JP3581618B2 - Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure - Google Patents

Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure Download PDF

Info

Publication number
JP3581618B2
JP3581618B2 JP33811099A JP33811099A JP3581618B2 JP 3581618 B2 JP3581618 B2 JP 3581618B2 JP 33811099 A JP33811099 A JP 33811099A JP 33811099 A JP33811099 A JP 33811099A JP 3581618 B2 JP3581618 B2 JP 3581618B2
Authority
JP
Japan
Prior art keywords
fine particles
conductive
conductive fine
value
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33811099A
Other languages
Japanese (ja)
Other versions
JP2001155539A (en
Inventor
卓夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP33811099A priority Critical patent/JP3581618B2/en
Publication of JP2001155539A publication Critical patent/JP2001155539A/en
Application granted granted Critical
Publication of JP3581618B2 publication Critical patent/JP3581618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微細電極間の接続に用いられる導電性微粒子、異方性導電接着剤及び導電接続構造体に関する。
【0002】
【従来の技術】
異方性導電材料は、液晶ディスプレイ、パーソナルコンピュータ、携帯通信機器等のエレクトロニクス製品において、半導体素子等の小型部品を基板に電気的に接続したり、基板同士を電気的に接続するために使用されている。
このような異方性導電接続材料としては、導電性微粒子をバインダー樹脂に混合したもの等が用いられている。
【0003】
この導電性微粒子としては、有機基材粒子又は無機基材粒子の表面に金属メッキを施したものが用いられてきた。このような導電性微粒子としては、例えば、特公平6−96771号公報、特開平4−36902号公報、特開平4−269720号公報、特開平3−257710号公報等に開示されたものが挙げられる。
【0004】
このような導電性微粒子をバインダー樹脂と混ぜ合わせてフィルム状又はペースト状にした異方性導電接着剤材料としては、例えば、特開昭63−231889号公報、特開平4−259766号公報、特開平3−291807号公報、特開平5−75250号公報等に開示されたものが挙げられる。
【0005】
従来の異方性導電材料においては、導電性微粒子の基材として、高分子等の電気的絶縁材料が使用されており、その表面に、通常、導電層としてニッケルメッキ層が施されている。そのため、接続時の電流容量が小さく、更に金属の被覆層が基材となる高分子の変形に追従できず、割れが発生するという問題があった。
【0006】
特に近年、電子機器や電子部品が小型化するに伴い、基板等の配線が微細になり接続部の電気抵抗が大きくなる傾向にある。更に、最近開発されている携帯機器用のICやLSIのパッケージは、フリップチップ接合を行う等によりチップサイズに近づいてきていることもあり、より配線が細かくなる傾向にあるため、接続部の低抵抗化が必要となってきている。接続部の低抵抗化のためには、異方性導電接着剤中の導電性微粒子の濃度を上げる方法もあるが、濃度を上げると電極間でのリークが発生しやすくなるという問題がある。
導電性微粒子に絶縁被覆層等を設けるという方法もあるが、プロセスが煩雑になる等の問題がある。
【0007】
導電性微粒子として金属粉を用いる技術が特開平8−273440号公報等に開示されている。しかし、金属粉は電流容量は大きくとれるものの、微細になると真球状のものが得にくく、真球といわれるものでもアスペクト比が比較的大きいものが多い。また、粒径が揃っておらずCV値が大きいため導通に関与しない粒子が大量に発生し電極間でのリーク現象が生じやすいという欠点があった。更に、弾性変形の領域が少なく塑性変形しやすいために接合部の熱変形に追従しない場合があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記に鑑み、接続抵抗が低く、接続時の電流容量が大きく、接続が安定していて、リーク現象を起こさない、特にチップの接合用として適当な導電性微粒子、異方性導電接着剤及び導電接続構造体を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、非金属微粒子が、銅を50重量%以上含む金属層により被覆されてなる導電性微粒子であって、上記非金属微粒子は、平均粒径1〜500μm、アスペクト比1.3未満、CV値25%以下、K値200〜5万MPaである導電性微粒子である。
以下に本発明を詳述する。
【0010】
本発明の導電性微粒子は、非金属微粒子が、銅を50重量%以上含む金属層により被覆されてなるものである。
上記非金属微粒子としては特に限定されず、例えば、高分子基材、無機粒子、又は、これらの混合物及び化合物等が挙げられる。なかでも、CV値やアスペクト比が小さく、適当なK値、回復率及び破壊歪みが得やすい高分子基材が好ましい。
【0011】
上記高分子基材としては、破壊歪みが40%以上である高分子が好適に用いられる。上記破壊歪みが40%未満である場合には、高分子を用いて製造される導電性微粒子が、変形等により接続不良を起こす場合がある。破壊歪みは50〜90%であるのがより好ましい。
【0012】
また、上記高分子基材としては、回復率が40%以上である高分子が好適に用いられる。上記回復率が40%未満である場合には、高分子を用いて製造される導電性微粒子が、変形等により接続不良を起こす場合がある。回復率は50〜90%であるのがより好ましい。なお、本発明において、回復率は、20℃、10%圧縮変形後の値である。
【0013】
上記金属層は、銅を50重量%以上含むものである。銅を50重量%以上含んだ金属層は、柔軟性があり基材が変形しても割れにくく安定した接続信頼性を得ることができる。また、本発明の導電性微粒子は、複数の電極間に挟まれた状態で抑えられる場合、一方の電極から他方の電極へこの導電性微粒子を介して電流が流れるが、銅を50重量%以上含んだ金属層で被覆されているため、接続時の電流容量が大きい。
【0014】
上記金属層の銅の含有量は50〜100重量%であるのが好ましい。銅の含有量が50重量%未満では充分な電流容量が得られなかったり、金属層が割れやすくなったりする。より好ましくは90〜100重量%である。
【0015】
銅を含む金属層はそのまま用いると、高温高湿状態に曝された場合、酸化が発生し著しく接続抵抗値が上がり、接続信頼性が低くなる場合がある。そこで、このような条件下では、接続信頼性を保つために、上記金属層は、酸化防止層で被覆されていることが好ましい。
上記酸化防止層としては、低分子量有機物、貴金属等からなるものが挙げられる。なかでも、貴金属からなることが好ましい。
上記貴金属としては、金が好適に使用できる。
上記金属層を貴金属により被覆する方法としては特に限定されず、例えば、無電解メッキ法、置換メッキ法、電気メッキ法等が挙げられる。
【0016】
上記貴金属として金を用いる場合は、銅は高温状態では金に拡散するため、金属層と酸化防止層との間にバリア層が設けられていることが好ましい。上記バリア層は、ニッケルからなることが好ましい。
【0017】
上記の各層の厚みは、金属層0.03〜10μm、バリア層0.01〜2μm、酸化防止層0.01〜2μmが好ましい。各層の厚みがこの範囲未満では被覆の効果が充分得られない場合がある。逆にこの範囲を超えると基材の特性を失ってしまう場合がある。
より好ましくは、金属層0.08〜1μm、バリア層0.03〜0.2μm、酸化防止層0.02〜0.1μmである。
【0018】
本発明の導電性微粒子の核となる非金属微粒子は、平均粒径1〜500μm、アスペクト比1.3未満、CV値25%以下、K値200〜5万MPaである。
【0019】
上記非金属微粒子の平均粒径が1μm未満であると、この非金属微粒子を用いて製造される導電性微粒子は、接触すべき電極面に接触せず、電極間に隙間ができ、接触不良を起こす。非金属微粒子の平均粒径が500μmを超えると、この非金属微粒子を用いて製造される導電性微粒子が大きいため隣接電極がショートするという問題が発生する。非金属微粒子の平均粒径は、好ましくは3〜100μmで、より好ましく5〜30μmである。本発明において、平均粒径は、任意の微粒子300個を電子顕微鏡で観察・測定することにより得られる値である。
【0020】
上記非金属微粒子のアスペクト比が1.3以上であると、粒子径が不揃いとなるため、非金属微粒子を用いて製造される導電性微粒子を介して電極同士を接続させる際、接続に関与しない粒子が大量に発生し電極間でのリーク現象が発生しやすい。上記アスペクト比は、好ましくは1.1未満で、より好ましくは1.05未満である。
【0021】
上記アスペクト比とは、微粒子の平均長径を平均短径で割った値である。本発明において、アスペクト比は、任意の微粒子300個を電子顕微鏡で観察・測定することにより得られる値である。
【0022】
上記非金属微粒子のCV値が25%を超えると、粒子径が不揃いとなるため、非金属微粒子を用いて製造される導電性微粒子を介して電極同士を接続させる際、接続に関与しない導電性微粒子が発生して、隣接電極間でのリーク現象が生じる場合がある。CV値は、好ましくは10%以下で、より好ましくは5%以下である。なお、CV値が0%以上であることは言うまでもない。
【0023】
上記CV値とは、下記の式(1);
CV値=(σ/Dn)×100・・・・(1)
(式中、σは、粒子径の標準偏差を表し、Dnは数平均粒子径を表す)で表される値である。本発明において、標準偏差及び数平均粒子径は、任意の微粒子300個を電子顕微鏡で観察・測定することにより得られる値である。
【0024】
上記非金属微粒子のK値が200MPa未満であると、衝撃等により接続不良を起こす場合があり、K値が5万MPaを超えると、電極を傷つける場合がある。上記K値は、好ましくは300〜8000MPaで、より好ましくは400〜3000MPaである。
【0025】
本発明においてK値とは、10%変形時におけるK値を指し、下記の式(2);
(3/√2)・F・S−3/2・R−1/2・・・・(2)
(式中、Fは20℃、10%圧縮変形における荷重値(MPa×mm )を表し、Sは圧縮変位(mm)を表し、Rは半径(mm)を表す)で表される値である。
【0026】
本発明の導電性微粒子は、上述のように、非金属微粒子に銅を50重量%以上含んだ金属を被覆してなり、平均粒径1〜500μm、アスペクト比1.3未満、CV値25%以下、K値200〜5万MPaの非金属微粒子を核とするものであれば、特に限定されるものではないが、本発明の好ましい態様としては、下記(1)、(2)等が挙げられる。
(1)破壊歪み40%以上の高分子微粒子が、銅を50重量%以上含む金属層により被覆されてなる導電性微粒子であって、上記高分子微粒子は、平均粒径3〜100μm、アスペクト比1.1未満、CV値10%以下、K値300〜8000MPaである導電性微粒子。
(2)回復率40%以上の高分子微粒子が、銅を50重量%以上含む金属層により被覆されてなる導電性微粒子であって、上記高分子微粒子は、平均粒径5〜30μm、アスペクト比1.05未満、CV値5%以下、K値400〜3000MPaである導電性微粒子。
本発明の導電性微粒子は、更に、有機化合物、樹脂、無機物等で被覆されていてもかまわない。
【0027】
本発明の導電性微粒子は、上述のように核となる部分が非金属であり、特定のK値をもつため、電極を傷めたり接続不良を起こしにくい。更に、CV値やアスペクト比が小さいため、電極間のリークが発生しにくい。また、銅を50重量%以上含有する金属により被覆されているために接続時の電気容量が大きく、金属層に柔軟性があるため核が変形しても割れにくく、安定した接続を保つことができる。
【0028】
本発明の導電性微粒子は、主として、相対向する2つの電極を電気的に接続する際に用いられる。上記導電性微粒子を用いて相対向する2つの電極を電気的に接続する方法としては特に限定されず、例えば、導電性微粒子をバインダー樹脂中に分散させて異方性導電接着剤を調製し、この異方性導電接着剤を使用して2つの電極を接着、接続する方法、バインダー樹脂と導電性微粒子とを別々に使用して接続する方法等が挙げられる。
【0029】
本発明において、異方性導電接着剤とは、導電性微粒子を絶縁性のバインダー樹脂中に分散させたものであれば特に限定されず、異方性導電膜、異方性導電ペースト、異方性導電インキ等を含むものである。
本発明の導電性微粒子を用いて製造される上記異方性導電接着剤も本発明の1つである。
【0030】
本発明の異方性導電接着剤を構成するバインダー樹脂としては特に限定されず、例えば、アクリレート樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体等の熱可塑性樹脂;グリシジル基を有するモノマーやオリゴマー及びイソシアネート等の硬化剤との反応により得られる硬化性樹脂組成物等の熱や光によって硬化する組成物等が挙げられる。
上記異方性導電接着剤の塗工膜厚は特に限定されないが、10〜数百μmが好ましい。
【0031】
本発明の導電性微粒子、及び、異方性導電接着剤により接続される対象物としては、例えば、表面に電極部が形成された基板、半導体等の表面に電極部が形成された部品等が挙げられる。上記基板は、フレキシブル基板とリジッド基板とに大別される。上記フレキシブル基板としては、例えば、50〜500μmの厚さの樹脂シートが挙げられる。上記樹脂シートの材質としては、例えば、ポリイミド、ポリアミド、ポリエステル、ポリスルホン等が挙げられる。
【0032】
上記リジッド基板は、樹脂製のものとセラミック製のものとに大別される。上記樹脂製のものとしては、例えば、ガラス繊維強化エポキシ樹脂、フェノール樹脂、セルロース繊維強化フェノール樹脂等が挙げられる。上記セラミック製のものとしては、例えば、二酸化ケイ素、アルミナ等が挙げられる。
【0033】
上記基板構造としては、単層構造であってもよく、また、単位面積当たりの電極数を増やすために、例えば、スルーホール形成等の手段により、複数の層を形成し、相互に電気的接続を行わせる多層構造の基板を使用してもよい。
【0034】
上記部品としては特に限定されず、例えば、トランジスタ、ダイオード、IC、LSI等の半導体等の能動部品;抵抗、コンデンサ、水晶振動子等の受動部品等が挙げられる。
【0035】
上記基板又は部品の表面に形成される電極の形状としては特に限定されず、例えば、縞状、ドット状、任意形状のもの等が挙げられる。
上記電極の材質としては特に限定されず、例えば、金、銀、銅、ニッケル、パラジウム、カーボン、アルミニウム、ITO等が挙げられる。また、接触抵抗を低減させるために、銅、ニッケル等の上に更に金を被覆したものも用いることができる。
上記電極の厚みは、0.1〜100μmが好ましい。電極の幅は、1〜500μmが好ましい。
【0036】
このように本発明の導電性微粒子を用いた異方性導電接着剤等を使用することができる基板や電子部品としては、種々のものが挙げられるが、これらのなかでも、特にチップの接合に好適に使用することができる。
【0037】
本発明の導電性微粒子と基板、部品等との接合方法としては、例えば、表面に電極が形成された基板又は部品の上に、導電性微粒子を含有する異方性導電膜を配置し、その上に、他の電極面を有する基板又は部品を置き、加熱、加圧する方法が挙げられる。上記異方性導電膜の代わりに、スクリーン印刷やディスペンサー等の印刷手段により、導電性微粒子を用いた導電性ペーストを所定量用いることもできる。
上記加熱、加圧には、ヒーターが付いた圧着機やボンディングマシーン等が用いられる。
【0038】
本発明の導電性微粒子と基板、部品等との接合方法としては、異方性導電膜及び異方性導電ペーストを用いない方法も可能であり、例えば、導電性微粒子を介して貼り合わせた2つの電極部の隙間に液状のバインダーを注入した後、硬化させる方法等を用いることができる。
【0039】
上記基板又は部品等の電極部同士が、本発明の導電性微粒子又は異方性導電接着剤を用いて接続された導電接続構造体もまた、本発明の1つである。
上述のようにして得られた導電接続構造体は、本発明の導電性微粒子を使用しているため、導電性も良好で、高い接続信頼性を有する。
【0040】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0041】
実施例1
平均粒径15μm、アスペクト比1.04、CV値4%、K値2000MPa、破壊歪み50%、回復率50%の長鎖アルキルジアクリレート系共重合体に、無電解メッキにより厚み0.2μmの銅を被覆した。更に無電解メッキにより厚み0.1μmのニッケルを被覆した後、置換メッキにより金を厚み0.04μmで被覆し、導電性微粒子を得た。
【0042】
得られた導電性微粒子を、エポキシ樹脂及びアクリル樹脂の混合物をトルエンに溶解させたバインダー樹脂溶液に混合、分散させた。次いで、この導電性微粒子分散溶液を離型フィルム上に一定の厚みに塗布し、トルエンを蒸発させ、異方性導電膜を作製した。膜厚は40μmであり、導電性微粒子の濃度は15%であった。
得られた異方性導電膜を透明なガラス基板に貼付け加熱加圧したが、金属被覆層の割れは観察されなかった。
【0043】
得られた異方性導電膜を、100μm×100μmの電極を150μmピッチで2列に20個配置したセラミック基板上に貼付けた。この上に、同じセラミック基板を重ね合わせ、150℃、2分間加熱、加圧し導電接続構造体を作製した。得られた導電接続構造体に2Aの電流を流したが、良好な導電性を示し、抵抗も充分低かった。また、隣接する電極間の接続抵抗は1×10 Ω以上で線間絶縁性は充分保たれていた。
70℃、85%の耐熱耐湿試験を200時間行った後、この導電接続構造体に2Aの電流を流したところ、導電接続構造体の特性には、ほとんど変化がなかった。
【0044】
実施例2
実施例1において、無電解メッキにより厚み0.2μmの銅のみを被覆したこと以外は同様に操作を行い、導電性微粒子を得た。この導電性微粒子を用いて、実施例1と同様に異方性導電膜及び導電接続構造体を作製した。
得られた異方性導電膜を透明なガラス基板に貼付け加熱加圧したが、金属被覆層の割れは観察されなかった。
【0045】
得られた導電接続構造体に2Aの電流を流したが、良好な導電性を示し、抵抗も充分低かった。また、隣接する電極間の接続抵抗は1×10 Ω以上で線間絶縁性は充分保たれていた。
70℃、85%の耐熱耐湿試験を200時間行った後、この導電接続構造体に2Aの電流を流したところ、酸化による抵抗の上昇と一部に導通破壊がみられたが、高温高湿条件でなければ特に問題がないものと思われた。
【0046】
比較例1
実施例1において、無電解メッキにより厚み0.2μmの銅を被覆する代わりにニッケルを被覆したこと以外は同様に操作を行い、導電性微粒子を得た。この導電性微粒子を用いて、実施例1と同様に異方性導電膜及び導電接続構造体を作製した。
【0047】
得られた異方性導電膜を透明なガラス基板に貼付け加熱加圧したところ、金属被覆層の割れが観察された。
得られた導電接続構造体は、隣接する電極間の接続抵抗が1×10 Ω以上で線間絶縁性は充分保たれていたが、2Aの電流を流したところ、導通破壊がみられた。
【0048】
比較例2
破壊歪み50%、回復率20%のアクリレート系共重合体に実施例1と同様にメッキ処理を施し、平均粒径15μm、アスペクト比1.3、CV値30%、K値100MPaの導電性微粒子を得た。この導電性微粒子を用いて、実施例1と同様に異方性導電膜及び導電接続構造体を作製した。
【0049】
得られた異方性導電膜を透明なガラス基板に貼付け加熱加圧したが、金属被覆層の割れは観察されなかった。
得られた導電接続構造体に2Aの電流を流したところ、導通破壊がみられ、隣接する電極間では一部ショートが発生していた。
【0050】
比較例3
ガラスに実施例1と同様にメッキ処理を施し、平均粒径15μm、アスペクト比1.1、CV値10%、K値7万MPaの導電性微粒子を得た。この導電性微粒子を用いて、実施例1と同様に異方性導電膜及び導電接続構造体を作製した。
【0051】
得られた異方性導電膜を透明なガラス基板に貼付け加熱加圧したところ、ガラス基板上の電極が傷つき、一部導通不良が発生した。
得られた導電接続構造体は、隣接する電極間の接続抵抗が1×10 Ω以上で線間絶縁性は充分保たれていたものの、2Aの電流を流したところ、一部導通破壊がみられた。
【0052】
【発明の効果】
本発明の導電性微粒子は、上述の構成からなるので、接続抵抗が低く、接続時の電流容量が大きく、接続が安定していて、リーク現象を起こさない。また、本発明の導電性微粒子を使用した導電接続構造体は、導電性も良好で、高い接続信頼性を有する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to conductive fine particles, anisotropic conductive adhesive, and a conductive connection structure used for connection between fine electrodes.
[0002]
[Prior art]
Anisotropic conductive materials are used in electronic products such as liquid crystal displays, personal computers, and portable communication devices to electrically connect small components such as semiconductor elements to substrates or to electrically connect substrates to each other. ing.
As such an anisotropic conductive connecting material, a material in which conductive fine particles are mixed with a binder resin is used.
[0003]
As the conductive fine particles, those obtained by subjecting the surface of organic base particles or inorganic base particles to metal plating have been used. Examples of such conductive fine particles include those disclosed in JP-B-6-96771, JP-A-4-36902, JP-A-4-269720, JP-A-3-257710, and the like. It is done.
[0004]
Examples of anisotropic conductive adhesive materials in which such conductive fine particles are mixed with a binder resin to form a film or a paste include, for example, JP-A-63-231889 and JP-A-4-259766. Examples disclosed in Japanese Laid-Open Patent Publication No. 3-291807, Japanese Laid-Open Patent Publication No. 5-75250, and the like.
[0005]
In a conventional anisotropic conductive material, an electrically insulating material such as a polymer is used as a base material for conductive fine particles, and a nickel plating layer is usually applied as a conductive layer on the surface thereof. For this reason, there is a problem in that the current capacity at the time of connection is small, and further, the metal coating layer cannot follow the deformation of the polymer serving as the base material and cracks occur.
[0006]
Particularly in recent years, as electronic devices and electronic components are miniaturized, wiring on a substrate or the like tends to become finer and the electrical resistance of a connection portion tends to increase. Furthermore, recently developed IC and LSI packages for portable devices are becoming closer to the chip size by flip chip bonding or the like, and the wiring tends to become finer. Resistance is becoming necessary. There is a method of increasing the concentration of the conductive fine particles in the anisotropic conductive adhesive to reduce the resistance of the connection portion. However, there is a problem that leakage between the electrodes tends to occur when the concentration is increased.
There is a method of providing an insulating coating layer or the like on the conductive fine particles, but there is a problem that the process becomes complicated.
[0007]
A technique using metal powder as the conductive fine particles is disclosed in Japanese Patent Laid-Open No. 8-273440. However, although the metal powder can have a large current capacity, it is difficult to obtain a true sphere when it becomes fine, and many of the so-called true spheres have a relatively large aspect ratio. In addition, since the particle diameters are not uniform and the CV value is large, there is a drawback that a large amount of particles that are not involved in conduction are generated and a leak phenomenon between the electrodes tends to occur. Furthermore, since there is little elastic deformation area and plastic deformation is likely to occur, there is a case where it does not follow the thermal deformation of the joint.
[0008]
[Problems to be solved by the invention]
In view of the above, the present invention has a low connection resistance, a large current capacity at the time of connection, a stable connection, and no leakage phenomenon. An object is to provide an adhesive and a conductive connection structure.
[0009]
[Means for Solving the Problems]
The present invention is a conductive fine particle in which the non-metallic fine particles are coated with a metal layer containing 50% by weight or more of copper, and the non-metallic fine particles have an average particle diameter of 1 to 500 μm, an aspect ratio of less than 1.3, Conductive fine particles having a CV value of 25% or less and a K value of 200 to 50,000 MPa.
The present invention is described in detail below.
[0010]
The conductive fine particles of the present invention are those in which nonmetallic fine particles are coated with a metal layer containing 50% by weight or more of copper.
The non-metallic fine particles are not particularly limited, and examples thereof include polymer base materials, inorganic particles, and mixtures and compounds thereof. Among these, a polymer base material having a small CV value and an aspect ratio and capable of easily obtaining an appropriate K value, recovery rate, and fracture strain is preferable.
[0011]
As the polymer substrate, a polymer having a fracture strain of 40% or more is preferably used. When the fracture strain is less than 40%, the conductive fine particles produced using the polymer may cause poor connection due to deformation or the like. The fracture strain is more preferably 50 to 90%.
[0012]
Moreover, as the polymer substrate, a polymer having a recovery rate of 40% or more is preferably used. When the recovery rate is less than 40%, conductive fine particles produced using a polymer may cause a connection failure due to deformation or the like. The recovery rate is more preferably 50 to 90%. In the present invention, the recovery rate is a value after compression deformation at 20 ° C. and 10%.
[0013]
The metal layer contains 50% by weight or more of copper. A metal layer containing 50% by weight or more of copper is flexible and can be easily cracked even when the base material is deformed, thereby obtaining stable connection reliability. In addition, when the conductive fine particles of the present invention are held in a state sandwiched between a plurality of electrodes, current flows from one electrode to the other electrode through the conductive fine particles, but copper is 50% by weight or more. Since it is covered with the included metal layer, the current capacity during connection is large.
[0014]
The copper content of the metal layer is preferably 50 to 100% by weight. If the copper content is less than 50% by weight, a sufficient current capacity cannot be obtained, or the metal layer tends to break. More preferably, it is 90 to 100% by weight.
[0015]
If the metal layer containing copper is used as it is, when exposed to a high-temperature and high-humidity state, oxidation may occur, the connection resistance value may remarkably increase, and connection reliability may be lowered. Therefore, under such conditions, in order to maintain connection reliability, the metal layer is preferably covered with an antioxidant layer.
Examples of the antioxidant layer include those composed of low molecular weight organic substances, noble metals and the like. Among these, it is preferable to be made of a noble metal.
Gold can be suitably used as the noble metal.
The method for coating the metal layer with a noble metal is not particularly limited, and examples thereof include an electroless plating method, a displacement plating method, and an electroplating method.
[0016]
When gold is used as the noble metal, since copper diffuses into gold at a high temperature, it is preferable that a barrier layer is provided between the metal layer and the antioxidant layer. The barrier layer is preferably made of nickel.
[0017]
The thickness of each of the above layers is preferably a metal layer of 0.03 to 10 μm, a barrier layer of 0.01 to 2 μm, and an antioxidant layer of 0.01 to 2 μm. If the thickness of each layer is less than this range, the coating effect may not be sufficiently obtained. On the contrary, if this range is exceeded, the characteristics of the substrate may be lost.
More preferably, the metal layer is 0.08 to 1 μm, the barrier layer is 0.03 to 0.2 μm, and the antioxidant layer is 0.02 to 0.1 μm.
[0018]
Nonmetallic fine particles serving as the core of the conductive fine particles of the present invention have an average particle diameter of 1 to 500 μm, an aspect ratio of less than 1.3, a CV value of 25% or less, and a K value of 200 to 50,000 MPa.
[0019]
When the average particle diameter of the non-metallic fine particles is less than 1 μm, the conductive fine particles produced using the non-metallic fine particles do not contact the electrode surface to be contacted, and a gap is formed between the electrodes, resulting in poor contact. Wake up. When the average particle diameter of the nonmetallic fine particles exceeds 500 μm, the conductive fine particles produced using the nonmetallic fine particles are large, so that there is a problem that the adjacent electrode is short-circuited. The average particle diameter of the nonmetallic fine particles is preferably 3 to 100 μm, more preferably 5 to 30 μm. In the present invention, the average particle diameter is a value obtained by observing and measuring 300 arbitrary fine particles with an electron microscope.
[0020]
When the aspect ratio of the non-metallic fine particles is 1.3 or more, the particle diameters are not uniform, so when connecting the electrodes through the conductive fine particles produced using the non-metallic fine particles, they are not involved in the connection. A large amount of particles are generated, and a leak phenomenon between the electrodes tends to occur. The aspect ratio is preferably less than 1.1, more preferably less than 1.05.
[0021]
The aspect ratio is a value obtained by dividing the average major axis of fine particles by the average minor axis. In the present invention, the aspect ratio is a value obtained by observing and measuring 300 arbitrary fine particles with an electron microscope.
[0022]
When the CV value of the nonmetallic fine particles exceeds 25%, the particle diameters are not uniform. Therefore, when the electrodes are connected to each other through the conductive fine particles produced using the nonmetallic fine particles, the conductivity that is not involved in the connection is obtained. Fine particles may be generated and a leak phenomenon may occur between adjacent electrodes. The CV value is preferably 10% or less, more preferably 5% or less. Needless to say, the CV value is 0% or more.
[0023]
The CV value is the following formula (1);
CV value = (σ / Dn) × 100 (1)
(In the formula, σ represents a standard deviation of particle diameters, and Dn represents a number average particle diameter). In the present invention, the standard deviation and the number average particle diameter are values obtained by observing and measuring 300 arbitrary fine particles with an electron microscope.
[0024]
If the K value of the nonmetallic fine particles is less than 200 MPa, connection failure may occur due to impact or the like, and if the K value exceeds 50,000 MPa, the electrode may be damaged. The K value is preferably 300 to 8000 MPa, more preferably 400 to 3000 MPa.
[0025]
In the present invention, the K value refers to the K value at the time of 10% deformation, and the following formula (2):
(3 / √2) · F · S -3/2 · R -1/2 ···· (2)
(In the formula, F represents a load value (MPa × mm 2 ) at 20 ° C. and 10% compression deformation, S represents a compression displacement (mm), and R represents a radius (mm)). is there.
[0026]
As described above, the conductive fine particles of the present invention are obtained by coating nonmetallic fine particles with a metal containing 50% by weight or more of copper, an average particle size of 1 to 500 μm, an aspect ratio of less than 1.3, and a CV value of 25%. Hereinafter, there is no particular limitation as long as non-metallic fine particles having a K value of 200 to 50,000 MPa are used as the core, but preferred embodiments of the present invention include the following (1) and (2). It is done.
(1) Conductive fine particles in which polymer fine particles having a fracture strain of 40% or more are coated with a metal layer containing copper by 50% by weight or more, wherein the polymer fine particles have an average particle diameter of 3 to 100 μm and an aspect ratio. Conductive fine particles having a CV value of less than 1.1, a CV value of 10% or less, and a K value of 300 to 8000 MPa.
(2) Conductive fine particles in which polymer fine particles having a recovery rate of 40% or more are coated with a metal layer containing 50% by weight or more of copper, and the polymer fine particles have an average particle diameter of 5 to 30 μm and an aspect ratio. Conductive fine particles having a CV value of less than 1.05, a CV value of 5% or less, and a K value of 400 to 3000 MPa.
The conductive fine particles of the present invention may be further coated with an organic compound, resin, inorganic substance or the like.
[0027]
As described above, the conductive fine particles of the present invention are non-metallic at the core and have a specific K value, so that the electrodes are hardly damaged or poorly connected. Furthermore, since the CV value and the aspect ratio are small, leakage between the electrodes hardly occurs. In addition, since it is coated with a metal containing 50% by weight or more of copper, the electric capacity at the time of connection is large, and since the metal layer is flexible, it is difficult to crack even if the core is deformed, and a stable connection can be maintained. it can.
[0028]
The conductive fine particles of the present invention are mainly used when two opposing electrodes are electrically connected. The method for electrically connecting the two electrodes facing each other using the conductive fine particles is not particularly limited. For example, an anisotropic conductive adhesive is prepared by dispersing conductive fine particles in a binder resin. Examples thereof include a method of bonding and connecting two electrodes using this anisotropic conductive adhesive, a method of connecting using a binder resin and conductive fine particles separately, and the like.
[0029]
In the present invention, the anisotropic conductive adhesive is not particularly limited as long as the conductive fine particles are dispersed in an insulating binder resin. An anisotropic conductive film, anisotropic conductive paste, anisotropic Containing conductive conductive ink and the like.
The anisotropic conductive adhesive produced by using the conductive fine particles of the present invention is also one aspect of the present invention.
[0030]
The binder resin constituting the anisotropic conductive adhesive of the present invention is not particularly limited. For example, a thermoplastic resin such as an acrylate resin, an ethylene-vinyl acetate resin, a styrene-butadiene block copolymer; a monomer having a glycidyl group And a composition that is cured by heat or light, such as a curable resin composition obtained by a reaction with a curing agent such as oligomer and isocyanate.
Although the coating film thickness of the said anisotropic conductive adhesive is not specifically limited, 10 to several hundred micrometers is preferable.
[0031]
Examples of the object to be connected by the conductive fine particles of the present invention and the anisotropic conductive adhesive include, for example, a substrate having an electrode part formed on the surface, a component having an electrode part formed on the surface of a semiconductor or the like. Can be mentioned. The substrate is roughly classified into a flexible substrate and a rigid substrate. Examples of the flexible substrate include a resin sheet having a thickness of 50 to 500 μm. Examples of the material for the resin sheet include polyimide, polyamide, polyester, and polysulfone.
[0032]
The rigid substrates are roughly classified into those made of resin and those made of ceramic. Examples of the resin-made resin include glass fiber reinforced epoxy resin, phenol resin, and cellulose fiber reinforced phenol resin. Examples of the ceramics include silicon dioxide and alumina.
[0033]
The substrate structure may be a single layer structure, and in order to increase the number of electrodes per unit area, for example, a plurality of layers are formed by means such as through-hole formation, and are electrically connected to each other. A multi-layered substrate may be used.
[0034]
The components are not particularly limited, and examples thereof include active components such as semiconductors such as transistors, diodes, ICs, and LSIs; passive components such as resistors, capacitors, and crystal resonators.
[0035]
The shape of the electrode formed on the surface of the substrate or component is not particularly limited, and examples thereof include stripes, dots, and arbitrary shapes.
The material for the electrode is not particularly limited, and examples thereof include gold, silver, copper, nickel, palladium, carbon, aluminum, and ITO. Moreover, in order to reduce contact resistance, what further coat | covered gold | metal | money on copper, nickel, etc. can also be used.
The thickness of the electrode is preferably 0.1 to 100 μm. The width of the electrode is preferably 1 to 500 μm.
[0036]
As described above, various types of substrates and electronic components that can be used with the anisotropic conductive adhesive using the conductive fine particles of the present invention include various types. Among these, particularly for chip bonding. It can be preferably used.
[0037]
As a method for joining the conductive fine particles of the present invention to a substrate, a component, etc., for example, an anisotropic conductive film containing conductive fine particles is placed on a substrate or component having an electrode formed on the surface, There is a method in which a substrate or a component having another electrode surface is placed on top and heated and pressurized. Instead of the anisotropic conductive film, a predetermined amount of conductive paste using conductive fine particles can be used by printing means such as screen printing or a dispenser.
For the heating and pressurization, a crimping machine with a heater or a bonding machine is used.
[0038]
As a method for joining the conductive fine particles of the present invention to a substrate, a component, etc., a method that does not use an anisotropic conductive film and an anisotropic conductive paste is also possible. For example, 2 bonded together through conductive fine particles A method of curing after injecting a liquid binder into the gap between the two electrode portions can be used.
[0039]
A conductive connection structure in which the electrode portions of the substrate or components are connected using the conductive fine particles or the anisotropic conductive adhesive of the present invention is also one aspect of the present invention.
Since the conductive connection structure obtained as described above uses the conductive fine particles of the present invention, it has good conductivity and high connection reliability.
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0041]
Example 1
A long-chain alkyl diacrylate copolymer having an average particle size of 15 μm, an aspect ratio of 1.04, a CV value of 4%, a K value of 2000 MPa, a fracture strain of 50%, and a recovery rate of 50% is electrolessly plated to a thickness of 0.2 μm. Copper was coated. Furthermore, after coating nickel with a thickness of 0.1 μm by electroless plating, gold was coated with a thickness of 0.04 μm by displacement plating to obtain conductive fine particles.
[0042]
The obtained conductive fine particles were mixed and dispersed in a binder resin solution in which a mixture of an epoxy resin and an acrylic resin was dissolved in toluene. Next, this conductive fine particle dispersion was applied on the release film to a certain thickness, and toluene was evaporated to produce an anisotropic conductive film. The film thickness was 40 μm, and the concentration of conductive fine particles was 15%.
The obtained anisotropic conductive film was attached to a transparent glass substrate and heated and pressed, but no cracks in the metal coating layer were observed.
[0043]
The obtained anisotropic conductive film was pasted on a ceramic substrate in which 20 electrodes of 100 μm × 100 μm were arranged in two rows at a pitch of 150 μm. The same ceramic substrate was overlaid thereon, and heated and pressurized at 150 ° C. for 2 minutes to produce a conductive connection structure. A current of 2 A was passed through the obtained conductive connection structure, but it showed good conductivity and resistance was sufficiently low. Further, the connection resistance between adjacent electrodes was 1 × 10 9 Ω or more, and the insulation between lines was sufficiently maintained.
After conducting a heat and humidity resistance test at 70 ° C. and 85% for 200 hours, when a current of 2 A was passed through the conductive connection structure, there was almost no change in the characteristics of the conductive connection structure.
[0044]
Example 2
In Example 1, the same operation was performed except that only 0.2 μm thick copper was coated by electroless plating to obtain conductive fine particles. Using this conductive fine particle, an anisotropic conductive film and a conductive connection structure were produced in the same manner as in Example 1.
The obtained anisotropic conductive film was attached to a transparent glass substrate and heated and pressed, but no cracks in the metal coating layer were observed.
[0045]
A current of 2 A was passed through the obtained conductive connection structure, but it showed good conductivity and resistance was sufficiently low. Further, the connection resistance between adjacent electrodes was 1 × 10 9 Ω or more, and the insulation between lines was sufficiently maintained.
After conducting a heat and humidity resistance test at 70 ° C. and 85% for 200 hours, when a current of 2 A was passed through the conductive connection structure, an increase in resistance due to oxidation and partial conduction breakdown were observed. If there were no conditions, it seemed that there was no problem.
[0046]
Comparative Example 1
In Example 1, electroconductive fine particles were obtained in the same manner as in Example 1 except that nickel was coated instead of 0.2 μm thick copper by electroless plating. Using this conductive fine particle, an anisotropic conductive film and a conductive connection structure were produced in the same manner as in Example 1.
[0047]
When the obtained anisotropic conductive film was applied to a transparent glass substrate and heated and pressed, cracks in the metal coating layer were observed.
In the obtained conductive connection structure, the connection resistance between adjacent electrodes was 1 × 10 9 Ω or more and the insulation between lines was sufficiently maintained, but when a current of 2 A was passed, conduction breakdown was observed. .
[0048]
Comparative Example 2
An acrylate copolymer having a fracture strain of 50% and a recovery rate of 20% was subjected to plating treatment in the same manner as in Example 1, and conductive fine particles having an average particle size of 15 μm, an aspect ratio of 1.3, a CV value of 30%, and a K value of 100 MPa. Got. Using this conductive fine particle, an anisotropic conductive film and a conductive connection structure were produced in the same manner as in Example 1.
[0049]
The obtained anisotropic conductive film was attached to a transparent glass substrate and heated and pressed, but no cracks in the metal coating layer were observed.
When a current of 2A was passed through the obtained conductive connection structure, conduction breakdown was observed, and a short circuit occurred between adjacent electrodes.
[0050]
Comparative Example 3
The glass was plated in the same manner as in Example 1 to obtain conductive fine particles having an average particle diameter of 15 μm, an aspect ratio of 1.1, a CV value of 10%, and a K value of 70,000 MPa. Using this conductive fine particle, an anisotropic conductive film and a conductive connection structure were produced in the same manner as in Example 1.
[0051]
When the obtained anisotropic conductive film was applied to a transparent glass substrate and heated and pressed, the electrode on the glass substrate was damaged and a partial conduction failure occurred.
Although the obtained conductive connection structure had a connection resistance between adjacent electrodes of 1 × 10 9 Ω or more and the insulation between lines was sufficiently maintained, when a current of 2A was passed, a partial conduction breakdown was observed. It was.
[0052]
【The invention's effect】
Since the conductive fine particles of the present invention have the above-described configuration, the connection resistance is low, the current capacity at the time of connection is large, the connection is stable, and no leakage phenomenon occurs. Moreover, the conductive connection structure using the conductive fine particles of the present invention has good conductivity and high connection reliability.

Claims (19)

非金属微粒子が、銅を50重量%以上含む金属層により被覆されてなる導電性微粒子であって、
前記非金属微粒子は、平均粒径1〜500μm、アスペクト比1.3未満、CV値25%以下、K値200〜5万MPaである
ことを特徴とする導電性微粒子。
The non-metallic fine particles are conductive fine particles formed by coating with a metal layer containing 50% by weight or more of copper,
The non-metallic fine particles have an average particle diameter of 1 to 500 μm, an aspect ratio of less than 1.3, a CV value of 25% or less, and a K value of 200 to 50,000 MPa.
非金属微粒子は、破壊歪み40%以上の高分子であることを特徴とする請求項1記載の導電性微粒子。The conductive fine particles according to claim 1, wherein the non-metallic fine particles are polymers having a fracture strain of 40% or more. 非金属微粒子は、回復率40%以上の高分子であることを特徴とする請求項1又は2記載の導電性微粒子。3. The conductive fine particle according to claim 1, wherein the non-metallic fine particle is a polymer having a recovery rate of 40% or more. 非金属微粒子は、銅を90重量%以上含む金属層により被覆されてなることを特徴とする請求項1、2又は3記載の導電性微粒子。The conductive fine particles according to claim 1, 2 or 3, wherein the non-metallic fine particles are coated with a metal layer containing 90% by weight or more of copper. 銅を含む金属層は、酸化防止層で被覆されていることを特徴とする請求項1、2、3又は4記載の導電性微粒子。5. The conductive fine particle according to claim 1, wherein the metal layer containing copper is covered with an antioxidant layer. 酸化防止層は、貴金属からなることを特徴とする請求項5記載の導電性微粒子。6. The conductive fine particle according to claim 5, wherein the antioxidant layer is made of a noble metal. 貴金属は、金であることを特徴とする請求項6記載の導電性微粒子。7. The conductive fine particle according to claim 6, wherein the noble metal is gold. 銅を含む金属層と酸化防止層との間にバリア層が設けられていることを特徴とする請求項5、6又は7記載の導電性微粒子。The conductive fine particles according to claim 5, 6 or 7, wherein a barrier layer is provided between the metal layer containing copper and the antioxidant layer. バリア層は、ニッケルからなることを特徴とする請求項8記載の導電性微粒子。9. The conductive fine particle according to claim 8, wherein the barrier layer is made of nickel. 平均粒径は、3〜100μmであることを特徴とする請求項1、2、3、4、5、6、7、8又は9記載の導電性微粒子。The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the average particle diameter is 3 to 100 µm. 平均粒径は、5〜30μmであることを特徴とする請求項1、2、3、4、5、6、7、8、9又は10記載の導電性微粒子。The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, wherein the average particle diameter is 5 to 30 µm. アスペクト比は、1.1未満であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10又は11記載の導電性微粒子。The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11, wherein the aspect ratio is less than 1.1. アスペクト比は、1.05未満であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11又は12記載の導電性微粒子。The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, wherein the aspect ratio is less than 1.05. CV値は、10%以下であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12又は13記載の導電性微粒子。The conductive fine particles according to claim 1, 2 or 3, wherein the CV value is 10% or less. CV値は、5%以下であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13又は14記載の導電性微粒子。CV value is 5% or less, The electroconductive fine particles of Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 characterized by the above-mentioned. K値は、300〜8000MPaであることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14又は15記載の導電性微粒子。The electroconductive fine particles according to claim 1, wherein the K value is 300 to 8000 MPa. The conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. . K値は、400〜3000MPaであることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15又は16記載の導電性微粒子。K value is 400-3000 MPa, The electroconductivity of Claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 characterized by the above-mentioned. Fine particles. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16又は17記載の導電性微粒子を用いてなることを特徴とする異方性導電接着剤。A conductive fine particle according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17. Isotropic conductive adhesive. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16若しくは17記載の導電性微粒子、又は、請求項18記載の異方性導電接着剤により接続されてなることを特徴とする導電接続構造体。19. Conductive fine particles according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, or anisotropic according to claim 18. A conductive connection structure characterized by being connected by a conductive conductive adhesive.
JP33811099A 1999-11-29 1999-11-29 Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure Expired - Fee Related JP3581618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33811099A JP3581618B2 (en) 1999-11-29 1999-11-29 Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33811099A JP3581618B2 (en) 1999-11-29 1999-11-29 Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure

Publications (2)

Publication Number Publication Date
JP2001155539A JP2001155539A (en) 2001-06-08
JP3581618B2 true JP3581618B2 (en) 2004-10-27

Family

ID=18315013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33811099A Expired - Fee Related JP3581618B2 (en) 1999-11-29 1999-11-29 Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure

Country Status (1)

Country Link
JP (1) JP3581618B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038565A1 (en) 2006-09-26 2008-04-03 Hitachi Chemical Company, Ltd. Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP2009048991A (en) * 2007-07-20 2009-03-05 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material, and connection structure
CN103329217A (en) * 2011-01-25 2013-09-25 株式会社日本触媒 Conductive microparticle, resin particle, and anisotropic conductive material using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068144A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP4278374B2 (en) * 2002-09-24 2009-06-10 積水化学工業株式会社 Conductive fine particles, method for producing conductive fine particles, and conductive material
JP5151920B2 (en) 2008-02-05 2013-02-27 日立化成工業株式会社 Conductive particles and method for producing conductive particles
JP4877407B2 (en) 2009-07-01 2012-02-15 日立化成工業株式会社 Coated conductive particles and method for producing the same
JP6245792B2 (en) * 2012-03-29 2017-12-13 デクセリアルズ株式会社 Conductive particle, circuit connection material, mounting body, and manufacturing method of mounting body
JP5368613B1 (en) * 2012-08-06 2013-12-18 ナトコ株式会社 Conductive fine particles
JP6478308B2 (en) * 2012-11-28 2019-03-06 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3542611B2 (en) * 1991-07-26 2004-07-14 積水化学工業株式会社 Conductive fine particles, electrode connection structure, and method of manufacturing the same
JP3373094B2 (en) * 1994-10-28 2003-02-04 積水化学工業株式会社 Elastic fine particles, method for producing the same, and elastic conductive fine particles
JPH11134936A (en) * 1997-10-29 1999-05-21 Sekisui Finechem Co Ltd Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038565A1 (en) 2006-09-26 2008-04-03 Hitachi Chemical Company, Ltd. Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP2009048991A (en) * 2007-07-20 2009-03-05 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material, and connection structure
CN103329217A (en) * 2011-01-25 2013-09-25 株式会社日本触媒 Conductive microparticle, resin particle, and anisotropic conductive material using same
CN103329217B (en) * 2011-01-25 2016-06-29 株式会社日本触媒 Electrically conductive microparticle and resin particle and employ their anisotropic conductive material

Also Published As

Publication number Publication date
JP2001155539A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
KR930002935B1 (en) Composition for circuit connection method for connection using the same and connected structure of semiconductor chips
US7247381B1 (en) Adhesive for bonding circuit members, circuit board, and method of producing the same
US6328844B1 (en) Filmy adhesive for connecting circuits and circuit board
JPWO2009017200A1 (en) Circuit connection material, circuit member connection structure using the same, and circuit member connection method
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPWO2007099965A1 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JPH1150032A (en) Connection member for circuit and circuit board
JP2002201450A (en) Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP2000133050A (en) Anisotropic conductive film and conductive connection structural body
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JP3679618B2 (en) Insulating coating conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
JPH11126516A (en) Anisotropic conductive adhesive and conductive connection structure
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JP3782590B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP5143329B2 (en) Manufacturing method of circuit connection body
JPS6353805A (en) Anisotropic conducting material and mounting of semiconductor device using the same
JPH11329060A (en) Conductive corpuscle, anisotropic conductive adhesive and conductive connection structure
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP2003049152A (en) Adhesive for connecting circuit, connecting method using the same and connecting structure
JP4925405B2 (en) Method for manufacturing connection structure
JP4378788B2 (en) IC chip connection method
JP2000030526A (en) Conductive corpuscle, anisotropic conductive adhesive and conductive connection structural body
JPH11134936A (en) Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure
JP2000129157A (en) Insulation coated electroconductive microparticle, anisotropic electroconductive adhesive and electroconductive connecting structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

R151 Written notification of patent or utility model registration

Ref document number: 3581618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees