JP4661914B2 - Electrode connection method - Google Patents

Electrode connection method Download PDF

Info

Publication number
JP4661914B2
JP4661914B2 JP2008189038A JP2008189038A JP4661914B2 JP 4661914 B2 JP4661914 B2 JP 4661914B2 JP 2008189038 A JP2008189038 A JP 2008189038A JP 2008189038 A JP2008189038 A JP 2008189038A JP 4661914 B2 JP4661914 B2 JP 4661914B2
Authority
JP
Japan
Prior art keywords
electrode
adhesive layer
connection
conductive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008189038A
Other languages
Japanese (ja)
Other versions
JP2008300360A (en
Inventor
功 塚越
幸寿 廣澤
宏治 小林
敦夫 中島
寛 松岡
伊津夫 渡辺
賢三 竹村
直行 塩沢
和良 小島
治 渡辺
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008189038A priority Critical patent/JP4661914B2/en
Publication of JP2008300360A publication Critical patent/JP2008300360A/en
Application granted granted Critical
Publication of JP4661914B2 publication Critical patent/JP4661914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Multi-Conductor Connections (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Description

本発明は、電子部品と回路板や回路板同士を接着固定すると共に、両者の電極同士を電気的に接続する接続部材を用いた電極の接続方法に関する。   The present invention relates to an electrode connection method using a connection member that bonds and fixes an electronic component and a circuit board or circuit boards together and electrically connects the two electrodes.

近年、電子部品の小型薄型化に伴い、これらに用いる回路は高密度、高精細化している。このような電子部品と微細電極の接続は、従来のはんだやゴムコネクタ等では対応が困難であることから、最近では分解能に優れた異方導電性の接着剤や膜状物(以下接続部材)が多用されている。この接続部材は、導電粒子等の導電材料を所定量含有した接着剤からなるもので、この接続部材を電子部品と電極や回路との間に設け、加圧または加熱加圧手段を構じることによって、両者の電極同士が電気的に接続されると共に、電極に隣接して形成されている電極同士には絶縁性を付与して、電子部品と回路とが接着固定されるものである。上記接続部材を高分解能化するための基本的な考えは、導電粒子の粒径を隣接電極間の絶縁部分よりも小さくすることで隣接電極間における絶縁性を確保し、併せて導電粒子の含有量をこの粒子同士が接触しない程度とし、かつ電極上に確実に存在させることにより、接続部分における導電性を得ることである。   In recent years, with the miniaturization and thinning of electronic components, circuits used for these have become denser and higher definition. Since it is difficult to connect such electronic components and fine electrodes with conventional solders or rubber connectors, anisotropically conductive adhesives and membranes with excellent resolution (hereinafter referred to as connecting members) Is frequently used. This connecting member is made of an adhesive containing a predetermined amount of a conductive material such as conductive particles, and this connecting member is provided between the electronic component and the electrode or circuit to form a pressurizing or heating / pressing means. As a result, the electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with insulating properties so that the electronic component and the circuit are bonded and fixed. The basic idea for increasing the resolution of the connecting member is to ensure the insulation between the adjacent electrodes by making the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes. The amount is set so that the particles do not come into contact with each other and is surely present on the electrode to obtain conductivity at the connection portion.

特開昭61−195179号公報JP-A-61-195179 特開平4−366630号公報JP-A-4-366630

上記従来の方法は、導電粒子の粒径を小さくすると、粒子表面積の著しい増加により粒子が2次凝集を起こして凍結し、隣接電極間の絶縁性が保持できなくなる。また、導電粒子の含有量を減少すると接続すべき電極上の導電粒子の数も減少することから、接触点数が不足し接続電極間での導通が得られなくなるため、長期接続信頼性を保ちながら接続部材を高分解能化することは極めて困難であった。すなわち、近年の著しい高分解能化すなわち電極面積や隣接電極間(スペース)の微細化により、電極上の導電粒子が接続時の加圧または加熱加圧により、接着剤と共に隣接電極間に流出し、接続部材の高分解能化の妨げとなっていた。このとき、接着剤の流出を抑制するために、接着剤を高粘度とすると電極と導電粒子の接触が不十分となり、相対峙する電極の接続が不可能となる。一方、接着剤を低粘度とすると、導電粒子の流出に加えてスペース部に気泡を含みやすく接続信頼性、特に耐湿性が低下してしまう欠点がある。   In the conventional method, when the particle size of the conductive particles is reduced, the particles are secondarily aggregated due to a significant increase in the surface area of the particles and are frozen, so that insulation between adjacent electrodes cannot be maintained. In addition, if the content of the conductive particles is reduced, the number of conductive particles on the electrodes to be connected also decreases, so the number of contact points is insufficient and conduction between the connection electrodes cannot be obtained. It has been extremely difficult to increase the resolution of the connecting member. In other words, due to the recent significant increase in resolution, that is, the electrode area and the miniaturization between adjacent electrodes (spaces), the conductive particles on the electrodes flow out between the adjacent electrodes together with the adhesive by the pressurization or heating and pressurization at the time of connection, This hinders high resolution of the connecting member. At this time, in order to suppress the outflow of the adhesive, if the adhesive has a high viscosity, the contact between the electrode and the conductive particles becomes insufficient, and it becomes impossible to connect the opposing electrodes. On the other hand, if the adhesive has a low viscosity, in addition to the outflow of the conductive particles, there is a drawback in that bubbles are likely to be included in the space portion and connection reliability, particularly moisture resistance is lowered.

このようなことから、導電粒子含有層と絶縁性接着層を分解した多層構成の接続部材料とし、導電粒子含有層の接続時における粘度を絶縁性接着層よりも高粘度もしくは高凝集力することで、導電粒子を流動させ難くして電極上に導電粒子を保持する試みも、例えば特開昭61−195179号公報、特開平4−366630号公報等にみられる。これらは接続時に導電粒子含有層が高粘度であるため、電極と導電粒子の接触が不十分となるために、接続抵抗値が高いことから接続信頼性が不満足である。また、導電粒子含有層から導電粒子を露出させ、電極との接触を得やすい構成とした場合、導電粒子の粒子径を大きくする必要があり、高分解能化に対応できない。また、このような微細電極や回路の接続を可能とし、かつ接続信頼性に優れた接続部材として、両方向の必要部に導電粒子の密集領域を有する接続部材の提案もある。これによれば、半導体チップのようなドット状の微細電極の接続が可能となるものの、導電粒子の密集領域とドット状電極との正確な位置合わせが必要で、作業性に劣る欠点がある。   For this reason, the conductive material-containing layer and the insulating adhesive layer are decomposed into a multi-layered connection material, and the viscosity at the time of connecting the conductive particle-containing layer is higher than that of the insulating adhesive layer or has a higher cohesive force. Attempts to hold the conductive particles on the electrode by making the conductive particles difficult to flow are also found in, for example, Japanese Patent Application Laid-Open Nos. 61-195179 and 4-366630. Since the conductive particle-containing layer has a high viscosity at the time of connection, the contact between the electrode and the conductive particles becomes insufficient, and the connection resistance value is high, so that the connection reliability is unsatisfactory. Further, when the conductive particles are exposed from the conductive particle-containing layer so that the contact with the electrode can be easily obtained, it is necessary to increase the particle diameter of the conductive particles, and the resolution cannot be increased. In addition, as a connection member that enables connection of such fine electrodes and circuits and is excellent in connection reliability, there is also a proposal of a connection member having a dense region of conductive particles in necessary portions in both directions. According to this, although a dot-shaped fine electrode such as a semiconductor chip can be connected, there is a disadvantage that the precise alignment between the conductive particle dense region and the dot-shaped electrode is necessary and the workability is inferior.

本発明は、上記欠点に鑑みなされたもので、導電粒子が接続時に電極上から流出し難いので電極上に保持可能であり、かつ電極と導電粒子の接触が得やすく、また接続部に気泡を含み難いことから、長時間接続信頼性に優れ、導電粒子と電極との正確な位置合わせが不要なことから作業性に優れた、高分解能の接続部材を用いた電極の接続方法に関する。また、回路接続部材に不要な粘着性やごみ等の付着防止ができ、片側の基板が平面電極の場合の仮貼り付けに際して、作業性が良く接続作業工程の連続自動化が図れる接続部材を用いた電極の接続方法を提供する。   The present invention has been made in view of the above-described drawbacks, and since the conductive particles are difficult to flow out from the electrode during connection, the conductive particles can be held on the electrode, and contact between the electrode and the conductive particles can be easily obtained. The present invention relates to an electrode connection method using a high-resolution connection member that is excellent in connection reliability for a long time because it is difficult to include, and that accurate alignment between conductive particles and electrodes is unnecessary. In addition, it is possible to prevent unnecessary adhesion and dust from adhering to the circuit connection member, and a connection member that has good workability and can be used for continuous automation of the connection work process when the substrate on one side is a flat electrode is used. An electrode connection method is provided.

本発明は、導電材料とバインダとよりなる加圧方向に導電性を有する接着層の少なくとも片面に硬化性絶縁性接着層が形成されてなる回路接続部材であって、剥離可能なセパレータが硬化性絶縁性接着層に接してなる回路接続部材を用いた電極の接続方法であって、一方の基板上に形成された突出電極と、もう一方の基板上に形成された平面電極とが相対峙する電極列間に、上記回路接続部材を、導電性接着層が上記平面電極側となるように載置し、平面電極側に導電性接着層を仮貼り付け後、セパレータを剥離し、突出電極側に硬化性絶縁性接着層を貼り付ける電極の接続方法である。   The present invention relates to a circuit connection member in which a curable insulating adhesive layer is formed on at least one surface of an adhesive layer having conductivity in a pressing direction composed of a conductive material and a binder. An electrode connection method using a circuit connection member in contact with an insulating adhesive layer, wherein a protruding electrode formed on one substrate and a planar electrode formed on the other substrate face each other. Between the electrode rows, the circuit connecting member is placed so that the conductive adhesive layer is on the flat electrode side, the conductive adhesive layer is temporarily attached to the flat electrode side, the separator is peeled off, and the protruding electrode side This is a method for connecting electrodes to which a curable insulating adhesive layer is attached.

本発明によれば、導電材料とバインダとよりなる加圧方向に導電性を有する接着層の少なくとも片面に硬化性絶縁性接着層が形成されてなる回路接続部材であって、剥離可能なセパレータが硬化性絶縁性接着層に接してなる回路接続部材としたので、回路接続部材に不要な粘着性やごみ等の付着防止ができ、セパレータが硬化性絶縁性接着層に接してなるので、片側の基板が平面電極の場合(例えば液晶等の表示基板)の仮貼り付けに際して、平面電極側にセパレータ5の存在しない導電性接着層を形成出来るので、作業性が良く好都合である。これらの場合、連続テープ状であると接続作業工程の連続自動化が図れるので好ましい。
また、高分解能かつ接続信頼性に優れた接続部材が提供できる。
According to the present invention, there is provided a circuit connecting member in which a curable insulating adhesive layer is formed on at least one surface of an adhesive layer having conductivity in a pressurizing direction composed of a conductive material and a binder. Since the circuit connecting member is in contact with the curable insulating adhesive layer, unnecessary adhesion to the circuit connecting member and dust can be prevented, and the separator is in contact with the curable insulating adhesive layer. When the substrate is a planar electrode (for example, a display substrate such as a liquid crystal), a conductive adhesive layer without the separator 5 can be formed on the planar electrode side, which is convenient and convenient. In these cases, the continuous tape shape is preferable because continuous automation of the connection work process can be achieved.
In addition, a connection member having high resolution and excellent connection reliability can be provided.

本発明を図面を参照しながら説明する。図1は、本発明の一実施例を説明する接続部材の断面模式図である。本発明に用いる接続部材は、導電材料とバインダとよりなる加圧方向に導電性を有する導電性接着層1の少なくとも片面に絶縁性接着層2が形成されてなる多層接続部材である。図2のように絶縁性接着層2は、導電性接着層1の両面に形成しても良い。図1〜2において、図示していないが絶縁性接着層2を、さらに多層構成として接着性等の機能を付加しても良い。これらの表面には不要な粘着性やごみ等の付着防止のために、図1のように剥離可能なセパレータ5が存在出来る。セパレータ5は、図示していないが表裏にも形成可能である。図1の場合、セパレータ5が絶縁性接着層2に接してなるので、片側の基板が平面電極の場合(例えば液晶等の表示基板)の仮貼り付けに際して、平面電極側にセパレータ5の存在しない導電性接着層1を形成出来るので、作業性が良く好都合である。これらの場合、連続テープ状であると接続作業工程の連続自動化が図れるので好ましい。   The present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a connecting member for explaining an embodiment of the present invention. The connection member used in the present invention is a multilayer connection member in which an insulating adhesive layer 2 is formed on at least one surface of a conductive adhesive layer 1 having conductivity in a pressurizing direction composed of a conductive material and a binder. As shown in FIG. 2, the insulating adhesive layer 2 may be formed on both surfaces of the conductive adhesive layer 1. Although not shown in FIGS. 1-2, you may add functions, such as adhesiveness, to the insulating contact bonding layer 2 as a multilayer structure further. In order to prevent unnecessary adhesion such as stickiness and dust from being present on these surfaces, there can be a separator 5 that can be peeled off as shown in FIG. Although not shown, the separator 5 can be formed on both sides. In the case of FIG. 1, since the separator 5 is in contact with the insulating adhesive layer 2, when the substrate on one side is a flat electrode (for example, a display substrate such as a liquid crystal), the separator 5 does not exist on the flat electrode side. Since the conductive adhesive layer 1 can be formed, the workability is good and convenient. In these cases, the continuous tape shape is preferable because continuous automation of the connection work process can be achieved.

図3は、加圧方向に導電性を有する導電性接着層1を説明する断面模式図である。導電性接着層1は、導電材料3を含有したバインダ4よりなる。ここに導電材料4としては、図3(a)〜(g)のようなものが適用可能である。これらのうち導電材料3は、図3(c)〜(e)のようにバインダ5の厚み方向に単層で存在できる粒径、すなわちバインダ5の厚みとほぼ同等の粒径とすることが、接続時に導電材料3が流動しにくいために電極上に導電材料3が保持しやすく好ましい。導電材料3がバインダ4の厚みとほぼ同等の場合、簡単な接触により電極と導電可能となり導電性が得やすい。バインダ4に対する導電材料3の割合は、0.1〜20体積%程度、より好ましくは1〜15体積%が、異方導電性が得やすく好ましい。また厚み方向の導電性を得やすくして高分解能とするために、バインダ5の厚さは膜形成の可能な範囲で薄い方が好ましく、20μm以下、より好ましくは10μm以下である。導電材料3としては、例えば図3の(a)〜(e)の例示のように導電粒子で形成することが、製造が比較的容易に入手しやすいことから好ましい。また、導電材料3は、図3(f)のようにバインダ5に貫通口を設けてめっき等で導電体を形成したり、図3(g)のようにワイヤ等の導電繊維状としても良い。   FIG. 3 is a schematic cross-sectional view illustrating the conductive adhesive layer 1 having conductivity in the pressing direction. The conductive adhesive layer 1 is made of a binder 4 containing a conductive material 3. Here, as the conductive material 4, those shown in FIGS. 3A to 3G are applicable. Among these, the conductive material 3 has a particle size that can exist in a single layer in the thickness direction of the binder 5 as shown in FIGS. 3C to 3E, that is, a particle size substantially equal to the thickness of the binder 5. Since the conductive material 3 does not easily flow at the time of connection, the conductive material 3 is preferable to be easily held on the electrode. When the conductive material 3 is substantially equal to the thickness of the binder 4, it is possible to conduct electricity with the electrode by simple contact, and conductivity is easily obtained. The ratio of the conductive material 3 to the binder 4 is preferably about 0.1 to 20% by volume, and more preferably 1 to 15% by volume, because anisotropic conductivity is easily obtained. Further, in order to easily obtain conductivity in the thickness direction and to achieve high resolution, the thickness of the binder 5 is preferably as thin as possible within the range where a film can be formed, and is 20 μm or less, more preferably 10 μm or less. For example, the conductive material 3 is preferably formed of conductive particles as illustrated in FIGS. 3A to 3E because the manufacturing is relatively easy. Further, the conductive material 3 may be provided with a through hole in the binder 5 as shown in FIG. 3 (f) to form a conductor by plating or the like, or may be in the form of a conductive fiber such as a wire as shown in FIG. 3 (g). .

導電粒子としては、Au、Ag、Pt、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン等があり、またこれら導電粒子を核材とするか、あるいは非導電性のガラス、セラミックス、プラスチック等の高分子等からなる核材に前記したような材質からなる導電層を被覆形成したもので良い。さらに導電材料6を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子とガラス、セラミックス、プラスチック等の絶縁粒子の併用等も分解能が向上するので適用可能である。粒径は、微小な電極上に1個以上好ましくはなるべく多くの粒子数を確保するには、小粒径粒子が好適であり15μm以下、より好ましくは7μm以下、1μm以上である。1μm以下では、絶縁性接着層を突き破って電極と接触し難い。また、導電材料3は、均一粒子径であると電極間からの流出が少ないので好ましい。これら導電粒子の中では、プラスチック等の高分子核材に導電層を形成したものや、はんだ等の熱溶融金属が、加熱加圧もしくは加圧により変形性を有し、接続に回路との接触面積が増加し、信頼性が向上するので好ましい。特に高分子類を核とした場合、はんだのように融点を示さないので軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易いので特に好ましい。また、例えばNiやW等の硬質金属粒子や、表面に多数の突起を有する粒子の場合、導電粒子が電極や配線パターンに突き刺さるので、酸化膜や汚染層の存在する場合にも低い接続抵抗が得られ、信頼性が向上するので好ましい。   Examples of the conductive particles include metal particles such as Au, Ag, Pt, Ni, Cu, W, Sb, Sn, and solder, carbon, and the like. These conductive particles are used as a core material, or non-conductive glass, A core material made of a polymer such as ceramics or plastic may be coated with a conductive layer made of the above-described material. Furthermore, insulating coating particles formed by coating the conductive material 6 with an insulating layer, and combined use of conductive particles and insulating particles such as glass, ceramics, and plastics are applicable because the resolution is improved. In order to secure one or more particles, preferably as many particles as possible, on the minute electrode, the particle size is preferably 15 μm or less, more preferably 7 μm or less, and 1 μm or more. If it is 1 μm or less, it is difficult to break through the insulating adhesive layer and contact the electrode. In addition, it is preferable that the conductive material 3 has a uniform particle diameter because there is little outflow from between the electrodes. Among these conductive particles, those in which a conductive layer is formed on a polymer core material such as plastic, and hot-melt metal such as solder are deformable by heating or pressurization, and contact with a circuit for connection This is preferable because the area is increased and the reliability is improved. In particular, when a polymer is used as a nucleus, it does not show a melting point like solder, so that the softening state can be widely controlled by the connection temperature, and it is easy to cope with variations in electrode thickness and flatness, which is particularly preferable. Also, for example, in the case of hard metal particles such as Ni and W, or particles having a large number of protrusions on the surface, the conductive particles pierce the electrode and the wiring pattern, so that even when an oxide film or a contaminated layer exists, a low connection resistance is obtained. It is preferable because it is obtained and reliability is improved.

バインダ4と絶縁性接着層2は、熱や光により硬化性を示す材料が広く適用でき、接着性の大きいことが好ましい。これらは接続後の耐熱性や耐湿性に優れることから、硬化性材料の適用が好ましい。なかでもエポキシ系接着剤は、短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れるので特に好ましい。エポキシ系接着剤は、例えば高分子量のエポキシ、固形エポキシと液状エポキシ、ウレタンやポリエステル、アクリルゴム、NBR、シリコーン、ナイロン等で変性したエポキシを主成分とし、硬化剤や触媒、カップリング剤、充填剤等を添加してなるものが一般的である。バインダ成分4と絶縁性接着層2とは、各成分中に共通材料を1重量%以上好ましくは5重量%以上含有すると、両層の界面接着力が向上するので好適である。共通材料としては、主材料や硬化剤等がより効果的である。   For the binder 4 and the insulating adhesive layer 2, a material exhibiting curability by heat or light can be widely applied, and it is preferable that the adhesive is high. Since these are excellent in heat resistance and moisture resistance after connection, application of a curable material is preferable. Among these, an epoxy adhesive is particularly preferable because it can be cured for a short time, has good connection workability, and has excellent molecular adhesion. Epoxy adhesives are mainly composed of epoxy modified with high molecular weight epoxy, solid epoxy and liquid epoxy, urethane, polyester, acrylic rubber, NBR, silicone, nylon, etc., curing agent, catalyst, coupling agent, filling A material obtained by adding an agent or the like is generally used. When the binder component 4 and the insulating adhesive layer 2 contain a common material in each component in an amount of 1% by weight or more, preferably 5% by weight or more, the interfacial adhesive force between the two layers is improved. As the common material, a main material, a curing agent, and the like are more effective.

本発明において使用するバインダ成分の接続時の溶融粘度は、絶縁性接着層に比べ同等以下である。この点について、図4〜5を用いて説明する。図4は、バインダ成分4と絶縁性接着層2との加熱時の溶融粘度を示す模式説明図である。接続時の温度下でバインダ成分4(A)が絶縁性接着層2(B)に比べ相対的に同等以下であり、好ましくはこの時の(A)と(B)の粘度の差を0.1〜1000ポイズ程度とし、より好ましくは1〜200ポイズとする。粘度の差が大き過ぎると電極と粒子との接触が不十分になりやすい。後述する図5でも説明するが、接続時の接触と流動過程のバランスから電極上に粒子を保持し、かつ、電極と粒子との接触を有効に得るために好ましい粘度範囲が存在する。同様な理由により、接続時の溶融粘度は、バインダ成分が500ポイズ以下で行うことが好ましく、この時、絶縁性接着層が1000ポイズ以下であることがより好ましい。   The melt viscosity at the time of connection of the binder component used in the present invention is equal to or less than that of the insulating adhesive layer. This point will be described with reference to FIGS. FIG. 4 is a schematic explanatory diagram showing the melt viscosity during heating of the binder component 4 and the insulating adhesive layer 2. Under the temperature at the time of connection, the binder component 4 (A) is relatively equal to or less than that of the insulating adhesive layer 2 (B). Preferably, the difference in viscosity between (A) and (B) at this time is 0. It is about 1 to 1000 poise, more preferably 1 to 200 poise. If the difference in viscosity is too large, the contact between the electrode and the particles tends to be insufficient. As will be described later with reference to FIG. 5, there is a preferable viscosity range in order to hold the particles on the electrode from the balance between the contact at the time of connection and the flow process, and to effectively obtain the contact between the electrode and the particle. For the same reason, the melt viscosity at the time of connection is preferably such that the binder component is 500 poise or less, and at this time, the insulating adhesive layer is more preferably 1000 poise or less.

図5(a)に示す接触過程で、まず導電材料3が相対的に溶融粘度が、同等以上の絶縁性接着層2に埋め込まれ、あるいは、一部が捕捉された状態で、導電材料3の位置が保持される。次いで図5(b)の流動過程において、絶縁性の接着層の軟化により導電材料3が突出電極12と接触し、平面電極13との間で導電可能となる。バインダ成分の接続時の溶融粘度が絶縁性接着層に比べ、低粘度である好ましい実施態様の場合、絶縁性接着層2は、導電材料3の保持が可能で隣接する突出電極間のスペースを気泡の無い状態で接続できる。この場合、絶縁性接着層2の軟化促進のために、接続部材の絶縁性接着層が突出した電極側となるように配置し、絶縁性接着層側に熱源を配し加熱加圧することがさらに好ましい。この時、加熱加圧工程を2段階以上に分割し、必要に応じて通電検査工程および/またはリペア工程とを含む電極の接続方法とすることも可能である。加熱加圧工程を2段階以上に分解することで、接着剤の硬化反応に伴う流動過程の粘度制御が可能になるので、気泡の無い良好な接続が可能となる。加えて硬化型接着剤の問題点であるリペア性の付与が可能となる。   In the contact process shown in FIG. 5A, first, the conductive material 3 is embedded in the insulating adhesive layer 2 having a relatively equal or higher melt viscosity, or a part of the conductive material 3 is captured. The position is maintained. Next, in the flow process of FIG. 5B, the conductive material 3 comes into contact with the protruding electrode 12 by the softening of the insulating adhesive layer, and can conduct electricity with the planar electrode 13. In the case of a preferred embodiment in which the melt viscosity at the time of binder component connection is lower than that of the insulating adhesive layer, the insulating adhesive layer 2 can hold the conductive material 3 and the spaces between adjacent protruding electrodes are bubbles. It can be connected in the state without. In this case, in order to promote softening of the insulating adhesive layer 2, the insulating adhesive layer of the connecting member is disposed on the protruding electrode side, a heat source is disposed on the insulating adhesive layer side, and heating and pressing are further performed. preferable. At this time, it is also possible to divide the heating and pressurizing process into two or more stages and to make an electrode connection method including an energization inspection process and / or a repair process as necessary. By decomposing the heating and pressurizing step into two or more steps, it is possible to control the viscosity of the flow process associated with the curing reaction of the adhesive, and therefore, a good connection without bubbles is possible. In addition, it is possible to impart repairability, which is a problem with curable adhesives.

通電検査工程は、接続電極の保持が可能な程度に、接続部材の凝集力を増加せしめ、あるいは電極接続部を加圧しながら行うことができる。通電検査は、例えば両電極からリード線を取り出し接続抵抗の測定により可能である。この時、導電材料3と電極との接触状態の外観検査も、併用もしくは独立して行うことも出来る。リペア性とは、不要部の接着剤を除去して溶剤等で清浄化し再接続することである。一般的に硬化型接着剤は、硬化終了後に網状構造が発達し、熱や溶剤等に不溶不融性となり、清浄化が極めて困難なため従来から問題視されていた。加熱加圧工程の第一段階で、例えば導電材料3が突出電極12と接触し、平面電極13との間で導通可能な状態で両電極の通電検査を行う。この時、不良電極の接続部があれば、この状態でリペアし再接続を行う。接着剤は、未硬化あるいは硬化反応の不十分な状態なので、剥離し易く溶剤にも浸され易くリペア作業が容易である。   The energization inspection step can be performed while increasing the cohesive force of the connection member to the extent that the connection electrode can be held, or while pressurizing the electrode connection portion. The energization inspection can be performed, for example, by taking out lead wires from both electrodes and measuring the connection resistance. At this time, the appearance inspection of the contact state between the conductive material 3 and the electrode can also be performed together or independently. Repairability is to remove unnecessary part of the adhesive, clean it with a solvent, and reconnect. In general, a curable adhesive has been regarded as a problem because a network structure develops after curing, becomes insoluble and infusible with heat, solvent, and the like, and is extremely difficult to clean. In the first stage of the heating and pressurizing process, for example, the conductive material 3 is in contact with the protruding electrode 12, and an energization inspection of both electrodes is performed in a state where the conductive material 3 can conduct with the flat electrode 13. At this time, if there is a connection portion of a defective electrode, repair and reconnection are performed in this state. Since the adhesive is uncured or has an insufficient curing reaction, it is easy to peel off and soak in a solvent, and repair work is easy.

溶融粘度の測定法としては、バインダ成分4と絶縁性接着層2とを相対的に比較できれば良く特に規定しないが、同一の方法とすることが好ましく、例えば、高温下の測定が可能な一般的な回転式粘度計を使用できる。この時、測定時に反応が進行し粘度の変化が生じる例えば熱硬化系配合の場合は、硬化剤を除去したモデル配合での測定値を採用出来る。バインダ成分4と絶縁性接着層2との接続時の溶融粘度に差を設ける方法としては、材料の分子量や分子の絡み合いよる固有粘度の組み合わせや、増粘材としての充填剤の選択、および硬化系における反応速度の制御等が一般的である。接続部材料の製法としては、例えば導電性接着層1と、絶縁性接着層2をラミネートしたり、積層して順次塗工する等の方法が採用できる。   The method for measuring the melt viscosity is not particularly limited as long as the binder component 4 and the insulating adhesive layer 2 can be relatively compared with each other. However, it is preferable to use the same method. A simple rotary viscometer can be used. At this time, in the case of, for example, thermosetting blending in which the reaction proceeds at the time of measurement and the viscosity changes, the measured value in the model blending with the curing agent removed can be adopted. As a method of providing a difference in melt viscosity at the time of connection between the binder component 4 and the insulating adhesive layer 2, a combination of the intrinsic viscosity depending on the molecular weight of the material and the entanglement of the molecules, selection of a filler as a thickener, and curing Control of the reaction rate in the system is common. As a method for producing the connection portion material, for example, a method of laminating the conductive adhesive layer 1 and the insulating adhesive layer 2 or laminating and sequentially applying the layers can be employed.

接続部材を用いた電極の接続構造とその製法について、図6〜7により説明する。図6は、基板11に形成された突出電極12と、基板11'の平面電極13とが、接続部材を介して接続された構造である。すなわち、相対峙する電極列間の少なくとも一方が突出した電極列間の接続構造であって、相対峙する電極間12−13間に導電材料3が存在し、かつ、突出電極12の周囲14よりも導電材料の密度が高い状態で存在し、相対峙する電極列間が接続される。また、絶縁性接着層2が突出電極12の少なくとも突出する電極の周囲を覆っている。ここに平面電極13は、基板11面からの凹凸がないか、あっても数μm以下とわずかな場合をいう。これらを例示すると、アディティブ法や薄膜法で得られた電極類が代表的である。   An electrode connection structure using a connection member and a manufacturing method thereof will be described with reference to FIGS. FIG. 6 shows a structure in which the protruding electrode 12 formed on the substrate 11 and the planar electrode 13 of the substrate 11 ′ are connected via a connecting member. That is, it is a connection structure between electrode rows in which at least one of the oppositely facing electrode rows protrudes, the conductive material 3 exists between the oppositely facing electrodes 12-13, and from the periphery 14 of the protruding electrode 12 Also, the conductive material exists in a high density state, and the electrode rows facing each other are connected. The insulating adhesive layer 2 covers at least the protruding electrode 12 of the protruding electrode 12. Here, the planar electrode 13 refers to a case where there is no unevenness from the surface of the substrate 11 or even a few μm or less. When these are illustrated, the electrodes obtained by the additive method and the thin film method are typical.

