JP4378788B2 - IC chip connection method - Google Patents

IC chip connection method Download PDF

Info

Publication number
JP4378788B2
JP4378788B2 JP14139599A JP14139599A JP4378788B2 JP 4378788 B2 JP4378788 B2 JP 4378788B2 JP 14139599 A JP14139599 A JP 14139599A JP 14139599 A JP14139599 A JP 14139599A JP 4378788 B2 JP4378788 B2 JP 4378788B2
Authority
JP
Japan
Prior art keywords
chip
connection
viscosity
circuit board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14139599A
Other languages
Japanese (ja)
Other versions
JP2000332391A (en
Inventor
幸寿 廣澤
功 塚越
正規 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP14139599A priority Critical patent/JP4378788B2/en
Publication of JP2000332391A publication Critical patent/JP2000332391A/en
Application granted granted Critical
Publication of JP4378788B2 publication Critical patent/JP4378788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICチップを各種回路基板(ガラスやセラミック等の無機基板、ポリイミドやポリエステルフィルム等の有機基板、ガラスと有機材との複合材等)に接続する際の接続方法に関する。
【0002】
【従来の技術】
近年、電子部品の小型薄型化に伴い、これらに用いる回路は高密度化、高精細化している。このような電子部品と微細電極の接続は、従来のハンダやゴムコネクタ等では対応が困難であることから、最近では分解能に優れた接続部材が多用されている。
この接続部材は、短時間硬化が可能で分子構造上接着性に優れたエポキシ系接着剤に硬化剤を添加してなる絶縁性接着剤中に、導電粒子等の導電材料を所定量含有した絶縁性接着剤が用いられている。また、これら導電材料を含有せずに絶縁性接着剤単独で電極同士の直接接触状態を固定維持する方法も知られている。
この導電材料を所定量含有した絶縁性接着剤を用いて接続した場合、電子部品の電極同士は導電材料を介して電気的に接続されることから、電極の高さばらつき等による接続性低下の現象が発生しにくいことから、好んで用いられている。一方、絶縁性接着剤の単独使用による方法は、導電材料による隣接電極間の短絡がなく、高精細接続が可能といった特徴を有する。
これらの接続部材を用いての接続方法は、電子部品の電極と基板回路との間に接続部材を設け、電子部品を専用治具等を用いて加熱、加圧の手段を講じるものである。例えば、液晶パネルのガラス電極基板とICチップの接続においては、まず接続部材がガラス基板上に仮付けされる。その後、ICチップと基板の位置合わせが行われ、加熱、加圧の手段が講じられ接続される。これにより両者の電極同士が電気的に接続されると共に、隣接して形成されている電極同士には絶縁性が付与され、ガラス基板とICチップとが接着固定される。
【0003】
【発明が解決しようとする課題】
上記従来の方法における液晶パネルのガラス電極基板とICチップの接続においては、ICチップ側からの加熱が一般的である。この加熱方法としては、ヒータを内蔵した金属やセラミック等の加熱治具(圧着ヘッド)を用いたり、熱風加熱による方法が一般的である。このときの加熱温度は、接続部材が架橋硬化反応する120〜240℃程度になるように設定され、この状態で4〜40秒程度保持される。このとき、ICチップを介して熱を伝導させるために熱的損失が大きく、ICチップと接続部材さらには基板との間に温度差が生じてしまう。このため、ICチップの伸び量と基板の伸び量に差が生じてしまい、接続部への応力集中による接続信頼性の低下や、反りやクラック等の問題が発生する。
【0004】
本発明は、かかる状況に鑑みてなされたもので、相対峙した回路基板とICチップの双方から加熱を行い、回路基板の伸び量とICチップの伸び量の差を極小にすることによって反りやクラック等の変形を低減し、接続信頼性の向上が可能な接続方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
すなわち本発明は、回路基板とICチップの接続電極間に、熱により初期流動して最低粘度を示し、その後硬化反応により粘度が上昇する熱硬化性絶縁性接着剤からなる接続部材を配置し、相対峙した電極間を加熱加圧することにより電極同士の電気的接続と部品間の固着をすることからなる接続方法において、熱硬化性絶縁性接着剤は、熱により初期流動して最低粘度を示すまでの単位時間あたりの粘度の変化量の大きさよりも、その後硬化反応により粘度が上昇するときの単位時間あたりの粘度の変化量の大きさが大きくなっており、相対峙する回路基板とICチップのそれぞれを所定の温度で加熱することにより、圧着後接続部材が最低粘度となる時点での回路基板の伸び量とICチップの伸び量の差を極小にすることを特徴とするICチップの接続方法に関する。
【0006】
【発明の実施の形態】
以下、本発明を図面を参照しながら詳細に説明する。
