KR100735211B1 - Anisotropic conductive film with conductive ball of highly reliable electric connection - Google Patents

Anisotropic conductive film with conductive ball of highly reliable electric connection Download PDF

Info

Publication number
KR100735211B1
KR100735211B1 KR1020060016831A KR20060016831A KR100735211B1 KR 100735211 B1 KR100735211 B1 KR 100735211B1 KR 1020060016831 A KR1020060016831 A KR 1020060016831A KR 20060016831 A KR20060016831 A KR 20060016831A KR 100735211 B1 KR100735211 B1 KR 100735211B1
Authority
KR
South Korea
Prior art keywords
conductive particles
conductive film
insulating adhesive
anisotropic conductive
conductive particle
Prior art date
Application number
KR1020060016831A
Other languages
Korean (ko)
Inventor
장종윤
박현준
조일래
정윤재
문혁수
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020060016831A priority Critical patent/KR100735211B1/en
Application granted granted Critical
Publication of KR100735211B1 publication Critical patent/KR100735211B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/64Insulating bodies with conductive admixtures, inserts or layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

An anisotropic conductive film having a conductive particle of highly reliable electric connection is provided to obtain safety in a connection process by adjusting property of the conductive particle included in the anisotropic conductive film. An anisotropic conductive film having a conductive particle of highly reliable electric connection includes an insulating adhesive(120), and the conductive particle having a shell(111), and a center unit(112). The insulating adhesive(120) has a storage elastic ratio of 10^4 to 10^6 Pa at 100 degrees centigrade. The conductive particle which is diffused in the insulating adhesive(120) has an elastic stress of 900 to 4600 MPa in case of deformation of 20%. The shell(111) of a sphere shape has a hollow. The center unit(112) has metal powder which is filled in the inside of the shell(111). The conductive particle is one selected from a group of gold, silver, iron, copper, nickel, and a mixture thereof.

Description

접속 신뢰성이 우수한 도전 입자를 구비한 이방성 도전 필름{Anisotropic conductive film with conductive ball of highly reliable electric connection}Anisotropic conductive film with conductive ball of highly reliable electric connection}

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification are illustrative of preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.

도 1은 통상의 이방성 도전 필름이 상호 대향하는 회로 전극을 구비한 피접속 부재 사이에 개재된 모습을 도시한 단면도.1 is a cross-sectional view showing a state where a conventional anisotropic conductive film is interposed between a connected member having circuit electrodes facing each other.

도 2는 통상의 이방성 도전 필름에 의하여 전기적으로 접속된 회로 구조체의 접속예를 도시한 단면도.2 is a cross-sectional view showing a connection example of a circuit structure electrically connected by a normal anisotropic conductive film.

도 3은 본 발명의 실시예에 따른 이방성 도전 필름에 의하여 전기적으로 접속된 구조체를 도시한 단면도.3 is a cross-sectional view showing a structure electrically connected by an anisotropic conductive film according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100..이방성 도전 필름 110..도전 입자 120..절연성 접착제100. Anisotropic conductive film 110. Conductive particles 120. Insulating adhesive

200, 300..피접속 부재 310..전극200, 300 ..Connected member 310 .. Electrode

본 발명은 미세 회로 기판의 전기적 접속에 이용되는 이방성 도전 필름(ACF;Anisotropic conductive film)에 관한 것이다. 보다 상세하게는 이방성 도전 필름의 도전 입자의 물성을 조절하여 전기적 접속 신뢰성을 향상시킬 수 있는 도전입자를 구비한 이방성 도전 필름에 관한 것이다.The present invention relates to an anisotropic conductive film (ACF) used for electrical connection of a fine circuit board. In more detail, it is related with the anisotropic conductive film provided with the conductive particle which can improve the electrical connection reliability by adjusting the physical property of the conductive particle of an anisotropic conductive film.

일반적으로, 이방성 도전 필름은 피접속 부재의 재질이 특수하거나 신호배선의 피치가 세밀하여 부재와 부재를 솔더링(soldering)의 방식으로 부착할 수 없을 경우 사용하는 접속재료이다.In general, an anisotropic conductive film is a connection material used when the material of a member to be connected is special or the pitch of signal wiring is minute, so that the member and the member cannot be attached by soldering.

이러한 이방성 도전 필름은 대표적으로 LCD 모듈에서 LCD 패널, 인쇄회로기판(PCB), 드라이버 IC회로 등을 패키징하는 접속 재료로 사용된다. The anisotropic conductive film is typically used as a connection material for packaging LCD panels, printed circuit boards (PCBs), driver IC circuits, and the like in LCD modules.

일 예로, LCD 모듈에는 TFT(Thin Film Transistor)들을 구동하기 위해서 다수개의 드라이버 IC가 실장 된다. 드라이버 IC를 실장하는 방식은 크게, 별도의 구조물 없이 LCD 패널의 게이트 영역과 데이터 영역에 실장하는 방식인 COG(Chip on glass)마운팅 방식, 드라이버 IC를 탑재한 TCP(Tape carrier package)를 통해 LCD 패널의 게이트 영역과 데이터 영역에 간접적으로 드라이버 IC 를 실장하는 방식인 TAB(Tape Automated Bonding) 마운팅 방식으로 나뉜다.For example, a plurality of driver ICs are mounted in the LCD module to drive thin film transistors (TFTs). The driver IC is largely mounted on the LCD panel through a chip on glass (COG) mounting method, which is a method of mounting the LCD panel in a gate area and a data area without a separate structure, and a tape carrier package (TCP) equipped with a driver IC. It is divided into TAB (Tape Automated Bonding) mounting method, which indirectly mounts the driver IC in the gate area and the data area of the.

그런데 드라이버 IC 소자 측의 전극과 LCD 패널 측의 전극은 미소한 피치 간격으로 형성되어 있기 때문에 어느 실장 방식을 채용한다 하더라도 납땜 등의 수단을 사용하는 것은 곤란하다. 이와 같은 이유로, 드라이버 IC 측의 전극과 패널 측의 전극을 전기적으로 접속하는 공정에서는 이방성 도전 필름이 주로 사용된다.However, since the electrodes on the driver IC element side and the electrodes on the LCD panel side are formed at minute pitch intervals, it is difficult to use a means such as soldering even if any mounting method is adopted. For this reason, an anisotropic conductive film is mainly used in the step of electrically connecting the electrode on the driver IC side and the electrode on the panel side.

도 1을 참조하면, 통상의 이방성 도전 필름(30)은 절연성 접착제(40)에 도전 입자(50)를 분산시킨 것으로서, 피접속 부재(10, 20) 사이에 개재되어 소정의 온도와 압력으로 열 압착된다. 그러면 도 2에 도시된 바와 같이, 도전 입자(50)가 대향하는 전극(11, 21) 사이에 개재되어 이 전극들(11, 21)을 전기적으로 상호 연결하며, 이웃하는 전극들 사이에는 절연성을 유지시킨다. 즉, x-y 평면상으로는 절연성이 유지되고 z축으로는 도전성이 유지된다.Referring to FIG. 1, a conventional anisotropic conductive film 30 is obtained by dispersing conductive particles 50 in an insulating adhesive 40, and is interposed between the members 10 and 20 to be heated at a predetermined temperature and pressure. Squeezed. Then, as shown in FIG. 2, the conductive particles 50 are interposed between the opposing electrodes 11 and 21 to electrically interconnect the electrodes 11 and 21, and have insulating properties between neighboring electrodes. Keep it. In other words, insulation is maintained on the x-y plane and conductivity is maintained on the z-axis.

이때, 이방성 도전 필름의 높은 접속 신뢰성을 확보하기 위해서는 도전 입자(50)가 피접속 부재의 전극(11, 21) 사이에서 적당한 형태로 변형되어 도전 입자와 전극(11, 21) 간에 충분한 접촉 면적을 가져야한다.(도 2의 (a)참조)At this time, in order to ensure high connection reliability of the anisotropic conductive film, the conductive particles 50 are deformed into a suitable shape between the electrodes 11 and 21 of the member to be connected to provide a sufficient contact area between the conductive particles and the electrodes 11 and 21. (See Fig. 2 (a)).

만약, 도 2의 (b)에 도시된 바와 같이, 도전 입자(50')가 전극(11, 21) 사이에 접속은 되어 있으나 충분히 가압 변형 되지 않으면 도전 입자(50')와 전극(11, 21) 간의 접촉 면적이 작아 전기적 접촉 저항이 큰 문제점이 있다. 또한, 도 2의 (c)에 도시된 바와 같이, 도전 입자(50")의 강도 자체가 너무 작으면 도전 입자(50")가 변형은 되었으나 전극(11, 12)과 완전히 접촉되지 않은 채, 절연성 접착제(40)가 경화되어 도전 입자와 전극 사이에 간극이 유발되는 문제점이 있다. As shown in FIG. 2B, if the conductive particles 50 'are connected between the electrodes 11 and 21 but are not sufficiently pressurized and deformed, the conductive particles 50' and the electrodes 11 and 21 are not. There is a problem that the electrical contact resistance is large because the contact area between the small. In addition, as shown in FIG. 2C, when the strength itself of the conductive particles 50 ″ is too small, the conductive particles 50 ″ are deformed but not completely in contact with the electrodes 11 and 12. There is a problem that the insulating adhesive 40 is cured to cause a gap between the conductive particles and the electrode.

이러한 문제를 해결하여 전극간 높은 접속 신뢰성을 확보하기 위해 개시된 방법으로서, 대한민국 특허 제 2000-0048223에서는 도전 입자의 표면에 소정의 돌출부를 마련하여 가압시 도전 입자의 돌출부가 접속 전극의 산화막을 돌파함으로써 전극간에 확실한 접속이 이루어지게 하였다. In order to solve such a problem and to secure high connection reliability between electrodes, Korean Patent No. 2000-0048223 provides a predetermined protrusion on the surface of the conductive particle so that the protrusion of the conductive particle breaks through the oxide film of the connection electrode when pressed. A reliable connection was made between the electrodes.

그러나 종래 방법은 도전 입자의 표면을 형성하는 공정이 번거로울뿐 아니라 효과적이고 실용적으로 전극간 접속 신뢰성을 확보하는데에는 한계점이 있었다.However, the conventional method is not only cumbersome to form the surface of the conductive particles, but also has limitations in securing connection reliability between electrodes effectively and practically.

본 발명은 상기와 같은 기술적 배경하에서 창안된 것으로서, 도전 입자의 물성을 조절하여 도전 입자가 피접속 부재의 전극 사이에서 충분히 가압 변형되고 신뢰성 있는 접속이 가능한 이방성 도전 필름을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made under the technical background as described above, and an object thereof is to provide an anisotropic conductive film in which the conductive particles are sufficiently pressurized and deformed between the electrodes of the member to be connected and can be reliably connected by controlling the properties of the conductive particles.

상기 목적을 달성하기 위한 본 발명에 따른 이방성 도전 필름은 절연성 접착제를 기재로 하여 도전 입자가 분산되어 있는 이방성 도전 필름으로서, 상기 절연성 접착제는 100℃에서의 저장 탄성율이 104 내지 106Pa 이고, 상기 절연성 접착제 내에 분산된 상기 도전 입자는, 20% 변형시 탄성 응력이 900 내지 4600MPa 인 것을 특징으로 한다.The anisotropic conductive film according to the present invention for achieving the above object is an anisotropic conductive film in which conductive particles are dispersed based on an insulating adhesive, the insulating adhesive has a storage modulus of 10 4 to 10 6 Pa at 100 ℃, The conductive particles dispersed in the insulating adhesive is characterized in that the elastic stress is 900 to 4600MPa at 20% deformation.

바람직하게, 상기 도전 입자는, 20% 변형시 탄성 응력이 1200 내지 2000MPa 이다.Preferably, the conductive particles have an elastic stress of 1200 to 2000 MPa at 20% strain.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람 직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention, and do not represent all of the technical idea of the present invention, it is possible to replace them at the time of the present application It should be understood that there may be various equivalents and variations in the range.

도 3은 본 발명의 바람직한 실시예에 따른 이방성 도전 필름과, 이를 이용하여 열 압착된 피접속 부재를 구비한 회로 접속 구조체의 구성을 개략적으로 도시한 단면도이다. 예컨대, 하부 피접속 부재(200)는 6000Å 두께의 은(Ag)층이 코팅된 유리기판이고, 상부 피접속 부재(300)는 전극간 피치가 60㎛ 인 연성회로기판이다.3 is a cross-sectional view schematically showing the configuration of a circuit connection structure having an anisotropic conductive film and a connected member thermally compressed using the anisotropic conductive film according to a preferred embodiment of the present invention. For example, the lower connected member 200 is a glass substrate coated with a silver (Ag) layer having a thickness of 6000 Å, and the upper connected member 300 is a flexible circuit board having a pitch of 60 μm between electrodes.

도 3을 참조하면, 본 발명에 따른 이방성 도전 필름(100)은 절연성 접착제(120)와 도전 입자(110)를 포함한다.Referring to FIG. 3, the anisotropic conductive film 100 according to the present invention includes an insulating adhesive 120 and conductive particles 110.

상기 절연성 접착제(120)는, 접착성이 있는 전기 절연물질로 이루어져 피접속 부재(200, 300) 사이를 견고하게 접착 고정시킨다. 또한, 절연성 접착제(120)는 이방성 도전 필름(100)의 x-y 평면상으로 절연성을 유지시킨다. 즉, 절연성 접착제(120)는 인접하는 도전 입자(110)를 이격시켜 미세한 배선을 갖는 피접속 부재(200, 300)에서 인접하는 도전 입자(110)가 x-y 평면상으로 상호 접촉하여 도통이 일어나는 것을 방지한다.The insulating adhesive 120 is made of an adhesive electrically insulating material to firmly fix and fix the members 200 and 300 to be connected. In addition, the insulating adhesive 120 maintains insulation on the x-y plane of the anisotropic conductive film 100. That is, the insulating adhesive 120 separates adjacent conductive particles 110 so that conduction occurs due to mutual contact between adjacent conductive particles 110 on the xy plane in the connected members 200 and 300 having fine wiring. prevent.

이러한 절연성 접착제(120)는, 열경화성 수지 또는 열가소성 수지를 기본 수지로 하여 이에 첨가되는 경화제 및 경화 물질로 이루어진다. The insulating adhesive 120 is composed of a curing agent and a hardening material added thereto using a thermosetting resin or a thermoplastic resin as a base resin.

상기 절연성 접착제(120)는, 동적 열 기계 분석기(DMTA;Dynamic Mechanical Thermal Analyzer)를 이용하여 유동성을 측정했을 때, 유동성이 가장 좋은 온도인 100℃에서 저장 탄성율(storage modulus)이 약 104 내지 106Pa인 특성을 갖는다.The insulating adhesive 120 has a storage modulus of about 10 4 to 10 at 100 ° C., which is the best fluidity when the fluidity is measured by using a dynamic mechanical thermal analyzer (DMTA). 6 Pa.

도전 입자(110)는, 하부 피접속 부재(200)와, 상부 피접속 부재(300)에 형성된 전극(310)을 전기적으로 연결시킨다. The conductive particles 110 electrically connect the lower connected member 200 and the electrode 310 formed on the upper connected member 300.

상기 도전 입자(110)는 중공을 구비한 구 형태의 쉘(111)과, 상기 쉘(111)의 내부에 충진된 금속 파우더로 이루어진 중심부(112)를 구비한다.The conductive particles 110 include a spherical shell 111 having a hollow and a central portion 112 made of a metal powder filled in the shell 111.

상기 쉘(111)은, 절연성을 갖는 폴리머 수지 예컨대, 폴리 에스테르, 폴리스티렌, 폴리비닐알콜, 나일론 또는 이들의 혼합물로 이루어지거나, 금 등의 금속으로 이루어질 수 있다. 쉘(111)의 구성 성분이 절연성을 가지면 인접하는 도전 입자(110)가 x-y 평면상에서 상호 접촉하여 도통이 일어나는 것을 효과적으로 방지할 수 있다. 이때, 상기 쉘(111)은 피접속 부재의 접속을 위한 열압착시, 열에 의해 녹아서 중심부(112)의 금속 파우더를 노출시킨다. 한편, 피복층(111)의 구성 성분이 도전성을 가지면 전극 사이를 전기적으로 접속시키는데 효율적이다. The shell 111 may be made of an insulating polymer resin such as polyester, polystyrene, polyvinyl alcohol, nylon, or a mixture thereof, or may be made of metal such as gold. If the components of the shell 111 have insulation, the conductive particles 110 adjacent to each other on the x-y plane can be effectively prevented from conducting. At this time, the shell 111 is melted by heat to expose the metal powder of the central portion 112 when the thermocompression bonding for the connection of the member to be connected. On the other hand, when the component of the coating layer 111 has electroconductivity, it is efficient to electrically connect between electrodes.

상기 중심부(112)는 하부 피접속 부재(200)와, 상부 피접속 부재(300)의 전극(310)을 전기적으로 연결하여 도통시키는 역할을 한다. 중심부(112)는 쉘(111)의 내부에 충진된 금속 파우더로 이루어지고, 바람직하게 금속 파우더는 수 nm 내지 수 ㎛의 직경을 갖는 입자이다. 상기 금속 파우더로는 금, 은, 철, 구리, 니켈 또는 이들 중 선택된 어느 하나 이상의 금속이 채용될 수 있다. The central portion 112 serves to electrically connect the lower connected member 200 and the electrode 310 of the upper connected member 300 to be electrically connected. The central portion 112 is made of a metal powder filled in the shell 111, and preferably, the metal powder is particles having a diameter of several nm to several μm. As the metal powder, gold, silver, iron, copper, nickel or any one or more metals selected from these may be employed.

한편, 이방성 도전 필름(100)이 피접속 부재(200, 300) 사이에 개재되어 열 압착될 때, 이방성 도전 필름(100) 내의 도전 입자(110)는 하부 피접속 부재(200) 와 상부 피접속 부재의 전극(310)에 의한 가압으로 그 형태가 변형된다. 이때, 변형된 도전 입자(110)의 형태는 도전 입자(110)의 강도에 따라 변화된다. 여기서, 도전 입자(110)의 강도는 중심부(112)를 구성하는 성분의 재질과 밀접하게 관련된다. On the other hand, when the anisotropic conductive film 100 is interposed between the members 200 and 300 to be thermally compressed, the conductive particles 110 in the anisotropic conductive film 100 are connected to the lower connected member 200 and the upper to-be-connected. The form is deformed by the pressure by the electrode 310 of the member. In this case, the shape of the deformed conductive particles 110 is changed according to the strength of the conductive particles 110. Here, the strength of the conductive particles 110 is closely related to the material of the components constituting the central portion 112.

따라서, 도전 입자(110)의 중심부(112)를 구성하는 성분의 재질을 변화시켜 도전 입자(110)의 강도를 조절하는데, 도전 입자(110)의 강도는 구형인 도전 입자(110)를 20% 변형시, 도전 입자(110)의 탄성 응력이 900 내지 4600MPa 인 것이 바람직하다. 더 바람직하게, 20% 변형시, 도전 입자(110)의 탄성 응력은 1200 내지 2000MPa이다. Accordingly, the strength of the conductive particles 110 is adjusted by changing the material of the components constituting the central portion 112 of the conductive particles 110. The strength of the conductive particles 110 is 20% of the spherical conductive particles 110. In the deformation, it is preferable that the elastic stress of the conductive particles 110 is 900 to 4600 MPa. More preferably, at 20% strain, the elastic stress of the conductive particles 110 is 1200 to 2000 MPa.

상기 도전 입자(110)는 미세한 전극 피치를 갖는 피접속 부재를 전기적으로 충분히 연결하기 위해 1 내지 15㎛ 의 직경을 갖는 것이 바람직하다. 그러나 본 발명이 이에 한정되는 것은 아니며 피접속 부재의 특성에 따라 다양하게 변형될 수 있다.The conductive particles 110 preferably have a diameter of 1 to 15 μm in order to sufficiently connect the connected member having a fine electrode pitch. However, the present invention is not limited thereto and may be variously modified according to the characteristics of the connected member.

이하에서는, 본 발명의 보다 구체적인 실험예를 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실험예에 한정되는 것은 아니며 첨부된 특허청구범위 내에서 다양한 형태의 실시예들이 구현될 수 있다.Hereinafter, the present invention will be described in more detail by explaining more specific experimental examples of the present invention. However, the present invention is not limited to the following experimental examples, and various forms of embodiments may be implemented within the scope of the appended claims.

본 실험예에서는 이방성 도전 필름을 제조하는데 있어서, 절연성 접착제를 기본 수지로 하고, 상기 절연성 접착제 내에 강도가 다른 도전 입자를 분산시켰다.In the present experimental example, in producing an anisotropic conductive film, an insulating adhesive was used as the base resin, and conductive particles having different strengths were dispersed in the insulating adhesive.

[실험예 1]Experimental Example 1

폴리에스터, 페녹시수지, 폴리비닐부틸알 수지, NBR, SBR등의 고무, 폴리스 타이렌, 폴리아미드 수지 등을 혼합한 열가소성 수지 30~70 중량부에 한개 및 다수의 아크릴기를 갖는 모노머 및 올리고머의 열경화성 수지 및 경화개시제를 혼합하여 그 합이 100중량부인 절연성 접착제를 제조하였다. 이때, 절연성 접착제는 100℃에서 저장 탄성 응력이 약 104 내지 106Pa 였다.30 to 70 parts by weight of a thermoplastic resin mixed with polyester, phenoxy resin, polyvinyl butyl al resin, rubber such as NBR, SBR, polystyrene, polyamide resin, etc. A thermosetting resin and a curing initiator were mixed to prepare an insulating adhesive having a total of 100 parts by weight. At this time, the insulating adhesive had a storage elastic stress of about 10 4 to 10 6 Pa at 100 ° C.

그리고, 상기 절연성 접착제에 도전 입자를 혼합하여 이방성 도전 필름을 제조하였다. 도전 입자로는 세끼스이사에서 제조한 AUEL 003A를 사용하였고, AUEL 003A는 상기 절연성 접착제에서 20% 변형시 탄성 응력이 약 1640MPa인 특성이 있다.Then, conductive particles were mixed with the insulating adhesive to prepare an anisotropic conductive film. As the conductive particles, AUEL 003A manufactured by Sekisui Co., Ltd. was used, and AUEL 003A has a property of having an elastic stress of about 1640 MPa at 20% deformation in the insulating adhesive.

[실험예 2]Experimental Example 2

폴리에스터, 페녹시수지, 폴리비닐부틸알 수지, NBR, SBR등의 고무, 폴리스타이렌, 폴리아미드 수지 등을 혼합한 열가소성 수지 30~70 중량부에 한개 및 다수의 아크릴기를 갖는 모노머 및 올리고머의 열경화성 수지 및 경화개시제를 혼합하여 그 합이 100중량부인 절연성 접착제를 제조하였다. 이때, 절연성 접착제는 100℃에서 저장 탄성 응력이 약 104 내지 106Pa 였다.Thermosetting resins of monomers and oligomers having one and a plurality of acrylic groups in 30 to 70 parts by weight of thermoplastic resin mixed with polyester, phenoxy resin, polyvinyl butylal resin, rubber such as NBR, SBR, polystyrene, polyamide resin, etc. And a curing initiator were mixed to prepare an insulating adhesive having a total of 100 parts by weight. At this time, the insulating adhesive had a storage elastic stress of about 10 4 to 10 6 Pa at 100 ° C.

그리고, 상기 절연성 접착제에 도전 입자를 혼합하여 이방성 도전 필름을 제조하였다. 도전 입자로는 세끼스이사에서 제조한 AUE 003A를 사용하였고, AUE 003A는 상기 절연성 접착제에서 20% 변형시 탄성 응력이 약 4650MPa인 특성이 있다.Then, conductive particles were mixed with the insulating adhesive to prepare an anisotropic conductive film. AUE 003A manufactured by Sekisui Co., Ltd. was used as the conductive particles, and AUE 003A has a characteristic of having an elastic stress of about 4650 MPa when 20% deformation in the insulating adhesive.

[실험예 3]Experimental Example 3

폴리에스터, 페녹시수지, 폴리비닐부틸알 수지, NBR, SBR등의 고무, 폴리스 타이렌, 폴리아미드 수지 등을 혼합한 열가소성 수지 30~70 중량부에 한개 및 다수의 아크릴기를 갖는 모노머 및 올리고머의 열경화성 수지 및 경화개시제를 혼합하여 그 합이 100중량부인 절연성 접착제를 제조하였다. 이때, 절연성 접착제는 100℃에서 저장 탄성 응력이 약 104 내지 106Pa 였다.30 to 70 parts by weight of a thermoplastic resin mixed with polyester, phenoxy resin, polyvinyl butyl al resin, rubber such as NBR, SBR, polystyrene, polyamide resin, etc. A thermosetting resin and a curing initiator were mixed to prepare an insulating adhesive having a total of 100 parts by weight. At this time, the insulating adhesive had a storage elastic stress of about 10 4 to 10 6 Pa at 100 ° C.

그리고, 상기 절연성 접착제에 도전 입자를 혼합하여 이방성 도전 필름을 제조하였다. 도전 입자로는 세끼스이사에서 제조한 AUEF 003A를 사용하였고, AUEF 003A는 상기 절연성 접착제에서 20% 변형시 탄성 응력이 약 850MPa인 특성이 있다.Then, conductive particles were mixed with the insulating adhesive to prepare an anisotropic conductive film. AUEF 003A manufactured by Sekisui Co., Ltd. was used as the conductive particles, and AUEF 003A has a property of having an elastic stress of about 850 MPa at 20% deformation in the insulating adhesive.

상술한 바와 같이 각각 제조된 이방성 도전 필름을 피접속 부재 사이에 개재한 뒤, 소정의 압력(3MPa, 5MPa, 7MPa)을 가하여 피접속 부재를 압착하고, 압착된 피접속 부재의 전극 간 접촉 저항을 측정하였다. 이때, 전극 간 접촉 저항을 측정하여 접속 상태를 평가하는데, 주어진 압력 하에서 측정된 접촉 저항의 평균 값이 1Ω 이하이거나 또는 측정된 접촉 저항과 평균 값과의 편차가 30%이하이면 합격으로 판단하였다.After interposing the anisotropic conductive films prepared as described above between the members to be connected, a predetermined pressure (3 MPa, 5 MPa, 7 MPa) is applied to crimp the connected members, and the contact resistance between the electrodes of the crimped connected members is pressed. Measured. At this time, the contact resistance was measured by measuring the contact resistance between electrodes, and when the average value of the contact resistance measured under a given pressure was 1 Ω or less, or the deviation between the measured contact resistance and the average value was 30% or less, it was judged as a pass.

하기 표 1에는 상기 실험예에 따라 제조된 이방성 도전 필름을 이용하여 피접속 부재를 접속할 때, 접착 압력에 따른 전극 간 접촉 저항값 및 이에 따른 접속 상태의 평가를 나타내었다.Table 1 below shows the contact resistance value between the electrodes according to the adhesive pressure and the evaluation of the connection state according to the bonding pressure when connecting the member to be connected using the anisotropic conductive film prepared according to the experimental example.

실험예 1Experimental Example 1 실험예 2Experimental Example 2 실험예 3Experimental Example 3 도전 입자의 종류Type of conductive particles AUEL 003AAUEL 003A AUEL003AAUEL003A AUEF 003AAUEF 003A 접착 압력 (MPa)Adhesion Pressure (MPa) 3 3 5 5 7 7 3 3 5 5 7 7 3 3 5 5 7 7 전극 간 접촉저항 (Ω)Contact resistance between electrodes (Ω) 0.560.56 0.430.43 0.350.35 2.72.7 0.920.92 0.520.52 2.32.3 1.71.7 0.680.68 접속 상태 평가Connection status evaluation 합격pass 불합격fail 불합격fail

표 1을 참조하면, 도전 입자의 강도가 1640MPa인 실험예 1의 경우 피접속 부재의 전극 간 접촉 저항이 0.35 내지 0.56Ω이고, 접촉 저항의 평균 값은 0.45Ω 이었다. 이에 따라 접촉 저항의 평균 값과 측정된 접촉 저항의 최대 편차가 0.11 로 30%이내였다. Referring to Table 1, in Experimental Example 1 in which the strength of the conductive particles was 1640 MPa, the contact resistance between the electrodes of the connected member was 0.35 to 0.56 Ω, and the average value of the contact resistance was 0.45 Ω. Accordingly, the maximum deviation between the average value of the contact resistance and the measured contact resistance was 0.11, which was within 30%.

한편, 도전 입자의 강도가 4650MPa인 실험예 2의 경우 피접속 부재의 전극 간 접촉 저항이 0.52 내지 2.7Ω이고, 접촉 저항의 평균 값은 1.38Ω이었다. 이에 따라 접촉 저항의 평균 값과 측정된 접촉 저항간의 최대 편차가 1.32로 30%를 초과하였다. 아울러, 도전 입자의 강도가 850MPa인 실험예 3의 경우 피접속 부재의 전극 간 접촉 저항이 0.68 내지 2.3Ω이고, 접촉 저항의 평균 값은 1.56이었다. 이에 따라, 접촉 저항의 평균 값과 측정된 접촉 저항간의 최대 편차가 0.88로 30%를 초과하였다. 즉, 도전 입자의 강도가 실험예 2와 같이 너무 크거나, 또는 실험예 3과 같이 너무 작으면 접착 압력이 낮을수록 접촉 저항이 현저하게 증가하였다. On the other hand, in Experimental Example 2 in which the strength of the conductive particles was 4650 MPa, the contact resistance between the electrodes of the connected member was 0.52 to 2.7 Ω, and the average value of the contact resistance was 1.38 Ω. Accordingly, the maximum deviation between the average value of the contact resistance and the measured contact resistance was 1.32, which exceeded 30%. In addition, in Experimental Example 3 in which the strength of the conductive particles was 850 MPa, the contact resistance between the electrodes of the connected member was 0.68 to 2.3 Ω, and the average value of the contact resistance was 1.56. Accordingly, the maximum deviation between the average value of the contact resistance and the measured contact resistance exceeded 30% at 0.88. That is, when the strength of the conductive particles is too large as in Experimental Example 2 or too small as in Experimental Example 3, the contact resistance was significantly increased as the adhesion pressure was lowered.

따라서, 피접속 부재의 전기적 접속 신뢰성을 향상시킬 수 있는 도전 입자의 강도는 900 내지 4600MPa인 것이 바람직하다.Therefore, it is preferable that the intensity | strength of the electroconductive particle which can improve the electrical connection reliability of a to-be-connected member is 900-4600 Mpa.

이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.

본 발명에 따르면 이방성 도전 필름에 포함된 도전 입자의 물성을 조절함으 로써 피접속 부재의 접속시, 열 압착에 의해 도전 입자의 변형이 충분히 일어날 수 있다. 따라서, 이방성 도전 필름을 이용하여 열 압착된 피접속 부재는 접속 공정에서 안정성이 확보되어 신뢰성 있는 제품을 제조할 수 있다.According to the present invention, by controlling the physical properties of the conductive particles included in the anisotropic conductive film, deformation of the conductive particles may sufficiently occur by thermal compression when the member to be connected is connected. Therefore, the to-be-connected member thermally crimped using the anisotropic conductive film can ensure stability in a connection process, and can manufacture a reliable product.

Claims (3)

절연성 접착제를 기재로 하여 도전 입자가 분산되어 있는 이방성 도전 필름에 있어서,In an anisotropic conductive film in which conductive particles are dispersed based on an insulating adhesive agent, 상기 절연성 접착제는, 100℃에서의 저장 탄성율이 104 내지 106Pa이고, 상기 절연 접착제 내에 분산된 상기 도전 입자는, 20% 변형시 탄성 응력이 900 내지 4600 MPa인 것을 특징으로 하는 이방성 도전 필름.The insulating adhesive has a storage modulus of 10 4 to 10 6 Pa at 100 ° C., and the conductive particles dispersed in the insulating adhesive have an elastic stress of 900 to 4600 MPa at 20% deformation. . 제 1항에 있어서,The method of claim 1, 상기 도전 입자는, 중공을 구비한 구 형태의 쉘과 상기 쉘의 내부에 충진된 금속 파우더로 이루어진 중심부를 구비하는 것을 특징으로 하는 이방성 도전 필름.The conductive particles have a spherical shell having a hollow and a central portion made of a metal powder filled in the shell. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 도전 입자는, 금, 은, 철, 구리, 니켈 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 이방성 도전 필름.The conductive particles are any one selected from the group consisting of gold, silver, iron, copper, nickel and mixtures thereof.
KR1020060016831A 2006-02-21 2006-02-21 Anisotropic conductive film with conductive ball of highly reliable electric connection KR100735211B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060016831A KR100735211B1 (en) 2006-02-21 2006-02-21 Anisotropic conductive film with conductive ball of highly reliable electric connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060016831A KR100735211B1 (en) 2006-02-21 2006-02-21 Anisotropic conductive film with conductive ball of highly reliable electric connection

Publications (1)

Publication Number Publication Date
KR100735211B1 true KR100735211B1 (en) 2007-07-03

Family

ID=38503139

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060016831A KR100735211B1 (en) 2006-02-21 2006-02-21 Anisotropic conductive film with conductive ball of highly reliable electric connection

Country Status (1)

Country Link
KR (1) KR100735211B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157599B1 (en) * 2010-05-28 2012-06-19 주식회사 익스톨 Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
KR101393836B1 (en) 2011-09-07 2014-05-12 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing connection structure
CN109659289A (en) * 2017-10-10 2019-04-19 上海御渡半导体科技有限公司 A kind of packaging mechanism with temperature-sensitive insulating materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188389A (en) * 1992-01-13 1993-07-30 Asahi Chem Ind Co Ltd Outer lead bonding method
JPH08188760A (en) * 1995-01-10 1996-07-23 Sony Chem Corp Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JP2000311521A (en) 1999-04-26 2000-11-07 Bridgestone Corp Anisotropic conductive film
KR20010092275A (en) * 2000-03-15 2001-10-24 구리다 히데유키 Anisotropically electroconductive connecting material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188389A (en) * 1992-01-13 1993-07-30 Asahi Chem Ind Co Ltd Outer lead bonding method
JPH08188760A (en) * 1995-01-10 1996-07-23 Sony Chem Corp Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JP2000311521A (en) 1999-04-26 2000-11-07 Bridgestone Corp Anisotropic conductive film
KR20010092275A (en) * 2000-03-15 2001-10-24 구리다 히데유키 Anisotropically electroconductive connecting material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157599B1 (en) * 2010-05-28 2012-06-19 주식회사 익스톨 Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
KR101393836B1 (en) 2011-09-07 2014-05-12 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing connection structure
CN109659289A (en) * 2017-10-10 2019-04-19 上海御渡半导体科技有限公司 A kind of packaging mechanism with temperature-sensitive insulating materials

Similar Documents

Publication Publication Date Title
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
KR100713333B1 (en) Multi-layered anisotropic conductive film
US20090000807A1 (en) Connecting Structure and Adhesion Method of Pcb Using Anisotropic Conductive Film, and Method for Evaluating Connecting Condition Using the Same
KR102517498B1 (en) Conductive material and manufacturing method of connection body
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
KR20100010694A (en) Triple layered anistropic conductive film and manufacturing method thereof
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
KR102573777B1 (en) Adhesive composition and manufacturing method of connected body
JP2004006417A (en) Connecting element and connection structure of electrode using this
US20100123258A1 (en) Low Temperature Board Level Assembly Using Anisotropically Conductive Materials
KR100946597B1 (en) Conductive ball with easily pressed down, method of mamufacturing thereof and anisotropic conductive film using the same
KR100613026B1 (en) Conductive ball, method of mamufacturing thereof and anisotropic conductive film using the same
KR100803433B1 (en) Anisotropic conductive film with highly reliable bonding and circuit connecting structure using anisotropic conductive film
JPH087957A (en) Connecting method of circuit board and connecting structure body, and adhesive film using for it
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP2008112732A (en) Connecting method of electrode
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
KR100761596B1 (en) Semiconductor device having tuberous electrode and Semiconductor package using the same
KR100766181B1 (en) Multi-layered anisotropic conductive film
KR100646068B1 (en) Anisotropic conductive film
JP4760993B2 (en) Connection member and electrode connection structure using the same
JP4670857B2 (en) Repair property imparting method and connecting member

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee