JP3542874B2 - Conductive fine particles - Google Patents

Conductive fine particles Download PDF

Info

Publication number
JP3542874B2
JP3542874B2 JP23523696A JP23523696A JP3542874B2 JP 3542874 B2 JP3542874 B2 JP 3542874B2 JP 23523696 A JP23523696 A JP 23523696A JP 23523696 A JP23523696 A JP 23523696A JP 3542874 B2 JP3542874 B2 JP 3542874B2
Authority
JP
Japan
Prior art keywords
conductive
coated
solder
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23523696A
Other languages
Japanese (ja)
Other versions
JPH09198916A (en
Inventor
嘉秋 小寺
和男 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP23523696A priority Critical patent/JP3542874B2/en
Publication of JPH09198916A publication Critical patent/JPH09198916A/en
Application granted granted Critical
Publication of JP3542874B2 publication Critical patent/JP3542874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Combinations Of Printed Boards (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性に優れた導電性微粒子に関する。
【0002】
【従来の技術】
導電性微粒子は、電子部品におけるリード電極、配線基板等を接合する際に使用される導電ペースト、上下導通用接着剤、異方性導電接着剤、電磁波シールドの導電性材料等に使用されるものである。このような導電性微粒子としては、鉛とすずとからなる半田ボール、非導電性材料からなる粒子が導電性材料で被覆されたもの等がある。
【0003】
鉛とすずとからなる半田ボールは、リード電極、配線基板等を、加熱により簡便に接合することができるものである。しかし、例えば、異種基材を接合する場合、基材間の熱膨張率の違い等によって生ずる接合部分にかかる応力を半田ボールでは吸収できないため、半田ボールと基材との界面に剥がれが生じて満足な接合を得ることが難しい等の問題がある。
【0004】
一方、非導電性材料からなる粒子が導電性材料で被覆されてなる導電性微粒子は、使用される非導電性材料からなる粒子が耐熱性を有し、加熱による接合精度の低下等が生じにくいので、近年では、電子部品の小型化、薄型化の進行に伴い、その使用が盛んになっている。
【0005】
特開平5−287582号公報には、非導電性材料からなる粒子を導電性材料で被覆する方法として、電気銅メッキ工程によって銅メッキ層を非導電性材料表面に直接形成する方法が開示されている。この方法は、従来の無電解銅メッキ工程を必要とせず、電気銅メッキのみによって銅メッキ層を形成することができるものであるので、処理工程の簡略化、処理時間の短縮化、作業環境の改善等により生産性の向上を図ることができるものである。
【0006】
しかし、導電性微粒子の中心部を構成する非導電性材料とその表面を被覆する金属との間では熱膨張係数、圧縮変形性等の差が大きいため、使用中の温度変化や圧縮変形等により、形成された銅メッキ層が破壊、剥離しやすい等の問題がある。
【0007】
特開平3−129607号公報には、表面が金属で被覆されてなる樹脂粒子及び亜鉛やすず等からなる低融点金属粒子が熱接着性を有する高分子材料に分散されてなる異方性導電膜が開示されている。この異方性導電膜で使用される導電性樹脂のうち、表面が金属で被覆された樹脂粒子は、例えば、配線導体パターンが加熱圧着される際、配線導体パターン間の間隔を一定に保ちながら電気的接続を行うことができる等の特徴を有するものであり、低融点金属粒子は、溶融によって配線導体パターン間の電気的接続を行いながら圧着状態の確認を容易に行わせることができる等の特徴を有するものである。
【0008】
しかしながら、上述のように、使用される表面が金属で被覆された樹脂粒子は、表面の金属層が破壊、剥離等を起こす可能性を有しており、また、低融点金属粒子は、溶融ムラを生じる可能性を有している。
【0009】
特開平5−119337号公報には、表面が接着剤で被覆された導電性微粒子を用いる電極端子の相互接続方法が開示されている。この電極端子の相互接続方法は、表面が接着剤で被覆された導電性粒子を第一の配線基板上に散布し、加熱により固定した後、第二の配線基板を載置し、加熱圧着により接着、固定を行い、導電性微粒子を介して相対峙する配線基板の電極端子を相互接続するものであり、従来の接着剤で被覆された導電性微粒子を用いる電極端子の相互接続方法よりも信頼性に優れている等の特徴を有するものである。
【0010】
しかしながら、この電極端子の相互接続方法は、表面が接着剤で被覆された導電性粒子を第一の配線基板上に散布する前に、この表面が接着剤で被覆された導電性粒子を帯電する必要があり、工程が煩雑になる等の問題がある。
【0011】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解消するためになされたものであり、その目的とするところは、各種基板を高い精度で簡便に接合することができる導電性微粒子を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するため、本発明の導電性微粒子は、導電層で被覆された球状高分子粒子の表面が、該導電層で被覆された球状高分子粒子の半径の5〜30%かつ12.5〜150μmの厚みを有する半田により被覆されてなるものである。
【0013】
本発明で使用される導電層の材質としては特に限定されず、例えば、金、ニッケル等からなる導電層が挙げられる。
【0014】
本発明で使用される球状高分子粒子としては、ポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル共重合体、ポリ塩化ビニルからなる群より選ばれる少なくとも一種が挙げられる。
【0015】
上記球状高分子粒子に上記導電層を被覆する方法としては特に限定されないが、好ましくは、無電解メッキ法等が挙げられる。
【0016】
本発明において、上記導電層で被覆された球状高分子粒子は、該導電層で被覆された球状高分子粒子の半径の5〜30%の厚みを有する半田により表面が被覆されてなるものである。半田の厚みが上記導電層で被覆された球状高分子粒子の半径の5%未満であると、電極端子等を接合する際、半田の溶融量が少なくなり、充分な接合性を得ることができず、上記導電層で被覆された球状高分子粒子の半径の30%を超えると、半田の溶融量が多くなり隣の電極端子とショートすることがあるので、上記範囲に限定される。
【0017】
上記半田の被覆は、均一であることが好ましい。上記半田の被覆が不均一であると、加熱時の溶融が不均一となり、信頼性の高い接合を得にくいことがある。
【0018】
本発明で用いられる導電層で被覆された球状高分子粒子の粒子径としては、好ましくは、83.3〜1000μmである。83.3μm未満であると、被覆された球状高分子粒子の半径の30%の厚みに半田を被覆するとしても、本発明で限定する最小の厚みの12.5μmの厚みで被覆することができなくなり、1000μmを超えると、球状高分子粒子を被覆した導電層がひび割れを起こして、球状高分子粒子から剥離し易くなることがある。
【0019】
上記導電層で被覆された球状高分子粒子に、上記導電層で被覆された球状高分子粒子の半径の5〜30%の厚みを有する半田を被覆する方法としては、特に限定されないが、好ましくは、電気メッキ法等が挙げられ、それにより厚膜の半田メッキを得ることができる。
【0020】
本発明の導電性微粒子は、例えば、図1に示すように、上記球状高分子粒子の表面に、金、ニッケル等を無電解メッキ法によりメッキして導電層を形成した後、上記導電層で被覆された球状高分子粒子に、半田を電気メッキ法によりメッキして得ることができる。図中、1は球状高分子粒子、2は導電層を、3は半田メッキ層をそれぞれ表す。
【0021】
本発明の導電性微粒子を用いた配線基板の接合は、例えば、第一の配線基板上に上記導電性微粒子を均一に分散させた後、第二の配線基板を、均一に分散されている上記導電性微粒子上に相対峙させ、加熱により半田を溶融させることにより行われる。
【0022】
【発明の実施の形態】
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。
【0023】
比較例1
表1に示す性状の、ニッケル導電層で被覆された球状高分子粒子(積水フアインケミカル社製「ミクロパールNI」)の表面に、電気メッキ装置(上村工業社製「フロースループレーターRP−1」)を用いて電解メッキし、表に示す厚みの半田(重量比:Pb/Sn=60/40)メッキ層が被覆された導電性微粒子を得た。
【0024】
(実施例1,2、比較例2,3
表1に示す性状の、金導電層が被覆された球状高分子粒子(積水フアインケミカル社製「ミクロパールAU」)を用いたこと以外は、比較例1と同様にして、表に示す厚みの半田(重量比:Pb/Sn=60/40)メッキ層が被覆された導電性微粒子を得た。
【0025】
【表1】

Figure 0003542874
【0026】
上記実施例及び比較例で得られた導電性微粒子につき、下記の性能評価を行い、その結果を表2に示した。
(1)半田メッキ層の厚み
上記導電性微粒子を洗浄、乾燥した後研磨加工して半球状とし、この半球状物の研磨加工面を拡大鏡を用いて観察し、半田メッキ層の厚みを測定した。
【0027】
(2)接合強度
上記導電性微粒子をポストフラックス(ハリマ化成社製「F−40」)中に、粒子の面積投影率が6%となるように配合し、この配合物を所定のピッチの電極パターンを有するFPC(フレキシブルプリント回路)接合端子の、電極パターン上にスクリーン印刷した。この接合端子に、同様の電極パターンを有する別のFPC接合端子を、電極パターン同士が対応するように重ね合わせ、1kg/cm2 で加圧しながら、200℃で加熱、溶着して、2枚のFPC接合端子の電極パターン同士が積層された試料を作製した。この試料を用いて、180度引張試験により接合強度を測定した。
【0028】
(3)線間絶縁抵抗、接続抵抗
(2)と同様な試料を用いて、電気抵抗測定器により隣接する電極間の電気抵抗を測定し、線間絶縁抵抗とした。また、(2)と同様な試料を用いて、1枚目のFPCの電極とそれに対応する2枚目の電極との間の電気抵抗を電気抵抗測定器により測定し、接続抵抗とした。
【0029】
【表2】
Figure 0003542874
【0030】
表2から明らかなように、半田メッキ層の厚みが、導電層が被覆された球状高分子粒子径の5%未満では半田メッキ粒子同士の接合力が不足し、導電層が被覆された球状高分子粒子径の30%を超えると線間絶縁抵抗が低下した。
た、表1の比較例3及び実施例2から明らかなように、導電層が被覆された球状高分子粒子が、1000μm程度の大粒子となると、導電層がひび割れを起こし、導電性層の剥がれが生じたため、導電性微粒子を得ることができないことがある
【0031】
【発明の効果】
本発明の導電性微粒子は、上述の構成からなるので、接着剤等を使用することなく、接合端子等を高い精度で簡便に接合することができ、また導電性に優れたものであるので、例えば、BGA用途、異種基板間接合等に好適である。
【図面の簡単な説明】
【図1】本発明の導電性微粒子の一例を示す断面図。
【符号の説明】
1 球状高分子粒子
2 導電層
3 半田メッキ層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to conductive fine particles having excellent conductivity.
[0002]
[Prior art]
The conductive fine particles are used as a conductive paste, an adhesive for vertical conduction, an anisotropic conductive adhesive, a conductive material for electromagnetic wave shielding, etc., used when joining lead electrodes, wiring boards, etc. in electronic components. It is. Examples of such conductive fine particles include solder balls made of lead and tin, and particles made of a non-conductive material covered with a conductive material.
[0003]
A solder ball made of lead and tin can easily join a lead electrode, a wiring board, and the like by heating. However, for example, when joining different kinds of base materials, since the stress applied to the bonding part caused by a difference in the coefficient of thermal expansion between the base materials cannot be absorbed by the solder balls, the interface between the solder balls and the base material is peeled off. There are problems such as difficulty in obtaining satisfactory bonding.
[0004]
On the other hand, the conductive fine particles in which the particles made of the non-conductive material are coated with the conductive material, the particles made of the non-conductive material used have heat resistance, and the bonding accuracy is hardly reduced by heating. Therefore, in recent years, as electronic components have become smaller and thinner, their use has been increasing.
[0005]
Japanese Patent Application Laid-Open No. 5-287852 discloses a method of coating particles made of a non-conductive material with a conductive material by directly forming a copper plating layer on the surface of the non-conductive material by an electrolytic copper plating process. I have. This method does not require a conventional electroless copper plating step, and can form a copper plating layer only by electrolytic copper plating, so that the processing steps are simplified, the processing time is reduced, and the working environment is reduced. Productivity can be improved by improvement or the like.
[0006]
However, there is a large difference in the coefficient of thermal expansion, compressive deformation, etc. between the non-conductive material that forms the center of the conductive fine particles and the metal that covers the surface. There is a problem that the formed copper plating layer is easily broken or peeled off.
[0007]
Japanese Patent Application Laid-Open No. 3-129607 discloses an anisotropic conductive film in which resin particles whose surfaces are coated with a metal and low-melting metal particles made of zinc, tin or the like are dispersed in a polymer material having thermal adhesion. Is disclosed. Among the conductive resins used in the anisotropic conductive film, the resin particles whose surfaces are coated with a metal, for example, when the wiring conductor pattern is heat-pressed, while maintaining a constant spacing between the wiring conductor patterns It has features such as being able to make an electrical connection, and the low-melting-point metal particles can easily confirm the crimping state while making electrical connection between the wiring conductor patterns by melting. It has features.
[0008]
However, as described above, resin particles whose surface is coated with metal have a possibility that a metal layer on the surface may be broken, peeled off, or the like. Has the potential to cause
[0009]
JP-A-5-119337 discloses a method for interconnecting electrode terminals using conductive fine particles whose surface is coated with an adhesive. The method of interconnecting the electrode terminals is as follows. Conductive particles whose surfaces are coated with an adhesive are dispersed on the first wiring board, fixed by heating, and then placed on the second wiring board, and then heated and pressed. Adhesion and fixation are used to interconnect the electrode terminals of the wiring board facing each other via the conductive fine particles, which is more reliable than the conventional method of interconnecting electrode terminals using conductive fine particles coated with an adhesive. It has characteristics such as excellent properties.
[0010]
However, this method of interconnecting electrode terminals charges the conductive particles whose surface is coated with the adhesive before dispersing the conductive particles whose surface is coated with the adhesive on the first wiring board. And there is a problem that the process becomes complicated.
[0011]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide conductive fine particles that can easily and easily bond various substrates with high accuracy.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the conductive fine particles according to the present invention are characterized in that the surface of the spherical polymer particles coated with the conductive layer has a radius of 5 to 30% of the radius of the spherical polymer particles coated with the conductive layer and 12 %. It is covered with a solder having a thickness of 0.5 to 150 μm.
[0013]
The material of the conductive layer used in the present invention is not particularly limited, and examples thereof include a conductive layer made of gold, nickel, or the like.
[0014]
The spherical polymer particles used in the present invention include polystyrene, polystyrene copolymers, polyacrylic acid ester, polyacrylic acid ester copolymer, at least one can be cited are selected from the group consisting of port polyvinyl chloride.
[0015]
The method for coating the spherical polymer particles with the conductive layer is not particularly limited, but preferably includes an electroless plating method.
[0016]
In the present invention, the spherical polymer particles coated with the conductive layer have a surface coated with a solder having a thickness of 5 to 30% of the radius of the spherical polymer particles coated with the conductive layer. . When the thickness of the solder is less than 5% of the radius of the spherical polymer particles coated with the conductive layer, the amount of solder melted when joining electrode terminals and the like is reduced, and sufficient bonding properties can be obtained. When the radius exceeds 30% of the radius of the spherical polymer particles coated with the conductive layer, the amount of solder melted increases and short-circuit may occur with an adjacent electrode terminal.
[0017]
The coating of the solder is preferably uniform. If the coating of the solder is not uniform, the melting at the time of heating becomes uneven, and it may be difficult to obtain highly reliable bonding.
[0018]
The particle size of the spherical polymer particles coated with a conductive layer used in the present invention, good Mashiku is 83.3 ~1000μm. When the thickness is less than 83.3 μm, even if the solder is coated to a thickness of 30% of the radius of the coated spherical polymer particles, it can be coated with the minimum thickness of 12.5 μm limited by the present invention. When the thickness exceeds 1,000 μm, the conductive layer coated with the spherical polymer particles may be cracked and easily peeled off from the spherical polymer particles.
[0019]
The method for coating the spherical polymer particles coated with the conductive layer with solder having a thickness of 5 to 30% of the radius of the spherical polymer particles coated with the conductive layer is not particularly limited, but is preferably And an electroplating method, whereby a thick solder plating can be obtained.
[0020]
The conductive fine particles of the present invention are, for example, as shown in FIG. 1, after forming a conductive layer by electroless plating of gold, nickel or the like on the surface of the spherical polymer particles, forming a conductive layer on the conductive layer. The coated spherical polymer particles can be obtained by plating solder with an electroplating method. In the figure, 1 indicates spherical polymer particles, 2 indicates a conductive layer, and 3 indicates a solder plating layer.
[0021]
The bonding of the wiring substrate using the conductive fine particles of the present invention may be performed, for example, by uniformly dispersing the conductive fine particles on the first wiring substrate, and then dispersing the second wiring substrate uniformly. This is performed by causing the solder to face the conductive fine particles and melt the solder by heating.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0023]
( Comparative Example 1 )
An electroplating apparatus ("Flow Slooplator RP-1" manufactured by Uemura Kogyo Co., Ltd.) is applied to the surface of spherical polymer particles ("Micropearl NI" manufactured by Sekisui Fine Chemical Co., Ltd.) having the properties shown in Table 1 and coated with a nickel conductive layer. ") To obtain conductive fine particles coated with a solder (weight ratio: Pb / Sn = 60/40) plating layer having a thickness shown in Table 2 .
[0024]
(Examples 1 and 2 , Comparative Examples 2 and 3 )
Except for using spherical polymer particles coated with a gold conductive layer ("Micropearl AU" manufactured by Sekisui Fine Chemical Co., Ltd.) having the properties shown in Table 1, the results are shown in Table 2 in the same manner as in Comparative Example 1. Conductive fine particles coated with a thick solder (weight ratio: Pb / Sn = 60/40) plating layer were obtained.
[0025]
[Table 1]
Figure 0003542874
[0026]
The following performance evaluation was performed on the conductive fine particles obtained in the above Examples and Comparative Examples, and the results are shown in Table 2.
(1) Thickness of solder plating layer The above conductive fine particles are washed, dried and polished to form a hemisphere, and the polished surface of the hemisphere is observed with a magnifying glass to measure the thickness of the solder plating layer. did.
[0027]
(2) Bonding strength The above-mentioned conductive fine particles are blended in a post flux (“F-40” manufactured by Harima Chemicals, Inc.) so that the area projection ratio of the particles is 6%, and the blend is mixed with an electrode having a predetermined pitch. Screen printing was performed on the electrode pattern of the FPC (flexible printed circuit) joining terminal having the pattern. Another FPC joint terminal having a similar electrode pattern is superimposed on this joint terminal so that the electrode patterns correspond to each other, and heated and welded at 200 ° C. while applying a pressure of 1 kg / cm 2 to form two sheets. A sample in which the electrode patterns of the FPC joint terminal were laminated was prepared. Using this sample, the bonding strength was measured by a 180-degree tensile test.
[0028]
(3) Line Insulation Resistance, Connection Resistance Using a sample similar to (2), the electric resistance between adjacent electrodes was measured by an electric resistance measuring instrument, and the measured value was used as the line insulation resistance. Further, using the same sample as in (2), the electric resistance between the electrode of the first FPC and the corresponding second electrode was measured by an electric resistance measuring instrument, and was defined as connection resistance.
[0029]
[Table 2]
Figure 0003542874
[0030]
As is clear from Table 2, when the thickness of the solder plating layer is less than 5% of the diameter of the spherical polymer particles coated with the conductive layer, the bonding strength between the solder plated particles is insufficient, and the spherical height covered with the conductive layer is small. If it exceeds 30% of the molecular particle size, the insulation resistance between wires decreases .
Also, as is clear from Comparative Example 3 and Example 2 of Table 1, the spherical polymer particles having a conductive layer coated is, when it comes to 1000μm about the large particles, the conductive layer undergoes cracking, the conductive layer because peeling occurs, it is can be such Ikoto to obtain conductive particles.
[0031]
【The invention's effect】
Since the conductive fine particles of the present invention have the above-described configuration, the bonding terminals and the like can be easily bonded with high accuracy without using an adhesive or the like, and are excellent in conductivity. For example, it is suitable for BGA applications, bonding between different types of substrates, and the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the conductive fine particles of the present invention.
[Explanation of symbols]
1 spherical polymer particles 2 conductive layer 3 solder plating layer

Claims (1)

導電層で被覆された球状高分子粒子の表面が、該導電層で被覆された球状高分子粒子の半径の5〜30%かつ12.5〜150μmの厚みを有する半田により被覆されてなる導電性高分子であって、
球状高分子粒子は、ポリスチレン、ポリスチレン共重合体、ポリアクリル酸エステル、ポリアクリル酸エステル共重合体、ポリ塩化ビニルからなる郡より選ばれる少なくとも一種であることを特徴とする導電性高分子。
Conductivity in which the surface of the spherical polymer particles coated with the conductive layer is coated with solder having a thickness of 5 to 30% of the radius of the spherical polymer particles coated with the conductive layer and a thickness of 12.5 to 150 μm A polymer,
The conductive polymer, wherein the spherical polymer particles are at least one selected from the group consisting of polystyrene, polystyrene copolymers, polyacrylates, polyacrylate copolymers, and polyvinyl chloride .
JP23523696A 1995-11-16 1996-09-05 Conductive fine particles Expired - Lifetime JP3542874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23523696A JP3542874B2 (en) 1995-11-16 1996-09-05 Conductive fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29830295 1995-11-16
JP7-298302 1995-11-16
JP23523696A JP3542874B2 (en) 1995-11-16 1996-09-05 Conductive fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004032453A Division JP2004156145A (en) 1995-11-16 2004-02-09 Conductive particle

Publications (2)

Publication Number Publication Date
JPH09198916A JPH09198916A (en) 1997-07-31
JP3542874B2 true JP3542874B2 (en) 2004-07-14

Family

ID=26532018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23523696A Expired - Lifetime JP3542874B2 (en) 1995-11-16 1996-09-05 Conductive fine particles

Country Status (1)

Country Link
JP (1) JP3542874B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156145A (en) * 1995-11-16 2004-06-03 Sekisui Chem Co Ltd Conductive particle
JP5108456B2 (en) * 2000-08-04 2012-12-26 積水化学工業株式会社 Conductive fine particles
EP2495732A3 (en) * 2000-08-04 2014-04-16 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structure
KR100385560B1 (en) * 2000-12-27 2003-05-27 엘지전선 주식회사 Conductive ball for anisotropic conductive film
JP2004158212A (en) * 2002-11-01 2004-06-03 Sekisui Chem Co Ltd Conductive particulate for mounting
JP2004303956A (en) * 2003-03-31 2004-10-28 Sekisui Chem Co Ltd Method of manufacturing printed board
JP2006156068A (en) * 2004-11-29 2006-06-15 Sanyo Chem Ind Ltd Conductive particulate
WO2008132933A1 (en) * 2007-04-13 2008-11-06 Sekisui Chemical Co., Ltd. Electroconductive fine particles, anisotropic electroconductive material, and electroconductive connection structure
JP5536634B2 (en) * 2010-12-28 2014-07-02 株式会社日本触媒 Conductive fine particles
JPWO2018147424A1 (en) * 2017-02-13 2019-12-12 タツタ電線株式会社 Printed wiring board

Also Published As

Publication number Publication date
JPH09198916A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
EP0576872B1 (en) A new diffusion joining method
KR100539060B1 (en) Anisotropic conductive adhesive and adhesive film
US6270363B1 (en) Z-axis compressible polymer with fine metal matrix suspension
KR101082238B1 (en) Connector, manufacture method for connector and anisotropic conductive film to be used therein
WO1993010573A1 (en) Die mounting with uniaxial conductive adhesive
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JPH0623350B2 (en) Anisotropic conductive adhesive
JP3542874B2 (en) Conductive fine particles
JP4724369B2 (en) Method for producing conductive particles
JPS62177082A (en) Anisotropic electrically conductive adhesive
JP3516379B2 (en) Anisotropic conductive film
CN1173371C (en) Conductive formation and electronic equipment using such conductive formation
JPH07157720A (en) Film having anisotropic electrical conductivity
KR20080070052A (en) Method for connecting printed circuit boards
JP3150054B2 (en) Anisotropic conductive film
JP3793608B2 (en) Conductive fine particles
JP2004156145A (en) Conductive particle
KR100251674B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP2002260446A (en) Conductive fine particle and conductive connecting structure
JPH09306231A (en) Conductive particulate and substrate
JPS608377A (en) Anisotropically electrically-conductive adhesive
JP3092118B2 (en) Conductive particle transfer type anisotropic conductive film and electrical connection method
JP2001004700A (en) Interposer board
JPH07118618A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JPH09147928A (en) Connecting member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

EXPY Cancellation because of completion of term