JP5143329B2 - Manufacturing method of circuit connection body - Google Patents

Manufacturing method of circuit connection body Download PDF

Info

Publication number
JP5143329B2
JP5143329B2 JP2002053908A JP2002053908A JP5143329B2 JP 5143329 B2 JP5143329 B2 JP 5143329B2 JP 2002053908 A JP2002053908 A JP 2002053908A JP 2002053908 A JP2002053908 A JP 2002053908A JP 5143329 B2 JP5143329 B2 JP 5143329B2
Authority
JP
Japan
Prior art keywords
adhesive
circuit
resin
circuit connection
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053908A
Other languages
Japanese (ja)
Other versions
JP2003253239A (en
Inventor
貢 藤縄
伊津夫 渡辺
宏治 小林
征宏 有福
孝 中澤
貴 立澤
直樹 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002053908A priority Critical patent/JP5143329B2/en
Publication of JP2003253239A publication Critical patent/JP2003253239A/en
Application granted granted Critical
Publication of JP5143329B2 publication Critical patent/JP5143329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路接続用接着剤を用いて回路接続体を作製する方法に関する。
【0002】
【従来の技術】
従来、液晶ディスプレイとTCP(テープキャリアパッケージ)又はFPC(フレキシブル印刷配線板)とTCPとの接続、FPCとプリント配線板との接続には接着剤中に導電性粒子を分散させた異方導電性接着剤が使用されている。また、最近では、半導体シリコンチップを基板に実装する場合でも、従来のワイヤーボンドではなく、半導体シリコンチップをフェイスダウンで基板に直接実装するいわゆるフリップチップ実装が行われており、ここでも異方導電性接着剤が適用されている(特開昭59−120436号、特開昭60−191228号、特開平1−251787号、特開平7−90237号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、近年、電子機器の小型化、薄型化にともない、回路の高密度化が進んでおり、電極の間隔や電極幅が非常に狭くなっている。また、回路自体の薄膜化も進んでいる。そのため、従来の異方導電性接着剤をそのまま用いると導電性粒子不足による接続不具合が発生したり、導電性粒子不足を補うため導電性粒子を多く配合すると接続不具合が解決するが、隣接する電極間で短絡してしまうなどの問題があった。本発明は、前記の接続不具合が発生せず、また、隣接する電極間での短絡が発生しない回路の高密度化に対応して良好な接続が可能な回路接続用接着剤を用いた回路接続体の作製方法を提供するものである。
【0004】
【課題を解決するための手段】
)本発明は、相対向する回路電極を有する基板間に回路接続用接着剤のみを介在させ、加圧または加熱により相対向する回路電極を有する基板の電極間を回路接続用接着剤に含まれる導電性粒子によって電気的に接続する回路接続体の作製方法であって、回路接続用接着剤は、導電性粒子と、エポキシ樹脂と、フィルム形成材と、硬化剤とを含有し、且つ、回路接続用接着剤の厚みT(μm)、電性粒子の平均粒子径R(μm)、及び電気的に接続される相対向する回路電極の電極高さの総和H(μm)の関係が次ぎの式(1)、(2)及び(3)を満たし、フィルム形成材がポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、フェノキシ樹脂、ポリウレタン樹脂、尿素樹脂、及びアクリルゴムからなる群より選ばれる1以上の高分子成分を含む、回路接続体の作製方法である
1.5≦T/R≦2.5 (1)
1≦R≦5 (2)
0.2≧H/R (3)
また、(ii本発明は回路接続用接着剤がフィルム状である上記()に記載の回路接続体の作製方法である。また、(iii本発明は導電性粒子の表面が絶縁性物質でコートされている上記()または上記(ii)に記載の回路接続体の作製方法である。
【0005】
【発明の実施の形態】
本発明による接続方法を用いた場合、導電性粒子不足による接続不具合や隣接する電極間での短絡などの電気的特性不足の問題を一気に解決することができ、回路接続用接着剤の性能を飛躍的に向上させることができる。
【0006】
本発明に使用される回路接続用接着剤としては、アクリルゴム、スチレン‐ブタジエン‐スチレン共重合体、スチレン−イソプレン−スチレン共重合体などの熱可塑性樹脂や、エポキシ樹脂、(メタ)アクリル樹脂、マレイミド樹脂、シトラコンイミド樹脂、ナジイミド樹脂、フェノール樹脂などの熱硬化性樹脂が使用されるが、耐熱性や信頼性の点で熱硬化性樹脂を使用することが好ましい。
【0007】
本発明に用いられる回路接続用接着剤は熱硬化性の接着剤が好適に適用される。熱硬化性成分としては、エポキシ樹脂、(メタ)アクリル樹脂、マレイミド樹脂等が拳げられる。また、本発明の回路接続用接着剤には、フィルム形成性、接着性、硬化時の応力緩和性を付与するため、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、フェノキシ樹脂、ポリウレタン樹脂、尿素樹脂、アクリルゴム等高分子成分を使用することもできる。これら高分子成分は、分子量が10000〜10000000のものが好ましく、カルボキシル基、水酸基、エポキシ基等の官能基を有する場合接着性が向上するため好ましい。これら樹脂は、ラジカル重合性の官能基、エポキシ基等の重合性官能基で変成されていても良く、この場合耐熱性が向上するため好ましい。また、120〜140℃、15秒程度の加熱で硬化する接着剤、光照射により硬化する接着剤の場合、熱的ダメージを軽減できるので好ましい。
また、回路接続用接着剤は液状でも適用可能であるが、フィルム状の場合、作業性等において好適である。
【0008】
本発明で用いる回路接続用接着剤に含有される導電性粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン、またはガラス、セラミック、プラスチックの非導電性粒子にAu、Ag、白金等の貴金属類を被覆した粒子が使用される。金属粒子の場合には表面の酸化を抑えるため、貴金属類で被覆したものが好ましい。上記導電性粒子のなかで、プラスチックを核体としてAu、Ag等で被覆した粒子や熱溶融金属粒子は、接続時の加熱加圧によって変形し、回路電極の高さバラツキを吸収し、接触面積が増加し信頼性が向上するので好ましい。特に、プラスチック核体を用いAu、Ag等で被覆した粒子の場合、回路電極間の短絡が少なく好ましい。貴金属類の被覆層の厚さは、100Å以上、好ましくは300Å以上であれば、良好な接続が得られる。また、更には上記導電性粒子を、絶縁性物質でコートしたものは隣接する電極間での短絡の発生が抑制されるので好ましい。コートする厚さは、回路電極間を接続し、また、隣接する電極間の短絡防止からサブミクロン以下の表面処理程度の薄いものが好ましい。導電性粒子は、接着剤成分100体積に対して、0.1〜30体積%、より好ましくは0.1〜10体積%の範囲で用途により適宜配合される。
【0009】
本発明の回路接続用接着剤には、適宜充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃剤、カップリング剤を添加しても良い。
【0010】
本発明で用いる基板としては、電気的接続を必要とする電極が形成されているものであれば特に制限はないが、液晶ディスプレイに用いられているITO等で電極が形成されているガラスまたはプラスチック基板、プリント配線板、フレキシブル配線板、セラミック配線板、半導体シリコンチップ、TCP、2層FPCなどが有り、必要に応じて組み合わせて使用される。このとき電気的接続を必要とする相対向する回路電極の電極高さの総和H、用いる回路接続用接着剤に含有される導電性粒子の平均粒子径R、回路接続用接着剤の厚みTの関係は次ぎの式(1)、(2)を満足する必要がある。
1.5≦T/R≦2.5 (1)
1≦R≦5 (2)
本発明では、隣接する電極間での短絡が発生せず、しかも回路の高密度化に対応して良好な接続を得るため、回路接続用接着剤に含有される導電性粒子の平均粒子径Rが1〜5μmと小径の粒子を用いる。そして、電気的に接続される相対向する回路電極の電極高さの総和Hと回路接続用接着剤に含有される導電性粒子の平均粒子径Rが次ぎの式(3)を満たす。
0.2≧H/R (3)
電性粒子の平均粒子径Rが1μm未満では、導電性粒子の製造が困難であったり、導電性粒子の凝集により隣接する電極間での短絡が発生しやすくなる。また、導電性粒子の平均粒子径Rが5μm以上では、回路の高密度化による電極幅の大きさと同じ程度か大きくなり電極間での短絡が発生しやすくなる。平均粒子径は、回路電極の均一な接続を確保するため単分散に近いほど好ましく、平均粒子径から1μmの範囲内、さらには0.5μmの範囲内にあることがより好ましい。式(2)から式(1)の回路接続用接着剤の厚みTは、1.512.5μmの範囲である。回路接続用接着剤の厚みTが0.25μm未満では、製造が困難であったり、接続時に接着剤が不足しやすくなり、接続の信頼性に劣るようになる。また、20μmを超えると接着剤の大部分を流動させなければならず、この際に導電性粒子の流動による電極間での短絡が発生しやすくなる。回路電極の電極高さの総和Hが、5μmを超えると微細な回路幅を有する回路電極を形成できず、また電極の高さが高くなるので、接着剤の大部分を流動させなければならず、この際に導電性粒子の流動による電極間での短絡が発生しやすくなる。これらのため、回路電極の電極高さの総和Hは、電極間を充分に埋めることができ、接着剤をできるだけ流動させない厚みであれば好ましい。
【0011】
回路接続用接着剤の作製方法としては、公知の一般的方法による作製が適用できるが、接着剤のみからなるフィルムを作製したのち、これに均一分散された導電性粒子層を転写して形成した場合、接着剤の厚み制御等が行ないやすく好適である。
【0012】
回路電極を有する基板の電極間を電気的に接続する場合の条件として特に制限はないが、接続温度90〜250℃、接続時間1秒〜1分、接続圧力は1〜5MPaの範囲であり、使用する用途、接着剤、基板によって適宜選択され、必要に応じて、後硬化を行っても良い。また、接続時は加熱、または加圧、加熱と加圧により行われるが、必要に応じて熱以外のエネルギーたとえば光、超音波、電磁波等を使用しても良い。
【0013】
【実施例】
以下、本発明を実施例を用いて具体的に説明するが、本発明はこの実施例に制限されるものではない。
(接着剤の作製)
以下に示す配合でそれぞれ配合し、簡易塗工機(テスター産業株式会社製)を用いて、厚み50μmの片面を表面処理したPET(ポリエチレンテレフテレート)フィルムに塗布し、70℃、5分間の熱風乾燥により回路接続用接着剤フィルムを作製した。
【0014】
(実施例1)
(回路接続用接着剤の作製)
熱硬化成分としてビスフェノールA型エポキシ樹脂(エピコ‐ト828、油化シェルエポキシ株式会社製商品名)を用いた。フィルム形成材としてアクリルゴム(重量平均分子量約80万、Tg;−22℃、エポキシ基含有)とフェノキシ樹脂(PKHC;ユニオンカーバイド社製商品名、重量平均分子量45000)を用いた。硬化剤として、マイクロカプセル型硬化剤(HX3941HP、旭化成エポキシ株式会社製商品名)を用いた。導電性粒子として、ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.04μmの金層を設けた平均粒子径(R)4μmの導電性粒子を作製し、ポリビニルアルコールで表面を0.01μmコートした。
固形分としてアクリルゴム30g、フェノキシ樹脂10g、ビスフェノールA型エポキシ樹脂10g、マイクロカプセル型硬化剤50g、シランカップリング剤(SH6040、東レ・ダウシリコーン株式会社製商品名)1gとなるように配合し、さらに導電性粒子を3体積%配合分散させ、回路接続用接着剤の厚み(T)が6μmの回路接続材料を得た。
【0015】
(実施例2)
実施例1と同様にして導電性粒子を1体積%配合分散させ、接着剤層の厚みが6μmの回路接続材料を得た。
【0016】
(実施例3)
実施例1と同様にして作製した平均粒子径2μmの導電性粒子を2体積%配合分散させ、実施例1と同様にして、接着剤層の厚みが5μmの回路接続材料を得た。
【0017】
(比較例1)
実施例1と同様にして、接着剤の厚みが25μmの回路接続材料を得た。
(比較例2)
実施例1と同様であるが平均粒子径6μmの導電性粒子を用い接着剤の厚みが10μmの回路接続材料を得た。
(比較例3)
実施例1と同様にして、接着剤の厚みが15μmの回路接続材料を得た。
(比較例4)
実施例1と同様であるが平均粒子径6μmの導電性粒子を用い接着剤の厚みが15μmの回路接続材料を得た。
(比較例5)
実施例1と同様であるが平均粒子径6μmの導電性粒子を用い接着剤の厚みが22μmの回路接続材料を得た。
(比較例6)
実施例1と同様にして接着剤の厚みが22μmの回路接続材料を得た。
【0018】
(接続体の作製)
上記の実施例1〜3、比較例1、2、5の回路接続材料(回路接続用接着剤)を、1.5mm幅にスリットし、電極として厚み0.2μmのITOが全面に形成されたガラス基板上に、80℃、5秒、1MPaの条件で、仮接続した。その後、PET基材を剥離し、ITOの電極とITOパターンが形成されたガラス基板(ピッチ500μm、ITOの厚み0.2μm)の電極の位置合わせを行い、180℃、15秒、3MPaの条件で本接続した。
また、比較例3、4、6の回路接続材料(回路接続用接着剤)を、1.5mm幅にスリットし、電極として厚み0.2μmのITOが全面に形成されたガラス基板上に、80℃、5秒、1MPaの条件で、仮接続した。その後、PET基材を剥離し、ITOの電極と2層FPC(ピッチ500μm、回路はエッチングにより作製、電極高さはそれぞれ12μm(比較例3,4)、6μm(比較例6)、2層は銅箔と基材フィルムの積層に接着剤を使用しない回路となる銅箔とポリイミドフィルムの2層構成)の電極の位置合わせを行い、180℃、15秒、3MPaで本接続した。
【0019】
(特性評価方法)
接続抵抗:株式会社アドバンテスト製マルチメータTR6848を用いて、隣接回路間の抵抗を1mAの定電流で測定した。
接着強度:JIS Z‐0237に準拠し、90度ピールで測定した。
絶縁性:実施例1〜3、比較例1、2、5は、上記の回路接続材料を、1.5mm幅にスリットし、電極としてITO(0.2μm)が形成されたガラス基板上に、80℃、5秒、1MPaの条件で仮接続した。その後、PET基材を剥離し、ITOの電極とピッチ50μm、100ライン、電極高さ0.2μmの電極を形成したITOの電極の位置合わせを行い、180℃、15秒、3MPaで本接続した。この接続体30個を作製し絶縁性評価を短絡した数で評価を行なった。比較例3、4、6は、ITO(0.2μm)とピッチ50μm、100ライン、電極高さ12μm(比較例3、4)、6μm(比較例6)の電極を形成した2層FPCの電極の位置合わせを行い、180℃、15秒、3MPaで本接続した。この接続体30個を作製し絶縁性評価を短絡した数で評価を行なった。
信頼性評価:上記接続抵抗に関して、80℃、95%RHの条件で高温高湿試験を行い、240時間後取り出してその値を測定した。
それらの測定結果を表1,2に示した。
【0020】
【表1】

Figure 0005143329
【表2】
Figure 0005143329
【0021】
実施例1〜3は、いずれも接続抵抗、接着力、絶縁性ともに良好な結果であり、良好な接続性を示した。これに対して、T/Rが4を超えた比較例1、6においては、絶縁性に劣った。また、導電性粒子径が5μmを超えた比較例2、4、5は、接着力や絶縁性に劣った。
【0022】
【発明の効果】
本発明による接続方法を用いると、導電性粒子不足による接続不具合や隣接する電極間での短絡などの電気的特性不足の問題を一気に解決することができ、回路接続用接着剤の性能を飛躍的に向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of making a circuit connection member using a circuit connection adhesive.
[0002]
[Prior art]
Conventionally, anisotropic conductive material in which conductive particles are dispersed in an adhesive is used for connection between a liquid crystal display and TCP (tape carrier package) or FPC (flexible printed wiring board) and TCP, and between FPC and printed wiring board. Adhesive is used. Recently, even when a semiconductor silicon chip is mounted on a substrate, so-called flip chip mounting in which the semiconductor silicon chip is directly mounted on the substrate face down is performed instead of the conventional wire bond. Adhesives have been applied (Japanese Patent Laid-Open Nos. 59-120436, 60-191228, 1-251787, and 7-90237).
[0003]
[Problems to be solved by the invention]
However, in recent years, with the downsizing and thinning of electronic devices, the density of circuits has been increasing, and the distance between electrodes and the width of electrodes have become very narrow. In addition, the circuit itself is becoming thinner. Therefore, if the conventional anisotropic conductive adhesive is used as it is, a connection failure due to lack of conductive particles occurs, or if a large amount of conductive particles are added to compensate for the lack of conductive particles, the connection failure is solved, but the adjacent electrode There was a problem such as short-circuiting. The present invention is a circuit connection using an adhesive for circuit connection that does not cause the above-mentioned connection failure and can be connected well in response to a high-density circuit without causing a short circuit between adjacent electrodes. A method for producing a body is provided.
[0004]
[Means for Solving the Problems]
( I ) The present invention is such that only the circuit connecting adhesive is interposed between the substrates having the opposite circuit electrodes, and the circuit connecting adhesive between the electrodes of the substrates having the opposite circuit electrodes by pressing or heating is used. A method for producing a circuit connection body that is electrically connected by conductive particles contained therein , wherein the adhesive for circuit connection contains conductive particles, an epoxy resin, a film forming material, and a curing agent, and , the thickness of the circuit connecting adhesive T ([mu] m), the average particle diameter R of the conductive particles ([mu] m), and electrically relationship of the connected opposing sum of electrode height of the circuit electrodes H ([mu] m) the following formula (1), meets the (2) and (3), the film-forming material is polyvinyl butyral resins, polyvinyl formal resins, polyester resins, polyamide resins, polyimide resins, xylene resins, phenoxy resins, polyurethane Including resins, urea resins, and one or more polymeric components selected from the group consisting of acrylic rubber, a method for manufacturing a circuit connection member.
1.5 ≦ T / R ≦ 2.5 (1)
1 ≦ R ≦ 5 (2)
0.2 ≧ H / R (3)
Moreover, ( ii ) this invention is a manufacturing method of the circuit connection body as described in said ( i ) whose adhesive agent for circuit connection is a film form. Moreover, ( iii ) this invention is a manufacturing method of the circuit connection body as described in said ( i ) or said ( ii ) by which the surface of electroconductive particle is coated with the insulating substance.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
When the connection method according to the present invention is used, it is possible to solve the problem of insufficient electrical characteristics such as connection failure due to insufficient conductive particles and short circuit between adjacent electrodes at a stretch, and the performance of the adhesive for circuit connection is greatly improved. Can be improved.
[0006]
As an adhesive for circuit connection used in the present invention, thermoplastic resins such as acrylic rubber, styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, epoxy resin, (meth) acrylic resin, Although thermosetting resins such as maleimide resin, citraconic imide resin, nadiimide resin, and phenol resin are used, it is preferable to use a thermosetting resin in terms of heat resistance and reliability.
[0007]
A thermosetting adhesive is suitably applied as the circuit connecting adhesive used in the present invention. As the thermosetting component, an epoxy resin, a (meth) acrylic resin, a maleimide resin or the like can be used. In addition, in order to impart film formability, adhesiveness, and stress relaxation during curing to the circuit connection adhesive of the present invention, polyvinyl butyral resin, polyvinyl formal resin, polyester resin, polyamide resin, polyimide resin, xylene resin Polymer components such as phenoxy resin, polyurethane resin, urea resin, and acrylic rubber can also be used. These polymer components preferably have a molecular weight of 10,000 to 10,000,000, and preferably have a functional group such as a carboxyl group, a hydroxyl group, and an epoxy group, because the adhesion is improved. These resins may be modified with a polymerizable functional group such as a radical polymerizable functional group or an epoxy group. In this case, heat resistance is improved, which is preferable. In addition, an adhesive that is cured by heating at 120 to 140 ° C. for about 15 seconds and an adhesive that is cured by light irradiation are preferable because thermal damage can be reduced.
Further, the adhesive for circuit connection can be applied even in a liquid state, but in the case of a film, it is suitable in terms of workability.
[0008]
Examples of the conductive particles contained in the circuit connection adhesive used in the present invention include metal particles such as Au, Ag, Ni, Cu, and solder, carbon, or non-conductive particles such as glass, ceramic, and plastic. Particles coated with noble metals such as platinum are used. In the case of metal particles, those coated with noble metals are preferred in order to suppress surface oxidation. Among the above conductive particles, particles coated with Au, Ag, etc. using plastic as a core and heat-melted metal particles are deformed by heating and pressurization at the time of connection, and absorb the variation in the height of the circuit electrode, and the contact area This increases the reliability and improves the reliability. In particular, particles coated with Au, Ag, etc. using a plastic core are preferable because there are few short circuits between circuit electrodes. If the thickness of the noble metal coating layer is 100 mm or more, preferably 300 mm or more, good connection can be obtained. Further, it is preferable to coat the conductive particles with an insulating substance since the occurrence of a short circuit between adjacent electrodes is suppressed. The coating thickness is preferably as thin as a surface treatment of submicron or less in order to connect circuit electrodes and to prevent a short circuit between adjacent electrodes. The conductive particles are appropriately blended depending on the application in the range of 0.1 to 30% by volume, more preferably 0.1 to 10% by volume with respect to 100 volumes of the adhesive component.
[0009]
A filler, a softening agent, an accelerator, an anti-aging agent, a colorant, a flame retardant, and a coupling agent may be appropriately added to the circuit connection adhesive of the present invention.
[0010]
The substrate used in the present invention is not particularly limited as long as an electrode that requires electrical connection is formed, but glass or plastic on which an electrode is formed of ITO or the like used for a liquid crystal display. There are a substrate, a printed wiring board, a flexible wiring board, a ceramic wiring board, a semiconductor silicon chip, a TCP, a two-layer FPC, etc., which are used in combination as necessary. At this time, the sum H of the electrode heights of the opposing circuit electrodes that require electrical connection, the average particle diameter R of the conductive particles contained in the circuit connection adhesive used, and the thickness T of the circuit connection adhesive The relationship needs to satisfy the following equations (1) and (2).
1.5 ≦ T / R ≦ 2.5 (1)
1 ≦ R ≦ 5 (2)
In the present invention, an average particle diameter R of conductive particles contained in the adhesive for circuit connection is obtained in order to obtain a good connection corresponding to the increase in circuit density without causing a short circuit between adjacent electrodes. There Ru using the 1~5μm and a small-diameter particles. And, the satisfying electrically average particle diameter R is following formulas conductive particles contained in the electrode height sum H and circuit connection adhesive of the connected opposing circuit electrodes (3).
0.2 ≧ H / R (3)
When the average particle diameter R of the conductive particles is less than 1 μm, it is difficult to produce the conductive particles, or short circuit between adjacent electrodes is likely to occur due to aggregation of the conductive particles. Further, when the average particle diameter R of the conductive particles is 5 μm or more, it becomes as large as the electrode width due to circuit densification, and a short circuit between the electrodes is likely to occur. The average particle diameter is preferably closer to monodispersion in order to ensure uniform connection of circuit electrodes, and more preferably within a range of 1 μm from the average particle diameter, and more preferably within a range of 0.5 μm. The thickness T of the adhesive for circuit connection of Formula (2) to Formula (1) is in the range of 1.5 to 12.5 μm . If the thickness T of the circuit connecting adhesive is less than 0.25 μm, it is difficult to manufacture, or the adhesive is likely to be insufficient at the time of connection, resulting in poor connection reliability. On the other hand, if it exceeds 20 μm, most of the adhesive must be flowed. At this time, a short circuit between the electrodes due to the flow of the conductive particles tends to occur. If the total electrode height H of the circuit electrode exceeds 5 μm, a circuit electrode having a fine circuit width cannot be formed, and the height of the electrode increases, so that most of the adhesive must flow. In this case, a short circuit between the electrodes due to the flow of the conductive particles is likely to occur. Because of these, the electrode height of the sum H of the circuit electrodes, electrostatic inter-electrode can sufficiently fill, preferably as long as it is a thickness that does not flow as possible adhesive.
[0011]
As a method for producing an adhesive for circuit connection, production by a known general method can be applied. However, after a film composed only of an adhesive is produced, a conductive particle layer uniformly dispersed therein is transferred and formed. In this case, it is preferable to easily control the thickness of the adhesive.
[0012]
There are no particular restrictions on the conditions for electrically connecting the electrodes of the substrate having circuit electrodes, but the connection temperature is 90 to 250 ° C., the connection time is 1 second to 1 minute, and the connection pressure is in the range of 1 to 5 MPa. It is appropriately selected depending on the intended use, adhesive, and substrate, and post-curing may be performed as necessary. The connection is performed by heating, pressurization, or heating and pressurization, but energy other than heat, for example, light, ultrasonic waves, electromagnetic waves, or the like may be used as necessary.
[0013]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not restrict | limited to this Example.
(Production of adhesive)
Using the simple coating machine (manufactured by Tester Sangyo Co., Ltd.), the following composition was applied to a PET (polyethylene terephthalate) film having a surface treated on one side having a thickness of 50 μm. An adhesive film for circuit connection was produced by hot air drying.
[0014]
Example 1
(Production of adhesive for circuit connection)
As a thermosetting component, a bisphenol A type epoxy resin (Epicote 828, product name manufactured by Yuka Shell Epoxy Co., Ltd.) was used. Acrylic rubber (weight average molecular weight of about 800,000, Tg; −22 ° C., containing epoxy group) and phenoxy resin (PKHC; trade name of Union Carbide, weight average molecular weight 45000) were used as the film forming material. As the curing agent, a microcapsule type curing agent (HX3941HP, trade name, manufactured by Asahi Kasei Epoxy Corporation) was used. As a conductive particle, a nickel layer having a thickness of 0.2 μm is provided on the surface of a particle having polystyrene as a core, and a gold layer having a thickness of 0.04 μm is provided outside the nickel layer. Conductive particles were prepared, and the surface was coated with 0.01 μm of polyvinyl alcohol.
It is blended so as to be 30 g of acrylic rubber, 10 g of phenoxy resin, 10 g of bisphenol A type epoxy resin, 50 g of microcapsule type curing agent, 1 g of silane coupling agent (SH6040, trade name of Toray Dow Silicone Co., Ltd.) Further, 3% by volume of conductive particles were mixed and dispersed to obtain a circuit connecting material having a circuit connecting adhesive thickness (T) of 6 μm.
[0015]
(Example 2)
In the same manner as in Example 1, 1% by volume of conductive particles were mixed and dispersed to obtain a circuit connecting material having an adhesive layer thickness of 6 μm.
[0016]
(Example 3)
2% by volume of conductive particles having an average particle diameter of 2 μm prepared in the same manner as in Example 1 were mixed and dispersed, and a circuit connection material having an adhesive layer thickness of 5 μm was obtained in the same manner as in Example 1.
[0017]
(Comparative Example 1)
In the same manner as in Example 1, a circuit connecting material having an adhesive thickness of 25 μm was obtained.
(Comparative Example 2)
Although it was the same as that of Example 1, the circuit connection material whose thickness of an adhesive agent is 10 micrometers was obtained using the electroconductive particle with an average particle diameter of 6 micrometers.
(Comparative Example 3)
In the same manner as in Example 1, a circuit connecting material having an adhesive thickness of 15 μm was obtained.
(Comparative Example 4)
Although it was the same as that of Example 1, the circuit connection material whose thickness of an adhesive agent is 15 micrometers was obtained using the electroconductive particle with an average particle diameter of 6 micrometers.
(Comparative Example 5)
Although similar to Example 1, conductive particles having an average particle diameter of 6 μm were used to obtain a circuit connecting material having an adhesive thickness of 22 μm.
(Comparative Example 6)
In the same manner as in Example 1, a circuit connecting material having an adhesive thickness of 22 μm was obtained.
[0018]
(Production of connected body)
The circuit connection materials (adhesives for circuit connection) of Examples 1 to 3 and Comparative Examples 1, 2 and 5 were slit to 1.5 mm width, and 0.2 μm thick ITO was formed on the entire surface as electrodes. Temporary connection was performed on a glass substrate under the conditions of 80 ° C., 5 seconds, and 1 MPa. Thereafter, the PET base material is peeled off, and the electrodes of the ITO electrode and the glass substrate (ITO 500 μm, ITO thickness 0.2 μm) on which the ITO pattern is formed are aligned, and the conditions are 180 ° C., 15 seconds, and 3 MPa. This connection was made.
In addition, the circuit connection material (adhesive for circuit connection) of Comparative Examples 3, 4, and 6 was slit to a width of 1.5 mm, and on a glass substrate on which ITO having a thickness of 0.2 μm was formed as an electrode on the entire surface. Temporary connection was performed under the conditions of 5 ° C., 1 MPa. Then, the PET substrate was peeled off, and the ITO electrode and the two-layer FPC (pitch 500 μm, the circuit was produced by etching, the electrode heights were 12 μm (Comparative Examples 3 and 4), 6 μm (Comparative Example 6), and the two layers were The electrodes of a copper foil and a polyimide film (a two-layer configuration of a copper foil and a polyimide film) that form a circuit that does not use an adhesive for laminating the copper foil and the base film were aligned, and main connection was performed at 180 ° C., 15 seconds, and 3 MPa.
[0019]
(Characteristic evaluation method)
Connection resistance: Resistance between adjacent circuits was measured at a constant current of 1 mA using a multimeter TR6848 manufactured by Advantest Corporation.
Adhesive strength: Measured at 90 ° peel according to JIS Z-0237.
Insulation: In Examples 1 to 3 and Comparative Examples 1, 2, and 5, the above circuit connection material was slit into a width of 1.5 mm, and on a glass substrate on which ITO (0.2 μm) was formed as an electrode, Temporary connection was performed at 80 ° C., 5 seconds, and 1 MPa. After that, the PET substrate was peeled off, and the ITO electrode formed with an electrode of ITO and a pitch of 50 μm, 100 lines and an electrode height of 0.2 μm was aligned, and main connection was performed at 180 ° C. for 15 seconds at 3 MPa. . Evaluation was performed using the number of short-circuited insulation evaluations after 30 connection bodies were prepared. Comparative Examples 3, 4, and 6 are two-layer FPC electrodes in which ITO (0.2 μm), pitch 50 μm, 100 lines, and electrode heights of 12 μm (Comparative Examples 3 and 4) and 6 μm (Comparative Example 6) are formed. The main connection was performed at 180 ° C. for 15 seconds at 3 MPa. Evaluation was performed using the number of short-circuited insulation evaluations after 30 connection bodies were prepared.
Reliability evaluation: With respect to the connection resistance, a high-temperature and high-humidity test was performed under the conditions of 80 ° C. and 95% RH, and the value was measured after 240 hours.
The measurement results are shown in Tables 1 and 2 .
[0020]
[Table 1]
Figure 0005143329
[Table 2]
Figure 0005143329
[0021]
In Examples 1 to 3, all of the connection resistance, adhesive force, and insulation were good results, and good connectivity was shown. On the other hand, in Comparative Examples 1 and 6 in which T / R exceeded 4, the insulation was inferior. Moreover, Comparative Examples 2, 4, and 5 in which the conductive particle diameter exceeded 5 μm were inferior in adhesive strength and insulation.
[0022]
【Effect of the invention】
By using the connection method according to the present invention, it is possible to solve the problem of insufficient electrical characteristics such as connection failure due to insufficient conductive particles and short circuit between adjacent electrodes at once, and the performance of the adhesive for circuit connection is drastically improved. Can be improved.

Claims (3)

相対向する回路電極を有する基板間に回路接続用接着剤のみを介在させ、加圧または加熱により相対向する回路電極を有する基板の電極間を前記回路接続用接着剤に含まれる導電性粒子によって電気的に接続する回路接続体の作製方法であって、
前記回路接続用接着剤は、前記導電性粒子と、エポキシ樹脂と、フィルム形成材と、硬化剤とを含有し、且つ、前記回路接続用接着剤の厚みT(μm)、前記導電性粒子の平均粒子径R(μm)、及び電気的に接続される相対向する前記回路電極の電極高さの総和H(μm)の関係が次ぎの式(1)、(2)及び(3)を満たし、
前記フィルム形成材がポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、フェノキシ樹脂、ポリウレタン樹脂、尿素樹脂、及びアクリルゴムからなる群より選ばれる1以上の高分子成分を含む回路接続体の作製方法。
1.5≦T/R≦2.5 (1)
1≦R≦5 (2)
0.2≧H/R (3)
By interposing only the adhesive for circuit connection between the substrates having circuit electrodes facing each other, the conductive particles contained in the adhesive for circuit connection between the electrodes of the substrates having circuit electrodes facing each other by pressure or heating . A method for producing a circuit connection body to be electrically connected,
The adhesive for circuit connection contains the conductive particles, an epoxy resin, a film forming material, and a curing agent, and has a thickness T (μm) of the adhesive for circuit connection , and the conductive particles. the average particle diameter R ([mu] m), and electrically connected to opposing the circuit electrodes of the electrode height sum H ([mu] m) of the relationship following formula is (1), (2) and (3) Meet,
The film forming material includes at least one polymer component selected from the group consisting of polyvinyl butyral resin, polyvinyl formal resin, polyester resin, polyamide resin, polyimide resin, xylene resin, phenoxy resin, polyurethane resin, urea resin, and acrylic rubber. A method for manufacturing a circuit connection body.
1.5 ≦ T / R ≦ 2.5 (1)
1 ≦ R ≦ 5 (2)
0.2 ≧ H / R (3)
前記回路接続用接着剤がフィルム状である請求項1に記載の回路接続体の作製方法。 The method for producing a circuit connection body according to claim 1, wherein the circuit connection adhesive is in a film form. 前記導電性粒子の表面が絶縁性物質でコートされている請求項1または請求項2に記載の回路接続体の作製方法。 The method for manufacturing a circuit connector according to claim 1, wherein the surface of the conductive particles is coated with an insulating material.
JP2002053908A 2002-02-28 2002-02-28 Manufacturing method of circuit connection body Expired - Fee Related JP5143329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053908A JP5143329B2 (en) 2002-02-28 2002-02-28 Manufacturing method of circuit connection body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053908A JP5143329B2 (en) 2002-02-28 2002-02-28 Manufacturing method of circuit connection body

Publications (2)

Publication Number Publication Date
JP2003253239A JP2003253239A (en) 2003-09-10
JP5143329B2 true JP5143329B2 (en) 2013-02-13

Family

ID=28665210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053908A Expired - Fee Related JP5143329B2 (en) 2002-02-28 2002-02-28 Manufacturing method of circuit connection body

Country Status (1)

Country Link
JP (1) JP5143329B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839622B2 (en) * 2005-01-31 2011-12-21 日立化成工業株式会社 Adhesive film and laminate comprising the same
CN102942883B (en) 2006-04-26 2015-08-26 日立化成株式会社 Splicing tape and use its solar module
JP2008308682A (en) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd Circuit connection material
CN103923578A (en) 2013-01-10 2014-07-16 杜邦公司 Electric conduction adhesive containing fluorine-containing elastomer
CN103928077B (en) 2013-01-10 2017-06-06 杜邦公司 Electroconductive binder containing co-blending elastic body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100436B2 (en) * 1991-11-19 2000-10-16 株式会社リコー Anisotropic conductive film
JPH06223633A (en) * 1993-01-26 1994-08-12 Asahi Chem Ind Co Ltd Conductivity-anisotropic electrode connecting composition and its hardened film
JP3907217B2 (en) * 1993-07-29 2007-04-18 日立化成工業株式会社 Circuit connection material and circuit connection method using the connection material
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JP3360772B2 (en) * 1994-09-02 2002-12-24 日立化成工業株式会社 Connection structure of fine electrode and inspection method of electronic component having fine electrode
JPH1013002A (en) * 1996-06-20 1998-01-16 Matsushita Electric Ind Co Ltd Method for mounting semiconductor element
JPH11339558A (en) * 1998-05-26 1999-12-10 Sekisui Chem Co Ltd Anisotropic conductive adhesive and conductive connection structural body
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP2001049209A (en) * 1999-08-11 2001-02-20 Bridgestone Corp Anisotropic conductive film
JP2001156430A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Method of manufacturing circuit board and circuit connection material

Also Published As

Publication number Publication date
JP2003253239A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
KR101376002B1 (en) Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
KR101183317B1 (en) Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP3678547B2 (en) Multilayer anisotropic conductive adhesive and method for producing the same
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
JPWO2009017200A1 (en) Circuit connection material, circuit member connection structure using the same, and circuit member connection method
TWI797225B (en) Connected structure and its manufacturing method
JP7513430B2 (en) Method for manufacturing joined body, joined body, and conductive particle-containing hot melt adhesive sheet
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JPH07157720A (en) Film having anisotropic electrical conductivity
JP2011049175A (en) Connection method and connection structure for electronic component
JP5143329B2 (en) Manufacturing method of circuit connection body
JP2003049152A (en) Adhesive for connecting circuit, connecting method using the same and connecting structure
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP4631893B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4378788B2 (en) IC chip connection method
JP2003253216A (en) Connection method using circuit connection adhesive
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP2004220916A (en) Adhesive composition for circuit connection, and circuit terminal connection method and circuit terminal connection structure using the same
JP2008112732A (en) Connecting method of electrode
JP2003253217A (en) Connection method using circuit connection adhesive
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP2008022037A (en) Connection member, connection structure of electrode using the same, and connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101104

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees