JP2003247083A - Conductive fine particle with flux, and conductive connecting structure - Google Patents

Conductive fine particle with flux, and conductive connecting structure

Info

Publication number
JP2003247083A
JP2003247083A JP2002048272A JP2002048272A JP2003247083A JP 2003247083 A JP2003247083 A JP 2003247083A JP 2002048272 A JP2002048272 A JP 2002048272A JP 2002048272 A JP2002048272 A JP 2002048272A JP 2003247083 A JP2003247083 A JP 2003247083A
Authority
JP
Japan
Prior art keywords
flux
fine particles
conductive
conductive fine
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002048272A
Other languages
Japanese (ja)
Inventor
Kiyoto Matsushita
清人 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002048272A priority Critical patent/JP2003247083A/en
Publication of JP2003247083A publication Critical patent/JP2003247083A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fine particle having flux requiring neither a flux-coating step nor its cleaning step in inter-electrode connection and to provide a conductive connecting structure using the same. <P>SOLUTION: The conductive fine particle obtained by forming at least one or more metal layers on the surface of a fine particle as a base material and then allowing flux-containing microcapsules to adhere to the outer side of the resultant conductive fine particle is used. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電極間を接続する
のに使用されるフラックス付き導電性微粒子及びそれを
用いた導電接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive particle with a flux used for connecting electrodes and a conductive connection structure using the same.

【0002】[0002]

【従来の技術】従来、電子回路基板において、ICやL
SI等の半導体製品の電極はハンダボール等の導電性微
粒子を介して対向する電極に接続されている。これらの
電極は、油脂等の汚れや酸化被膜などにより接触抵抗が
大きくなることがあり、接触抵抗を低減させたいときに
は、必要に応じて、電極にフラックスを塗布して電極表
面を洗浄し、さらに電極表面の金属を還元し接触抵抗を
小さくしてから導電微粒子を配置して電極を接続してい
た。また、フラックスを塗布することにより、半田のぬ
れやハンダリフロー時の熱伝導を促進したり、電極の再
酸化を防止することができる。
2. Description of the Related Art Conventionally, in electronic circuit boards, ICs and L
Electrodes of semiconductor products such as SI are connected to opposing electrodes via conductive fine particles such as solder balls. Contact resistance of these electrodes may be increased due to dirt such as oil and fat or an oxide film, and when it is desired to reduce the contact resistance, a flux is applied to the electrodes to clean the electrode surface, if necessary. The metal on the electrode surface was reduced to reduce the contact resistance, and then the conductive fine particles were arranged to connect the electrodes. Further, by applying the flux, it is possible to promote the wetting of the solder, the heat conduction during the solder reflow, and the reoxidation of the electrodes.

【0003】しかしながら、電極に塗布したフラックス
は電極が接続された後は不要となるばかりか、電極以外
の部分に付着した余分のフラックスは種々の弊害をもた
らすことがあるので、洗浄を行い除去する必要があっ
た。そのため、フラックスの洗浄するための工程が別途
必要となる上に、洗浄工程に有機溶剤を使用しなければ
ならないという問題点があった。
However, the flux applied to the electrodes is not necessary after the electrodes are connected, and the excess flux attached to the portions other than the electrodes may cause various harmful effects. Therefore, the flux is cleaned and removed. There was a need. Therefore, there is a problem that an additional step for cleaning the flux is required and an organic solvent must be used in the cleaning step.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたものであり、その目的とする
ところは、電極間の接続においてフラックスの塗布工程
や洗浄工程が全く不要なフラックス付き導電性微粒子、
及び、それを用いた導電接続構造体を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its purpose is to eliminate the need for a flux applying step and a cleaning step in connecting electrodes. Conductive particles with flux,
And to provide a conductive connection structure using the same.

【0005】[0005]

【課題を解決するための手段】本発明のフラックス付き
導電性微粒子は、基材微粒子の表面に少なくとも1層以
上の金属層が形成された導電性微粒子の外側に、フラッ
クスを内包するマイクロカプセルが固着されてなること
を特徴とする。
The conductive fine particles with a flux of the present invention have a microcapsule containing a flux on the outside of the conductive fine particles having at least one metal layer formed on the surface of the base fine particles. It is characterized by being fixed.

【0006】以下に本発明を詳細に説明する。本発明で
用いられる基材微粒子としては、特に限定されず、例え
ば、合成樹脂、金属等からなるものが挙げられる。上記
合成樹脂としては、例えば、スチレン単独重合体、スチ
レン共重合体、アクリル酸エステル重合体、フェノール
樹脂、ポリエステル樹脂、塩化ビニル樹脂等が挙げられ
る。上記金属としては、例えば、銀、銅、ニッケル、珪
素、金、チタン等の高融点の金属が挙げられる。これら
の中でも、合成樹脂からなる基材微粒子が好適に用いら
れる。また、基材微粒子の形状は球状が好ましく、球状
であれば中空のものであってもよい。
The present invention will be described in detail below. The base fine particles used in the present invention are not particularly limited, and examples thereof include those made of synthetic resin, metal and the like. Examples of the synthetic resin include styrene homopolymer, styrene copolymer, acrylic ester polymer, phenol resin, polyester resin, vinyl chloride resin and the like. Examples of the metal include high melting point metals such as silver, copper, nickel, silicon, gold, and titanium. Of these, base fine particles made of synthetic resin are preferably used. The shape of the base fine particles is preferably spherical, and may be hollow as long as they are spherical.

【0007】上記基材微粒子の平均粒径は、1〜100
0μmが好ましい。平均粒径が、1μmより小さくなる
と、得られる導電性微粒子の粒径が小さ過ぎるため、電
極間に使用すると良好な接続が得られ難くなり、100
0μmより大きくなると、近年特に顕著になっている狭
ピッチ接続の要求を満たすことができなくなる。
The average particle size of the base fine particles is 1 to 100.
0 μm is preferable. If the average particle diameter is smaller than 1 μm, the particle diameter of the obtained conductive fine particles is too small, so that it becomes difficult to obtain a good connection when used between electrodes.
If it is larger than 0 μm, it becomes impossible to satisfy the demand for narrow pitch connection, which has been particularly remarkable in recent years.

【0008】本発明に係わる導電性微粒子としては、基
材微粒子の表面に少なくとも1層以上の金属層を形成し
たものが用いられる。上記金属層に用いられる金属とし
ては、例えば、金、銀、銅、白金、亜鉛、鉄、錫、アル
ミニウム、コバルト、インジウム、ニッケル、クロム、
チタン、アンチモン、ビスマス、ゲルマニウム、カドミ
ウム、珪素等が挙げられる。また、金属層はこれらの金
属の単体、又は、これらの金属の2種以上よりなる合金
のいずれから形成されたものであってもよい。
As the conductive fine particles according to the present invention, those having at least one metal layer formed on the surface of the base fine particles are used. As the metal used for the metal layer, for example, gold, silver, copper, platinum, zinc, iron, tin, aluminum, cobalt, indium, nickel, chromium,
Examples thereof include titanium, antimony, bismuth, germanium, cadmium and silicon. The metal layer may be formed of any one of these metals or an alloy composed of two or more of these metals.

【0009】上記基材微粒子の表面に金属層を形成する
方法としては、例えば、無電解めっきによる方法;電解
めっきによる方法;金属微粉を基材微粒子にコーティン
グする方法;金属微粉をバインダーに混ぜ合わせて得ら
れるペーストを基材微粒子にコーティングする方法;真
空蒸着、イオンプレーティング、イオンスパッタリング
等の方法を採用することができる。
The method for forming the metal layer on the surface of the base fine particles is, for example, a method by electroless plating; a method by electroplating; a method of coating fine metal powder on the fine base particles; A method of coating the paste obtained on the fine particles of the substrate; a method such as vacuum deposition, ion plating, or ion sputtering can be used.

【0010】上記金属層と基材微粒子との密着性を向上
させるために、基材微粒子表面に予め金属下地層を設け
てもよい。
In order to improve the adhesion between the metal layer and the fine particles of the base material, a metal underlayer may be previously provided on the surface of the fine particles of the base material.

【0011】上記金属層の厚さは、特に限定されない
が、導電接合や基板接合等の用途を考慮すると、0.0
1〜500μmであることが好ましい。金属層の厚さ
が、0.01μm未満になると良好な導電性が得られ
ず、500μmを超えると導電性微粒子同士の合着が起
こったり、基板間の距離維持や基板間等の回路に加わる
応力を緩和する機能が不足することがある。
The thickness of the above-mentioned metal layer is not particularly limited, but in consideration of applications such as conductive bonding and substrate bonding, it is 0.0
It is preferably 1 to 500 μm. When the thickness of the metal layer is less than 0.01 μm, good conductivity cannot be obtained, and when it exceeds 500 μm, the conductive fine particles are fused with each other, the distance between the substrates is maintained, and the circuit is added between the substrates. The function to relieve stress may be insufficient.

【0012】上記金属層の最外層は、錫もしくは錫をベ
ースとした合金層から形成されることが好ましい。合金
層としては、錫をベースとして、銀、銅、亜鉛、ビスマ
ス、インジウム、鉛及びアンチモンから選ばれる1種以
上の金属を加えて形成されたものが好ましい。
The outermost layer of the metal layer is preferably formed of tin or a tin-based alloy layer. The alloy layer is preferably formed by adding one or more metals selected from silver, copper, zinc, bismuth, indium, lead and antimony to tin as a base.

【0013】本発明のフラックス付き導電性微粒子は、
上記導電性微粒子の表面にフラックスを内包するマイク
ロカプセルを固着したものから形成される。上記フラッ
クスを内包するのに用いられるマイクロカプセルは、導
電性微粒子を電極間に接続する際の圧力によって破壊で
きるものであれば、特に限定されない。上記マイクロカ
プセルの材質としては、例えば、塩化ビニル樹脂、アク
リル樹脂、アクリル酸エステル/アクリロニトリル樹
脂、メラミン樹脂、スチレン/ジビニルベンゼン樹脂等
が用いられる。
The conductive fine particles with a flux of the present invention are
A microcapsule containing a flux is fixed to the surface of the conductive fine particles. The microcapsules used for encapsulating the flux are not particularly limited as long as they can be destroyed by the pressure when connecting the conductive fine particles between the electrodes. As the material of the microcapsules, for example, vinyl chloride resin, acrylic resin, acrylic ester / acrylonitrile resin, melamine resin, styrene / divinylbenzene resin, etc. are used.

【0014】上記フラックスを内包したマイクロカプセ
ルを得る方法としては、例えば、フラックスを分散させ
た媒体中でマイクロカプセルを形成する合成樹脂のモノ
マーを重合させる方法が挙げられる。
As a method of obtaining the microcapsules containing the above-mentioned flux, for example, a method of polymerizing a monomer of a synthetic resin forming the microcapsules in a medium in which the flux is dispersed can be mentioned.

【0015】上記フラックスとしては、市販のロジンフ
ラックスのほか、例えば、ステアリン酸、アジピン酸、
アントラニル酸、ラウリン酸、グリコール酸、アゼライ
ン酸、コハク酸、セバシン酸等のカルボン酸を主成分と
するフラックスなどが挙げられる。中でも、カルボン酸
を主成分とするフラックスは、加熱により失活させるこ
とができ、洗浄により除去する必要がないので好まし
い。
Examples of the flux include commercially available rosin flux, stearic acid, adipic acid,
Examples thereof include a flux containing a carboxylic acid such as anthranilic acid, lauric acid, glycolic acid, azelaic acid, succinic acid and sebacic acid as a main component. Among them, the flux containing carboxylic acid as a main component is preferable because it can be deactivated by heating and need not be removed by washing.

【0016】上記フラックスを内包したマイクロカプセ
ルを導電性微粒子の表面に固着させる方法は、特に限定
されず、例えば、予めマイクロカプセル表面に接着剤を
塗布した後導電性微粒子と混合することにより、マイク
ロカプセルを導電性微粒子表面に接着させる方法が挙げ
られる。また、フラックスを内包したマイクロカプセル
の表面に予めホットメルト接着剤を塗布した後導電性微
粒子と混合し、ホットメルト接着剤が活性化する温度以
上に加熱しながら撹拌して、マイクロカプセルを導電性
微粒子表面に強固に接着させる方法が挙げられる。ま
た、マイクロカプセルの材質として加熱により粘着性を
発現する樹脂を使用すれば、接着剤を使用せずに基材微
粒子表面に接着させることができる。
The method for fixing the microcapsules containing the above-mentioned flux to the surface of the conductive fine particles is not particularly limited, and for example, by applying an adhesive to the surface of the microcapsules in advance and then mixing with the conductive fine particles, A method of adhering the capsule to the surface of the conductive fine particles can be mentioned. In addition, a hot-melt adhesive is applied to the surface of the microcapsules containing the flux in advance and then mixed with conductive fine particles, and the mixture is stirred while being heated to a temperature above the temperature at which the hot-melt adhesive is activated. A method of firmly adhering to the surface of the fine particles can be mentioned. Further, if a resin that exhibits tackiness upon heating is used as the material of the microcapsules, it can be adhered to the surface of the base particle without using an adhesive.

【0017】上記導電性微粒子表面に固着されるマイク
ロカプセルの大きさや数量は、必要とするフラックスの
量によって適宜決定され、フラックスの量は導電性微粒
子の粒径、用途等によって決定される。
The size and number of the microcapsules adhered to the surface of the conductive fine particles are appropriately determined by the required amount of flux, and the amount of the flux is determined by the particle size of the conductive fine particles, the application, and the like.

【0018】上記フラックス付き導電性微粒子を使用し
て導電接続構造体を得る場合は、例えば、フラックス付
き導電性微粒子をそのままの状態で直接電極間に配置
し、加圧によりマイクロカプセルを破壊してフラックス
を電極上に流動させた後、加熱により金属層を溶融させ
て電極同士を接続してもよく、樹脂シート等に導電性微
粒子を混練した異方性導電シートを、電極間に配置して
電極同士を接続してもよい。
When a conductive connection structure is obtained using the above conductive fine particles with flux, for example, the conductive fine particles with flux are directly placed between the electrodes, and the microcapsules are destroyed by applying pressure. After flowing the flux over the electrodes, the metal layers may be melted by heating to connect the electrodes to each other, and an anisotropic conductive sheet obtained by kneading conductive fine particles into a resin sheet or the like may be placed between the electrodes. The electrodes may be connected to each other.

【0019】本発明のフラックス付き導電性微粒子は、
例えば、IC、LSI等を基板上に接続するBGA(ボ
ールグリッドアレイ)、CSP(チップサイズパッケー
ジ)等の半田ボール;IC、LSI等の半導体製品の回
路を検査するための異方性導電シート;異方性導電接着
剤などに好適に使用することができる。
The conductive fine particles with a flux of the present invention are
For example, solder balls such as BGA (ball grid array) and CSP (chip size package) for connecting IC, LSI and the like on a substrate; anisotropic conductive sheet for inspecting circuits of semiconductor products such as IC and LSI; It can be suitably used for anisotropic conductive adhesives and the like.

【0020】[0020]

【発明の実施の形態】本発明を以下の実施例及び比較例
により、更に詳しく説明する。 (実施例)スチレンとジビニルベンゼンとの共重合体か
らなる基材微粒子(平均粒径約700μm)に、導電下
地層としてニッケルめっきを施した後、電解めっき法に
より銅めっきをして金属層を形成した。さらに、その上
に錫/銀めっきを施し、その合金層を形成した導電性微
粒子を得た。一方、セバシン酸を分散させた水分散液中
で、アクリル酸エチル、アクリロニトリル及びメタクリ
ロニトリルを懸濁重合により共重合して、フラックスと
してセバシン酸を内包する、平均粒径が約15μmのマ
イクロカプセルを作製した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the following examples and comparative examples. (Example) Base metal fine particles (average particle size of about 700 μm) made of a copolymer of styrene and divinylbenzene were plated with nickel as a conductive underlayer, and then copper was plated by an electrolytic plating method to form a metal layer. Formed. Further, tin / silver plating was applied thereon to obtain conductive fine particles having the alloy layer formed thereon. On the other hand, in an aqueous dispersion liquid in which sebacic acid is dispersed, ethyl acrylate, acrylonitrile and methacrylonitrile are copolymerized by suspension polymerization to contain sebacic acid as a flux, and a microcapsule having an average particle size of about 15 μm. Was produced.

【0021】このマイクロカプセルの表面にホットメル
ト接着剤をスプレー装置を使用して塗布した後、マイク
ロカプセルを100℃に加熱しながら、めっきした導電
性微粒子と混合して、導電性微粒子表面にフラックスを
内包するマイクロカプセルを固着させ、フラックス付き
導電性微粒子を得た。得られたフラックス付き導電性微
粒子を電子顕微鏡で観察したところ、その表面にマイク
ロカプセルが均一に固着されていた。
After applying a hot melt adhesive to the surface of the microcapsules by using a spray device, the microcapsules are heated to 100 ° C. and mixed with the plated conductive fine particles, and the flux is applied to the surface of the conductive fine particles. The microcapsules encapsulating were fixed to obtain conductive particles with flux. When the obtained conductive fine particles with flux were observed by an electron microscope, the microcapsules were uniformly adhered to the surface.

【0022】[0022]

【発明の効果】本発明のフラックス付き導電性微粒子及
び導電接続構造体は、上述の構成となされており、フラ
ックスの塗布工程や洗浄工程が全く不要になるので、電
極の接続工程を短縮することができる。また、フラック
スを洗浄する必要がないので、電極の接続工程において
作業環境を悪化することがない。
The conductive fine particles with a flux and the conductive connecting structure of the present invention are configured as described above, and the flux applying step and the washing step are completely unnecessary. Therefore, the electrode connecting step can be shortened. You can Further, since it is not necessary to wash the flux, the working environment is not deteriorated in the electrode connecting step.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材微粒子の表面に少なくとも1層以上
の金属層が形成された導電性微粒子の外側に、フラック
スを内包するマイクロカプセルが固着されてなることを
特徴とするフラックス付き導電性微粒子。
1. A conductive fine particle with a flux, characterized in that a microcapsule containing a flux is fixed to the outside of the conductive fine particle having at least one metal layer formed on the surface of the base fine particle. .
【請求項2】 フラックスが加熱によって失活する成分
からなることを特徴とする請求項1記載のフラックス付
き導電性微粒子。
2. The conductive fine particles with a flux according to claim 1, wherein the flux is composed of a component which is deactivated by heating.
【請求項3】 マイクロカプセルがホットメルト接着剤
を介して導電性微粒子の外側に固着されてなることを特
徴とする請求項1又は2記載のフラックス付き導電性微
粒子。
3. The conductive fine particles with a flux according to claim 1, wherein the microcapsules are fixed to the outside of the conductive fine particles via a hot melt adhesive.
【請求項4】 請求項1〜3記載のフラックス付き導電
性微粒子により接続されてなることを特徴とする導電接
続構造体。
4. A conductive connection structure, which is connected by the conductive fine particles with a flux according to claim 1.
JP2002048272A 2002-02-25 2002-02-25 Conductive fine particle with flux, and conductive connecting structure Pending JP2003247083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048272A JP2003247083A (en) 2002-02-25 2002-02-25 Conductive fine particle with flux, and conductive connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048272A JP2003247083A (en) 2002-02-25 2002-02-25 Conductive fine particle with flux, and conductive connecting structure

Publications (1)

Publication Number Publication Date
JP2003247083A true JP2003247083A (en) 2003-09-05

Family

ID=28661115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048272A Pending JP2003247083A (en) 2002-02-25 2002-02-25 Conductive fine particle with flux, and conductive connecting structure

Country Status (1)

Country Link
JP (1) JP2003247083A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054387A1 (en) * 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2010073395A (en) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd Conductive particle containing flux-including capsules, anisotropic conductive material, and connection structure
JP2011076940A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and connection structure
JP2012009753A (en) * 2010-06-28 2012-01-12 Sekisui Chem Co Ltd Conductive material for solar battery module and solar battery module
JP2012142247A (en) * 2011-01-06 2012-07-26 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054387A1 (en) * 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2010073395A (en) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd Conductive particle containing flux-including capsules, anisotropic conductive material, and connection structure
JP2011076940A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and connection structure
JP2012009753A (en) * 2010-06-28 2012-01-12 Sekisui Chem Co Ltd Conductive material for solar battery module and solar battery module
JP2012142247A (en) * 2011-01-06 2012-07-26 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure

Similar Documents

Publication Publication Date Title
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP2009117333A (en) Conductive particulates, anisotropic conductive material, and conductive connection structural body
TWI635591B (en) Solder transfer sheet
JPH0346774A (en) Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
US8506850B2 (en) Conductive fine particles, anisotropic conductive element, and connection structure
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
JP2003247083A (en) Conductive fine particle with flux, and conductive connecting structure
JP3542874B2 (en) Conductive fine particles
WO2014133124A1 (en) Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure
JP5944979B1 (en) Solder transfer sheet, solder bump, and solder pre-coating method using solder transfer sheet
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5480576B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
JP5139932B2 (en) Flux-encapsulated capsule, conductive particle with flux-encapsulated capsule, and connection structure
JP2010253507A (en) Conductive particulate, anisotropic conductive material, and connecting structure
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP3682156B2 (en) Conductive fine particles and conductive connection structure
JP2005317270A (en) Conductive fine particulate and conductive connection structure
JPH11134936A (en) Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure
JP2003068145A (en) Conductive fine particle and conductive connection structure
JP6188527B2 (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5534745B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JPH0417994A (en) Solder composition
JP5438454B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2004179137A (en) Conductive particulate, conductive particulate manufacturing method, and conductive connecting structure