JPH08148213A - Connection member and structure and method for connecting electrode using the same - Google Patents

Connection member and structure and method for connecting electrode using the same

Info

Publication number
JPH08148213A
JPH08148213A JP29027694A JP29027694A JPH08148213A JP H08148213 A JPH08148213 A JP H08148213A JP 29027694 A JP29027694 A JP 29027694A JP 29027694 A JP29027694 A JP 29027694A JP H08148213 A JPH08148213 A JP H08148213A
Authority
JP
Japan
Prior art keywords
adhesive layer
electrode
conductive
electrodes
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29027694A
Other languages
Japanese (ja)
Inventor
Isao Tsukagoshi
功 塚越
Yukihisa Hirozawa
幸寿 廣澤
Koji Kobayashi
宏治 小林
Atsuo Nakajima
敦夫 中島
Hiroshi Matsuoka
寛 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP29027694A priority Critical patent/JPH08148213A/en
Publication of JPH08148213A publication Critical patent/JPH08148213A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Abstract

PURPOSE: To provide a connection member with high resolution, reliability for a long period and excellent workability by causing the component of the binder of an electrically conductive adhesive layer and that of an insulating adhesive layer formed in one surface thereof to be adhesive materials of the same reaction. CONSTITUTION: An insulating adhesive layer 2 is formed at least in one surface of an electrically conductive adhesive layer 1 constituted of a binder 4 containing an electrically conductive material 3 having electric conductivity in a pressurizing direction. The layer 2 may be formed in both surfaces of the layer 1. For the binder 4 and the layer 2, adhesives of the same reaction, such as epoxy adhesives and the like, showing hardening when exposed to heat and lights are used. Thus, adhesive stress in a connection section is not diffused, reliability can be improved and manufacturing costs can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品と回路板、或
いは回路板同士を接着固定すると共に、両者の電極同士
を電気的に接続する接続部材、その接続部材を用いた電
極の接続構造及び接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member for bonding and fixing electronic parts and circuit boards, or circuit boards to each other, and electrically connecting both electrodes, and an electrode connecting structure using the connecting members. And connection method.

【0002】[0002]

【従来の技術】近年、電子部品の小形薄型化に伴い、こ
れらに用いる回路は高密度化、高精細化しており、この
ような電子部品と微細電極との接続は、従来のハンダや
ゴムコネクタ等では対応が困難であることから、最近で
は分解能に優れた異方導電性の接着剤や膜状物(以下、
接続部材)が多用されている。この接続部材は、導電粒
子等の導電材料を所定量含有した接着剤からなるもの
で、この接続部材を電子部品と電極や回路との間に設
け、加圧又は加熱加圧手段を講じることによって、両者
の電極同士が電気的に接続されると共に、電極に隣接し
て形成されている電極同士には絶縁性を付与して、電子
部品と回路とが接着固定されるものである。上記の接続
部材を高分解能化するための基本的な考えは、導電粒子
の粒径を隣接電極間の絶縁部分よりも小さくすること
で、隣接電極間における絶縁性を確保し、併せて導電粒
子の含有量をこの粒子同士が接触しない程度とし、且つ
電極上に確実に存在させることにより、接続部分におけ
る導通性を得ることである。
2. Description of the Related Art In recent years, as electronic parts have become smaller and thinner, circuits used therein have become higher in density and higher in definition. Such electronic parts and fine electrodes can be connected by conventional solder or rubber connectors. Since it is difficult to cope with such problems, recently, anisotropic conductive adhesives and film materials (hereinafter,
Connection member) is often used. This connecting member is made of an adhesive containing a conductive material such as conductive particles in a predetermined amount, and the connecting member is provided between the electronic component and the electrode or circuit, and by applying pressure or heating / pressurizing means. The electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with an insulating property so that the electronic component and the circuit are bonded and fixed. The basic idea for increasing the resolution of the above-mentioned connecting member is to make the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes to ensure the insulating property between the adjacent electrodes, and also to improve the conductive particles. The content of is set to such a degree that the particles do not come into contact with each other, and the particles are surely present on the electrode to obtain conductivity in the connection portion.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の方法は、
導電粒子の粒径を小さくすると、粒子表面積の著しい増
加により粒子が二次凝集を起こして連結し、隣接電極間
の絶縁性が保持出来なくなり、また、導電粒子の含有量
を減少すると、接続すべき電極上の導電粒子の数も減少
することから接触点数が不足し、接続電極間での導通が
得られなくなるため、長期の接続信頼性を保ちながら接
続部材を高分解能化することは困難であった。即ち、近
年の著しい高分解能化即ち電極面積や隣接電極間(スペ
ース)の微細化により、電極上の導電粒子が接続時の加
圧又は加熱加圧により接着剤と共に隣接電極間に流出
し、接続部材の高分解能化の妨げとなっていた。
The above-mentioned conventional method is
If the particle size of the conductive particles is reduced, the particles will undergo secondary aggregation due to the marked increase in the surface area of the particles, and the particles will be connected, making it impossible to maintain the insulation between adjacent electrodes.If the content of the conductive particles is reduced, the particles will be connected. Since the number of conductive particles on the power electrode also decreases, the number of contact points becomes insufficient, and conduction between the connection electrodes cannot be obtained, so it is difficult to improve the resolution of the connection member while maintaining long-term connection reliability. there were. That is, due to the recent remarkable high resolution, that is, the miniaturization of the electrode area and the space between adjacent electrodes (space), the conductive particles on the electrodes flow out between the adjacent electrodes together with the adhesive due to the pressure at the time of connection or the heat and pressure. This has been an obstacle to increasing the resolution of the members.

【0004】このとき、接着剤の流出を抑制するために
接着剤を高粘度とすると、電極と導電粒子との接触が不
十分となり、相対峙する電極の接続が不可能となる。一
方、接着剤を低粘度とすると、導電粒子の流出に加えて
スペース部に気泡を含み易くし、接続信頼性特に耐湿性
が低下してしまう欠点がある。このようなことから、導
電粒子含有層と絶縁性接着層とを分離した多層構成の接
続部材とし、前者の接続時における粘度を高粘度とし、
導電粒子を保持する試みも見られるが、電極と導電粒子
との接触が不十分であったり、製法が面倒であったりし
て、実用化されていない。
At this time, if the adhesive has a high viscosity in order to suppress the outflow of the adhesive, the contact between the electrodes and the conductive particles becomes insufficient, making it impossible to connect the electrodes facing each other. On the other hand, when the adhesive has a low viscosity, in addition to the outflow of the conductive particles, bubbles are likely to be included in the space portion, and the connection reliability, particularly the moisture resistance is deteriorated. From this, a conductive particle-containing layer and an insulating adhesive layer are separated into a multi-layered connecting member, and the viscosity at the time of connection is high.
Attempts have been made to retain the conductive particles, but they have not been put into practical use because the contact between the electrodes and the conductive particles is insufficient or the manufacturing method is troublesome.

【0005】また、このような微細電極や回路の接続を
可能とし、且つ接続信頼性に優れた接続部材として、面
方向の必要部に導電粒子の密集領域を有する接続部材の
提案もある。これによれば、半導体チップのようなドッ
ト状の微細電極の接続が可能となるものの、導電粒子の
密集領域とドット状電極との正確な位置合わせが必要
で、作業性に劣る欠点がある。本発明は上記の欠点を解
消するためになされたもので、導電粒子の電極上からの
流出が少なく保持可能であり、また、接続部に気泡を含
み難いことから長期の接続信頼性に優れ、導電粒子と電
極との正確な位置合わせが不要なことから作業性に優れ
た、高分解能の接続部材、該接続部材を用いた電極の接
続構造及び接続方法を提供するものである。
Further, as a connection member which enables connection of such fine electrodes and circuits and is excellent in connection reliability, there is also a proposal of a connection member having a dense region of conductive particles in a necessary portion in the plane direction. According to this, although it is possible to connect a dot-shaped fine electrode such as a semiconductor chip, there is a drawback that workability is inferior because accurate alignment of the dense region of conductive particles and the dot-shaped electrode is required. The present invention has been made in order to eliminate the above drawbacks, it is possible to hold a small outflow of conductive particles from the electrode, and also excellent long-term connection reliability because it is difficult to contain bubbles in the connection portion, (EN) Provided are a high-resolution connecting member which is excellent in workability because accurate alignment between conductive particles and an electrode is unnecessary, an electrode connecting structure using the connecting member, and a connecting method.

【0006】[0006]

【課題を解決するための手段】本発明は、均一粒径の導
電粒子を含有する導電材料及びバインダからなり、加圧
方向に導電性を有する接着層の少なくとも片面に絶縁性
の接着層を形成し、該絶縁性接着層及び前記バインダの
成分が同一の反応性接着剤からなる接続部材、相対峙す
る電極列間の少なくとも一方が突出し、前記接続部材の
導電材料が相対峙する電極間に1個以上存在し、且つ絶
縁性の接着層が突出電極の少なくとも基板側の周囲を覆
った電極の接続構造、並びに少なくとも一方が突出した
電極を有し、相対峙する電極列間に前記接続部材の絶縁
性接着層が突出した電極側となるように配置し、反応性
接着剤の活性化温度以上の温度で加熱加圧する電極の接
続方法に関する。
According to the present invention, an insulating adhesive layer is formed on at least one surface of an adhesive layer having a conductive material containing a conductive particle having a uniform particle size and a binder, and having conductivity in the pressing direction. However, at least one of the insulating adhesive layer and the connecting member made of the same reactive adhesive having the same binder component and the electrode rows facing each other is projected, and the conductive material of the connecting member is placed between the electrodes facing each other. There is one or more and an insulating adhesive layer has a connection structure of electrodes in which at least the substrate side of the protruding electrodes covers at least the periphery of the protruding electrodes, and at least one of the electrodes has a protruding electrode, and the connecting member of the connecting member is provided between electrode rows facing each other The present invention relates to a method for connecting electrodes in which an insulating adhesive layer is arranged so as to be on the protruding electrode side and heated and pressed at a temperature equal to or higher than the activation temperature of the reactive adhesive.

【0007】本発明を図面を参照しながら説明する。図
1は本発明の一実施例を説明する接続部材の断面模式図
である。本発明の接続部材は、導電材料及びバインダか
らなり、加圧方向に導電性を有する導電性接着層1の少
なくとも片面に、絶縁性接着層2を形成した多層接続部
材である。図2のように、導電性接着層1の両面に絶縁
性接着層2及び2´を形成しても良い。これらの表面に
は不要な粘着性やごみ等の付着を防止するために、図示
しないが剥離可能なセパレータが必要に応じて存在して
も良い。図3は、加圧方向に導電性を有する導電性接着
層1を説明する断面模式図である。導電性接着層1は、
導電材料3を含有したバインダ4からなる。ここに導電
材料3としては、図3(a)〜(d)のように、加圧又
は加熱加圧手段を講じることでバインダ4の厚み減少に
よって導電性を得る、即ち、バインダ4の厚み以下の小
粒径のものが好ましい。また、図3(e)のように、バ
インダ4の表裏面(図示しないが一方だけでも良い)か
ら突出していても良い。
The present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a connecting member for explaining an embodiment of the present invention. The connecting member of the present invention is a multilayer connecting member made of a conductive material and a binder and having an insulating adhesive layer 2 formed on at least one surface of a conductive adhesive layer 1 having conductivity in the pressing direction. As shown in FIG. 2, insulating adhesive layers 2 and 2 ′ may be formed on both surfaces of the conductive adhesive layer 1. A peelable separator (not shown) may be present on these surfaces, if necessary, in order to prevent unnecessary adhesion and adhesion of dust and the like. FIG. 3 is a schematic cross-sectional view illustrating the conductive adhesive layer 1 having conductivity in the pressing direction. The conductive adhesive layer 1 is
It is composed of a binder 4 containing a conductive material 3. Here, as the conductive material 3, as shown in FIGS. 3A to 3D, the thickness of the binder 4 is reduced by applying pressure or heating / pressurizing means to obtain conductivity, that is, the thickness of the binder 4 or less. Those having a small particle size are preferred. Further, as shown in FIG. 3E, the binder 4 may be projected from the front and back surfaces (not shown, but only one may be provided).

【0008】導電材料3がバインダ4の厚み以下の場
合、バインダ4により保持されるので取扱時に導電材料
3の脱落防止が可能であり、バインダ4の表面より突出
していると、簡単な接触により電極と導通可能となり、
導電性が得易い。これらの中では、図3(c)〜(e)
のように、導電材料3がバインダ4の厚みとほぼ等しく
単層で存在できる場合が、接続時の導電材料3の保持性
から好適であり、図3(d)及び(e)が特に好適であ
る。バインダ4に対する導電材料3の割合は0.1〜3
0体積%程度が、導電異方性が得易く好ましい。また、
厚み方向の導電性を得易くするために、バインダ4の厚
さは膜形成の可能な範囲で薄い方がよく、好ましくは3
0μm以下、より好ましくは20μm以下である。
When the conductive material 3 is less than the thickness of the binder 4, the binder 4 holds the conductive material 3, so that the conductive material 3 can be prevented from falling off during handling. If the conductive material 3 projects from the surface of the binder 4, the electrode can be easily contacted. Can be conducted with
Easy to obtain conductivity. Among these, FIG. 3 (c) to (e)
As described above, the case where the conductive material 3 can be present in a single layer having almost the same thickness as the binder 4 is preferable because of the holding property of the conductive material 3 at the time of connection, and FIGS. 3D and 3E are particularly preferable. is there. The ratio of the conductive material 3 to the binder 4 is 0.1 to 3
About 0% by volume is preferable because conductivity anisotropy is easily obtained. Also,
In order to easily obtain conductivity in the thickness direction, the thickness of the binder 4 is preferably as thin as possible in the film formation range, and preferably 3
It is 0 μm or less, more preferably 20 μm or less.

【0009】導電粒子としては、Au、Ag、Pt、N
i、Cu、W、Sb、Sn、半田等の金属粒子や炭素粉
等があり、また、これら導電粒子を核材とするか、或い
は非導電性のガラス、セラミックス或いはプラスチック
のような高分子等からなる核材に前記のような材質から
なる導電層を被覆形成したものでも良い。更に、導電材
料を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子と
絶縁粒子の併用なども適用可能である。粒径の上限は、
微小な電極上に1個以上好ましくは5個以上と多くの粒
子数を確保するには小粒径粒子が好適であり、15μm
以下、より好ましくは7μm以下である。粒径の下限
は、粒子の凝集性や電極の凹凸に対応可能とするために
0.5μm以上、好ましくは1μm以上とすべきであ
る。
As the conductive particles, Au, Ag, Pt, N
There are metal particles such as i, Cu, W, Sb, Sn and solder, carbon powder, etc., and these conductive particles are used as a core material, or polymers such as non-conductive glass, ceramics or plastics. It is also possible to cover the core material made of (1) with a conductive layer made of the above material. Further, insulating coated particles obtained by coating a conductive material with an insulating layer, and combined use of conductive particles and insulating particles are also applicable. The upper limit of particle size is
Small particle size is suitable for securing a large number of particles of 1 or more, preferably 5 or more on a minute electrode.
Or less, more preferably 7 μm or less. The lower limit of the particle size should be 0.5 μm or more, preferably 1 μm or more in order to be able to deal with the cohesiveness of the particles and the unevenness of the electrodes.

【0010】これら導電粒子の中では、半田等の熱溶融
金属やプラスチック等の高分子核材に導電層を形成した
ものが、加熱加圧又は加圧により変形性を有し、積層時
に回路との接触面積が増加し、信頼性が向上するので好
ましい。特に高分子類を核とした場合、半田のように融
点を示さないので、軟化の状態を接続温度で広く制御出
来、電極の厚みや平坦性のばらつきに対応し易い接続部
材が得られるので特に好ましい。また、例えばNi、W
等の硬質金属粒子や表面に多数の突起を有する粒子の場
合、導電粒子が電極や配線パターンに突き刺さるので、
酸化膜や汚染層の存在する場合にも低い接続抵抗が得ら
れ、信頼性が向上するので好ましい。
Among these conductive particles, those in which a conductive layer is formed on a hot-melt metal such as solder or a polymer core material such as plastic have heat pressurization or deformability due to pressurization and form a circuit when laminated. The contact area is increased and the reliability is improved, which is preferable. In particular, when polymers are used as the core, they do not exhibit a melting point like solder, so the softened state can be widely controlled at the connection temperature, and it is possible to obtain a connection member that can easily cope with variations in electrode thickness and flatness. preferable. Also, for example, Ni, W
In the case of hard metal particles such as or particles having a large number of protrusions on the surface, since the conductive particles pierce the electrode or wiring pattern,
Even if an oxide film or a contaminated layer is present, low connection resistance can be obtained, and reliability is improved, which is preferable.

【0011】これら導電粒子は、粒径の分布が少ない均
一粒径の球状粒子が好ましい。粒径の分布が少ないと、
電極接続時の加圧により電極間で保持されて流出が少な
い。粒径の分布幅としては、電極表面の凹凸を考慮して
最大粒径の1/2以内とすることが好ましい。例えば、
高分子核材に導電層を被覆形成した変形性粒子の場合に
は、中心径±0.2μm以内といった高精度の粒子もあ
り、特に好ましく適用できる。また、硬質金属粒子の場
合、電極に突き刺さるので、粒径の分布幅は最大粒径の
1/2以内と比較的広くても良い。導電粒子と併用して
絶縁粒子を用いることも可能である。絶縁粒子を併用し
た場合、隣接電極との絶縁性の向上や接続電極のギャッ
プ調節の作用がある。ギャップ調節の場合、好ましく
は、絶縁粒子の粒径を導電粒子より大きくし、導電粒子
に比べ硬質にすると良好な結果が期待できる。
The conductive particles are preferably spherical particles having a uniform particle size with a small particle size distribution. If the particle size distribution is small,
Due to the pressure applied during electrode connection, it is held between the electrodes and little outflow occurs. The particle size distribution width is preferably within 1/2 of the maximum particle size in consideration of irregularities on the electrode surface. For example,
In the case of a deformable particle in which a polymer core material is coated with a conductive layer, there is a highly accurate particle having a center diameter of ± 0.2 μm or less, which is particularly preferably applicable. Further, in the case of hard metal particles, since they penetrate the electrode, the distribution width of the particle size may be relatively wide, within 1/2 of the maximum particle size. It is also possible to use insulating particles in combination with the conductive particles. When the insulating particles are used together, the insulating property with the adjacent electrode is improved and the gap between the connecting electrodes is adjusted. In the case of adjusting the gap, preferably, the insulating particles are made larger in diameter than the conductive particles to be harder than the conductive particles, and good results can be expected.

【0012】絶縁粒子としては、ガラス、シリカ、セラ
ミックス等の無機物、ポスチレン、エポキシ、ベンゾグ
アナミン等の有機物があり、これらの形状は、球状、繊
維状等でも良い。これらは単独又は複合して用いること
が出来る。バインダ及び絶縁性接着層は反応性接着剤で
あり、熱や光により硬化性を示す材料が広く適用出来、
接着性を有することが好ましい。これらは接続後の耐熱
性や耐湿性に優れることから、硬化性材料の適用が好ま
しい。中でもエポキシ系接着剤は、短時間硬化が可能で
接続作業性が良く、分子構造上接着性に優れる等の特長
から好ましく適用できる。エポキシ系接着剤は、例えば
高分子量のエポキシ、固形エポキシと液状エポキシ、ウ
レタンやポリエステル、アクリルゴム、NBR、ナイロ
ン等で変性したエポキシを主成分とし、硬化剤や触媒、
カップリング剤、充填剤等を添加してなるものが一般的
である。
The insulating particles include inorganic substances such as glass, silica and ceramics, and organic substances such as polystyrene, epoxy and benzoguanamine, and their shape may be spherical, fibrous or the like. These can be used alone or in combination. The binder and insulating adhesive layer are reactive adhesives, and materials that are curable by heat or light can be widely applied.
It is preferable to have adhesiveness. Since these have excellent heat resistance and moisture resistance after connection, application of a curable material is preferable. Among them, the epoxy adhesive is preferably applicable because it can be cured in a short time, has good workability in connection, and has excellent adhesiveness due to its molecular structure. Epoxy adhesives include, for example, high molecular weight epoxies, solid epoxies and liquid epoxies, epoxies modified with urethane, polyester, acrylic rubber, NBR, nylon, etc. as a main component, curing agents, catalysts,
It is common to add a coupling agent, a filler and the like.

【0013】本発明における硬化剤としては、接続部材
の保存性を維持するために潜在性であることが好まし
い。本発明でいう潜在性とは、反応性樹脂(例えばエポ
キシ樹脂)との共存下で30℃以下で2か月以上の保存
性を有し、加熱下で急速硬化するものを云う。また、本
発明の反応性とは、反応性樹脂と潜在性硬化剤との共存
下での活性化温度を示す。活性化温度は、反応性樹脂と
潜在性硬化剤との共存混合試料の3mgをDSC(Diff
erential Scanning Calorimeter指差走査型熱量計)を
用い、10℃/分で常温(30℃)から250℃まで上
昇させたときの発熱量の最大を示すピーク温度とする。
The curing agent in the present invention is preferably latent in order to maintain the storability of the connecting member. The term “latent” as used in the present invention means that it has a storage stability at 30 ° C. or lower for 2 months or more in the coexistence with a reactive resin (for example, an epoxy resin), and rapidly cures under heating. Further, the reactivity of the present invention refers to the activation temperature in the coexistence of the reactive resin and the latent curing agent. The activation temperature was 3 mg of the coexisting mixed sample of the reactive resin and the latent curing agent, and the DSC (Diff
erial scanning calorimeter (pointing scanning calorimeter) is used and the peak temperature showing the maximum calorific value when the temperature is raised from normal temperature (30 ° C) to 250 ° C at 10 ° C / min.

【0014】本発明の接続部材の製法としては、例え
ば、導電性接着層1と絶縁性接着層2とをラミネートし
たり、積層して順次塗工する等の方法が採用できる。本
発明の接続部材を用いた電極の接続構造及びその製法に
ついて、図5〜6により説明する。図4に、基板11に
形成された突出電極12と基板11´の平面電極13と
が本発明の接続部材を介して接続された構造を示す。即
ち、相対峙する電極列間の少なくとも一方が突出した電
極列間の接続構造であって、相対峙する電極間12−1
3間に導電材料3が1個以上存在し、且つ、突出電極1
2の周囲14よりも導電材料の密度が高い状態で存在
し、相対峙する電極列間が接続されている。また、絶縁
性接着層2が突出電極12の少なくとも突出する電極の
基板側の周囲を覆っている。
As the method for producing the connecting member of the present invention, for example, a method of laminating the conductive adhesive layer 1 and the insulating adhesive layer 2 or a method of sequentially laminating and coating them can be adopted. An electrode connection structure using the connection member of the present invention and a manufacturing method thereof will be described with reference to FIGS. FIG. 4 shows a structure in which the protruding electrode 12 formed on the substrate 11 and the planar electrode 13 of the substrate 11 'are connected via the connecting member of the present invention. That is, at least one of the electrode rows facing each other has a connecting structure between the protruding electrode rows, and the connecting structure between the electrode rows facing each other is 12-1.
One or more conductive materials 3 exist between the three electrodes 3, and the protruding electrode 1
The conductive material exists in a state in which the density of the conductive material is higher than that of the periphery 14 of the electrode 2, and the electrode rows facing each other are connected to each other. The insulating adhesive layer 2 covers at least the periphery of the protruding electrode 12 on the substrate side of the protruding electrode.

【0015】ここに平面電極13は、基板11´面から
の凹凸がないか、あっても数μm以下と僅かな場合を云
う。これらを例示すると、アディティブ法や薄膜法で得
られた電極類が代表的である。図5は、基板11及び1
5に形成された電極が突出電極同士12及び12´の場
合である。即ち、図2で示した両面に絶縁性接着層2及
び2´を有する接続部材を介して接続した構造である。
絶縁性接着層2及び2´はそれぞれ突出電極同士12及
び12´の突出する電極の周囲を覆っており、また、そ
れぞれの基板面11及び15と接続している。
Here, the flat electrode 13 has no unevenness from the surface of the substrate 11 ', or even if there is unevenness, it is a few μm or less. To exemplify these, the electrodes obtained by the additive method or the thin film method are typical. FIG. 5 shows substrates 11 and 1.
This is a case where the electrodes formed in 5 are the protruding electrodes 12 and 12 '. That is, it is a structure in which the both surfaces shown in FIG. 2 are connected via the connecting member having the insulating adhesive layers 2 and 2 ′.
The insulative adhesive layers 2 and 2'cover the surroundings of the protruding electrodes of the protruding electrodes 12 and 12 ', respectively, and are also connected to the respective substrate surfaces 11 and 15.

【0016】図4及び5における基板としては、ポリイ
ミド、ポリエステル等のプラスチックフィルム、ガラス
エポキシ等の複合体、シリコーン等の半導体、ガラス、
セラミックス等の無機物などを例示できる。突出電極1
2は上記したほかに各種回路類や端子類も含むことが出
来る。なお、図4及び5で示した各種電極類は、それぞ
れ任意に組み合わせて適用できる。本発明の接続部材を
用いた電極の接続方法は、接続部材の絶縁性接着層2が
突出した電極12側となるように配置し、反応性接着剤
の活性化温度以上の温度で加熱加圧する。
As the substrate in FIGS. 4 and 5, plastic films such as polyimide and polyester, composites such as glass epoxy, semiconductors such as silicone, glass,
Examples include inorganic materials such as ceramics. Protruding electrode 1
2 can include various circuits and terminals in addition to the above. The various electrodes shown in FIGS. 4 and 5 can be applied in any combination. In the electrode connecting method using the connecting member of the present invention, the connecting member is arranged so that the insulating adhesive layer 2 of the connecting member is on the protruding electrode 12 side, and is heated and pressed at a temperature equal to or higher than the activation temperature of the reactive adhesive. .

【0017】[0017]

【実施例】次に実施例を説明するが、本発明はこの実施
例に限定されるものではない。 実施例1 (1)導電性接着層の作製 フィルム形成材としてフェノキシ樹脂(高分子エポキシ
樹脂)とマイクロカプセル型潜在性硬化剤を含有する液
状エポキシ樹脂(エポキシ当量185)との比率を20
/80とし、酢酸エチルの30%溶液を得た。この溶液
に粒径5±0.2μmのポリスチレン系粒子にNi/A
uの厚さ0.2/0.02μmの金属被覆を形成した導
電性粒子を5体積%添加し、混合分散した。この分散液
をセパレータ(シリコーン処理ポリエチレンテレフタレ
ートフィルム、厚み40μm)にロールコータで塗布
し、110℃で20分乾燥して、厚み5μmの導電性接
着層を得た。この接着層の活性化温度は108℃であっ
た。
EXAMPLES Next, examples will be described, but the present invention is not limited to these examples. Example 1 (1) Preparation of Conductive Adhesive Layer The ratio of a phenoxy resin (polymer epoxy resin) as a film forming material to a liquid epoxy resin containing a microcapsule type latent curing agent (epoxy equivalent 185) was 20.
/ 80 to obtain a 30% solution of ethyl acetate. In this solution, Ni / A was added to polystyrene particles having a particle size of 5 ± 0.2 μm.
5% by volume of electroconductive particles having a metal coating of 0.2 / 0.02 μm in thickness of u were added and mixed and dispersed. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 110 ° C. for 20 minutes to obtain a conductive adhesive layer having a thickness 5 μm. The activation temperature of this adhesive layer was 108 ° C.

【0018】(2)絶縁性接着層の形成及び接続部材の
作製 (1)の導電性接着層から導電性粒子を除去し、厚み15
μmのシートを前記の(1)と同様に絶縁性接着層を作製
した。(1)の導電性接着層の面と(2)の接着層の面とを
ゴムロール間で圧延しながらラミネートした。以上で図
1の二層構成の多層接続部材を得た。 (3)接続 ポリイミドフィルム上に高さ18μmの銅の回路を有す
る二層FPC回路板(回路ピッチは100μm、電極幅
50μmの平行回路の電極)と、厚さ1.1mmのガラス
上に厚さ0.2μm(ITO、表面抵抗20Ω/□)の
酸化インジウムの薄膜回路を有する平面電極との接続を
行った。先ず、平面電極側に導電性接着層が来るように
した。前記接続部材を1.5mm幅で載置し、セパレータ
を剥離した後貼り付けた。この後セパレータを剥離し、
他の回路板と上下回路を位置合わせし、150℃、20
kgf/mm2、15秒で接続した。
(2) Formation of Insulating Adhesive Layer and Preparation of Connection Member Conductive particles were removed from the conductive adhesive layer in (1) to obtain a thickness of 15
An insulating adhesive layer was prepared from the μm sheet in the same manner as in (1) above. The surface of the conductive adhesive layer (1) and the surface of the adhesive layer (2) were laminated while being rolled between rubber rolls. As described above, the multilayer connecting member having the two-layer structure shown in FIG. 1 was obtained. (3) Connection A two-layer FPC circuit board (circuit pitch 100 μm, parallel circuit electrodes with electrode width 50 μm) having a copper circuit 18 μm high on a polyimide film, and 1.1 mm thick on glass Connection was made with a flat electrode having a 0.2 μm (ITO, surface resistance 20 Ω / □) indium oxide thin film circuit. First, the conductive adhesive layer was placed on the flat electrode side. The connecting member was placed with a width of 1.5 mm, and the separator was peeled off and then attached. After this, peel off the separator,
Align the upper and lower circuits with other circuit boards,
The connection was made for 15 seconds at kgf / mm 2 .

【0019】(4)評価 この接続体の断面を研磨し、顕微鏡で観察したところ、
図4相当の接続構造であった。隣接電極間のスペースは
気泡混入がなく、粒子が球状であったが、電極上には粒
子が最低でも50個以上存在して圧縮成形され、上下電
極と接触保持されていた。相対峙する電極間を接続抵
抗、隣接する電極間を絶縁抵抗として評価した結果、接
続抵抗は1Ω以下、絶縁抵抗は108Ω以上であり、こ
れらは85℃、85%RH1000時間処理後も殆ど変
化がなく、良好な長期信頼性を示した。本実施例では、
平面電極のガラス側の接着力がFPC側に比べて相対的
に低いことから、ガラス側から強制的に剥離したとき綺
麗に界面剥離し、その後の清浄化が容易であった。この
ことは、現在同様な構成で多用されている液晶パネルの
接続におけるリペア性の付与に好適である。
(4) Evaluation When a cross section of this connector was polished and observed with a microscope,
The connection structure was equivalent to that in FIG. In the space between the adjacent electrodes, bubbles were not mixed and the particles were spherical, but at least 50 particles were present on the electrodes and compression molded, and the particles were held in contact with the upper and lower electrodes. As a result of evaluating the connection resistance between the electrodes facing each other and the insulation resistance between the adjacent electrodes, the connection resistance was 1 Ω or less and the insulation resistance was 10 8 Ω or more, which were almost 85 ° C. and 85% RH even after 1000 hours of treatment. It showed no change and showed good long-term reliability. In this embodiment,
Since the adhesive strength of the flat electrode on the glass side was relatively lower than that on the FPC side, when it was forcibly peeled from the glass side, the interface was peeled off neatly and the subsequent cleaning was easy. This is suitable for imparting repairability to the connection of liquid crystal panels that are often used in the same configuration at present.

【0020】実施例2 実施例1の導電性接着層に、更に絶縁性接着層を形成
し、図2の三層構成の多層接続部材を得た。実施例1の
FPC同士を同様に接続した。この場合、図5の接続体
が得られ、実施例1と同様に良好な接続特性を示した。
電極上の粒子数は最低でも35個存在した。 実施例3 実施例2の導電性接着層の導電粒子を入れ替えた。即
ち、Ni粒子(最大径5μm、最小径2.5μm)と
し、1体積%添加した。この場合も実施例2と同様に評
価した結果、良好な接続特性を示した。接続部を剥離し
て電子顕微鏡で観察したところ、導電粒子は1電極上に
20個以上存在し、電極面に突き刺さっていた様子が観
察出来た。
Example 2 An insulating adhesive layer was further formed on the conductive adhesive layer of Example 1 to obtain a multi-layer connection member having a three-layer structure shown in FIG. The FPCs of Example 1 were similarly connected. In this case, the connection body shown in FIG. 5 was obtained and showed good connection characteristics as in Example 1.
The number of particles on the electrode was at least 35. Example 3 The conductive particles in the conductive adhesive layer of Example 2 were replaced. That is, Ni particles (maximum diameter 5 μm, minimum diameter 2.5 μm) were made, and 1 volume% was added. In this case as well, the result of evaluation as in Example 2 showed good connection characteristics. When the connection portion was peeled off and observed with an electron microscope, 20 or more conductive particles were present on one electrode, and it could be observed that the conductive surface was stuck into the electrode surface.

【0021】実施例4 実施例1と同様であるが、FPCに代えてICチップ
(2×10mm、高さ0.5mm、四辺周囲にバンプと呼ば
れる50μm角、高さ20μmの金電極が200個形
成)を用いた。ガラス側のITO電極を、前記ICチッ
プのバンプ電極のサイズに対応するように変更した。ま
た、導電性シートの導電材料を粒径3±0.1μmの導
電粒子とし、添加量1体積%、マトリックスの厚み10
μmのシートとし、図3(b)相当の構成とした。接続
体は図4に相当する構成であるが、良好な接続特性を示
した。本実施例では、バンプがマッシュルーム形で頂部
を有していたが、粒子は圧縮変形され、上下電極と接触
保持されていた。隣接バンプ間に気泡混入がなく、良好
な長期信頼性を示した。導電粒子は、相対峙する電極間
距離に応じて粒子の変形度が異なり、部分的にバンプに
食い込むものも見られた。導電粒子は1電極上に5個以
上存在した。
Example 4 The same as Example 1, except that instead of the FPC, there were 200 IC chips (2 × 10 mm, height 0.5 mm, 50 μm squares called bumps around the four sides, and 20 μm height gold electrodes). Formation) was used. The ITO electrode on the glass side was changed to correspond to the size of the bump electrode of the IC chip. The conductive material of the conductive sheet is conductive particles having a particle size of 3 ± 0.1 μm, the addition amount is 1% by volume, and the thickness of the matrix is 10
The sheet has a thickness of μm, and has a configuration corresponding to FIG. The connection body had a structure corresponding to that shown in FIG. 4, but showed good connection characteristics. In this example, the bump was mushroom-shaped and had a top portion, but the particles were compressed and deformed and held in contact with the upper and lower electrodes. There was no air bubble mixing between adjacent bumps, showing good long-term reliability. The degree of deformation of the conductive particles was different depending on the relative distance between the electrodes, and some of the conductive particles also partially penetrated into the bumps. There were 5 or more conductive particles on one electrode.

【0022】実施例5 実施例2の接続部材と同様であるが、絶縁性接着層の厚
みを片側25μm、他の面を50μmに形成した。電極
は、QFP形ICのリード(厚み100μm、ピッチ3
00μm)であり、ガラガラスエポキシ基板上の銅の厚
み35μmの端子と接続した。本構成は図5相当である
が、片側に基板のない構成である。本実施例は、高さの
大きな電極同士の接続であるが、電極ずれがなく、良好
な接続特性を示した。導電性シート中の導電材料は図示
していないが、粒子は圧縮変形され、上下電極と接触保
持されていた。隣接電極間に気泡混入がなく、良好な長
期信頼性を示した。本実施例では、基板の無い部分もリ
ード高さに沿って接着層が形成され、リードを固定出来
た。導電粒子は1電極上に10個以上存在していた。
Example 5 The same as the connecting member of Example 2, except that the insulating adhesive layer was formed to have a thickness of 25 μm on one side and 50 μm on the other side. The electrodes are QFP type IC leads (thickness 100 μm, pitch 3
00 μm) and was connected to a terminal of copper having a thickness of 35 μm on the glass glass epoxy substrate. This configuration is equivalent to FIG. 5, but has no substrate on one side. In this example, electrodes having large heights were connected to each other, but there was no electrode displacement and good connection characteristics were exhibited. Although the conductive material in the conductive sheet is not shown, the particles were compressed and deformed and held in contact with the upper and lower electrodes. There were no bubbles mixed between adjacent electrodes, and good long-term reliability was shown. In this example, the adhesive layer was formed along the lead height even in the portion without the substrate, and the lead could be fixed. There were 10 or more conductive particles on one electrode.

【0023】実施例6 実施例1の接続部材と同様であるが、導電粒子の表面に
絶縁被覆処理を実施した。即ち、平均粒径5μmの導電
粒子の表面をガラス転移点127℃のナイロン樹脂で厚
み約0.2μm被覆し、添加量を10体積%に増加し
た。実施例3と同様に評価したが、良好な接続特性を示
した。本実施例では、電極12上の粒子数が著しく増加
し、60個以上存在した。電極接続部12−12´は、
接続時の熱圧による絶縁層2及びバインダ4の軟化によ
り導通可能であるが、隣接電極列のスペース部は熱圧が
少なく、導電材料3の表面が絶縁層2で被覆されたまま
なので、絶縁性も良好であった。本構成は、導電材料3
のバインダ4に対する濃度を高密度に構成できる。
Example 6 Similar to the connecting member of Example 1, the surface of the conductive particles was subjected to an insulating coating treatment. That is, the surface of conductive particles having an average particle size of 5 μm was coated with a nylon resin having a glass transition point of 127 ° C. to a thickness of about 0.2 μm, and the addition amount was increased to 10% by volume. The same evaluation as in Example 3 was performed, but good connection characteristics were shown. In this example, the number of particles on the electrode 12 increased remarkably, and there were 60 or more particles. The electrode connecting portion 12-12 'is
It is possible to conduct electricity by softening the insulating layer 2 and the binder 4 due to the heat pressure at the time of connection, but the space portion of the adjacent electrode row has a small heat pressure and the surface of the conductive material 3 remains covered with the insulating layer 2, so that insulation is achieved. The property was also good. In this configuration, the conductive material 3
The density with respect to the binder 4 can be made high.

【0024】実施例7 実施例1の接続部材と同様であるが、導電粒子に加えて
粒径2±0.1μmのベンゾグアナミン粒子を添加し
た。実施例1と同様に評価したところ、良好な接続特性
を示した。この接続体の断面を研磨し、顕微鏡観察した
ところ、図6相当の接続構造であった。本実施例では、
導電材料3(導電粒子)と併用して絶縁粒子5を用いる
ことで、接続電極のギャップが硬質である絶縁粒子5
(ベンゾグアナミン粒子)の粒径2μmに制御され、導
電材料3は変形して電極12・13と面接触していた。
Example 7 Similar to the connecting member of Example 1, except that benzoguanamine particles having a particle diameter of 2 ± 0.1 μm were added in addition to the conductive particles. When evaluated in the same manner as in Example 1, good connection characteristics were shown. When the cross section of this connection body was polished and observed under a microscope, the connection structure was equivalent to that shown in FIG. In this embodiment,
By using the insulating particles 5 in combination with the conductive material 3 (conductive particles), the insulating particles 5 having a hard gap between the connection electrodes.
The particle size of the (benzoguanamine particles) was controlled to 2 μm, and the conductive material 3 was deformed and was in surface contact with the electrodes 12 and 13.

【0025】[0025]

【発明の効果】本発明の接続部材は、バインダ成分と絶
縁性の接着層とが同一の反応性接着剤であることから、
接続部の接着剤応力に分布を生じず、信頼性が向上する
と共に材料準備が容易であり、製造コストが低下する。
また、前記導電材料が均一粒径の導電粒子を含有するの
で、バインダ成分と絶縁性の接着層とが同一の成分であ
るにもかかわらず、電極接続時の加熱加圧による接着剤
の粘度低下の際にも、導電粒子が電極間で保持されて、
流出が少なく、電極上で保持できる。また、本発明の電
極の接続構造は、導電材料が相対峙する電極間に1個以
上存在し、且つ絶縁性接着層が突出電極の少なくとも基
板側の周囲を覆っている構造であるので、微細電極の接
続において、良好な厚み方向の導電性と面方向の絶縁性
とが併せて得られる。
In the connecting member of the present invention, since the binder component and the insulating adhesive layer are the same reactive adhesive,
The adhesive stress in the connection portion does not have a distribution, the reliability is improved, the material preparation is easy, and the manufacturing cost is reduced.
In addition, since the conductive material contains conductive particles having a uniform particle size, even though the binder component and the insulating adhesive layer are the same component, the viscosity of the adhesive decreases due to heat and pressure during electrode connection. Also in the case of, the conductive particles are held between the electrodes,
Little outflow and can be retained on the electrode. In addition, the electrode connection structure of the present invention is a structure in which one or more conductive materials exist between electrodes facing each other, and the insulating adhesive layer covers at least the periphery of the protruding electrode on the substrate side. In connecting the electrodes, good conductivity in the thickness direction and good insulation in the plane direction are obtained together.

【0026】更に、本発明の電極の接続方法は、接続部
材の絶縁性接着層が突出した電極側となるように配置
し、反応性接着剤の活性化温度以上の温度で加熱加圧す
る方法であるので、確実な面方向の絶縁性と強固な機械
的接続が得られる。接着層は、その目的に応じ例えば電
極基板の材質に適合した組み合わせが可能なことから、
材料の選択肢が拡大し、接続部の気泡減少等により、や
はり接続信頼性が向上する。或いは電極基板の材質に適
合した任意の組み合わせとすることも可能であり、電極
と導電粒子との接触が得易く、製法も簡単である。ま
た、接着層を接続部の外にはみ出させ、封止材的な作用
により補強や防湿効果を得ることも出来る。
Further, the electrode connecting method of the present invention is a method of arranging the connecting member so that the insulating adhesive layer of the connecting member is on the protruding electrode side, and heating and pressurizing at a temperature higher than the activation temperature of the reactive adhesive. As a result, reliable surface direction insulation and strong mechanical connection can be obtained. Since the adhesive layer can be combined according to its purpose, for example, a material suitable for the electrode substrate,
The choice of materials is expanded and the connection reliability is also improved due to the reduction of bubbles in the connection part. Alternatively, any combination suitable for the material of the electrode substrate can be used, the contact between the electrode and the conductive particles can be easily obtained, and the manufacturing method is also simple. In addition, the adhesive layer can be made to stick out of the connection portion to obtain a reinforcing effect and a moistureproof effect by the action of a sealing material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接続部材の断面模式図である。FIG. 1 is a schematic sectional view of a connecting member of the present invention.

【図2】本発明の接続部材の断面模式図である。FIG. 2 is a schematic sectional view of a connecting member of the present invention.

【図3】本発明の接続部材における導電性接着層を示す
断面模式図である。
FIG. 3 is a schematic sectional view showing a conductive adhesive layer in the connecting member of the present invention.

【図4】本発明の接続部材を用いた電極の接続構造を示
す断面模式図である。
FIG. 4 is a schematic cross-sectional view showing an electrode connection structure using the connection member of the present invention.

【図5】本発明の接続部材を用いた電極の接続構造を示
す断面模式図である。
FIG. 5 is a schematic cross-sectional view showing a connection structure of electrodes using the connection member of the present invention.

【図6】本発明の接続部材を用いた電極の接続構造を示
す断面模式図である。
FIG. 6 is a schematic sectional view showing an electrode connection structure using the connection member of the present invention.

【符号の説明】[Explanation of symbols]

1…導電性接着層、2…絶縁性接着層、3…導電材料、
4…バインダ、5…絶縁粒子、11、11´…基板、1
2…突出電極、13…平面電極、14…周囲、15、1
6…基板
1 ... Conductive adhesive layer, 2 ... Insulating adhesive layer, 3 ... Conductive material,
4 ... Binder, 5 ... Insulating particles, 11, 11 '... Substrate, 1
2 ... Protruding electrodes, 13 ... Planar electrodes, 14 ... Surroundings, 15, 1
6 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 敦夫 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社結城工場内 (72)発明者 松岡 寛 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社結城工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Nakajima 1150 Gozamiya, Shimodate City, Ibaraki Prefecture Inside the Yuki Plant of Hitachi Chemical Co., Ltd. (72) Inventor Hiroshi Matsuoka 1150 Gogomiya, Shimodate City, Ibaraki Hitachi Seiko Co., Ltd. Yuki factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 均一粒径の導電粒子を含有する導電材料
及びバインダからなり、加圧方向に導電性を有する接着
層の少なくとも片面に絶縁性の接着層を形成し、該絶縁
性の接着層及び前記バインダの成分が同一の反応性接着
剤からなる接続部材。
1. An insulative adhesive layer is formed on at least one surface of an adhesive layer which is made of a conductive material containing a conductive particle having a uniform particle size and a binder and has conductivity in the pressing direction. And a connecting member made of a reactive adhesive having the same binder component.
【請求項2】 導電性を有する接着層が導電材料及び絶
縁粒子からなる請求項1記載の接続部材。
2. The connecting member according to claim 1, wherein the adhesive layer having conductivity is made of a conductive material and insulating particles.
【請求項3】 相対峙する電極列間の少なくとも一方が
突出し、請求項1又は2記載の接続部材の導電材料が相
対峙する電極間に1個以上存在し、且つ絶縁性接着層が
突出電極の少なくとも基板側の周囲を覆った電極の接続
構造。
3. At least one of the electrode rows facing each other protrudes, one or more conductive materials of the connecting member according to claim 1 or 2 exist between the electrodes facing each other, and the insulating adhesive layer has a protruding electrode. Connection structure of electrodes covering at least the periphery of the substrate.
【請求項4】 少なくとも一方が突出した電極を有し、
相対峙する電極列間に請求項1又は2記載の接続部材の
絶縁性接着層が突出した電極側となるように配置し、反
応性接着剤の活性化温度以上の温度で加熱加圧すること
を特徴とする電極の接続方法。
4. At least one has a protruding electrode,
It is arranged that the insulating adhesive layer of the connecting member according to claim 1 or 2 is arranged between the opposing electrode rows so that the insulating adhesive layer is on the protruding electrode side, and heating and pressurization is performed at a temperature equal to or higher than the activation temperature of the reactive adhesive. Characteristic electrode connection method.
JP29027694A 1994-11-25 1994-11-25 Connection member and structure and method for connecting electrode using the same Pending JPH08148213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29027694A JPH08148213A (en) 1994-11-25 1994-11-25 Connection member and structure and method for connecting electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29027694A JPH08148213A (en) 1994-11-25 1994-11-25 Connection member and structure and method for connecting electrode using the same

Publications (1)

Publication Number Publication Date
JPH08148213A true JPH08148213A (en) 1996-06-07

Family

ID=17754053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29027694A Pending JPH08148213A (en) 1994-11-25 1994-11-25 Connection member and structure and method for connecting electrode using the same

Country Status (1)

Country Link
JP (1) JPH08148213A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161056A (en) * 1997-08-27 1999-03-05 Hitachi Chem Co Ltd Adhesive film for ic chip bonding
JPH11195860A (en) * 1997-12-27 1999-07-21 Canon Inc Bonding member, multichip module with the bonding member and bonding method using the bonding member
JP2000195584A (en) * 1998-12-25 2000-07-14 Sony Corp Electrical connection device and electrical connection method
JP2009170898A (en) * 2007-12-17 2009-07-30 Hitachi Chem Co Ltd Circuit connecting material and connecting structure of circuit member
JP2011070931A (en) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd Anisotropic conductive material, manufacturing method of connection structure, and connection structure
JP2011233530A (en) * 2008-06-26 2011-11-17 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2013037944A (en) * 2011-08-09 2013-02-21 Takigawa Tadahiro Anisotropic conductive film and conductive connector
KR20130072156A (en) 2011-12-21 2013-07-01 히타치가세이가부시끼가이샤 Circuit connecting material, connection structure and method for producing connection structure
JP2015079603A (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Electric connecting material
WO2015174447A1 (en) * 2014-05-15 2015-11-19 デクセリアルズ株式会社 Anisotropic conductive film
JP2017191688A (en) * 2016-04-12 2017-10-19 デクセリアルズ株式会社 Method for inspecting electrical characteristics
CN107431294A (en) * 2015-03-20 2017-12-01 迪睿合株式会社 Anisotropic conductive film and connecting structure body
KR20170137975A (en) * 2016-06-03 2017-12-14 삼성디스플레이 주식회사 Anisotropic conductive film and display device using the same
WO2018101107A1 (en) * 2016-11-30 2018-06-07 デクセリアルズ株式会社 Electroconductive-particle-placement film, method for manufacturing same, inspection probe unit, and continuity inspection method
KR20200108439A (en) 2018-01-17 2020-09-18 히타치가세이가부시끼가이샤 Adhesive composition, connection structure, and manufacturing method thereof
KR20220162734A (en) 2020-04-10 2022-12-08 쇼와덴코머티리얼즈가부시끼가이샤 Adhesive composition, adhesive film, connection structure and manufacturing method thereof
WO2023095917A1 (en) * 2021-11-29 2023-06-01 株式会社レゾナック Wiring-forming member, wiring layer forming method using wiring-forming member, and wiring-formed member

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161056A (en) * 1997-08-27 1999-03-05 Hitachi Chem Co Ltd Adhesive film for ic chip bonding
JPH11195860A (en) * 1997-12-27 1999-07-21 Canon Inc Bonding member, multichip module with the bonding member and bonding method using the bonding member
JP2000195584A (en) * 1998-12-25 2000-07-14 Sony Corp Electrical connection device and electrical connection method
JP2009170898A (en) * 2007-12-17 2009-07-30 Hitachi Chem Co Ltd Circuit connecting material and connecting structure of circuit member
JP2011233530A (en) * 2008-06-26 2011-11-17 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2011070931A (en) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd Anisotropic conductive material, manufacturing method of connection structure, and connection structure
JP2013037944A (en) * 2011-08-09 2013-02-21 Takigawa Tadahiro Anisotropic conductive film and conductive connector
KR20130072156A (en) 2011-12-21 2013-07-01 히타치가세이가부시끼가이샤 Circuit connecting material, connection structure and method for producing connection structure
JP2015079603A (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Electric connecting material
WO2015056512A1 (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Electrical connection material
US10154587B2 (en) 2013-10-15 2018-12-11 Dexerials Corporation Electrical connection material
WO2015174447A1 (en) * 2014-05-15 2015-11-19 デクセリアルズ株式会社 Anisotropic conductive film
JP2016173982A (en) * 2014-05-15 2016-09-29 デクセリアルズ株式会社 Anisotropic conductive film
CN107431294A (en) * 2015-03-20 2017-12-01 迪睿合株式会社 Anisotropic conductive film and connecting structure body
JP2017191688A (en) * 2016-04-12 2017-10-19 デクセリアルズ株式会社 Method for inspecting electrical characteristics
KR20170137975A (en) * 2016-06-03 2017-12-14 삼성디스플레이 주식회사 Anisotropic conductive film and display device using the same
US11683963B2 (en) 2016-06-03 2023-06-20 Samsung Display Co., Ltd. Anisotropic conductive film and display device using the same
WO2018101107A1 (en) * 2016-11-30 2018-06-07 デクセリアルズ株式会社 Electroconductive-particle-placement film, method for manufacturing same, inspection probe unit, and continuity inspection method
JP2018092924A (en) * 2016-11-30 2018-06-14 デクセリアルズ株式会社 Electroconductive particle placement film, method for producing the same, inspection probe unit, and continuity inspection method
CN109983628A (en) * 2016-11-30 2019-07-05 迪睿合株式会社 Conducting particles configures film, its manufacturing method, checks contact unit, conduction inspection method
CN109983628B (en) * 2016-11-30 2021-12-24 迪睿合株式会社 Conductive particle arrangement film, method for producing same, inspection probe unit, and conduction inspection method
KR20200108439A (en) 2018-01-17 2020-09-18 히타치가세이가부시끼가이샤 Adhesive composition, connection structure, and manufacturing method thereof
KR20220162734A (en) 2020-04-10 2022-12-08 쇼와덴코머티리얼즈가부시끼가이샤 Adhesive composition, adhesive film, connection structure and manufacturing method thereof
WO2023095917A1 (en) * 2021-11-29 2023-06-01 株式会社レゾナック Wiring-forming member, wiring layer forming method using wiring-forming member, and wiring-formed member

Similar Documents

Publication Publication Date Title
EP0827632B1 (en) Semiconductor device having a semiconductor chip electrically connected to a wiring substrate
KR100639083B1 (en) Anisotropic conductive adhesive film
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JPH07230840A (en) Connecting member and electrode connecting structure using the same
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JPH08279371A (en) Connecting member and connecting structure and connecting method of electrode by using the connecting member
JPH0945731A (en) Connection structure of semiconductor chip and interconnection substrate therefor
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPH05258830A (en) Connecting method for circuit
JP4661914B2 (en) Electrode connection method
JP2004006417A (en) Connecting element and connection structure of electrode using this
JPH08148210A (en) Connection member
JP4155470B2 (en) Electrode connection method using connecting members
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
JP5143329B2 (en) Manufacturing method of circuit connection body
JP4181239B2 (en) Connecting member
JPH09147928A (en) Connecting member
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP2008112732A (en) Connecting method of electrode
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
JP4211100B2 (en) Circuit connection member and manufacturing method thereof
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040325

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20040524

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040714

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20050107

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123