図1は、本発明の一実施例を説明する接続方法の断面模式図である。
この接続方法は、回路基板1の電極とICチップ2のバンプ間に接続部材3を設けてなる接続体を圧着ステージ4上に置き、圧着ヘッド5を用いて加熱、加圧の手段を講じるものである。図2に示すように上下に配した圧着ヘッドを用いて加熱、加圧してもよい。また、図示していないが、加熱源として熱風を用いてもよい。
圧着ヘッド5の材質としては、金属やセラミック等があり、併設されているヒータにより任意の温度設定が可能となっている。また、空気圧等の利用により任意に圧力設定が可能となっている。
圧着ステージ4の材質としては、ガラス、金属、セラミック等があり、併設されているヒータにより任意の温度設定が可能となっている。
【0007】
接続部材は、図3に示すように絶縁性接着剤6単独からなる。あるいは、図4に示すように導電材料7を含有した絶縁性接着剤6からなり、このものは加圧方向に導電性を有している。さらには図5に示すように導電材料7と絶縁性接着剤6とからなる導電性接着剤層の少なくとも片面に絶縁性接着剤6’が形成してなる多層接続部材でもよい。また、図示していないが、絶縁性接着剤は導電性接着剤層の両面に形成してもよい。
導電材料としては、Au、Ag、Pt、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン等があり、またこれらの導電粒子を核材とするか、あるいは非導電性のガラス、セラミック、プラスチック等の高分子からなる核材に前記の材質からなる導電層を被覆形成したものでもよい。さらに導電材料を絶縁層で被覆してなる絶縁被覆粒子や、スペ−サ−としての絶縁粒子を併用してもよい。
【0008】
導電粒子の粒径は、微小電極上に1個以上、好ましくは多数個の粒子を確保するために小粒径粒子が好適であり、0.5〜15μmが好ましく、2〜8μmがさらに好ましい。導電粒子の充填量は、高精細な回路電極に対する導通性と絶縁性を確保するために、絶縁性接着剤中に25体積%未満とするのが好ましい。
絶縁性接着剤は、熱により初期流動して低粘度化し、引き続き硬化性を示す材料が広く適用でき、これらは、接続後の耐熱性や耐湿性に優れることから熱硬化性材料の適用が好ましい。中でもエポキシ系接着剤は、短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れる等の特徴から好ましく適用できる。
エポキシ系接着剤は、例えば高分子量のエポキシ、固形エポキシと液状エポキシ、ウレタンやポリエステル、アクリルゴム、NBR、ナイロン等で変性したエポキシ樹脂を主成分とし、硬化剤や触媒、カップリング剤、充填剤等を添加してなるものが一般的である。
【0009】
硬化剤としては、接続部材の保存性を維持するため潜在性硬化剤であることが好ましい。本発明でいう潜在性硬化剤とは、反応性樹脂(例えばエポキシ樹脂)との共存性を有し、所定の温度下で急速硬化するものをいう。かかる潜在性硬化剤としては各種の硬化剤成分をマイクロカプセル化したものが市販されている。また接着剤の活性化温度温度は、接着剤の主成分である反応性樹脂と潜在性硬化剤との共存下での活性化温度で表すことができる。活性化温度は、反応性樹脂と潜在性硬化剤との共存混合試料3mgをDSC(Differential Scanning Calorimeter 示差走差型熱量計)を用い、10℃/分で常温(30℃)から250℃まで上昇させたときの発熱量の最大を示すピーク温度とする。また、本発明における接続部材の活性化温度は、ICチップの伸び量と基板の伸び量を考慮すると50〜200℃の範囲にあることが好ましい。
【0010】
本発明は、接続時に相対峙する回路基板とICチップのそれぞれを所定の温度で加熱することにより、基板の伸び量とICチップの伸び量の差を極小にすることを特徴とする。ここでの接着部材の粘度は、図6に示すように接続部材が圧着ツールにより加熱加圧され(a)、低粘度化に伴い接着剤が流動し、電極間の導通が確保された状態(b:本発明の最低粘度)を示し、硬化反応の進行により急激に粘度が上昇する。例えば、上記のエポキシ系接着剤と潜在性硬化剤を用いて、130〜240℃程度の温度で図1及び図2に示す方法により圧着した場合、圧着後2〜10秒後に最低粘度の状態となる。回路基板とICチップの加熱温度は、熱膨張係数(ガラス基板;約4.6ppm/℃、ガラス−エポキシ基板;約14ppm/℃、ICチップ;約3ppm/℃)、弾性率(ガラス基板;約68.6GPa、ガラス−エポキシ基板;21GPa、ICチップ;約169.8GPa)、厚み等を考慮し、基板の伸び量とICチップの伸び量の差が極小になるように設定することが好ましい。
さらには、回路基板への加熱効率を高めるために、圧着前に回路基板を予備加熱することが好ましい。このとき、接続部材が付いた回路基板を用いる場合は、接着剤の活性化温度以下で予備加熱をする必要がある。これは、活性化温度以上の温度で予備加熱を行った場合、接続部材の反応が進行してしまい、接続後の接続信頼性を低下させてしまうためである。
【0011】
本発明によれば、接続時に相対峙する回路基板とICチップのそれぞれを所定の温度で加熱することにより、基板の伸び量とICチップの伸び量の差を極小にできることから、反り、クラック等の変形が低減できる接続方法を提供できる。また、本接続方法を用いることにより、接続部への応力集中を緩和できることから接続信頼性の向上が可能である。
【0012】
【実施例】
以下実施例で詳細に説明するが、本発明はこれに限定されない。
実施例1
(1)接続部材の作製
フィルム形成材としてフェノキシ樹脂(高分子量エポキシ樹脂)とアミン系マイクロカプセル型潜在硬化剤を含有する液状エポキシ樹脂(エポキシ等量185)の比率を20/80とし、酢酸エチルの30%溶液を得た。この溶液に対して、粒子径5μmのポリスチレン系粒子に、Ni/Auの厚さ0.2/0.02μmの金属被覆を形成した導電粒子を5体積%添加し、混合分散した。この分散液をPET基材にロールコータを用いて連続的に塗布し、80℃10分間乾燥した後、厚み20μmの接続部材を得た。この接続部材の活性温度は135℃である。また、130〜200℃の温度で図1及び図2に示した方法により圧着した場合、圧着後約3秒後に最低粘度の状態となる。
(2)接続
ICベアチップ上に高さ15μmの金めっきバンプを有する評価用ICチップ(サイズ1.7×17mm、チップ厚み0.55mm、バンプサイズ50×50μm)と、ガラス基板(厚み0.7mm)上に、酸化インジウム(厚み0.2μm、表面抵抗20Ω/□)の薄膜回路を有する平面電極上との接続を行った。
まず、前記接続部材を2.0mm幅に裁断し、ガラス基板の電極上に貼り付けた。次にPET基材セパレータを剥離した後、ICチップと基板の位置合わせを行いついで、図1に示す方法を用いて圧着した。まず、接続部材が付いたガラス基板を90℃に加熱した圧着ステージ上で30秒間予備加熱を行った。次に、約150℃に加熱した圧着ヘッドを用いて、ICチップ上から20秒間加熱加圧した。このとき、接続部材料が最低粘度となる圧着後約3秒後において、ICベアチップ;150℃、接続部材;140℃、ガラス基板;115℃であった。
【0013】
実施例2
実施例1と同様の接続部材、評価用ICチップ及び平面電極を用いて接続を行った。
まず、前記接続部材を2.0mm幅に裁断し、ガラス基板の電極上に貼り付けた。次に、PET基材セパレータを剥離した後、ICチップと基板の位置合わせを行いついで、図2に示す方法を用いて圧着した。約150℃に加熱した上方の圧着ヘッドを用いて、ICチップ上から20秒間加熱加圧した。同時に、約130℃に加熱した下方の圧着ヘッドを用いて、ガラス基板側から20秒加熱加圧した。このとき、接続部材料が最低粘度となる圧着後約3秒後において、ICチップ;150℃、接続部材;140℃、ガラス基板;115℃であった。
【0014】
実施例3
実施例1と同様の接続部材、評価用ICチップを用いた。このときの基板は、ガラスエポキシ基板(厚み0.7mm)上に、銅回路電極(厚み18μm)を有するものを使用した。
まず、前記接続部材を2.0mm幅に裁断し、ガラスエポキシ基板の電極上に貼り付けた。次に、PET基材セパレータを剥離した後、ICチップと基板の位置合わせを行った。圧着は、図1に示す方法を用いて行った。まず、接続部材が付いて基板を約5℃に冷却した圧着ステージ上に30秒間載置した。次に約150℃に加熱した圧着ヘッドを用いて、ICチップ上から20秒間加熱加圧した。このとき、接続部材料が最低粘度となる圧着後約3秒後において、ICチップ;150℃、接続部材;135℃、ガラスエポキシ基板;40℃であった。
【0015】
比較例1
実施例1と同様の接続部材、評価用ICチップ及び平面電極を用いての接続を行った。
まず、前記接続部材を2.0mm幅に裁断し、ガラス基板の電極上に貼り付けた。次に、PET基材セパレータを剥離した後、ICベアチップと基板の位置合わせを行いついで、図1に示す方法を用いて圧着した。まず、接続部材が付いたガラス基板を圧着ステージ上にセットした。このとき圧着ステージは加熱しておらず約25℃である。次に約150℃に加熱した圧着ヘッドを用いて、ICベアチップ上から20秒間加熱加圧した。このとき、接続部材料が最低粘度となる圧着後約3秒後において、ICベアチップ;150℃、接続部材;135℃、ガラス基板;70℃であった。
【0016】
比較例2
実施例3と同様の接続部材、評価用ICチップ及びガラスエポキシ基板を用いて接続を行った。
まず、前記接続部材を2.0mm幅に裁断し、ガラスエポキシ基板の電極上に貼り付けた。次に、PET基材セパレータを剥離した後、ICチップと基板の位置合わせを行いついで、図1に示す方法を用いて圧着した。まず、接続部材が付いたガラス基板を圧着ステージ上にセットした。このとき圧着ステージは加熱しておらず約25℃である。次に約150℃に加熱した圧着ヘッドを用いて、ICベアチップ上から20秒間加熱加圧した。このとき、接続部材料が最低粘度となる圧着後約3秒後において、ICベアチップ;150℃、接続部材;137℃、ガラスエポキシ基板;65℃であった。
【0017】
評価1
実施例1〜3、比較例1〜2で得られた接続体を用いて、接続体の最大反り量を評価した。評価方法は、表面形状測定器(小坂研究所製 SE−3C)を用いて、ICチップ実装裏面における基板の最大反り量を測定した。
得られた結果を表1に示す。この結果から明らかなように、本発明の接続方法を用いることにより、ICチップと基板の反りを低減できることが分かった。
【0018】
【表1】

Figure 0004378788
【0019】
評価2
実施例1〜3、比較例1〜2で得られた接続体を用いて、接続抵抗値を評価した。評価方法は、抵抗測定機を用いて、バンプサイズ50×50μm当たりの接続抵抗値を測定した。また、この接続体を高温高湿中(85℃85%RH)に500h放置して、接続抵抗値の変化を測定した。
得られた結果を表2に示す。この結果から明らかなように、本発明の接続方法を用いることにより、高い接続信頼性が得られることが分かった。
【0020】
【表2】
Figure 0004378788
【0021】
【発明の効果】
本発明によれば、接続時に相対峙する回路基板とICチップのそれぞれを所定の温度で加熱することにより、回路基板の伸び量とICチップの伸び量の差を極小にできることから、反り、クラック等の変形が低減できる接続方法を提供できる。また、接続部への応力集中を緩和できることから接続信頼性の向上が可能である。さらに、接着剤の活性化温度以下で回路基板を加熱することにより、量産性及び接続後の接続信頼性に優れた接続方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する接続方法の断面模式図。
【図2】本発明の他の実施例を説明する接続方法の断面模式図。
【図3】接続部材の断面模式図。
【図4】接続部材の断面模式図。
【図5】多層接続部材の断面模式図。
【図6】接続部材の粘度の挙動を示す線図。
【符号の説明】
1 回路基板 2 ICチップ
3 接続部材 4 圧着ステージ
5 圧着ヘッド 6 絶縁性接着剤
7 導電材料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connection method for connecting an IC chip to various circuit boards (an inorganic substrate such as glass or ceramic, an organic substrate such as polyimide or polyester film, a composite material of glass and an organic material, or the like).
[0002]
[Prior art]
In recent years, with the reduction in size and thickness of electronic components, circuits used for these have become higher in density and higher in definition. Since it is difficult to connect such electronic components and fine electrodes with conventional solders, rubber connectors, or the like, connection members having excellent resolution have been frequently used recently.
This connection member is an insulating adhesive that contains a predetermined amount of conductive material such as conductive particles in an insulating adhesive that can be cured for a short time and has a molecular structure with excellent adhesion to an epoxy adhesive. Adhesive is used. There is also known a method of fixing and maintaining the direct contact state between electrodes with an insulating adhesive alone without containing these conductive materials.
When connected using an insulating adhesive containing a predetermined amount of this conductive material, the electrodes of the electronic components are electrically connected to each other through the conductive material. It is used favorably because the phenomenon is unlikely to occur. On the other hand, the method using an insulating adhesive alone has a feature that there is no short circuit between adjacent electrodes due to a conductive material, and high-definition connection is possible.
In the connection method using these connection members, a connection member is provided between the electrode of the electronic component and the substrate circuit, and the electronic component is heated and pressurized using a special jig or the like. For example, in connecting a glass electrode substrate of a liquid crystal panel and an IC chip, first, a connection member is temporarily attached on the glass substrate. Thereafter, the IC chip and the substrate are aligned, and heating and pressurizing means are taken and connected. As a result, both electrodes are electrically connected to each other, and insulation between the adjacent electrodes is imparted, and the glass substrate and the IC chip are bonded and fixed.
[0003]
[Problems to be solved by the invention]
In connecting the glass electrode substrate of the liquid crystal panel and the IC chip in the conventional method, heating from the IC chip side is common. As this heating method, a method using a heating jig (crimp head) such as a metal or ceramic with a built-in heater or hot air heating is generally used. The heating temperature at this time is set to be about 120 to 240 ° C. at which the connecting member undergoes a crosslinking and curing reaction, and is maintained for about 4 to 40 seconds in this state. At this time, since heat is conducted through the IC chip, thermal loss is large, and a temperature difference is generated between the IC chip and the connection member and further the substrate. For this reason, a difference occurs between the extension amount of the IC chip and the extension amount of the substrate, and problems such as a decrease in connection reliability due to stress concentration on the connection portion, warpage, and cracks occur.
[0004]
The present invention has been made in view of such a situation. Heating is performed from both of the circuit board and the IC chip which are opposed to each other, and the difference between the extension amount of the circuit board and the extension amount of the IC chip is minimized. An object of the present invention is to provide a connection method capable of reducing deformation such as cracks and improving connection reliability.
[0005]
[Means for Solving the Problems]
That is, the present invention is, between the connection electrodes of the circuit board and the IC chip, heat by shows an initial flow and a minimum viscosity, the connecting member is subsequently Rineba degree by the curing reaction a thermosetting insulating adhesive to rise In a connection method consisting of electrical connection between electrodes and fixing between parts by heating and pressing between opposed electrodes, the thermosetting insulating adhesive is initially flowed by heat and the lowest A circuit board in which the magnitude of the change in viscosity per unit time when the viscosity rises by the curing reaction is larger than the magnitude of the change in viscosity per unit time until the viscosity is shown. And the IC chip are heated at a predetermined temperature, thereby minimizing the difference between the amount of elongation of the circuit board and the amount of elongation of the IC chip at the time when the connecting member has a minimum viscosity after crimping. Chip method for the connection.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a connection method for explaining an embodiment of the present invention.
In this connection method, a connection body in which a connection member 3 is provided between the electrodes of the circuit board 1 and the bumps of the IC chip 2 is placed on the pressure-bonding stage 4, and heating and pressure means are taken using the pressure-bonding head 5. It is. As shown in FIG. 2, heating and pressurization may be performed using pressure bonding heads arranged vertically. Although not shown, hot air may be used as a heating source.
Examples of the material of the pressure bonding head 5 include metal and ceramic, and any temperature can be set by a heater provided therewith. Further, the pressure can be arbitrarily set by using air pressure or the like.
Examples of the material of the crimping stage 4 include glass, metal, and ceramic, and any temperature can be set by a heater provided therewith.
[0007]
As shown in FIG. 3, the connecting member is made of the insulating adhesive 6 alone. Or it consists of the insulating adhesive 6 containing the electrically-conductive material 7 as shown in FIG. 4, and this thing has electroconductivity in a pressurization direction. Furthermore, as shown in FIG. 5, a multilayer connection member in which an insulating adhesive 6 ′ is formed on at least one surface of a conductive adhesive layer made of a conductive material 7 and an insulating adhesive 6 may be used. Although not shown, the insulating adhesive may be formed on both surfaces of the conductive adhesive layer.
Examples of conductive materials include metal particles such as Au, Ag, Pt, Ni, Cu, W, Sb, Sn, and solder, carbon, etc., and these conductive particles are used as a core material or non-conductive glass. Alternatively, a core material made of a polymer such as ceramic or plastic may be coated with a conductive layer made of the above material. Furthermore, insulating coating particles formed by coating a conductive material with an insulating layer or insulating particles as a spacer may be used in combination.
[0008]
The particle diameter of the conductive particles is preferably a small particle diameter, preferably 0.5 to 15 μm, and more preferably 2 to 8 μm in order to secure one or more, preferably a large number of particles on the microelectrode. The filling amount of the conductive particles is preferably less than 25% by volume in the insulating adhesive in order to ensure conductivity and insulation with respect to the high-definition circuit electrode.
Insulating adhesives are initially flowable by heat to lower viscosity, and materials that continue to exhibit curability can be widely applied, and these are preferably applied with thermosetting materials because they have excellent heat resistance and moisture resistance after connection. . Among these, epoxy adhesives can be preferably applied because of their characteristics such that they can be cured in a short time, have good connection workability, and have excellent adhesion in terms of molecular structure.
Epoxy adhesives are mainly composed of epoxy resin modified with high molecular weight epoxy, solid epoxy and liquid epoxy, urethane, polyester, acrylic rubber, NBR, nylon, etc., and hardeners, catalysts, coupling agents, fillers The one formed by adding etc. is common.
[0009]
The curing agent is preferably a latent curing agent in order to maintain the storage stability of the connection member. The latent curing agent referred to in the present invention means a material that has coexistence with a reactive resin (for example, epoxy resin) and rapidly cures at a predetermined temperature. As such a latent curing agent, those obtained by microencapsulating various curing agent components are commercially available. Moreover, the activation temperature temperature of an adhesive agent can be represented by the activation temperature in the coexistence of the reactive resin which is a main component of an adhesive agent, and a latent hardener. The activation temperature rises from room temperature (30 ° C) to 250 ° C at 10 ° C / min using DSC (Differential Scanning Calorimeter) with 3 mg of coexisting mixed sample of reactive resin and latent curing agent. The peak temperature indicates the maximum amount of heat generated when In addition, the activation temperature of the connection member in the present invention is preferably in the range of 50 to 200 ° C. in consideration of the elongation amount of the IC chip and the elongation amount of the substrate.
[0010]
The present invention is characterized in that the difference between the extension amount of the substrate and the extension amount of the IC chip is minimized by heating each of the circuit board and the IC chip that face each other at the time of connection at a predetermined temperature. As shown in FIG. 6, the viscosity of the adhesive member is such that the connecting member is heated and pressurized by the crimping tool (a), the adhesive flows as the viscosity decreases, and conduction between the electrodes is ensured ( b: minimum viscosity of the present invention), and the viscosity rapidly increases as the curing reaction proceeds. For example, when the above-mentioned epoxy adhesive and latent curing agent are used for pressure bonding by the method shown in FIGS. 1 and 2 at a temperature of about 130 to 240 ° C., the state of the lowest viscosity is 2 to 10 seconds after the pressure bonding. Become. The heating temperature of the circuit board and the IC chip is as follows: thermal expansion coefficient (glass substrate; about 4.6 ppm / ° C., glass-epoxy substrate; about 14 ppm / ° C., IC chip; about 3 ppm / ° C.), elastic modulus (glass substrate; about (68.6 GPa, glass-epoxy substrate; 21 GPa, IC chip; about 169.8 GPa), thickness, etc., are preferably set so that the difference between the elongation amount of the substrate and the elongation amount of the IC chip is minimized.
Furthermore, it is preferable to preheat the circuit board before pressure bonding in order to increase the heating efficiency of the circuit board. At this time, when a circuit board with a connection member is used, it is necessary to perform preheating below the activation temperature of the adhesive. This is because when the preheating is performed at a temperature equal to or higher than the activation temperature, the reaction of the connection member proceeds and the connection reliability after connection is lowered.
[0011]
According to the present invention, the difference between the amount of elongation of the substrate and the amount of extension of the IC chip can be minimized by heating each of the circuit board and the IC chip facing each other at a predetermined temperature, so that warpage, cracks, etc. It is possible to provide a connection method that can reduce the deformation of. Further, by using this connection method, the stress concentration on the connection portion can be alleviated, so that the connection reliability can be improved.
[0012]
【Example】
Examples are described in detail below, but the present invention is not limited thereto.
Example 1
(1) Preparation of connecting member The ratio of phenoxy resin (high molecular weight epoxy resin) and liquid epoxy resin (epoxy equivalent 185) containing an amine microcapsule type latent curing agent as a film forming material is 20/80, and ethyl acetate A 30% solution of was obtained. To this solution, 5% by volume of conductive particles formed with a metal coating of Ni / Au thickness 0.2 / 0.02 μm were added to polystyrene particles having a particle diameter of 5 μm and mixed and dispersed. This dispersion was continuously applied to a PET substrate using a roll coater and dried at 80 ° C. for 10 minutes to obtain a connecting member having a thickness of 20 μm. The activation temperature of this connecting member is 135 ° C. Moreover, when it crimps | bonds by the method shown in FIG.1 and FIG.2 at the temperature of 130-200 degreeC, it will be in the state of the minimum viscosity about 3 seconds after crimping | compression-bonding.
(2) Evaluation IC chip (size 1.7 × 17 mm, chip thickness 0.55 mm, bump size 50 × 50 μm) having a gold-plated bump having a height of 15 μm on the connection IC bare chip, and a glass substrate (thickness 0.7 mm) And a planar electrode having a thin film circuit of indium oxide (thickness 0.2 μm, surface resistance 20Ω / □).
First, the connecting member was cut to a width of 2.0 mm and pasted on the electrode of the glass substrate. Next, after peeling off the PET base material separator, the IC chip and the substrate were aligned, followed by pressure bonding using the method shown in FIG. First, the glass substrate with the connecting member was preheated for 30 seconds on a pressure-bonding stage heated to 90 ° C. Next, using a pressure-bonding head heated to about 150 ° C., it was heated and pressed from above the IC chip for 20 seconds. At this time, it was IC bare chip; 150 degreeC, connection member; 140 degreeC, glass substrate;
[0013]
Example 2
Connection was performed using the same connection member, evaluation IC chip, and planar electrode as in Example 1.
First, the connecting member was cut to a width of 2.0 mm and pasted on the electrode of the glass substrate. Next, after peeling off the PET base material separator, the IC chip and the substrate were aligned, followed by pressure bonding using the method shown in FIG. Using an upper pressure-bonding head heated to about 150 ° C., the IC chip was heated and pressed for 20 seconds. At the same time, the lower pressure bonding head heated to about 130 ° C. was used to heat and press for 20 seconds from the glass substrate side. At this time, it was IC chip; 150 degreeC, a connection member; 140 degreeC, a glass substrate;
[0014]
Example 3
The same connection member and evaluation IC chip as in Example 1 were used. The board | substrate at this time used what has a copper circuit electrode (thickness 18 micrometers) on a glass epoxy board | substrate (thickness 0.7mm).
First, the connecting member was cut to a width of 2.0 mm and pasted on the electrode of the glass epoxy substrate. Next, after peeling the PET base material separator, the IC chip and the substrate were aligned. The pressure bonding was performed using the method shown in FIG. First, the substrate was placed on a pressure-bonding stage attached with a connecting member and cooled to about 5 ° C. for 30 seconds. Next, using a pressure-bonding head heated to about 150 ° C., it was heated and pressed from above the IC chip for 20 seconds. At this time, about 3 seconds after the pressure bonding, at which the connecting portion material had the lowest viscosity, the IC chip was 150 ° C., the connecting member was 135 ° C., the glass epoxy substrate was 40 ° C.
[0015]
Comparative Example 1
Connections were made using the same connection member, evaluation IC chip and planar electrode as in Example 1.
First, the connecting member was cut to a width of 2.0 mm and pasted on the electrode of the glass substrate. Next, after peeling off the PET base material separator, the IC bare chip and the substrate were aligned, followed by pressure bonding using the method shown in FIG. First, a glass substrate with a connection member was set on a crimping stage. At this time, the crimping stage is not heated and is about 25 ° C. Next, using a pressure-bonding head heated to about 150 ° C., it was heated and pressed from above the IC bare chip for 20 seconds. At this time, the IC bare chip: 150 ° C., the connecting member: 135 ° C., the glass substrate;
[0016]
Comparative Example 2
Connections were made using the same connection members as in Example 3, an evaluation IC chip, and a glass epoxy substrate.
First, the connecting member was cut to a width of 2.0 mm and pasted on the electrode of the glass epoxy substrate. Next, after peeling off the PET base separator, the IC chip and the substrate were aligned and then pressure-bonded using the method shown in FIG. First, a glass substrate with a connection member was set on a crimping stage. At this time, the crimping stage is not heated and is about 25 ° C. Next, using a pressure-bonding head heated to about 150 ° C., it was heated and pressed from above the IC bare chip for 20 seconds. At this time, the IC bare chip: 150 ° C., the connecting member: 137 ° C., the glass epoxy substrate: 65 ° C., after about 3 seconds after the pressure bonding at which the connecting portion material had the lowest viscosity.
[0017]
Evaluation 1
Using the connection bodies obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the maximum warpage amount of the connection bodies was evaluated. The evaluation method measured the maximum curvature amount of the board | substrate in the IC chip mounting back surface using the surface shape measuring device (SE-3C by Kosaka Laboratory).
The obtained results are shown in Table 1. As is apparent from this result, it was found that the warpage between the IC chip and the substrate can be reduced by using the connection method of the present invention.
[0018]
[Table 1]
Figure 0004378788
[0019]
Evaluation 2
The connection resistance value was evaluated using the connection bodies obtained in Examples 1 to 3 and Comparative Examples 1 and 2. In the evaluation method, a connection resistance value per bump size of 50 × 50 μm was measured using a resistance measuring machine. Further, this connection body was left in high temperature and high humidity (85 ° C., 85% RH) for 500 hours, and the change in connection resistance value was measured.
The obtained results are shown in Table 2. As is clear from this result, it was found that high connection reliability can be obtained by using the connection method of the present invention.
[0020]
[Table 2]
Figure 0004378788
[0021]
【The invention's effect】
According to the present invention, the difference between the extension amount of the circuit board and the extension amount of the IC chip can be minimized by heating each of the circuit board and the IC chip facing each other at a predetermined temperature. The connection method which can reduce deformation | transformation etc. can be provided. Further, since the stress concentration on the connection portion can be alleviated, the connection reliability can be improved. Furthermore, by heating the circuit board below the activation temperature of the adhesive, it is possible to provide a connection method that is excellent in mass productivity and connection reliability after connection.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a connection method for explaining an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a connection method for explaining another embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of a connection member.
FIG. 4 is a schematic cross-sectional view of a connection member.
FIG. 5 is a schematic cross-sectional view of a multilayer connection member.
FIG. 6 is a diagram showing the behavior of the viscosity of a connection member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit board 2 IC chip 3 Connection member 4 Crimp stage 5 Crimp head 6 Insulating adhesive 7 Conductive material

Claims (3)

回路基板とICチップの接続電極間に、熱により初期流動して最低粘度を示し、その後硬化反応により粘度が上昇する熱硬化性絶縁性接着剤からなる接続部材を配置し、相対峙した電極間を加熱加圧することにより電極同士の電気的接続と部品間の固着をすることからなる接続方法において、
前記熱硬化性絶縁性接着剤は、熱により初期流動して最低粘度を示すまでの単位時間あたりの粘度の変化量の大きさよりも、その後硬化反応により粘度が上昇するときの単位時間あたりの粘度の変化量の大きさが大きくなっており、
相対峙する回路基板とICチップのそれぞれを所定の温度で加熱することにより、圧着後接続部材が最低粘度となる時点での回路基板の伸び量とICチップの伸び量の差を極小にすることを特徴とするICチップの接続方法。
Between the connection electrodes of the circuit board and the IC chip, heat by shows an initial flow and a minimum viscosity, to place the connecting member is subsequently Rineba degree by the curing reaction a thermosetting insulating adhesive to rise, faced each other In a connection method consisting of electrical connection between electrodes and fixing between parts by heating and pressurizing between the electrodes,
The thermosetting insulating adhesive has a viscosity per unit time when the viscosity rises by a curing reaction after that, rather than the magnitude of the change in viscosity per unit time until the initial viscosity is exhibited by heat and the minimum viscosity is exhibited. The amount of change in the
By heating each of the circuit board and the IC chip facing each other at a predetermined temperature, the difference between the extension amount of the circuit board and the extension amount of the IC chip when the connecting member reaches the minimum viscosity after crimping is minimized. IC chip connection method characterized by the above.
回路基板の加熱温度を接着剤の活性化温度以下とすることを特徴とする請求項1記載のICチップの接続方法。2. The IC chip connection method according to claim 1, wherein the heating temperature of the circuit board is set to be equal to or lower than the activation temperature of the adhesive. 接続前に回路基板を接着剤の活性化温度以下で予備加熱することを特徴とする請求項1または2記載のICチップの接続方法。3. The IC chip connection method according to claim 1, wherein the circuit board is preheated at a temperature lower than an activation temperature of the adhesive before connection.
JP14139599A 1999-05-21 1999-05-21 IC chip connection method Expired - Fee Related JP4378788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14139599A JP4378788B2 (en) 1999-05-21 1999-05-21 IC chip connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14139599A JP4378788B2 (en) 1999-05-21 1999-05-21 IC chip connection method

Publications (2)

Publication Number Publication Date
JP2000332391A JP2000332391A (en) 2000-11-30
JP4378788B2 true JP4378788B2 (en) 2009-12-09

Family

ID=15291008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14139599A Expired - Fee Related JP4378788B2 (en) 1999-05-21 1999-05-21 IC chip connection method

Country Status (1)

Country Link
JP (1) JP4378788B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705748B2 (en) * 2003-05-30 2011-06-22 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP4530688B2 (en) * 2004-03-04 2010-08-25 オリンパス株式会社 Semiconductor bonding method and bonding apparatus
JP2009177122A (en) * 2007-12-25 2009-08-06 Hitachi Chem Co Ltd Method for manufacturing thin bonded assembly, and thin bonded assembly
JP5485222B2 (en) * 2010-06-14 2014-05-07 日立化成株式会社 Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method

Also Published As

Publication number Publication date
JP2000332391A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
JP5311772B2 (en) Adhesive film
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JP3886401B2 (en) Method for manufacturing connection structure
JP3624818B2 (en) Anisotropic conductive connection material, connection body, and manufacturing method thereof
JP2000113919A (en) Electrical connection device and electrically connecting method
JP4916494B2 (en) Crimping apparatus, crimping method, and pressing plate
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP4378788B2 (en) IC chip connection method
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP4411819B2 (en) Electrical connection material
JPH1187429A (en) Mounting method for semiconductor chip
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP3114162B2 (en) Electrical connection method
JP2003049152A (en) Adhesive for connecting circuit, connecting method using the same and connecting structure
JP5143329B2 (en) Manufacturing method of circuit connection body
KR100248582B1 (en) A connection sheet for interconnection electrodes facing each other, and electrode connection structure and method using the connection sheet
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP5608504B2 (en) Connection method and connection structure
JP4155470B2 (en) Electrode connection method using connecting members
JPH08148210A (en) Connection member
JP2001127107A (en) Connecting member and connector
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP2008112732A (en) Connecting method of electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees