invention, or the second invention is also one aspect of the present invention.

上記基板構成体で用いられる導電性微粒子は、基材微粒子の粒径のCV値が1.5%以下であることが好ましい。なお、上記CV値とは下記式(3)で表されるものである。
CV値=(σ/Dn)×100 (3)
式中、σは粒径の標準偏差を表し、Dnは数平均粒径を表す。上記標準偏差及び数平均粒径は、任意の導電性微粒子100個を電子顕微鏡で観察・測定することにより得られる値である。CV値が1.5%を超えると、粒径のばらつきが大きくなるので、導電性微粒子を介して電極間を接合する際に、接合に関与しない導電性微粒子が多くなり、電極間でリーク現象が起こることがある。
The conductive fine particles used in the substrate structure preferably have a CV value of 1.5% or less of the particle size of the base fine particles. The CV value is expressed by the following formula (3).
CV value = (σ / Dn) × 100 (3)
In the formula, σ represents the standard deviation of the particle diameter, and Dn represents the number average particle diameter. The standard deviation and the number average particle diameter are values obtained by observing and measuring 100 arbitrary conductive fine particles with an electron microscope. When the CV value exceeds 1.5%, the dispersion of the particle size increases, so when joining the electrodes via the conductive fine particles, the number of conductive fine particles not involved in the joining increases, and a leak phenomenon occurs between the electrodes. May happen.

上記基板構成体で用いられる導電性微粒子は、基材微粒子の粒径が中心値の±5%であることが好ましい。±5%の範囲外であると、同様に、粒径のばらつきが大きくなるので、導電性微粒子を介して電極間を接合する際に、接合に関与しない導電性微粒子が多くなり、電極間でリーク現象が起こることがある。 It is preferable that the conductive fine particles used in the substrate structure have a base particle size of ± 5% of the center value. Similarly, when the value is outside the range of ± 5%, the variation in the particle size becomes large. Therefore, when the electrodes are joined via the conductive fine particles, the number of conductive fine particles not involved in the joining increases, Leakage may occur.

上記基板構成体において、基板間の距離は本発明の導電性微粒子の基材微粒子の粒径の95〜120%であることが好ましい。95%未満であると、基板に傷が付くことがあり、120%を超えると、接続安定性が低下することがある。 In the substrate structure, the distance between the substrates is preferably 95 to 120% of the particle size of the conductive fine particles of the present invention. If it is less than 95%, the substrate may be damaged, and if it exceeds 120%, the connection stability may be lowered.

上記基板構成体において、2つ以上の基板を構成する材料及び/又は組成は同じであってもよいが、異なっていてもよい。基板構成体を構成する複数の基板がそれぞれ異なるものであっても、本発明の導電性微粒子を用いて接続することにより、基板自体の外環境変化による歪みや伸縮により発生した基板等の回路に掛かる力を緩和することができる。 In the above-described substrate structure, the materials and / or compositions constituting two or more substrates may be the same or different. Even if the plurality of substrates constituting the substrate structure are different from each other, by connecting using the conductive fine particles of the present invention, a circuit such as a substrate generated by distortion or expansion / contraction due to a change in the external environment of the substrate itself can be obtained. The applied force can be reduced.

上記基板構成体において、基板同士の線膨張係数の差が10ppm以上であってもよい。10ppm以上であっても、本発明の導電性微粒子により接続することで、基板自体の外環境変化による歪みや伸縮により発生した基板等の回路に掛かる力を緩和することができる。 In the substrate structure, the difference in linear expansion coefficient between the substrates may be 10 ppm or more. Even if it is 10 ppm or more, the force applied to a circuit such as a substrate generated by distortion or expansion / contraction due to a change in the external environment of the substrate itself can be reduced by connecting with the conductive fine particles of the present invention.

第3の本発明は、基材微粒子の表面を少なくとも2種以上の金属合金層で覆う微粒子のめっき方法である。
第3の本発明における金属合金層は、少なくとも一種の金属が電気めっきにより析出されたものであり、少なくとも他の一種の金属がめっき浴中に分散状態にある金属を取り込ませることにより形成されたものであることを特徴とする。
The third aspect of the present invention is a method for plating fine particles in which the surface of the substrate fine particles is covered with at least two kinds of metal alloy layers.
The metal alloy layer according to the third aspect of the present invention is formed by depositing at least one kind of metal by electroplating and incorporating at least another kind of metal in a dispersed state in the plating bath. It is characterized by being.

第3の本発明により得られる導電性微粒子は、樹脂及び金属ボールからなる基材微粒子の表面が2種以上の金属合金層に覆われてなるものである。上記樹脂としては、例えばポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル重合体、フェノール樹脂、ポリエステル樹脂、ポリ塩化ビニル等が挙げられる。これらは単独で用いられても良く、2種以上が併用されても良い。上記基材微粒子の形状は球状であれば特に限定されず、例えば中空状のものであっても良い。また金属ボールとしては、例えば、銀、銅、ニッケル、珪素、金、チタン等の高融点の金属が挙げられる。 The conductive fine particles obtained by the third aspect of the present invention are those in which the surface of the base fine particles made of resin and metal balls is covered with two or more metal alloy layers. Examples of the resin include polystyrene, polystyrene copolymer, polyacrylate ester, polyacrylate ester polymer, phenol resin, polyester resin, and polyvinyl chloride. These may be used independently and 2 or more types may be used together. The shape of the substrate fine particles is not particularly limited as long as it is spherical, and may be, for example, a hollow shape. Examples of the metal balls include high melting point metals such as silver, copper, nickel, silicon, gold, and titanium.

これら基材微粒子の平均粒径は特に限定されないが、BGAやCSPといった実装材料の使用用途を考えると、1〜1000μmのものが有用であり好ましい。 Although the average particle diameter of these substrate fine particles is not particularly limited, considering the usage of the mounting material such as BGA and CSP, those having a particle diameter of 1 to 1000 μm are useful and preferable.

本発明の導電性微粒子は、上記基材微粒子を2種以上の金属合金層で被覆したものである。被覆する金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等が挙げられる。 The conductive fine particles of the present invention are those obtained by coating the above-mentioned substrate fine particles with two or more metal alloy layers. Examples of the metal to be coated include gold, silver, copper, platinum, zinc, iron, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, and the like.

これら金属は1種でも良く、2種以上からなる合金組成としてめっき層を形成しても良い。例えば、ポリスチレン樹脂からなる基材微粒子に、ニッケル層をめっきし、更にその上に錫−銀の合金層を設けるといった構成等が挙げられる。 One kind of these metals may be used, or a plating layer may be formed as an alloy composition comprising two or more kinds. For example, the structure etc. which plate a nickel layer on the base-material fine particle which consists of polystyrene resin, and also provide a tin-silver alloy layer on it are mentioned.

これら金属層のうち、少なくとも1層は、複合めっき法にてめっきされた合金層とすることが好ましい。複合めっき層においては、近年の鉛フリーの要求に応えるべく、錫を中心とした錫−銀、錫−銅、錫−銀−銅と言っためっき組成が挙げられる。特に実用上の実績や、めっき浴の状況から錫−銀とするのが好ましい。 Of these metal layers, at least one layer is preferably an alloy layer plated by a composite plating method. In the composite plating layer, plating compositions such as tin-silver, tin-copper, and tin-silver-copper centered on tin can be cited in order to meet recent lead-free requirements. In particular, it is preferable to use tin-silver from the practical results and the condition of the plating bath.

上記金属層の厚みは特に限定されないが、導電接合や基盤接合という用途を考えた場合には、0.01〜500μmであることが好ましい。0.01μm未満では好ましい導電性が得られにくく、500μmを超えると、粒子同士の合着が起こったり、基板間の距離維持や基板等の回路にかかる力を緩和する機能が低下することがある。 The thickness of the metal layer is not particularly limited, but is preferably 0.01 to 500 μm in consideration of applications such as conductive bonding and substrate bonding. If it is less than 0.01 μm, it is difficult to obtain preferable conductivity, and if it exceeds 500 μm, the particles may coalesce, and the function of maintaining the distance between the substrates and relaxing the force applied to the circuit such as the substrate may be deteriorated. .

第3の本発明においては、例えば2価の錫化合物、1価の銀化合物及び共析安定助剤を基本組成として含有するめっき浴を用いることで、合金組成の錫をイオンとして電気めっきし、銀をめっき浴中に分散した金属銀として、めっき被膜中に析出することが可能である。
めっき浴中では分解反応である次式の反応により、自然に金属銀粒子が生成する。
Sn2+ + 2Ag → Sn4+ + 2Ag↓
In the third aspect of the present invention, for example, by using a plating bath containing a divalent tin compound, a monovalent silver compound, and a eutectoid stabilization aid as a basic composition, electroplating tin of the alloy composition as ions, It is possible to deposit in the plating film as metallic silver in which silver is dispersed in the plating bath.
In the plating bath, metallic silver particles are spontaneously generated by the reaction of the following formula, which is a decomposition reaction.
Sn2 + 2 + 2Ag +Sn4 ++ 2Ag ↓

この際の銀粒子はめっき浴中において、粒径約5nm程度の大きさで生成され、凝集、沈降することなく、安定に存在することが確認されている。 In this case, the silver particles are generated in the plating bath with a particle size of about 5 nm, and it has been confirmed that they exist stably without aggregation and sedimentation.

即ち、本発明のめっき法では、錫イオンと銀イオンをカソード上で同時に還元して合金化するという従来の錫−銀合金皮膜めっき法とは本質的に異なるため、錫と銀との析出電位は大きく離れていることに起因する従来の問題をすべて解決することができる。従って、低電流密度で貴な成分である銀が優先的に析出してめっき皮膜の合金組成が不均一になるという欠点は発生しない。 That is, the plating method of the present invention is essentially different from the conventional tin-silver alloy film plating method in which tin ions and silver ions are simultaneously reduced and alloyed on the cathode, so that the deposition potential of tin and silver is different. Can solve all the conventional problems caused by being far away. Therefore, there is no disadvantage that silver, which is a noble component at a low current density, is preferentially precipitated and the alloy composition of the plating film becomes non-uniform.

また同様の原理において、析出電位の離れている錫−銅といった合金組成でも、複合めっき法によれば、低電流密度において被膜組成の調整が可能である。 Further, on the same principle, even with an alloy composition such as tin-copper having a separated deposition potential, the coating composition can be adjusted at a low current density by the composite plating method.

第3の本発明に用いられる2価の錫化合物としては、公知の非シアン化物以外のいずれも使用でき、例えば、硫酸錫、塩化錫、臭化錫、酸化錫、硼フッ化錫、珪フッ化錫、スルファミン酸錫、蓚酸錫、酒石酸錫、グルコン酸錫、ピロリン酸錫、メタンスルホン酸錫、アルカノールスルホン酸錫等の有機酸塩、無機酸塩を使用できる。 As the divalent tin compound used in the third aspect of the present invention, any known non-cyanide compounds can be used. For example, tin sulfate, tin chloride, tin bromide, tin oxide, tin borofluoride, silicon fluoride Organic acid salts and inorganic acid salts such as tin fluoride, tin sulfamate, tin oxalate, tin tartrate, tin gluconate, tin pyrophosphate, tin methanesulfonate and tin alkanolsulfonate can be used.

錫化合物の使用量は、錫分として、5〜100g/Lが適当であり、好適には、10〜20g/Lである。そして、上記の錫化合物は、2種以上を併用してもよい。 The amount of the tin compound used is suitably 5 to 100 g / L, preferably 10 to 20 g / L, as the tin content. And said tin compound may use 2 or more types together.

第3の本発明で用いられる共析安定助剤としては、以下のようなものが挙げられる。
(a)アルキル基の炭素数が0〜4の脂肪族ジカルボン酸:蓚酸、マロン酸、グルタル酸、アジピン酸。
(b)脂肪族オキシカルボン酸:グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、グルコン酸、グルコヘプトン酸。
(c)縮合リン酸:ピロリン酸及びトリポリリン酸。
(d)アミンカルボン酸:エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ニトリロトリ酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸。
Examples of the eutectoid stabilization aid used in the third aspect of the present invention include the following.
(A) Aliphatic dicarboxylic acids having 0 to 4 carbon atoms in the alkyl group: succinic acid, malonic acid, glutaric acid, adipic acid.
(B) Aliphatic oxycarboxylic acid: glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, gluconic acid, glucoheptonic acid.
(C) Condensed phosphoric acid: pyrophosphoric acid and tripolyphosphoric acid.
(D) Amine carboxylic acid: ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetramine hexaacetic acid.

これらの共析安定助剤の使用量は、使用する添加化合物の種類によって適宜選択できるが、2価の錫化合物を水溶液中に安定に保持するために、めっき浴中の錫分1モルに対して1モル以上を用いることが好ましい。より好適には、2〜5モルである。また、以上の化合物は、2種以上を併用してもよい。 The amount of these eutectoid stabilizing aids can be appropriately selected depending on the type of additive compound used, but in order to keep the divalent tin compound stable in the aqueous solution, the amount of tin contained in the plating bath is 1 mol. It is preferable to use 1 mol or more. More preferably, it is 2 to 5 mol. Two or more of the above compounds may be used in combination.

第3の本発明のめっき浴中に使用する1価の銀化合物としては、公知の非シアン化物がいずれも使用でき、例えば、酸化銀、硝酸銀、硫酸銀、塩化銀、スルファミン酸銀、クエン酸銀、乳酸銀、ピロリン酸銀、メタンスルホン酸銀、アルカノールスルホン酸銀等を使用できる。 As the monovalent silver compound used in the plating bath of the third aspect of the present invention, any known non-cyanide can be used. For example, silver oxide, silver nitrate, silver sulfate, silver chloride, silver sulfamate, citric acid Silver, silver lactate, silver pyrophosphate, silver methanesulfonate, silver alkanol sulfonate and the like can be used.

それらの銀化合物の使用量は、2〜50g/Lが好適であり、より好適には、2〜10g/Lであり、錫化合物の使用量に対してモル数で錫分の1/2以下が好適である。そして、銀化合物としては、以上の化合物を2種以上併用してもよい。 The amount of the silver compound used is preferably 2 to 50 g / L, and more preferably 2 to 10 g / L. Is preferred. And as a silver compound, you may use 2 or more types of the above compounds together.

第3の本発明のめっき浴には、めっき被膜の銀含有量を制御するために、酸性のめっき浴で、銀の共析量を増大させる作用を有するアミン系化合物又はその塩を添加しても良い。アミン系化合物としては、公知のいずれも使用できる。例えば、(モノ、ジ、トリ)メチルアミン、(モノ、ジ、トリ)エチルアミン、(モノ、ジ、トリ)ブチルアミン、エチレンジアミン、トリエチルテトラアミン、(モノ、ジ、トリ)エタノールアミン、イミダゾール、オキシン、ビピリジル、フェナンスロリン、コハク酸イミド等が挙げられる。その添加量は、使用した化合物の種類により異なるが、1〜100g/Lが好適であり、また、2〜50g/Lが、より好適である。これらの化合物は、2種以上を併用してもよい。 In order to control the silver content of the plating film, an amine compound or a salt thereof having an action of increasing the eutectoid amount of silver is added to the plating bath of the third aspect of the present invention. Also good. Any known amine compound can be used. For example, (mono, di, tri) methylamine, (mono, di, tri) ethylamine, (mono, di, tri) butylamine, ethylenediamine, triethyltetraamine, (mono, di, tri) ethanolamine, imidazole, oxine, Bipyridyl, phenanthroline, succinimide and the like can be mentioned. Although the addition amount changes with kinds of used compound, 1-100 g / L is suitable and 2-50 g / L is more suitable. Two or more of these compounds may be used in combination.

更に、第3の本発明のめっき浴から電解で得た錫−銀合金の皮膜の表面に、光沢を与えるための表面調整剤としては、例えば、ポリエチレングリコール、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステルを用いても良い。 Furthermore, as a surface conditioner for giving gloss to the surface of the tin-silver alloy film obtained by electrolysis from the plating bath of the third invention, for example, polyethylene glycol, polyoxyethylene alkylphenyl ether, polyoxy Ethylene alkyl ethers and polyoxyethylene fatty acid esters may be used.

ポリエチレングリコールとしては、いずれの分子量のものも使用できる。例えば、平均分子量200のものから、平均分子量400万のものまで使用できる。そして、その使用量は、0.1〜50g/Lが適当であり、より好適には、0.2〜5g/Lである。またポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステルから選択される少なくとも1種を用いることができる。これらの表面調整剤も、めっき浴に、0.2〜10g/Lの範囲で用いる。 Polyethylene glycol having any molecular weight can be used. For example, those having an average molecular weight of 200 to those having an average molecular weight of 4 million can be used. And the usage-amount is 0.1-50 g / L suitably, More preferably, it is 0.2-5 g / L. Further, at least one selected from polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, and polyoxyethylene fatty acid ester can be used. These surface conditioners are also used in the plating bath in the range of 0.2 to 10 g / L.

第3の本発明のめっき方法としては、特に限定されないが、500μm以下の粒子に関しては、外周部に陰極を有し、本体内部にめっき液とめっき基材微粒子とを保持し、回転しながら通電、撹拌を繰り返す回転型めっき装置(以後、回転型めっき装置と述べる)により、めっきすることが均一性、凝集の観点から好ましい。 The plating method of the third aspect of the present invention is not particularly limited, but for particles of 500 μm or less, a cathode is provided on the outer periphery, the plating solution and the plating substrate fine particles are held inside the main body, and energized while rotating. From the viewpoint of uniformity and agglomeration, it is preferable to perform plating with a rotary plating apparatus that repeats stirring (hereinafter referred to as a rotary plating apparatus).

この回転型めっき装置の一例の概略図を図1に示す。該めっき装置Aは垂直な駆動軸3の上端部に固定された円盤状のプラスチックの底板11と、この底板11の外周上面に、処理液のみを通すフィルター部として多孔質リング13を配し、この多孔質リング13上面に陰極として通電用の接触リング12を配し、上部中央に開口8を有する円錐台形状のプラスチックの中空カバー1の外周部で多孔質リング13と接触リング12とを底板11との間で狭持してなる処理室4を形成し、上記開口8より処理液等を上記処理室4に供給する供給管6と、多孔体窓から飛散した処理液を受けるプラスチックの容器5と、上記容器5にたまった処理液を排出する排出管7と、上記開口8から挿入されてめっき液に接触する陽極2aとを有する。 A schematic diagram of an example of this rotary plating apparatus is shown in FIG. The plating apparatus A includes a disk-shaped plastic bottom plate 11 fixed to the upper end portion of the vertical drive shaft 3 and a porous ring 13 as a filter portion through which only the processing liquid passes on the outer peripheral upper surface of the bottom plate 11. A contact ring 12 for energization is disposed on the upper surface of the porous ring 13 as a cathode, and the porous ring 13 and the contact ring 12 are attached to the bottom plate at the outer peripheral portion of the frustoconical plastic hollow cover 1 having an opening 8 at the upper center. A processing chamber 4 sandwiched between the substrate 11 and the supply pipe 6 for supplying the processing liquid or the like to the processing chamber 4 from the opening 8; and a plastic container for receiving the processing liquid scattered from the porous window. 5, a discharge pipe 7 that discharges the processing liquid accumulated in the container 5, and an anode 2 a that is inserted from the opening 8 and contacts the plating solution.

駆動軸3を回転させながら処理室4内に、めっき液と導電性下地層が形成された微粒子をめっき液に浸した状態で存在させ、接触リング12(陰極)と陽極2aの両電極間に通電する。該微粒子は遠心力の作用で接触リング12に押しつけられ、陽極2aに面した該微粒子にめっき層ができる。駆動軸3が停止すると、該微粒子は重力の作用とめっき液の慣性による流れに引きずられて、底板中央部の平坦面に流れ落ち、混ざり合いながら、別の姿勢で遠心力の作用により、接触リング12に押しつけられるので、陽極2aに面した別の該微粒子にめっき層ができる。このように駆動軸3の回転と停止とを繰り返すことにより、処理室4に存在する全ての該微粒子に対して均一にめっきが行われる。 While rotating the drive shaft 3, the fine particles on which the plating solution and the conductive underlayer are formed are present in the processing chamber 4 so as to be immersed in the plating solution, and between the contact ring 12 (cathode) and the anode 2a. Energize. The fine particles are pressed against the contact ring 12 by the action of centrifugal force, and a plating layer is formed on the fine particles facing the anode 2a. When the drive shaft 3 is stopped, the fine particles are dragged by the flow of gravity and the inertia of the plating solution, and flow down to the flat surface of the central portion of the bottom plate, and are mixed with each other. 12, a plating layer is formed on the other fine particles facing the anode 2a. By repeating the rotation and stop of the drive shaft 3 in this way, plating is uniformly performed on all the fine particles present in the processing chamber 4.

第3の本発明の微粒子のめっき方法によりめっきしてなる導電性微粒子もまた本発明の1つである。上記導電性微粒子を電極間を接続するときに用いると回路中にかかる力を緩和することができ導電接続構造体として良好なものとなる。このような導電接続構造体もまた、本発明の1つである。 Conductive fine particles obtained by plating using the fine particle plating method of the third aspect of the present invention are also one aspect of the present invention. When the conductive fine particles are used when connecting the electrodes, the force applied in the circuit can be relaxed, and the conductive connection structure is excellent. Such a conductive connection structure is also one aspect of the present invention.

第4の本発明は、基材微粒子の表面が、1層以上の金属層に覆われてなる導電性微粒子である。第4の本発明は、金属層のうち、少なくとも1つの層が、2つ以上の金属層を熱拡散させることにより得られる合金層であることを特徴とする。 The fourth aspect of the present invention is conductive fine particles in which the surface of the substrate fine particles is covered with one or more metal layers. According to a fourth aspect of the present invention, at least one of the metal layers is an alloy layer obtained by thermally diffusing two or more metal layers.

上記基材微粒子としては特に限定されず、例えば、樹脂、金属等からなるものが挙げられる。
上記樹脂としては、例えば、ポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル重合体、フェノール樹脂、ポリエステル樹脂、ポリ塩化ビニル等が挙げられる。これらは単独で用いられても良く、2種類以上が併用されても良い。上記金属としては、例えば、銀、銅、ニッケル、珪素、金、チタン等の高融点の金属が挙げられる。
上記基材微粒子としては、樹脂からなるものが好適に用いられる。
The substrate fine particles are not particularly limited, and examples thereof include those made of resin, metal, and the like.
Examples of the resin include polystyrene, polystyrene copolymer, polyacrylate ester, polyacrylate ester polymer, phenol resin, polyester resin, and polyvinyl chloride. These may be used alone or in combination of two or more. Examples of the metal include high melting point metals such as silver, copper, nickel, silicon, gold, and titanium.
As the substrate fine particles, those made of resin are suitably used.

上記基材微粒子の形状としては球状であれば特に限定されず、例えば、中空状のものであっても良い。 The shape of the substrate fine particles is not particularly limited as long as it is spherical, and for example, it may be hollow.

上記基材微粒子は、平均粒径が1〜1000μmであることが好ましい。1μm未満であると、得られる導電性微粒子の粒径が小さすぎて、電極間を接続する際に、良好な接続が得られにくく、1000μmを超えると、近年の狭ピッチ接続の要求に適しにくい。 The substrate fine particles preferably have an average particle diameter of 1 to 1000 μm. If it is less than 1 μm, the particle size of the obtained conductive fine particles is too small, and it is difficult to obtain a good connection when connecting the electrodes, and if it exceeds 1000 μm, it is difficult to meet the recent demand for narrow pitch connection. .

上記金属層としては、例えば、金、銀、銅、白金、亜鉛、鉄、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等からなるものが挙げられる。 Examples of the metal layer include those made of gold, silver, copper, platinum, zinc, iron, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, and the like. .

上記金属層の厚みとしては特に限定されないが、導電接合や基盤接合という用途を考えた場合には、0.01〜500μmであることが好ましい。0.01μm未満であると、好ましい導電性が得られにくく、500μmを超えると、導電性微粒子同士の合着が起こったり、基板間の距離維持や基板等の回路にかかる力を緩和する機能が低下することがある。 The thickness of the metal layer is not particularly limited, but is preferably 0.01 to 500 μm in consideration of applications such as conductive bonding and substrate bonding. When the thickness is less than 0.01 μm, it is difficult to obtain preferable conductivity. When the thickness exceeds 500 μm, the conductive fine particles coalesce with each other, and the function of maintaining the distance between the substrates and relaxing the force applied to the circuit such as the substrate is provided. May decrease.

上記基材微粒子の表面に金属層を形成する方法としては特に限定されず、例えば、無電解めっきによる方法、電気めっきによる方法、金属微粉を単独又はバインダーに混ぜ合わせて得られるペーストを微粒子にコーティングする方法、真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着方法が挙げられる。 The method for forming the metal layer on the surface of the substrate fine particles is not particularly limited. For example, a method using electroless plating, a method using electroplating, or coating fine particles with a paste obtained by mixing metal fine powder alone or in a binder. And physical vapor deposition methods such as vacuum deposition, ion plating, and ion sputtering.

第4の本発明の導電性微粒子は、上記金属層のうち、少なくとも1つの層が、2つ以上の金属層を熱拡散させることにより得られる合金層であることを特徴とする。
上記合金層は、錫、銀、銅、亜鉛、ビスマス、インジウム、アルミニウム、コバルト、ニッケル、クロム、チタン、アンチモン、ゲルマニウム、カドミウム、及び、珪素からなる群より選ばれる少なくとも2種の金属層を、熱拡散させることにより得られるものである。なかでも、錫をベースとして、銀、銅、亜鉛、ビスマス、インジウムから選ばれる金属を熱拡散して得られる合金層が好ましい。
The conductive fine particles of the fourth aspect of the present invention are characterized in that at least one of the metal layers is an alloy layer obtained by thermally diffusing two or more metal layers.
The alloy layer includes at least two metal layers selected from the group consisting of tin, silver, copper, zinc, bismuth, indium, aluminum, cobalt, nickel, chromium, titanium, antimony, germanium, cadmium, and silicon, It is obtained by thermal diffusion. Among these, an alloy layer obtained by thermally diffusing a metal selected from silver, copper, zinc, bismuth, and indium based on tin is preferable.

少なくとも2種の金属層を熱拡散する方法としては特に限定されず、例えば、恒温槽内にて、多層構造を有する微粒子を、一定時間保持することによって行うことにより所望の金属組成からなる合金層を有する導電性微粒子を得ることができる。熱処理時の恒温槽内は、熱による酸化劣化を抑制するために、窒素やアルゴン等の不活性雰囲気とするか、又は、真空状態として、熱拡散を行うのが好ましい。 The method of thermally diffusing at least two kinds of metal layers is not particularly limited. For example, an alloy layer having a desired metal composition by holding fine particles having a multilayer structure for a certain period of time in a thermostatic bath. Conductive fine particles having can be obtained. In order to suppress oxidative deterioration due to heat, the inside of the thermostatic chamber at the time of heat treatment is preferably an inert atmosphere such as nitrogen or argon, or is thermally diffused in a vacuum state.

熱処理温度は特に限定されず、拡散させる金属により適宜選択すればよいが、融点が低い方の金属の融点より20〜100℃程度低い温度で行うのが好ましい。例えば、錫と銀との多層構造を拡散する際には、錫の融点である232℃よりも20〜100℃低い132〜212℃程度で熱拡散を行うのが好ましい。 The heat treatment temperature is not particularly limited and may be appropriately selected depending on the metal to be diffused. However, the heat treatment temperature is preferably about 20 to 100 ° C. lower than the melting point of the lower melting point metal. For example, when diffusing a multilayer structure of tin and silver, it is preferable to perform thermal diffusion at about 132 to 212 ° C., which is 20 to 100 ° C. lower than 232 ° C. which is the melting point of tin.

上記合金層は、2つ以上の金属層を熱拡散させることにより得られるので、合金層の金属組成の制御が容易に行え、所望の金属組成を有する合金層を形成することができる。
上記合金層の位置としては特に限定されないが、最外層であることが好ましい。最外層とすることによりハンダ層として利用することができる。
Since the alloy layer is obtained by thermally diffusing two or more metal layers, the metal composition of the alloy layer can be easily controlled, and an alloy layer having a desired metal composition can be formed.
The position of the alloy layer is not particularly limited, but is preferably the outermost layer. The outermost layer can be used as a solder layer.

第4の本発明の導電性微粒子は、ICやLSI等を基板上に接続するBGAのハンダボールや異方性導電シート、異方性導電接着剤として用いられ、基板又は部品の接合に用いられる。 The conductive fine particles of the fourth aspect of the present invention are used as BGA solder balls, anisotropic conductive sheets, anisotropic conductive adhesives for connecting ICs or LSIs on a substrate, and used for bonding substrates or components. .

上記基板又は部品の接合方法としては、導電性微粒子を用いて接合する方法であれば特に限定されず、例えば、以下のような方法等が挙げられる。
(1)表面に電極が形成された基板又は部品の上に、異方性導電シートを載せた後、もう一方の電極面を有する基板又は部品を置き、加熱、加圧して接合する方法。
(2)異方性導電シートを用いる代わりに、スクリーン印刷やディスペンサー等の手段で異方性導電接着剤を供給し接合する方法。
(3)導電性微粒子を介して張り合わせた二つの電極部の間隙に液状のバインダーを供給した後で硬化させて接合する方法。
The method for bonding the substrate or the component is not particularly limited as long as it is a method of bonding using conductive fine particles, and examples thereof include the following methods.
(1) A method in which an anisotropic conductive sheet is placed on a substrate or component having an electrode formed on the surface, and then a substrate or component having the other electrode surface is placed and heated and pressed to join.
(2) A method in which an anisotropic conductive adhesive is supplied and joined by means such as screen printing or a dispenser instead of using an anisotropic conductive sheet.
(3) A method in which a liquid binder is supplied to the gap between two electrode portions bonded together via conductive fine particles and then cured and bonded.

上記のようにして基板又は部品の接合体、即ち、導電接続構造体を得ることができる。このような導電接続構造体もまた、本発明の1つである。 As described above, a joined body of substrates or components, that is, a conductive connection structure can be obtained. Such a conductive connection structure is also one aspect of the present invention.

第5の本発明は、微粒子のめっき方法であって、外周部に陰極を有し、めっき液を通過させて排出するフィルター部を有する回転可能なドームと、該ドームの中に該陰極と接触しないように設置された陽極とを有し、ドームの回転による遠心力によって微粒子を陰極に接触させながら通電と撹拌とを繰り返す回転型めっき装置を用いるものであり、めっきする基材微粒子と同等の硬さを有しており、かつその粒径がめっきする基材微粒子の1.5〜30倍であるダミー粒子を同時に加えてめっきを行うことを特徴とするものである。 5th this invention is a fine particle plating method, Comprising: A rotatable dome which has a cathode in an outer peripheral part and has a filter part which lets a plating solution pass and discharges, It contacts with this cathode in this dome A rotating plating apparatus that repeats energization and stirring while bringing the fine particles into contact with the cathode by the centrifugal force generated by the rotation of the dome, and is equivalent to the base fine particles to be plated. Plating is performed by simultaneously adding dummy particles having hardness and a particle size of 1.5 to 30 times that of the substrate fine particles to be plated.

第5の本発明で得られる導電性微粒子は樹脂及び金属ボールからなる基材微粒子の表面が1層以上の金属層に覆われてなるものである。これら基材微粒子の組成は特に限定されないが、実装時の応力緩和機能を持たせる機能を考えると樹脂であることが好ましい。該樹脂としては、例えばポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル重合体、フェノール樹脂、ポリエステル樹脂、ポリ塩化ビニル等が挙げられる。これらは単独で用いられても良く、2種以上が併用されても良い。上記基材微粒子の形状は球状であれば特に限定されず、例えば中空状のものであっても良い。また金属ボールとしては、銀、銅、ニッケル、珪素、金、チタン等の高融点の金属が挙げられる。 The conductive fine particles obtained in the fifth aspect of the present invention are those in which the surface of the base fine particles made of resin and metal balls is covered with one or more metal layers. The composition of these substrate fine particles is not particularly limited, but is preferably a resin considering the function of providing a stress relaxation function during mounting. Examples of the resin include polystyrene, polystyrene copolymer, polyacrylate ester, polyacrylate ester polymer, phenol resin, polyester resin, and polyvinyl chloride. These may be used independently and 2 or more types may be used together. The shape of the substrate fine particles is not particularly limited as long as it is spherical, and may be, for example, a hollow shape. Examples of the metal ball include high melting point metals such as silver, copper, nickel, silicon, gold, and titanium.

またこれら基材微粒子の粒径は特に限定されないが、BGAやCSPといった実装材料の使用用途を考えると、1〜1000μmのものが有用であり、更に回転型めっき装置での凝集のしやすさから、1〜500μmの粒子に対して有効である。 In addition, the particle size of these substrate fine particles is not particularly limited, but considering the usage of mounting materials such as BGA and CSP, those of 1 to 1000 μm are useful, and moreover, they are easily aggregated in a rotary plating apparatus. , Effective for particles of 1 to 500 μm.

第5の本発明で得られる導電性微粒子は、上記基材微粒子を1層以上の金属で被覆したものである。被覆する金属としては金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等が挙げられる。これら金属は1種でも良く、2種以上からなる合金組成としてめっき層を形成しても良い。例えば、ポリスチレン樹脂の基材微粒子に、ニッケル層をめっきし、更にその上に銅や錫をめっきするといった構成が挙げられる。
上記金属層の厚みは特に限定されないが、導電接合や基盤接合という用途を考えた場合には、0.01〜500μmであることが好ましい。0.01μm未満では好ましい導電性が得られにくく、500μmを超えると粒子同士の合着が起こったり、基板間の距離維持や基板等の回路にかかる力を緩和する機能が低下することがある。
The conductive fine particles obtained in the fifth aspect of the present invention are those obtained by coating the above-mentioned substrate fine particles with one or more layers of metal. Examples of the metal to be coated include gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon and the like. One kind of these metals may be used, or a plating layer may be formed as an alloy composition comprising two or more kinds. For example, a configuration in which a nickel layer is plated on polystyrene resin substrate fine particles and copper or tin is further plated thereon.
The thickness of the metal layer is not particularly limited, but is preferably 0.01 to 500 μm in consideration of applications such as conductive bonding and substrate bonding. If it is less than 0.01 μm, it is difficult to obtain preferable conductivity, and if it exceeds 500 μm, the particles may coalesce, and the function of maintaining the distance between the substrates and relaxing the force applied to the circuit such as the substrate may be deteriorated.

第5の本発明の微粒子のめっき方法においては、めっき液を通過させて排出するフィルター部を有する回転可能なドームと、該ドームの中に該陰極と接触しないように設置された陽極とを有しており、ドームの回転による遠心力の効果で微粒子を陰極に接触させて通電、撹拌を繰り返す回転型めっき装置を用いる。これは第3の本発明で用いられるものと同様である。 The fine particle plating method of the fifth aspect of the present invention includes a rotatable dome having a filter portion for allowing a plating solution to pass through and an anode disposed in the dome so as not to contact the cathode. In addition, a rotary plating apparatus that repeats energization and agitation by bringing the fine particles into contact with the cathode by the effect of centrifugal force generated by the rotation of the dome is used. This is the same as that used in the third aspect of the present invention.

第5の本発明においては、この際、めっきする基材微粒子と同等の硬さをもち、かつその粒径がめっきする基材微粒子の1.5〜30倍であるダミー粒子を同時に加えてめっきを行う。 In the fifth aspect of the present invention, at this time, plating is performed by simultaneously adding dummy particles having hardness equivalent to the substrate fine particles to be plated and whose particle size is 1.5 to 30 times that of the substrate fine particles to be plated. I do.

上記ダミー粒子の硬さは、圧縮弾性率で規定し、200〜500±100kgf/mm程度が好ましい。
すなわち、ステンレスや鉄等の金属、ジルコニアやアルミナ等の無機物を使わず、樹脂組成のダミー粒子を使うのが好ましい。樹脂組成としては特に限定されないが、例えばポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル共重合体、フェノール樹脂、ポリエステル樹脂、ポリ塩化ビニル、ナイロン等が挙げられる。これらは単独で用いられても良く、2種以上が併用されても良い。
The hardness of the dummy particles is defined by a compressive elastic modulus and is preferably about 200 to 500 ± 100 kgf / mm 2 .
That is, it is preferable to use dummy particles having a resin composition without using metals such as stainless steel and iron, and inorganic materials such as zirconia and alumina. Although it does not specifically limit as a resin composition, For example, a polystyrene, a polystyrene copolymer, a polyacrylic acid ester, a polyacrylic acid ester copolymer, a phenol resin, a polyester resin, polyvinyl chloride, nylon etc. are mentioned. These may be used independently and 2 or more types may be used together.

ダミー粒子の粒径はめっきする基材微粒子の1.5〜30倍程度が好ましい。ダミー粒子の粒径が1.5倍より小さいと、めっきした粒子とダミー粒子とを分離しにくくなるため好ましくない。また30倍より大きいと、ダミー粒子間のすきまにめっきする基材微粒子が入り込み、実質的な解砕効果が出にくいため好ましくない。 The particle size of the dummy particles is preferably about 1.5 to 30 times that of the substrate fine particles to be plated. If the particle diameter of the dummy particles is smaller than 1.5 times, it is not preferable because it becomes difficult to separate the plated particles and the dummy particles. On the other hand, if it is larger than 30 times, the substrate fine particles to be plated enter into the gaps between the dummy particles, and it is difficult to produce a substantial crushing effect.

第5の本発明の微粒子のめっき方法によってめっきされた微粒子は、電極間を接続するために用いられる導電性微粒子として用いることができる。このような導電性微粒子もまた、本発明の1つである。上記導電性微粒子は、回路中にかかる力を緩和することにより、接続の信頼性を向上させることができる。上記導電性微粒子を用いた導電接続構造体もまた、本発明の1つである。 The fine particles plated by the fine particle plating method of the fifth aspect of the present invention can be used as conductive fine particles used for connecting the electrodes. Such conductive fine particles are also one aspect of the present invention. The conductive fine particles can improve the connection reliability by reducing the force applied in the circuit. The conductive connection structure using the conductive fine particles is also one aspect of the present invention.

本発明によれば、基板等の回路にかかる力を緩和する能力を有する導電性微粒子、及び、基板間の距離を一定に維持する方法を提供することができる。 According to the present invention, it is possible to provide conductive fine particles having an ability to relieve a force applied to a circuit such as a substrate, and a method for maintaining a constant distance between substrates.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(参考例1)
スチレンとジビニルベンゼンとを共重合させて得られた基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径698.5μm、標準偏差17.5μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、バレルめっき装置を用いてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
めっきバレルは、径50mmの正五角形、高さ50mmの角柱状で、側面の1面のみに孔径20μmのメッシュであるフィルタが施されている。
この装置を銅めっき液中で1時間通電し、容器を正五角形の中心同士を通る軸を中心に50rpmで回転し、銅めっきを行い、洗浄を行った。その後に共晶ハンダめっき液中で8時間通電しながら、同様にめっきバレルを回転し、共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は749.2μm、標準偏差は18.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚みは約0.3μm、Cuめっきの厚みは5μm、共晶ハンダめっきの厚みは20μmと計算された。粒径の変動係数は2.4%であった。
一方、めっき前の基材微粒子を板状に成形した後に圧縮加重法により、線膨張率を60〜280℃について測定したところ、60〜200℃では6.0×10−5(1/K)、200〜280℃では4.1×10−5(1/K)であった。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Reference Example 1)
A nickel plating layer was formed as a conductive underlayer on the base particles obtained by copolymerizing styrene and divinylbenzene to obtain nickel plating fine particles having an average particle size of 698.5 μm and a standard deviation of 17.5 μm. 30 g of the obtained nickel plating fine particles were taken, copper plating was performed on the surface thereof using a barrel plating apparatus, and eutectic solder plating was further performed thereon.
The plating barrel has a regular pentagonal shape with a diameter of 50 mm and a prismatic shape with a height of 50 mm, and a filter which is a mesh with a pore diameter of 20 μm is applied to only one side surface.
This apparatus was energized in a copper plating solution for 1 hour, and the container was rotated at 50 rpm around an axis passing through the centers of regular pentagons to perform copper plating and cleaning. Thereafter, while energizing in the eutectic solder plating solution for 8 hours, the plating barrel was similarly rotated to perform eutectic solder plating.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. Moreover, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifying glass, the average particle size was 749.2 μm and the standard deviation was 18.1 μm. Further, when the cut cross section of the particle was measured under a microscope, the thickness of the Ni plating was calculated to be about 0.3 μm, the thickness of the Cu plating was 5 μm, and the thickness of the eutectic solder plating was 20 μm. The coefficient of variation in particle size was 2.4%.
On the other hand, after the base fine particles before plating were formed into a plate shape, the linear expansion coefficient was measured at 60 to 280 ° C. by a compression load method, and at 60 to 200 ° C., 6.0 × 10 −5 (1 / K). It was 4.1 × 10 −5 (1 / K) at 200 to 280 ° C.
Also, no scratches or bipolars were found in any of the above plated particles.

(参考例6)
ポリウレタン樹脂からなる基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径704.5μm、標準偏差19.8μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は755.5μm、標準偏差は25.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚みは約0.3μm、Cuめっきの厚みは5μm、共晶ハンダめっきの厚みは20μmと計算された。粒径の変動係数は3.3%であった。
一方、参考例1と同様にして、線膨張率を60〜280℃について測定したところ、60〜200℃では13.5×10−5(1/K)、200〜280℃では11.7×10−5(1/K)であった。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Reference Example 6)
A nickel plating layer was formed as a conductive underlayer on the base material fine particles made of polyurethane resin to obtain nickel plating fine particles having an average particle diameter of 704.5 μm and a standard deviation of 19.8 μm. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. In addition, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifier, the average particle size was 755.5 μm and the standard deviation was 25.1 μm. Further, when the cut cross section of the particle was measured under a microscope, the thickness of the Ni plating was calculated to be about 0.3 μm, the thickness of the Cu plating was 5 μm, and the thickness of the eutectic solder plating was 20 μm. The variation coefficient of the particle size was 3.3%.
On the other hand, when the linear expansion coefficient was measured at 60 to 280 ° C. in the same manner as in Reference Example 1, it was 13.5 × 10 −5 (1 / K) at 60 to 200 ° C. and 11.7 × at 200 to 280 ° C. 10 −5 (1 / K).
Also, no scratches or bipolars were found in any of the above plated particles.

(参考例2)
テトラメチロールメタンテトラアクリレートとジビニルベンゼンとを共重合させて得られた基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径748.2μm、標準偏差24.5μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は800.5μm、標準偏差は24.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚みは約0.3μm、Cuめっきの厚みは6μm、共晶ハンダめっきの厚みは20μmと計算された。粒径の変動係数は3.0%であった。
一方、参考例1と同様にして、線膨張率を60〜280℃について測定したところ、60〜200℃では5.4×10−5(1/K)、200〜280℃では3.7×10−5(1/K)であった。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Reference Example 2)
A nickel plating layer is formed as a conductive underlayer on the base particles obtained by copolymerization of tetramethylolmethane tetraacrylate and divinylbenzene, and nickel plating particles having an average particle diameter of 748.2 μm and a standard deviation of 24.5 μm are obtained. It was. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. Further, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifier, the average particle diameter was 800.5 μm and the standard deviation was 24.1 μm. Further, when the cut cross section of the particles was measured under a microscope, the thickness of the Ni plating was calculated to be about 0.3 μm, the thickness of the Cu plating was 6 μm, and the thickness of the eutectic solder plating was 20 μm. The coefficient of variation in particle size was 3.0%.
On the other hand, when the linear expansion coefficient was measured at 60 to 280 ° C. in the same manner as in Reference Example 1, it was 5.4 × 10 −5 (1 / K) at 60 to 200 ° C. and 3.7 × at 200 to 280 ° C. 10 −5 (1 / K).
Also, no scratches or bipolars were found in any of the above plated particles.

(参考例7)
エチレン−酢酸ビニル共重合体樹脂からなる基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径748.5μm、標準偏差23.8μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は800.7μm、標準偏差は26.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚みは約0.3μm、Cuめっきの厚みは6μm、共晶ハンダめっきの厚みは20μmと計算された。粒径の変動係数は3.3%であった。
一方、参考例1と同様にして、線膨張率を60〜280℃について測定したところ、60〜200℃では18.9×10−5(1/K)、200〜280℃では15.4×10−5(1/K)であった。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Reference Example 7)
A nickel plating layer was formed as a conductive underlayer on substrate fine particles made of an ethylene-vinyl acetate copolymer resin to obtain nickel plating fine particles having an average particle size of 748.5 μm and a standard deviation of 23.8 μm. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. Further, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifying glass, the average particle size was 800.7 μm and the standard deviation was 26.1 μm. Further, when the cut cross section of the particles was measured under a microscope, the thickness of the Ni plating was calculated to be about 0.3 μm, the thickness of the Cu plating was 6 μm, and the thickness of the eutectic solder plating was 20 μm. The variation coefficient of the particle size was 3.3%.
On the other hand, when the linear expansion coefficient was measured at 60 to 280 ° C. in the same manner as in Reference Example 1, it was 18.9 × 10 −5 (1 / K) at 60 to 200 ° C., and 15.4 × at 200 to 280 ° C. 10 −5 (1 / K).
Also, no scratches or bipolars were found in any of the above plated particles.

(参考例3〜5)
参考例2の基材微粒子の平均粒径398.2μm、標準偏差5.8μmである以外は参考例2と同様のものを作製した。これを参考例3とした。
同様に基材微粒子の平均粒径122.8μm、標準偏差1.6μmである以外は参考例2と同様のものを作製した。これを参考例4とした。
参考例2の金属層を最内層がNiめっきで、その外層をCuめっき、その外層が鉛9:錫1であるハンダ合金(高温ハンダ)のめっき、最外層が共晶ハンダめっきであり、かつ、それぞれの層の顕微鏡下粒子切断面での測定値がNiめっきの厚み約0.3μm、Cuめっきの厚み5μm、高温ハンダめっきの厚み10μm、共晶ハンダめっきの厚み10μmであるものを作製した。これを参考例5とした。
(Reference Examples 3-5)
A material similar to that of Reference Example 2 was prepared, except that the average particle diameter of the base material fine particles of Reference Example 2 was 398.2 μm and the standard deviation was 5.8 μm. This was designated as Reference Example 3.
Similarly, the same material as in Reference Example 2 was prepared except that the average particle size of the substrate fine particles was 122.8 μm and the standard deviation was 1.6 μm. This was designated as Reference Example 4.
In the metal layer of Reference Example 2, the innermost layer is Ni plating, the outer layer is Cu plating, the outer layer is lead 9: tin 1 solder alloy plating (high temperature solder), the outermost layer is eutectic solder plating, and Each of the layers had a measured value on a particle cut surface under a microscope having a Ni plating thickness of about 0.3 μm, a Cu plating thickness of 5 μm, a high temperature solder plating thickness of 10 μm, and a eutectic solder plating thickness of 10 μm. . This was designated as Reference Example 5.

(参考例8〜10)
参考例7の基材微粒子の平均粒径が401.2μm、標準偏差が16.2μmである以外は参考例7と同様のものを作製した。これを参考例8とした。
同様に基材微粒子の平均粒径が135.3μm、標準偏差4.7μmである以外は参考例7と同様のものを作製した。これを参考例9とした。
参考例7の金属層を最内層がNiめっきで、その外層をCuめっき、その外層が鉛9:錫1であるハンダ合金(高温ハンダ)のめっき、最外層が共晶ハンダめっきであり、かつ、それぞれの層の顕微鏡下粒子切断面での測定値が、Niめっきの厚み約0.3μm、Cuめっきの厚み5μm、高温ハンダめっきの厚み10μm、共晶ハンダめっきの厚み10μmであるものを作製した。これを参考例10とした。
(Reference Examples 8 to 10)
The same material as in Reference Example 7 was prepared, except that the average particle size of the substrate fine particles in Reference Example 7 was 401.2 μm and the standard deviation was 16.2 μm. This was designated as Reference Example 8.
Similarly, a material similar to that of Reference Example 7 was produced except that the average particle size of the substrate fine particles was 135.3 μm and the standard deviation was 4.7 μm. This was designated as Reference Example 9.
In the metal layer of Reference Example 7, the innermost layer is Ni plating, the outer layer is Cu plating, the outer layer is lead 9: tin 1 solder alloy (high temperature solder) plating, the outermost layer is eutectic solder plating, and Each of the layers has a measurement value at a particle cut surface under a microscope of Ni plating thickness of about 0.3 μm, Cu plating thickness of 5 μm, high temperature solder plating thickness of 10 μm, and eutectic solder plating thickness of 10 μm. did. This was designated as Reference Example 10.

(実施例1)
テトラメチロールメタンテトラアクリレートとジビニルベンゼンとを共重合させて得られた基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径148.2μm、標準偏差4.5μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は175.5μm、標準偏差は6.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚み約0.3μm、Cuめっきの厚み3μm、共晶ハンダめっきの厚み10μmと計算された。粒径の変動係数は3.0%であった。
また、上記合成樹脂基材微粒子中の気泡を予め調べたが、1万個中15個に1μm以上の気泡が見られた。
また、めっき前の基材微粒子をTGA/TDAにより、熱分解温度を測定したところ、空気中では330℃であった。
上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Example 1)
A nickel plating layer is formed as a conductive underlayer on the base particles obtained by copolymerizing tetramethylolmethanetetraacrylate and divinylbenzene, and nickel plating particles having an average particle size of 148.2 μm and a standard deviation of 4.5 μm are obtained. It was. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. Further, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifier, the average particle diameter was 175.5 μm and the standard deviation was 6.1 μm. Moreover, when the cut cross section of the particle was measured under a microscope, the thickness of the Ni plating was about 0.3 μm, the thickness of the Cu plating was 3 μm, and the thickness of the eutectic solder plating was 10 μm. The coefficient of variation in particle size was 3.0%.
Further, the bubbles in the synthetic resin substrate fine particles were examined in advance, but bubbles of 1 μm or more were found in 15 out of 10,000 particles.
Further, when the thermal decomposition temperature of the base material fine particles before plating was measured by TGA / TDA, it was 330 ° C. in the air.
Of the above plated particles, no scratches or bipolar were found on any of the particles.

(比較例1)
エチレン−酢酸ビニル共重合体樹脂からなる基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径148.5μm、標準偏差3.8μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は800.7μm、標準偏差は26.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚み約0.3μm、Cuめっきの厚み1μm、共晶ハンダめっきの厚み2μmと計算された。粒径の変動係数は3.3%であった。
また、上記合成樹脂基材微粒子中の気泡を予め調べたが、1万個中63個に1μm以上の気泡が見られた。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Comparative Example 1)
A nickel plating layer was formed as a conductive underlayer on the substrate fine particles made of ethylene-vinyl acetate copolymer resin to obtain nickel plating fine particles having an average particle size of 148.5 μm and a standard deviation of 3.8 μm. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. Further, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifying glass, the average particle size was 800.7 μm and the standard deviation was 26.1 μm. Moreover, when the cut cross section of the particle was measured under a microscope, the thickness of the Ni plating was about 0.3 μm, the thickness of the Cu plating was 1 μm, and the thickness of the eutectic solder plating was 2 μm. The variation coefficient of the particle size was 3.3%.
Further, the bubbles in the synthetic resin substrate fine particles were examined in advance, but bubbles of 1 μm or more were observed in 63 pieces out of 10,000 pieces.
Also, no scratches or bipolars were found in any of the above plated particles.

(実施例2)
テトラメチロールメタンテトラアクリレートとジビニルベンゼンとを共重合させて得られた基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径748.2μm、標準偏差24.5μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径800.5μm、標準偏差24.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚み約0.3μm、Cuめっきの厚み6μm、共晶ハンダめっきの厚み20μmと計算された。粒径の変動係数は3.0%であった。
E’(−60〜200℃)を測定したところ、最大値と最小値との比は1.78であり、また、本粒子の抵抗値は87mΩであった。
本粒子において、基材微粒子の熱膨張率は9.8×10−5(1/K)、金属層の熱膨張率は1.68×10−5(1/K)、両者の熱膨張率の比は5.83であった。ただし、金属層としては銅について測定したものである。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Example 2)
A nickel plating layer is formed as a conductive underlayer on the base particles obtained by copolymerization of tetramethylolmethane tetraacrylate and divinylbenzene, and nickel plating particles having an average particle diameter of 748.2 μm and a standard deviation of 24.5 μm are obtained. It was. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. In addition, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifying glass, the average particle size was 800.5 μm and the standard deviation was 24.1 μm. Moreover, when the cut cross section of the particle was measured under a microscope, the thickness of the Ni plating was about 0.3 μm, the thickness of the Cu plating was 6 μm, and the thickness of the eutectic solder plating was 20 μm. The coefficient of variation in particle size was 3.0%.
When E ′ (−60 to 200 ° C.) was measured, the ratio of the maximum value to the minimum value was 1.78, and the resistance value of the particles was 87 mΩ.
In this particle, the thermal expansion coefficient of the substrate fine particles is 9.8 × 10 −5 (1 / K), the thermal expansion coefficient of the metal layer is 1.68 × 10 −5 (1 / K), and the thermal expansion coefficient of both is The ratio of was 5.83. However, as a metal layer, it measured about copper.
Also, no scratches or bipolars were found in any of the above plated particles.

(比較例2)
エチレン−酢酸ビニル共重合体樹脂からなる基材微粒子に導電下地層としてニッケルめっき層を形成し、平均粒径748.5μm、標準偏差23.8μmのニッケルめっき微粒子を得た。得られたニッケルめっき微粒子30gをとり、参考例1と同様にしてその表面に銅めっきを施し、更にその上に共晶ハンダめっきを行った。
このようにして得られた最外殻が共晶ハンダめっき層である共晶ハンダめっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この共晶ハンダめっきされた樹脂微粒子100個を拡大鏡で観察・測定した結果、平均粒径は800.7μm、標準偏差は26.1μmであった。また、顕微鏡下にて粒子の切断断面を測定したところ、Niめっきの厚み約0.3μm、Cuめっきの厚み6μm、共晶ハンダめっきの厚み20μmと計算された。粒径の変動係数は3.3%であった。
E’(−60〜200℃)を測定したところ、最大値と最小値との比は2.37であり、また、本粒子の抵抗値は137mΩであった。
また、上記のめっき粒子の内、傷やバイポーラはいずれの粒子にも見られなかった。
(Comparative Example 2)
A nickel plating layer was formed as a conductive underlayer on substrate fine particles made of an ethylene-vinyl acetate copolymer resin to obtain nickel plating fine particles having an average particle size of 748.5 μm and a standard deviation of 23.8 μm. Taking 30 g of the obtained nickel plating fine particles, the surface thereof was subjected to copper plating in the same manner as in Reference Example 1, and eutectic solder plating was further performed thereon.
The eutectic solder plating resin microparticles whose outermost shell thus obtained was a eutectic solder plating layer were observed with a microscope, and it was confirmed that there was no aggregation and all the particles were present as single particles. It was done. Further, as a result of observing and measuring 100 resin particles plated with eutectic solder with a magnifying glass, the average particle size was 800.7 μm and the standard deviation was 26.1 μm. Moreover, when the cut cross section of the particle was measured under a microscope, the thickness of the Ni plating was about 0.3 μm, the thickness of the Cu plating was 6 μm, and the thickness of the eutectic solder plating was 20 μm. The variation coefficient of the particle size was 3.3%.
When E ′ (−60 to 200 ° C.) was measured, the ratio of the maximum value to the minimum value was 2.37, and the resistance value of the particles was 137 mΩ.
Also, no scratches or bipolars were found in any of the above plated particles.

(測定例)
参考例1〜10、実施例1、2及び比較例1〜5のめっき粒子をダミーチップ上に計24個置き、これをプリント基板に赤外線リフロー装置を用いて接合した。接合条件は、185℃−1分間、245℃−3分間とした。このようにして各種10枚ずつダミーチップを接合した基板を用意した。これを−40〜125℃(各30分サイクル)でプログラム運転をする恒温槽中に入れて行った。各100サイクル毎に全ての球の導通を調べた。表1に各実施例のサイクル数と導通しなくなった基板の数の関係を示した。
(Measurement example)
A total of 24 plated particles of Reference Examples 1 to 10, Examples 1 and 2 and Comparative Examples 1 to 5 were placed on a dummy chip and bonded to a printed circuit board using an infrared reflow apparatus. The joining conditions were 185 ° C. for 1 minute and 245 ° C. for 3 minutes. Thus, the board | substrate which bonded the dummy chip | tip 10 pieces of each was prepared. This was carried out by putting it in a thermostatic chamber that was programmed at -40 to 125 ° C. (each 30 minutes cycle). All spheres were checked for continuity every 100 cycles. Table 1 shows the relationship between the number of cycles in each example and the number of substrates that became non-conductive.

Figure 2008103343
Figure 2008103343

このように、実施例に対し、比較例は比較的早いサイクル数で導通がとれなくなっているものが増えている。 As described above, the number of comparative examples in which conduction cannot be achieved with a relatively fast number of cycles is increasing compared to the examples.

(実施例3)
セパラブルフラスコにて、ジビニルベンゼン20重量部に重合開始剤として過酸化ベンゾイル1.3重量部を均一に混合し、これをポリビニルアルコールの3%水溶液20重量部、ドデシル硫酸ナトリウム0.5重量部を投入しよく攪拌した後、イオン交換水140重量部を添加した。この溶液を攪拌しながら窒素気流下80℃で15時間反応を行った。得られた微粒子を熱水及びアセトンにて洗浄後、篩いにて粒子選別を行い、中心粒径710μmの粒子を得た。これに導電下地層としてニッケルめっき層を形成させた。
ついで、めっき液として以下の物を用意した。水25L中に、硫酸錫(SnSO)537g、ピロ燐酸カリウム(K)1652g、ポリエチレングリコール(分子最:6000)25gを均一に溶解した。この液に硝酸銀(AgNO)42.5gを添加し、液を2時間撹拌した。
上記のめっき液を、回転式めっき装置の浴槽に入れ、ニッケルめっき処理した710μmの粒子40gを、めっき処理した。めっき時の条件は、浴温度50℃、電流密度0.5A/dm、周速18Hzとして、10秒毎に回転方向を逆転させた。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は6μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.0:4.0 と、錫/銀共晶組成に近いものであった。またこの粒子を、DSCにて熱分析を行ったところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 3)
In a separable flask, 1.3 parts by weight of benzoyl peroxide as a polymerization initiator was uniformly mixed with 20 parts by weight of divinylbenzene, and this was mixed with 20 parts by weight of a 3% aqueous solution of polyvinyl alcohol and 0.5 parts by weight of sodium dodecyl sulfate. Was added and stirred well, and then 140 parts by weight of ion-exchanged water was added. The solution was reacted at 80 ° C. for 15 hours under a nitrogen stream while stirring. The obtained fine particles were washed with hot water and acetone and then subjected to particle selection with a sieve to obtain particles having a center particle size of 710 μm. A nickel plating layer was formed thereon as a conductive underlayer.
Next, the following were prepared as plating solutions. In 25 L of water, 537 g of tin sulfate (SnSO 4 ), 1652 g of potassium pyrophosphate (K 4 P 2 O 7 ), and 25 g of polyethylene glycol (molecular maximum: 6000) were uniformly dissolved. 42.5 g of silver nitrate (AgNO 3 ) was added to this solution, and the solution was stirred for 2 hours.
The plating solution was put in a bathtub of a rotary plating apparatus, and 40 g of 710 μm particles plated with nickel were plated. The plating conditions were as follows: the bath temperature was 50 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 10 seconds.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 6 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plating film was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.0: 4.0, which was close to the tin / silver eutectic composition. Further, when this particle was subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is an alloy melting point of Sn / Ag.

(実施例4)
基材微粒子として、ジビニルベンゼンと4官能のアクリルモノマーとを使って実施例3と同様に重合し、710μmの粒子を得た。その後実施例3と同様にめっき処理を行った。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は6μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.0:4.0であった。またこの粒子を、DSCにて熱分析したところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
Example 4
Polymerization was performed in the same manner as in Example 3 using divinylbenzene and a tetrafunctional acrylic monomer as the base fine particles to obtain 710 μm particles. Thereafter, plating was performed in the same manner as in Example 3.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 6 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plated coating was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.0: 4.0. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is the Sn / Ag alloy melting point.

(実施例5)
樹脂粒子の代わりに、粒径500μmの銅ボールを基材微粒子として、回転式めっき装置にて、実施例3と同様に錫−銀のめっき処理を行った。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は4μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.2:3.8であった。またこの粒子を、DSCにて熱分析したところ、Sn/Ag/Cuの合金融点である218℃に溶融ピークが観察された。
(Example 5)
In place of the resin particles, copper balls having a particle diameter of 500 μm were used as the base particles, and a tin-silver plating process was performed in the same manner as in Example 3 using a rotary plating apparatus.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 4 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plated coating was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.2: 3.8. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 218 ° C., which is an alloy melting point of Sn / Ag / Cu.

(実施例6)
実施例3と同様に基材微粒子を重合した。ついで篩いにて粒子選別を行い、310μmの粒子を得た。この粒子に実施例3と同様にめっき処理を行った。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は4μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.3:3.7であった。またこの粒子を、DSCにて熱分析したところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 6)
Substrate fine particles were polymerized in the same manner as in Example 3. Subsequently, particle | grain selection was performed with the sieve and the particle | grain of 310 micrometers was obtained. The particles were plated in the same manner as in Example 3.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 4 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plated coating was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.3: 3.7. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is the Sn / Ag alloy melting point.

(実施例7)
実施例3と同様に基材微粒子を重合した。ついで篩いにて粒子選別を行い、105μmの粒子を得た。この粒子に実施例3と同様にめっき処理を行った。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は4μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.3:3.7であった。またこの粒子を、DSCにて熱分析したところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 7)
Substrate fine particles were polymerized in the same manner as in Example 3. Subsequently, particle | grain selection was performed with the sieve and the particle | grain of 105 micrometers was obtained. The particles were plated in the same manner as in Example 3.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 4 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plated coating was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.3: 3.7. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is the Sn / Ag alloy melting point.

(実施例8)
実施例3と同様に基材微粒子を重合し、710μmの粒子を得た。この粒子に導電層として、ニッケルと銅を無電解めっきした。その後、実施例3と同様に錫−銀のめっき処理を行った。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は4μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.2:3.8であった。またこの粒子を、DSCにて熱分析したところ、Sn/Ag/Cuの合金融点である218℃に溶融ピークが観察された。
(Example 8)
Substrate fine particles were polymerized in the same manner as in Example 3 to obtain 710 μm particles. The particles were electrolessly plated with nickel and copper as a conductive layer. Thereafter, a tin-silver plating treatment was performed in the same manner as in Example 3.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 4 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plated coating was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.2: 3.8. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 218 ° C., which is an alloy melting point of Sn / Ag / Cu.

(実施例9)
実施例3と同様に基材微粒子を重合し、710μmの粒子を得た。この粒子に導電層として、ニッケルを無電解めっきした。めっき液として以下の物を用意した。水25L中に、硫酸錫(SnSO)537g、ピロ燐酸カリウム(K)1652g、ポリエチレングリコール(分子量:6000)25g、トリエタノールアミン500gを均一に溶解した。この液に硝酸銀(AgNO)42.5gを添加し、液を2時間撹拌した。上記のめっき液にて、実施例3と同様の条件にて、錫−銀めっき処理をした。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は銀白色を示し、ヤケや色むらは観察されなかった。
またこの粒子を断面観察したところ、最外層の膜厚は4μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=90.2:9.8であった。またこの粒子を、DSCにて熱分析したところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
Example 9
Substrate fine particles were polymerized in the same manner as in Example 3 to obtain 710 μm particles. The particles were electrolessly plated with nickel as a conductive layer. The following were prepared as plating solutions. In 25 L of water, 537 g of tin sulfate (SnSO 4 ), 1652 g of potassium pyrophosphate (K 4 P 2 O 7 ), 25 g of polyethylene glycol (molecular weight: 6000), and 500 g of triethanolamine were uniformly dissolved. 42.5 g of silver nitrate (AgNO 3 ) was added to this solution, and the solution was stirred for 2 hours. A tin-silver plating process was performed with the above plating solution under the same conditions as in Example 3.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was silver white, and no discoloration or uneven color was observed.
When this particle was observed in cross section, the film thickness of the outermost layer was 4 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. When this plating film was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 90.2: 9.8. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is the Sn / Ag alloy melting point.

(比較例3)
粒径が800μmの市販のハンダボールに導電下地層としてニッケルめっき層を形成させた。
ついで、めっき液として以下の物を用意した。
めっき浴20Lの水中に、メタンスルホン酸錫((CHSO)2Sn)0.2mol/L、メタンスルホン酸銀(CHSOAg)0.008mol/L、メタンスルホン酸(CHSOH)2mol/L、L−cysteine
0.04mol/L、2,2’−Dithiodianiline 0.002mol/L、ポリオキシエチレン−αナフトロール3g/Lを添加した。
上記のめっき液を、回転式めっき装置の浴槽に入れ、ニッケルめっき処理した710μmの粒子40gを、めっき処理した。めっき時の条件は、浴温度25℃、電流密度0.5A/dm、周速18Hzとして、10秒毎に回転方向を逆転させた。
このようにして得られためっき粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。外観は黒色を示し、粒子毎の色むらが観察された。
またこの粒子を断面観察したところ、最外層の膜厚は6μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中にAgが分散していることが確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=64.0:36.0となり、著しくAg含量の多い組成となった。
(Comparative Example 3)
A nickel plating layer was formed as a conductive underlayer on a commercially available solder ball having a particle size of 800 μm.
Next, the following were prepared as plating solutions.
In water of the plating bath 20L, tin methanesulfonate ((CH 3 SO 3 ) 2 Sn) 0.2 mol / L, silver methanesulfonate (CH 3 SO 3 Ag) 0.008 mol / L, methanesulfonic acid (CH 3 SO 3 H) 2 mol / L, L-cysteine
0.04 mol / L, 2,2′-Dithiodianline 0.002 mol / L, and polyoxyethylene-α-naphthol 3 g / L were added.
The plating solution was put in a bathtub of a rotary plating apparatus, and 40 g of 710 μm particles plated with nickel were plated. The plating conditions were such that the bath temperature was 25 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 10 seconds.
When the plated particles thus obtained were observed with a microscope, it was confirmed that all the particles were present as single particles without any aggregation. The appearance was black, and uneven color was observed for each particle.
When this particle was observed in cross section, the film thickness of the outermost layer was 6 μm. Composition analysis of the cut cross section by X-ray microwave analysis confirmed that an Sn layer was present on the Ni underlayer, and Ag was dispersed in the Sn layer. This plating film was dissolved with a strong acid, and the composition ratio was determined by atomic absorption analysis. As a result, Sn: Ag = 64.0: 36.0 was obtained, and a composition having a remarkably high Ag content was obtained.

(比較例4)
粒径が400μmの市販のハンダボールに導電下地層としてニッケルめっき層を形成させた。
実施例3と同様のめっき浴を用いて、従来のバレルにて錫−銀めっきを行った。めっき時の条件は、浴温度50℃、電流密度0.5A/dm、バレルの回転数3rpmとした。
めっき時のバレル回転時には粒子の舞い上がりが観察された。得られためっき粒子を顕微鏡で観察したところ、外観は白色を示していたが、粒子の10%程度にめっきの無い裸の粒子が観察された。
またこの粒子を断面観察したところ、最外層の膜厚は4μmであった。この切断断面をX線マイクロ波分析により組成分析したところ、Ni下地層の上に、Sn層が存在し、そのSn層の中内部にはAgが分散していたが、外周部には存在しなかった。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=99.0:1.0となり、著しくAg含量の低い組成となった。
(Comparative Example 4)
A nickel plating layer was formed as a conductive underlayer on a commercially available solder ball having a particle size of 400 μm.
Using the same plating bath as in Example 3, tin-silver plating was performed using a conventional barrel. The plating conditions were a bath temperature of 50 ° C., a current density of 0.5 A / dm 2 , and a barrel rotation speed of 3 rpm.
During the rotation of the barrel during plating, particle soaring was observed. When the obtained plated particles were observed with a microscope, the appearance showed white, but bare particles without plating were observed in about 10% of the particles.
When this particle was observed in cross section, the film thickness of the outermost layer was 4 μm. The composition of the cut cross section was analyzed by X-ray microwave analysis. As a result, an Sn layer was present on the Ni underlayer, and Ag was dispersed inside the Sn layer, but was present at the outer periphery. There wasn't. When this plating film was dissolved with a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 99.0: 1.0, and a composition with a remarkably low Ag content was obtained.

(実施例10)
スチレンとジビニルベンゼンとを共重合させて得られた基材微粒子に、導電下地層としてニッケルめっき層を形成し、平均粒径710.5μm、標準偏差32.5μmの粒子を得た。得られた微粒子に参考例1と同様にして、錫めっきを行った。
このようにして得られためっき樹脂微粒子を顕微鏡で観察したところ、全く凝集がなく、全ての粒子が単粒子として存在していたことが確認された。また、この粒子100個を拡大鏡で観察・測定した結果、平均粒径は720μm、標準偏差は18.1μmであった。
得られた粒子を銀めっき液中に分散し、50℃にて30分間撹拌して銀を置換めっきさせた。粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Sn、Agの3層構造が確認された。このめっき被膜を強酸にて溶解し、原子吸光分析にて組成比率を求めたところ、Sn:Ag=96.0:4.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Ag層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析したところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 10)
A nickel plating layer was formed as a conductive underlayer on the substrate fine particles obtained by copolymerizing styrene and divinylbenzene to obtain particles having an average particle diameter of 710.5 μm and a standard deviation of 32.5 μm. The obtained fine particles were subjected to tin plating in the same manner as in Reference Example 1.
When the plated resin fine particles thus obtained were observed with a microscope, it was confirmed that there was no aggregation at all and all the particles were present as single particles. Moreover, as a result of observing and measuring 100 particles with a magnifying glass, the average particle size was 720 μm and the standard deviation was 18.1 μm.
The obtained particles were dispersed in a silver plating solution and stirred at 50 ° C. for 30 minutes to effect silver substitution plating. Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Sn, and Ag. When this plated coating was dissolved in a strong acid and the composition ratio was determined by atomic absorption analysis, it was Sn: Ag = 96.0: 4.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Ag layer and Sn layer were diffused. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is the Sn / Ag alloy melting point.

(実施例11)
実施例10と同様にニッケルめっきを行い、その後銅めっき液中で1時間通電し、バレルによる銅めっきを行った。その後に参考例1と同様に、バレルめっきにて錫めっきを実施した。
粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Cu、Snの3層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Cu=99.0:1.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Cu層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析をしたところ、227℃に溶融ピークが観察された。
(Example 11)
Nickel plating was performed in the same manner as in Example 10, and then energized in a copper plating solution for 1 hour to perform copper plating with a barrel. Thereafter, tin plating was performed by barrel plating in the same manner as in Reference Example 1.
Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Cu, and Sn. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Cu = 99.0: 1.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Cu layer and the Sn layer were diffused. When the particles were subjected to thermal analysis by DSC, a melting peak was observed at 227 ° C.

(実施例12)
実施例11で得られたニッケル、銅、錫の多層めっきした粒子に更に銀置換めっきを行った。粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Cu、Sn、Agの4層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Ag:Cu=95.0:4.0:1.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Cu層、Ag層、Sn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析をしたところ、217℃に溶融ピークが観察された。
(Example 12)
The nickel, copper, and tin multilayered particles obtained in Example 11 were further subjected to silver displacement plating. Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a four-layer structure of Ni, Cu, Sn, and Ag. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Ag: Cu = 95.0: 4.0: 1.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Cu layer, Ag layer, and Sn layer were diffused. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 217 ° C.

(実施例13)
実施例10と同様にニッケルめっき、錫めっきを実施した。ついでビスマスをバレルによりめっきした。
粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Sn、Biの3層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Bi=40:60であった。
この粒子を恒温槽に入れ、窒素を充填した後に180℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Bi層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析をしたところ、139℃に溶融ピークが観察された。
(Example 13)
Nickel plating and tin plating were performed in the same manner as in Example 10. Then bismuth was plated with a barrel.
Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Sn, and Bi. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Bi = 40: 60.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 180 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Bi layer and Sn layer were diffused. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 139 ° C.

(実施例14)
ジビニルベンゼンとテトラメチロールメタンテトラメタクリレートとを共重合して得られた基材微粒子を用いた以外は実施例10と同様にニッケルめっき、錫めっき、銀めっきを実施した。
粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Sn、Agの3層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Ag=96.0:4.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Ag層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析をしたところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 14)
Nickel plating, tin plating, and silver plating were performed in the same manner as in Example 10 except that the substrate fine particles obtained by copolymerizing divinylbenzene and tetramethylolmethane tetramethacrylate were used.
Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Sn, and Ag. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Ag = 96.0: 4.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Ag layer and Sn layer were diffused. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is an Sn / Ag alloy melting point.

(実施例15)
ジビニルベンゼンとポリテトラメチレングリコールジアクリレートとを共重合して得られた基材微粒子を用いた以外は実施例10と同様にニッケルめっき、錫めっき、銀めっきを実施した。
粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Sn、Agの3層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Ag=96.0:4.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Ag層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析をしたところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 15)
Nickel plating, tin plating, and silver plating were performed in the same manner as in Example 10 except that the substrate fine particles obtained by copolymerizing divinylbenzene and polytetramethylene glycol diacrylate were used.
Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Sn, and Ag. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Ag = 96.0: 4.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Ag layer and Sn layer were diffused. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is an Sn / Ag alloy melting point.

(実施例16)
粒径500μmの銅ボールを基材として、実施例10と同様にニッケルめっき、錫めっき、銀めっきを実施した。粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Sn、Agの3層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Ag=96.0:4.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Ag層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析を行ったところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 16)
Nickel plating, tin plating, and silver plating were performed in the same manner as in Example 10 using a copper ball having a particle diameter of 500 μm as a base material. Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Sn, and Ag. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Ag = 96.0: 4.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Ag layer and Sn layer were diffused. Further, when this particle was subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is an alloy melting point of Sn / Ag.

(実施例17)
粒径400μmのフェノール樹脂基材微粒子を用いた以外は実施例10と同様にニッケルめっき、錫めっき、銀めっきを実施した。
粒子の切断断面をX線マイクロ波分析により組成分析したところ、Ni、Sn、Agの3層構造が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Ag=96.0:4.0であった。
この粒子を恒温槽に入れ、窒素を充填した後に200℃まで昇温して、12時間熱処理を行った。熱処理した粒子の断面をX線マイクロ波分析により組成分析したところ、Ag層とSn層が拡散していることが確認された。またこの粒子を、DSCにて熱分析をしたところ、Sn/Agの合金融点である221℃に溶融ピークが観察された。
(Example 17)
Nickel plating, tin plating, and silver plating were performed in the same manner as in Example 10 except that phenol resin base particles having a particle diameter of 400 μm were used.
Composition analysis of the cut cross section of the particles by X-ray microwave analysis confirmed a three-layer structure of Ni, Sn, and Ag. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Ag = 96.0: 4.0.
The particles were placed in a thermostatic bath, filled with nitrogen, heated to 200 ° C., and heat-treated for 12 hours. Composition analysis of the cross section of the heat-treated particles by X-ray microwave analysis confirmed that the Ag layer and Sn layer were diffused. Further, when the particles were subjected to thermal analysis by DSC, a melting peak was observed at 221 ° C., which is an Sn / Ag alloy melting point.

(比較例5)
粒径が150μmの市販のハンダボールに無電解ニッケルめっきを行った。この粒子を錫、銀の浴にて合金めっきを行った。得られた粒子の切断断面をX線マイクロ波分析により組成分析したところ、Sn/Agの合金層が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Ag=75:25となり、著しくAg含量の多い組成となった。
(Comparative Example 5)
Electroless nickel plating was performed on a commercially available solder ball having a particle size of 150 μm. The particles were plated with an alloy in a tin and silver bath. When the composition of the cut cross section of the obtained particles was analyzed by X-ray microwave analysis, an Sn / Ag alloy layer was confirmed. When this plating film was dissolved with a strong acid and the composition ratio was determined, it was Sn: Ag = 75: 25, and a composition having a remarkably high Ag content was obtained.

(比較例6)
実施例10と同様の基材微粒子に無電解ニッケルめっきを行った。この粒子を錫、銅の浴にて合金めっきを行った。得られた粒子の切断断面をX線マイクロ波分析により組成分析したところ、Sn/Cuの合金層が確認された。このめっき被膜を強酸にて溶解し、組成比率を求めたところ、Sn:Cu=80:20となり、著しくCu含量の多い組成となった。
(Comparative Example 6)
Electroless nickel plating was performed on the same base particles as in Example 10. The particles were plated with an alloy in a bath of tin and copper. When the composition of the cut cross section of the obtained particles was analyzed by X-ray microwave analysis, an Sn / Cu alloy layer was confirmed. When this plating film was dissolved in a strong acid and the composition ratio was determined, it was Sn: Cu = 80: 20, and a composition having a remarkably high Cu content was obtained.

(比較例7)
実施例10で作製したニッケル、錫、銀の粒子を熱処理しない状態でDSCにて熱分析を行ったところ、錫単独の融点である232℃の溶融ピークが観察された。
(Comparative Example 7)
When the nickel, tin, and silver particles produced in Example 10 were subjected to thermal analysis by DSC without heat treatment, a melting peak at 232 ° C., which is the melting point of tin alone, was observed.

(実施例18)
セパラブルフラスコにて、ジビニルベンゼン20重量部に重合開始剤として過酸化ベンゾイル1.3重量部を均一に混合し、これをポリビニルアルコールの3%水溶液20重量部、ドデシル硫酸ナトリウム0.5重量部を投入しよく攪拌した後、イオン交換水140重量部を添加した。この溶液を攪拌しながら窒素気流下80℃で15時間反応を行った。得られた微粒子を熱水及びアセトンにて洗浄後、篩いにて粒子選別を行い、中心粒径300μmの基材微粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径800μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した300μmの粒子40gと800μmのダミー粒子20mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、700μmの目開きの篩いにてふるい、800μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%以下であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の2%程度であった。
(Example 18)
In a separable flask, 1.3 parts by weight of benzoyl peroxide as a polymerization initiator was uniformly mixed with 20 parts by weight of divinylbenzene, and this was mixed with 20 parts by weight of a 3% aqueous solution of polyvinyl alcohol and 0.5 parts by weight of sodium dodecyl sulfate. Was added and stirred well, and then 140 parts by weight of ion-exchanged water was added. The solution was reacted at 80 ° C. for 15 hours under a nitrogen stream while stirring. The obtained fine particles were washed with hot water and acetone and then subjected to particle selection with a sieve to obtain substrate fine particles having a center particle size of 300 μm. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a central particle size of 800 μm was synthesized in the same formulation.
Then, 40 g of 300 μm particles plated with nickel and 20 mL of 800 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, the amount remaining on the sieve was 1% or less of the total weight, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the number of particles having cracks and peeling was about 2% of the total.

(実施例19)
基材微粒子に、ジビニルベンゼンと4官能のアクリルモノマーを使って実施例18と同様に重合し、300μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、ジビニルベンゼンと4官能のアクリルモノマーで合成された中心粒径800μmのニッケルめっきしたダミー粒子を得た。
ついで回転式めっき装置にニッケルめっき処理した300μmの粒子40gと800μmのダミー粒子20mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、700μmの目開きの篩いにてふるい、800μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%以下であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の2%程度であった。
(Example 19)
Polymerization was carried out in the same manner as in Example 18 using divinylbenzene and a tetrafunctional acrylic monomer on the substrate fine particles to obtain 300 μm particles. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a central particle size of 800 μm synthesized with divinylbenzene and a tetrafunctional acrylic monomer was obtained with the same formulation.
Then, 40 g of 300 μm particles plated with nickel and 20 mL of 800 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, the amount remaining on the sieve was 1% or less of the total weight, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the number of particles having cracks and peeling was about 2% of the total.

(実施例20)
実施例18と同様にして300μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径2000μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した300μmの粒子40gと2000μmのダミー粒子30mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、1500μmの目開きの篩いにてふるい、2000μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の約1%であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の2%程度であった。
(Example 20)
In the same manner as in Example 18, 300 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a center particle diameter of 2000 μm was synthesized in the same formulation.
Next, 40 g of 300 μm particles plated with nickel and 30 mL of 2000 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 1500 μm to separate 2000 μm dummy particles and plating particles. When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. The obtained particles were further sieved with a sieve having an opening of 350 μm. As a result, about 1% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the number of particles having cracks and peeling was about 2% of the total.

(実施例21)
実施例18と同様にして300μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径500μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した300μmの粒子40gと500μmのダミー粒子20mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、450μmの目開きの篩いにてふるい、500μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%以下であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の2%程度であった。
(Example 21)
In the same manner as in Example 18, 300 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a central particle diameter of 500 μm was synthesized in the same formulation.
Next, 40 g of 300 μm particles plated with nickel and 20 mL of 500 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having a mesh size of 450 μm to separate 500 μm dummy particles and plating particles. When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, the amount remaining on the sieve was 1% or less of the total weight, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the number of particles having cracks and peeling was about 2% of the total.

(実施例22)
実施例18と同様にして、500μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径800μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した500μmの粒子40gと800μmのダミー粒子20mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、700μmの目開きの篩いにてふるい、800μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は2μmであった。また得られた粒子を、更に450μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の2%程度であった。
(Example 22)
In the same manner as in Example 18, 500 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a central particle size of 800 μm was synthesized in the same formulation.
Next, 40 g of 500 μm particles plated with nickel and 20 mL of 800 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. When the cross section of the plated particles thus obtained was observed, the thickness of the copper layer was 2 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 450 μm, the amount remaining on the sieve was about 1% of the total weight, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the number of particles having cracks and peeling was about 2% of the total.

(実施例23)
実施例18と同様にして、100μmの粒子を得た。これに導電層下地としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径500μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した100μmの粒子40gと500μmのダミー粒子20mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、450μmの目開きの篩いにてふるい、500μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は2μmであった。また得られた粒子を、更に150μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の1%程度であった。
(Example 23)
In the same manner as in Example 18, 100 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive layer base. A nickel-plated dummy particle having a central particle diameter of 500 μm was synthesized in the same formulation.
Then, 40 g of 100 μm particles plated with nickel and 20 mL of 500 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having a mesh size of 450 μm to separate 500 μm dummy particles and plating particles. When the cross section of the plated particles thus obtained was observed, the thickness of the copper layer was 2 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 150 μm, the amount remaining on the sieve was about 1% of the total weight, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a lustrous copper color, and the number of particles with cracks or peeling was about 1% of the total.

(実施例24)
実施例23と同様にして、100μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径2000μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した100μmの粒子40gと2000μmのダミー粒子30mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、1500μmの目開きの篩いにてふるい、2000μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は2μmであった。また得られた粒子を、更に150μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の2%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の1%程度であった。
(Example 24)
In the same manner as in Example 23, 100 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a center particle diameter of 2000 μm was synthesized in the same formulation.
Next, 40 g of 100 μm particles plated with nickel and 30 mL of 2000 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 1500 μm to separate 2000 μm dummy particles and plating particles. When the cross section of the plated particles thus obtained was observed, the thickness of the copper layer was 2 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 150 μm, only 2% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a lustrous copper color, and the number of particles with cracks or peeling was about 1% of the total.

(実施例25)
実施例18と同様にして、50μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。同様な処方にて、中心粒径500μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した50μmの粒子40gと500μmのダミー粒子30mLとを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、450μmの目開きの篩いにてふるい、500μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は2μmであった。また得られた粒子を、更に100μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の4%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の1%程度であった。
(Example 25)
In the same manner as in Example 18, 50 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. A nickel-plated dummy particle having a central particle diameter of 500 μm was synthesized in the same formulation.
Next, 40 g of 50 μm particles plated with nickel and 30 mL of 500 μm dummy particles were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having a mesh size of 450 μm to separate 500 μm dummy particles and plating particles. When the cross section of the plated particles thus obtained was observed, the thickness of the copper layer was 2 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 100 μm, the amount remaining on the sieve was about 4% of the total weight, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a lustrous copper color, and the number of particles with cracks or peeling was about 1% of the total.

(実施例26)
実施例18で得られた304μmの銅めっきした粒子40gと、同じく実施例18で得られた800μmのニッケルめっきしたダミー粒子20mLを投入し、共晶ハンダめっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、20秒毎に回転方向を逆転させた。
得られた粒子を、700μmの目開きの篩いにてふるい、800μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、共晶ハンダ層の膜厚は6μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の2%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の2%程度であった。
(Example 26)
40 g of 304 μm copper-plated particles obtained in Example 18 and 20 mL of 800 μm nickel-plated dummy particles obtained in Example 18 were added, and eutectic solder plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 20 seconds.
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. When the cross section of the plated particles thus obtained was observed, the film thickness of the eutectic solder layer was 6 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, only 2% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the number of particles having cracks and peeling was about 2% of the total.

(比較例8)
実施例18と同様にして300μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。ついで回転式めっき装置にニッケルめっき処理した300μmのダミー粒子40gだけを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重最の約10%であり、2mm角程度の大きな凝集が認められた。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の1%程度であった。
(Comparative Example 8)
In the same manner as in Example 18, 300 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. Next, only 40 g of 300 μm dummy particles plated with nickel were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, what was left on the sieve was about 10% of the total weight, and a large aggregation of about 2 mm square was recognized. When 2,000 of these particles were observed with a microscope, the appearance showed a lustrous copper color, and the number of particles with cracks or peeling was about 1% of the total.

(比較例9)
実施例23と同様にして100μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。ついで回転式めっき装置にニッケルめっき処理した100μmの粒子40gだけを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は2μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の約20%であり、5mm角程度の大きな凝集が認められた。これらの粒子の内2000個を顕微鏡で観察したところ、外観は光沢のある銅色を示し、割れや剥がれのある粒子は、全体の1%程度であった。
(Comparative Example 9)
In the same manner as in Example 23, 100 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. Subsequently, only 40 g of 100 μm particles plated with nickel were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
When the cross section of the plated particles thus obtained was observed, the thickness of the copper layer was 2 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, what was left on the sieve was about 20% of the total weight, and large aggregation of about 5 mm square was recognized. When 2,000 of these particles were observed with a microscope, the appearance showed a lustrous copper color, and the number of particles with cracks or peeling was about 1% of the total.

(比較例10)
実施例18と同様にして300μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。ついで回転式めっき装置にニッケルめっき処理した100μmの粒子40gと粒径1000μmのジルコニアボールダミー粒子20mLを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、900μmの目開きの篩いにてふるい、1000μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は艶消しの銅色を示し、割れや剥がれのある粒子は、全体の40%程度であった。
(Comparative Example 10)
In the same manner as in Example 18, 300 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. Next, 40 g of 100 μm particles plated with nickel and 20 mL of zirconia ball dummy particles having a particle diameter of 1000 μm were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 900 μm to separate 1000 μm dummy particles and plating particles. When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, only 1% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a matte copper color, and the number of particles with cracks or peeling was about 40% of the total.

(比較例11)
実施例18と同様にして300μmの粒子を得た。これに導電下地層としてニッケルめっきを無電解めっきにより形成させた。ついで回転式めっき装置にニッケルめっき処理した300μmの粒子40gと粒径1000μmのステンレスボールダミー粒子20mLを投入し、銅めっきを行った。めっき時の条件は、浴温度30℃、電流密度0.5A/dm、周速18Hzとして、40秒毎に回転方向を逆転させた。
得られた粒子を、900μmの目開きの篩いにてふるい、1000μmのダミー粒子とめっき粒子とを分離した。このようにして得られためっき粒子を断面観察したところ、銅層の膜厚は3μmであった。また得られた粒子を、更に350μmの目開きの篩いにてふるったところ、篩いの上に残ったのは全体重量の1%程度であり、大きな凝集は認められなかった。これらの粒子の内2000個を顕微鏡で観察したところ、外観は艶消しの銅色を示し、割れや剥がれのある粒子は、全体の40%程度であった。
(Comparative Example 11)
In the same manner as in Example 18, 300 μm particles were obtained. A nickel plating was formed thereon by electroless plating as a conductive underlayer. Next, 40 g of 300 μm particles plated with nickel and 20 mL of stainless ball dummy particles having a particle diameter of 1000 μm were put into a rotary plating apparatus, and copper plating was performed. The plating conditions were such that the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.
The obtained particles were sieved with a sieve having an opening of 900 μm to separate 1000 μm dummy particles and plating particles. When the plated particles thus obtained were observed in cross section, the film thickness of the copper layer was 3 μm. Further, when the obtained particles were further sieved with a sieve having an opening of 350 μm, only 1% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a matte copper color, and the number of particles with cracks or peeling was about 40% of the total.

本発明は、上述の構成を有するので、苛酷な熱サイクル条件下においても長期間基板の導通を保持することができる基板間又は基板とチップとの接合手段を提供することができる。 Since the present invention has the above-described configuration, it is possible to provide means for bonding between substrates or between a substrate and a chip that can maintain conduction between substrates for a long time even under severe thermal cycle conditions.

本発明に用いられるめっき装置の一例を示す概略図である。It is the schematic which shows an example of the plating apparatus used for this invention.

符号の説明Explanation of symbols

1 カバー
2 電極
2a 陽極
3 回転軸
4 処理室
5 容器
6 めっき液供給管
7 めっき液排出管
8 開口部
11 底板
12 接触リング
13 多孔質リング
DESCRIPTION OF SYMBOLS 1 Cover 2 Electrode 2a Anode 3 Rotating shaft 4 Processing chamber 5 Container 6 Plating solution supply pipe 7 Plating solution discharge pipe 8 Opening 11 Bottom plate 12 Contact ring 13 Porous ring

Claims (39)

樹脂からなる基材微粒子の表面が1層以上の金属層に覆われてなる導電性微粒子であって、
前記樹脂の熱分解温度が300℃以上であり、かつ、
前記金属層を構成する金属のうち少なくとも1つが融点150〜300℃の合金及び/又は金属である
ことを特徴とする導電性微粒子。
Conductive fine particles in which the surface of substrate fine particles made of resin is covered with one or more metal layers,
The thermal decomposition temperature of the resin is 300 ° C. or higher, and
Conductive fine particles, wherein at least one of the metals constituting the metal layer is an alloy and / or metal having a melting point of 150 to 300 ° C.
樹脂からなる基材微粒子の表面が1層以上の金属層に覆われてなる導電性微粒子であって、
前記金属層の全ての層の熱膨張率がそれぞれ1×10−5〜3×10−5(1/K)であり、かつ、
各金属層と前記基材微粒子との熱膨張率の比(基材微粒子の熱膨張率/金属層の熱膨張率)がそれぞれ0.1〜10である
ことを特徴とする導電性微粒子。
Conductive fine particles in which the surface of substrate fine particles made of resin is covered with one or more metal layers,
The thermal expansion coefficients of all the metal layers are 1 × 10 −5 to 3 × 10 −5 (1 / K), and
Conductive fine particles, wherein the ratio of the thermal expansion coefficient between each metal layer and the substrate fine particles (thermal expansion coefficient of the substrate fine particles / thermal expansion coefficient of the metal layer) is 0.1 to 10, respectively.
金属層は、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、アンチモン、ビスマス、ゲルマニウム、カドミウム、及び、珪素からなる群より選ばれる少なくとも1種の金属からなることを特徴とする請求項1又は2記載の導電性微粒子。 The metal layer is at least one selected from the group consisting of gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, antimony, bismuth, germanium, cadmium, and silicon. The conductive fine particles according to claim 1, wherein the conductive fine particles are made of the following metals. 外径が200〜1000μmであり、かつ、金属層の厚みが基材微粒子の半径の0.5〜30%であることを特徴とする請求項1、2又は3記載の導電性微粒子。 The conductive fine particles according to claim 1, 2, or 3, wherein the outer diameter is 200 to 1000 µm, and the thickness of the metal layer is 0.5 to 30% of the radius of the base fine particles. 外径が200〜1000μmであり、かつ、金属層の厚みが基材微粒子の半径に対して、下記式(1)で表される関係を有することを特徴とする請求項1、2又は3記載の導電性微粒子。
Y=(−25/10万・X+c)×100 (1)
式中、Yは金属層の厚みの基材微粒子の半径に対する比率(%)を表し、Xは導電性微粒子の外径(μm)を表し、cは0.10〜0.35の定数を表す。但し、Y>0である。
4. The outer diameter is 200 to 1000 [mu] m, and the thickness of the metal layer has a relationship represented by the following formula (1) with respect to the radius of the substrate fine particles. Conductive fine particles.
Y = (− 25 / 100,000 · X + c) × 100 (1)
In the formula, Y represents the ratio (%) of the thickness of the metal layer to the radius of the substrate fine particles, X represents the outer diameter (μm) of the conductive fine particles, and c represents a constant of 0.10 to 0.35. . However, Y> 0.
外径が50〜200μmであり、かつ、金属層の厚みが基材微粒子の半径の1〜100%であることを特徴とする請求項1、2又は3記載の導電性微粒子。 4. The conductive fine particle according to claim 1, wherein the outer diameter is 50 to 200 [mu] m and the thickness of the metal layer is 1 to 100% of the radius of the base fine particle. 外径が50〜200μmであり、かつ、金属層の厚みが基材微粒子の半径の4〜40%であることを特徴とする請求項1、2又は3記載の導電性微粒子。 The conductive fine particles according to claim 1, 2 or 3, wherein the outer diameter is 50 to 200 µm, and the thickness of the metal layer is 4 to 40% of the radius of the base fine particles. 基材微粒子の中に気泡がある粒子が全体数の1%以下であることを特徴とする請求項1、2、3、4、5、6又は7記載の導電性微粒子。 The conductive fine particles according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the number of particles having bubbles in the substrate fine particles is 1% or less of the total number. 基材微粒子の外径が50〜1000μmであり、かつ、基材微粒子の半径の1%以上の径をもつ気泡がある粒子が全体数の1%以下であることを特徴とする請求項1、2又は3記載の導電性微粒子。 The outer diameter of the substrate fine particles is 50 to 1000 μm, and particles having bubbles having a diameter of 1% or more of the radius of the substrate fine particles are 1% or less of the total number, Conductive fine particles according to 2 or 3. 基材微粒子の中に含有される沸点が300℃以下の物質の総計が粒子全体重量の1重量%以下であることを特徴とする請求項1、2、3、4、5、6、7、8又は9記載の導電性微粒子。 The total amount of substances having a boiling point of 300 ° C or less contained in the substrate fine particles is 1% by weight or less of the total weight of the particles, wherein the total weight of the particles is 1, 2, 3, 4, 5, 6, 7, Conductive fine particles according to 8 or 9. 基材微粒子の中に含有される水分の総計が粒子全体重量の1重量%以下であることを特徴とする請求項1、2、3、4、5、6、7、8、9又は10記載の導電性微粒子。 11. The total amount of moisture contained in the substrate fine particles is 1% by weight or less based on the total weight of the particles, 11. 1, 3, 4, 5, 6, 7, 8, 9 or 10 Conductive fine particles. 真球度が1.5%以下であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10又は11記載の導電性微粒子。 The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11, wherein the sphericity is 1.5% or less. 抵抗値が100mΩ以下である請求項1、2、3、4、5、6、7、8、9、10又は11記載の導電性微粒子。 The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 having a resistance value of 100 mΩ or less. 基材微粒子の−60〜200℃の温度範囲におけるE’の最大値と最小値との比が1〜2であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10又は11記載の導電性微粒子。 The ratio of the maximum value and the minimum value of E ′ in the temperature range of −60 to 200 ° C. of the substrate fine particles is 1 to 2, wherein the ratio is 1-2. , 8, 9, 10 or 11. 基材微粒子のK値が1000〜1万(MPa)であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13又は14記載の導電性微粒子。 The K value of the substrate fine particles is 1000 to 10,000 (MPa), characterized in that it is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14. The electroconductive fine particles as described. 基材微粒子の外径が700〜800μmであり、金属層が2層〜4層からなり、かつ、その最外層がハンダ合金及び/又は錫であることを特徴とする請求項1、2、3、4、5、8、9、10、11、12、13、14又は15記載の導電性微粒子。 The outer diameter of the substrate fine particles is 700 to 800 µm, the metal layer is composed of 2 to 4 layers, and the outermost layer is a solder alloy and / or tin. The electroconductive fine particles according to 4, 5, 8, 9, 10, 11, 12, 13, 14 or 15. 基材微粒子の外径が700〜800μmであり、金属層が4層からなり、最内層が0.1〜0.5μmのニッケル層、その外層が2〜12μmの銅層、その外層が2〜30μmの鉛が82〜98%、錫が2〜18%のハンダ合金層、最外層が2〜30μmの鉛が25〜50%、錫が50〜75%のハンダ合金層であることを特徴とする請求項1、2、3、4、5、8、9、10、11、12、13、14、15又は16記載の導電性微粒子。 The outer diameter of the substrate fine particles is 700 to 800 μm, the metal layer is composed of four layers, the innermost layer is a nickel layer of 0.1 to 0.5 μm, the outer layer is a copper layer of 2 to 12 μm, and the outer layer is 2 to 2 30 μm lead is 82 to 98%, tin is 2 to 18% solder alloy layer, outermost layer is 2 to 30 μm lead is 25 to 50%, tin is 50 to 75% solder alloy layer The conductive fine particles according to claim 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15 or 16. 基材微粒子の外径が250〜400μmであり、かつ、金属層が2層〜4層からなり、かつ、その最外層がハンダ合金及び/又は錫であることを特徴とする請求項1、2、3、4、5、8、9、10、11、12、13、14又は15記載の導電性微粒子。 The outer diameter of the substrate fine particles is 250 to 400 µm, the metal layer is composed of 2 to 4 layers, and the outermost layer is a solder alloy and / or tin. The conductive fine particles according to 3, 4, 5, 8, 9, 10, 11, 12, 13, 14 or 15. 基材微粒子の外径が50〜150μmであり、かつ、金属層が2層〜4層からなり、かつ、その最外層がハンダ合金及び/又は錫であることを特徴とする請求項1、2、3、6、7、8、9、10、11、12、13、14又は15記載の導電性微粒子。 The outer diameter of the substrate fine particles is 50 to 150 µm, the metal layer is composed of 2 to 4 layers, and the outermost layer is a solder alloy and / or tin. The conductive fine particles according to 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. 2つ以上の基板間が請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18又は19記載の導電性微粒子により接続されてなる基板構成体であって、
基材微粒子の直径のCV値が1.5%以下であることを特徴とする基板構成体。
Conductivity according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19 between two or more substrates A substrate structure connected by fine particles,
A substrate structure having a CV value of a diameter of a substrate fine particle of 1.5% or less.
2つ以上の基板間が請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18又は19記載の導電性微粒子により接続されてなる基板構成体であって、
基材微粒子の粒径が中心値の±5%であることを特徴とする基板構成体。
Conductivity according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19 between two or more substrates A substrate structure connected by fine particles,
A substrate structure, wherein the particle diameter of the substrate fine particles is ± 5% of the center value.
2つ以上の基板間が請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18又は19記載の導電性微粒子により接続されてなる基板構成体であって、
前記基板間の距離が基材微粒子の粒径の95〜120%であることを特徴とする基板構成体。
Conductivity according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19 between two or more substrates A substrate structure connected by fine particles,
The distance between the said board | substrates is 95 to 120% of the particle size of base material microparticles | fine-particles, The board | substrate structure body characterized by the above-mentioned.
2つ以上の基板間が請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18又は19記載の導電性微粒子により接続されてなる基板構成体であって、
2つ以上の基板を構成する材料及び/又は組成が異なることを特徴とする基板構成体。
Conductivity according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19 between two or more substrates A substrate structure connected by fine particles,
2. A substrate structure having different materials and / or compositions constituting two or more substrates.
基板同士の線膨張係数の差が10ppm以上であることを特徴とする請求項23記載の基板構成体。 24. The substrate structure according to claim 23, wherein a difference in linear expansion coefficient between the substrates is 10 ppm or more. 基材微粒子の表面を少なくとも2種以上の金属合金層で覆う微粒子のめっき方法であって、
前記金属合金層は、少なくとも一種の金属が電気めっきにより析出されたものであり、少なくとも他の一種の金属がめっき浴中に分散状態にある金属を取り込ませることにより形成されたものであることを特徴とする微粒子のめっき方法。
A method of plating fine particles that covers the surface of a fine particle of a substrate with at least two metal alloy layers,
The metal alloy layer is formed by depositing at least one type of metal by electroplating, and at least another type of metal incorporating a dispersed metal in the plating bath. A method for plating fine particles.
金属合金層の電気めっきにより析出させた金属の少なくとも一種が錫であり、めっき浴中に分散状態にして取り込ませた金属の少なくとも一種が銀であることを特徴とする請求項25記載の微粒子のめっき方法。 26. The fine particles according to claim 25, wherein at least one of the metals deposited by electroplating of the metal alloy layer is tin, and at least one of the metals incorporated in a dispersed state in the plating bath is silver. Plating method. 金属合金層は、少なくとも2価の錫化合物、1価の銀化合物及び共析安定助剤を基本組成として含有することを特徴とする合金電気めっき浴にてめっきしたものであることを特徴とする請求項26記載の微粒子のめっき方法。 The metal alloy layer is plated with an alloy electroplating bath characterized by containing at least a divalent tin compound, a monovalent silver compound, and a eutectoid stabilizing aid as a basic composition. The method for plating fine particles according to claim 26. 外周部に陰極を有し、本体内部にめっき液とめっき基材微粒子を保持し、回転しながら通電、撹拌を繰り返す回転型めっき装置を用いてめっきすることを特徴とする請求項27記載の微粒子のめっき方法。 28. The fine particles according to claim 27, wherein the fine particles are plated using a rotary plating apparatus having a cathode on the outer peripheral portion, holding the plating solution and the fine particles of the plating base in the main body, and repeatedly energizing and stirring while rotating. Plating method. 請求項25、26、27又は28記載の微粒子のめっき方法にてめっきしたことを特徴とする導電性微粒子。 Conductive fine particles plated by the fine particle plating method according to claim 25, 26, 27 or 28. 請求項29記載の導電性微粒子により接続されてなることを特徴とする導電接続構造体。 A conductive connection structure, wherein the conductive connection structure is connected by the conductive fine particles according to claim 29. 基材微粒子の表面が、1層以上の金属層に覆われてなる導電性微粒子であって、
前記金属層のうち、少なくとも1つの層が、2つ以上の金属層を熱拡散させることにより得られる合金層である
ことを特徴とする導電性微粒子。
Conductive fine particles in which the surface of the substrate fine particles is covered with one or more metal layers,
Conductive fine particles, wherein at least one of the metal layers is an alloy layer obtained by thermally diffusing two or more metal layers.
合金層は、錫、銀、銅、亜鉛、ビスマス、インジウム、アルミニウム、コバルト、ニッケル、クロム、チタン、アンチモン、ゲルマニウム、カドミウム、及び、珪素からなる群より選ばれる金属からなる少なくとも2種の金属層を、熱拡散させることにより得られるものであることを特徴とする請求項31記載の導電性微粒子。 The alloy layer is at least two metal layers made of a metal selected from the group consisting of tin, silver, copper, zinc, bismuth, indium, aluminum, cobalt, nickel, chromium, titanium, antimony, germanium, cadmium, and silicon. The conductive fine particles according to claim 31, wherein the conductive fine particles are obtained by thermal diffusion. 基材微粒子が樹脂からなることを特徴とする請求項32記載の導電性微粒子。 The conductive fine particles according to claim 32, wherein the base fine particles are made of a resin. 請求項33記載の導電性微粒子により接続されてなることを特徴とする導電接統構造体。 34. A conductive joint structure connected by the conductive fine particles according to claim 33. 微粒子のめっき方法であって、
外周部に陰極を有し、めっき液を通過させて排出するフィルター部を有する回転可能なドームと、該ドームの中に該陰極と接触しないように設置された陽極とを有し、ドームの回転による遠心力によって微粒子を陰極に接触させながら通電と撹拌とを繰り返す回転型めっき装置を用いるものであり、
めっきする基材微粒子と同等の硬さを有しており、かつその粒径がめっきする基材微粒子の1.5〜30倍であるダミー粒子を同時に加えてめっきを行う
ことを特徴とする微粒子のめっき方法。
A method for plating fine particles,
A rotatable dome having a cathode on the outer peripheral portion and having a filter portion for allowing the plating solution to pass through and discharging, and an anode installed in the dome so as not to contact the cathode, and rotating the dome Using a rotary plating device that repeats energization and stirring while bringing the fine particles into contact with the cathode by centrifugal force due to
Fine particles characterized in that plating is performed by simultaneously adding dummy particles having a hardness equivalent to that of the substrate fine particles to be plated and whose particle size is 1.5 to 30 times that of the substrate fine particles to be plated. Plating method.
めっきする基材微粒子が樹脂であり、その粒径が1〜500μmであることを特徴とする請求項35記載の微粒子のめっき方法。 36. The method for plating fine particles according to claim 35, wherein the substrate fine particles to be plated are resin, and the particle size thereof is 1 to 500 [mu] m. ダミー粒子が樹脂からなることを特徴とする請求項36記載の微粒子のめっき方法。 The fine particle plating method according to claim 36, wherein the dummy particles are made of a resin. 請求項35、36又は37記載の微粒子のめっき方法によりめっきしたことを特徴とする導電性微粒子。 A conductive fine particle plated by the fine particle plating method according to claim 35, 36 or 37. 請求項38記載の導電性微粒子により接続されてなることを特徴とする導電接続構造体。 A conductive connection structure, wherein the conductive connection structure is connected by the conductive fine particles according to claim 38.
JP2007285271A 2000-08-04 2007-11-01 Conductive fine particles Expired - Lifetime JP5108456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285271A JP5108456B2 (en) 2000-08-04 2007-11-01 Conductive fine particles

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2000237185 2000-08-04
JP2000237185 2000-08-04
JP2000255933 2000-08-25
JP2000255932 2000-08-25
JP2000255932 2000-08-25
JP2000255934 2000-08-25
JP2000255933 2000-08-25
JP2000255934 2000-08-25
JP2000255931 2000-08-25
JP2000255931 2000-08-25
JP2007285271A JP5108456B2 (en) 2000-08-04 2007-11-01 Conductive fine particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002518473A Division JP4660065B2 (en) 2000-08-04 2001-04-27 Conductive fine particles and substrate structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012070247A Division JP2012178349A (en) 2000-08-04 2012-03-26 Conductive particulate and substrate constituent

Publications (2)

Publication Number Publication Date
JP2008103343A true JP2008103343A (en) 2008-05-01
JP5108456B2 JP5108456B2 (en) 2012-12-26

Family

ID=39437477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285271A Expired - Lifetime JP5108456B2 (en) 2000-08-04 2007-11-01 Conductive fine particles

Country Status (1)

Country Link
JP (1) JP5108456B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063762A (en) * 2009-09-18 2011-03-31 Sekisui Chem Co Ltd Metal composite organic resin particle and manufacturing method for metal composite organic resin particle
CN102851723A (en) * 2011-06-30 2013-01-02 扬州市金杨电镀设备有限公司 Electroplating machine
JP2018190540A (en) * 2017-04-28 2018-11-29 日亜化学工業株式会社 Metal powder sinter paste and method for producing the same, and method for producing conductive material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188184A (en) * 1986-02-14 1987-08-17 日立化成工業株式会社 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH09185069A (en) * 1995-10-30 1997-07-15 Sekisui Finechem Co Ltd Fine spherical body and liquid crystal display element
JPH09198916A (en) * 1995-11-16 1997-07-31 Sekisui Finechem Co Ltd Conductive fine grain
WO1998046811A1 (en) * 1997-04-17 1998-10-22 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
JPH11342330A (en) * 1998-06-01 1999-12-14 Sekisui Chem Co Ltd Production of fine particles
JP2000133050A (en) * 1998-10-27 2000-05-12 Sekisui Chem Co Ltd Anisotropic conductive film and conductive connection structural body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188184A (en) * 1986-02-14 1987-08-17 日立化成工業株式会社 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH09185069A (en) * 1995-10-30 1997-07-15 Sekisui Finechem Co Ltd Fine spherical body and liquid crystal display element
JPH09198916A (en) * 1995-11-16 1997-07-31 Sekisui Finechem Co Ltd Conductive fine grain
WO1998046811A1 (en) * 1997-04-17 1998-10-22 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
JPH11342330A (en) * 1998-06-01 1999-12-14 Sekisui Chem Co Ltd Production of fine particles
JP2000133050A (en) * 1998-10-27 2000-05-12 Sekisui Chem Co Ltd Anisotropic conductive film and conductive connection structural body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063762A (en) * 2009-09-18 2011-03-31 Sekisui Chem Co Ltd Metal composite organic resin particle and manufacturing method for metal composite organic resin particle
CN102851723A (en) * 2011-06-30 2013-01-02 扬州市金杨电镀设备有限公司 Electroplating machine
JP2018190540A (en) * 2017-04-28 2018-11-29 日亜化学工業株式会社 Metal powder sinter paste and method for producing the same, and method for producing conductive material
JP2021144942A (en) * 2017-04-28 2021-09-24 日亜化学工業株式会社 Sintered metal powder paste, method for producing the same, and method for producing conductive material
JP7174910B2 (en) 2017-04-28 2022-11-18 日亜化学工業株式会社 Metal powder sintering paste, method for producing same, and method for producing conductive material

Also Published As

Publication number Publication date
JP5108456B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP2012178349A (en) Conductive particulate and substrate constituent
US5958590A (en) Dendritic powder materials for high conductivity paste applications
TWI826476B (en) Anisotropic conductive film, method for manufacturing same, and method for manufacturing connected structure
JP5671225B2 (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5108456B2 (en) Conductive fine particles
JP2009117333A (en) Conductive particulates, anisotropic conductive material, and conductive connection structural body
US8506850B2 (en) Conductive fine particles, anisotropic conductive element, and connection structure
JP3694249B2 (en) Fine particle plating method, conductive fine particles, and connection structure
EP1329911A1 (en) Conductive fine particles, method for plating fine particles, and substrate structural body
JPWO2020004511A1 (en) Solder particles and method for manufacturing solder particles
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2002260446A (en) Conductive fine particle and conductive connecting structure
JP5328434B2 (en) Conductive fine particles and conductive connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5534745B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2011070943A (en) Conductive particulates, anisotropic conductive material, and connection structure
JP4404616B2 (en) Method for producing conductive fine particles
JPWO2020004512A1 (en) Solder paste
JP2003247083A (en) Conductive fine particle with flux, and conductive connecting structure
CN117328063A (en) High-entropy copper core ball and preparation method thereof
JP2002322595A (en) Electrically conductive fine particle, method for plating fine particle and connected structure
JP5438454B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2021108269A (en) Core-shell type solder particle, method for producing core-shell type solder particle, anisotropic conductive film, and method for producing anisotropic conductive film
CN116855923A (en) Method for chemically tinning copper ball surface
JP2018045950A (en) Connection structure and method for manufacturing the same, method for manufacturing electrode with terminal, and conductive particles, kit and transfer mold used for the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R151 Written notification of patent or utility model registration

Ref document number: 5108456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

EXPY Cancellation because of completion of term