図7は、基板に形成された電極が突出電極12と12'同士の場合である。すなわち、図2で示した両面に、絶縁性接着層2および2'を有する接続部材を介して接続した構造である。絶縁性接着層2および2'は、それぞれ突出電極12と12'の突出する電極の周囲を覆っており、また、基板面11および11'と接している。図6〜7においては、導電性接着層1と絶縁性接着層2が境界を形成しているが、混合されても良く、図8のように突出した電極12の頂部16から基板11側にかけて、導電材料3の密度が傾斜的に薄くなる構成でも良い。図6〜7において、基板11としては、ポリイミドやポリエステル等のプラスチックフィルム、ガラス繊維/エポキシ等の複合体、シリコーン等の半導体、ガラスやセラミックス等の無機質等を例示できる。突出電極12は、上記した他に、各種回路類や端子類も含むことができる。なお、図6〜7で示した各種電極類は、それぞれ任意に組み合わせて適用できる。本発明の接続部材を用いた電極の接続方法は、接続部材の絶縁性接着層2が突出した電極12側となるように配置し、バインダ成分と絶縁性の接着層との接続時の溶融粘度が絶縁性の接着層に比べて、相対的にバインダ成分の方が低い条件下で加熱加圧する。   FIG. 7 shows a case where the electrodes formed on the substrate are the protruding electrodes 12 and 12 ′. That is, it is a structure in which both surfaces shown in FIG. 2 are connected via a connecting member having insulating adhesive layers 2 and 2 ′. The insulating adhesive layers 2 and 2 ′ cover the periphery of the protruding electrodes of the protruding electrodes 12 and 12 ′, respectively, and are in contact with the substrate surfaces 11 and 11 ′. 6 to 7, the conductive adhesive layer 1 and the insulating adhesive layer 2 form a boundary. However, they may be mixed, and from the top 16 of the protruding electrode 12 to the substrate 11 side as shown in FIG. 8. A configuration in which the density of the conductive material 3 is gradually reduced may be employed. 6 to 7, examples of the substrate 11 include plastic films such as polyimide and polyester, composites such as glass fiber / epoxy, semiconductors such as silicone, inorganic materials such as glass and ceramics, and the like. The protruding electrode 12 can include various circuits and terminals in addition to the above. The various electrodes shown in FIGS. 6 to 7 can be applied in any combination. The electrode connecting method using the connecting member of the present invention is arranged so that the insulating adhesive layer 2 of the connecting member is on the protruding electrode 12 side, and the melt viscosity at the time of connecting the binder component and the insulating adhesive layer. However, it is heated and pressurized under a condition in which the binder component is relatively lower than the insulating adhesive layer.

バインダ成分の接続時の溶融粘度が絶縁性接着層に比べ、同等以下であるので、電極の接続時に、導電性接着層1の導電材料3が相対的に溶融粘度が同等以上の絶縁性接着層2に埋め込まれ、あるいは一部が捕捉された状態で接触し、突出電極12上に導電材料3の位置が保持される。次いで、絶縁性の接着層の軟化流動により、導電材料3が突出電極12と接触し導通可能となる。この時絶縁性接着層2は、バインダ成分4に比べ粘度が高く、導電材料3の保持が可能であり、隣接する突出電極間のスペースを気泡の無い状態で接続できる。   Since the melt viscosity when connecting the binder component is equal to or less than that of the insulating adhesive layer, the conductive material 3 of the conductive adhesive layer 1 is relatively equal to or higher than the melt viscosity when connecting the electrodes. The conductive material 3 is held on the protruding electrode 12 by being embedded in 2 or in a state of being partially captured. Next, due to the softening flow of the insulating adhesive layer, the conductive material 3 comes into contact with the protruding electrodes 12 and becomes conductive. At this time, the insulating adhesive layer 2 has a higher viscosity than the binder component 4, can hold the conductive material 3, and can connect the spaces between adjacent protruding electrodes without bubbles.

電極12上に導電材料3が確実に保持され導通可能となるので、導通検査の信頼性が向上する。接着剤は、未硬化あるいは硬化反応の不十分な状態で導通検査可能なのでリペア作業が容易である。絶縁性接着層2は、突出した電極12側となるように配置するので、隣接電極間の絶縁性と分解能が向上する。加えて、絶縁性接着層2の溶融粘度が高い構成の場合に、接続圧力が加わらないので隣接電極間に導電材料3が一層流入しにくい。導電性接着層1の導電材料3は、全面に均一に分散されてなるので、導電粒子と電極との正確な位置合わせが不要なことから作業性に優れる。接着層は、その目的に応じ、例えば電極基板の材質に適合した接着性を示す組み合わせが可能なことから材料の選択肢が拡大し、接続部の気泡減少等により、やはり接続信頼性が向上する。また一方を溶剤に可溶性もしくは膨潤性としたり、あるいは耐熱性に差を持たせることで、一方の基板面から優先的に剥離可能とし、再接続するいわゆるリペア性を付与することも可能となる。あるいは電極基板の材質に適合した任意の組み合わせとすることも可能であり、電極と導電粒子の接触が得やすく、製法も簡単である。また、接着層を接続部の外にはみ出させ封止材的作用により、補強や防湿効果を得ることもできる。   Since the conductive material 3 is securely held on the electrode 12 and becomes conductive, the reliability of the continuity test is improved. Since the adhesive can be inspected for continuity in an uncured state or in an insufficient curing reaction, the repair work is easy. Since the insulating adhesive layer 2 is disposed so as to be on the protruding electrode 12 side, the insulation and resolution between adjacent electrodes are improved. In addition, when the insulating adhesive layer 2 has a high melt viscosity, the connection pressure is not applied, so that the conductive material 3 is less likely to flow between adjacent electrodes. Since the conductive material 3 of the conductive adhesive layer 1 is uniformly dispersed over the entire surface, it is excellent in workability because accurate alignment between the conductive particles and the electrodes is unnecessary. Depending on the purpose of the adhesive layer, for example, a combination that exhibits adhesion suitable for the material of the electrode substrate is possible, so that the choice of materials is expanded, and the connection reliability is also improved due to the reduction of bubbles in the connection portion. Further, by making one of them soluble or swellable in a solvent or having a difference in heat resistance, it is possible to preferentially peel off from one substrate surface and to impart so-called repairability for reconnection. Alternatively, any combination suitable for the material of the electrode substrate is possible, and it is easy to obtain contact between the electrode and the conductive particles, and the manufacturing method is also simple. Further, it is possible to obtain a reinforcing or moisture-proof effect by causing the adhesive layer to protrude outside the connecting portion and acting as a sealing material.

以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。
実施例1
(1)導電性接着層の作製
フェノキシ樹脂(高分子量エポキシ樹脂)とマイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185)の重量比率を30/70とし、酢酸エチルの30重量%溶液を得た。この溶液に、粒径5±0.2μmのポリスチレン系粒子にNi/Auの厚さ0.2/0.02μmの金属被覆を形成した導電粒子を5体積%添加し、混合分散した。この分散液をセパレータ(シリコーン処理ポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、110℃で20分乾燥し、厚み5μmの導電性接着層を得た。この接着層の硬化剤を除去したモデル配合の粘度を、デジタル粘度計HV−8(株式会社レスカ製)により測定した。150℃における粘度は80ポイズであった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
Example 1
(1) Production of conductive adhesive layer The weight ratio of liquid epoxy resin (epoxy equivalent 185) containing phenoxy resin (high molecular weight epoxy resin) and microcapsule type latent curing agent is 30/70, and 30 weight of ethyl acetate % Solution was obtained. To this solution, 5% by volume of conductive particles in which a Ni / Au metal coating with a thickness of 0.2 / 0.02 μm was added to polystyrene particles having a particle size of 5 ± 0.2 μm was added and mixed and dispersed. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 110 ° C. for 20 minutes to obtain a conductive adhesive layer having a thickness of 5 μm. The viscosity of the model blend from which the curing agent of the adhesive layer was removed was measured with a digital viscometer HV-8 (manufactured by Reska Co., Ltd.). The viscosity at 150 ° C. was 80 poise.

(2)絶縁性接着層の形成と接続部材の作製
(1)の配合比を40/60とし導電性接着層から導電粒子を除去し、厚み15μmのシートを前記(1)と同様に作製した。まず(1)の導電性接着層面と(2)の接着層面とをゴムロール間で圧延しながらラミネートした。以上で図1の2層構成の多層接続部材を得た。前記と同様に測定した150℃における粘度は280ポイズであった。したがって150℃における導電性接着層と絶縁性接着層との粘度の差は、200ポイズである。
(2) Formation of insulating adhesive layer and preparation of connecting member The mixing ratio of (1) was set to 40/60, the conductive particles were removed from the conductive adhesive layer, and a sheet having a thickness of 15 μm was prepared in the same manner as (1). . First, the conductive adhesive layer surface (1) and the adhesive layer surface (2) were laminated while being rolled between rubber rolls. Thus, the multilayer connection member having the two-layer structure shown in FIG. 1 was obtained. The viscosity at 150 ° C. measured in the same manner as described above was 280 poise. Therefore, the difference in viscosity between the conductive adhesive layer and the insulating adhesive layer at 150 ° C. is 200 poise.

(3)接続
ポリイミドフィルム上に、高さ18μmの銅の回路を有する2層FPC回路板(回路ピッチは70μm、電極幅20μmの平行回路の電極)と、ガラス1.1mm上に酸化インジウム厚み0.2μm(ITO、表面抵抗20Ω/□)の薄膜回路を有する平面電極との接続を行った。この時、接続装置の熱源は、絶縁性の接着層側に配置した。まず、平面電極側に導電性接着層がくるようにした。前記接続部材を2mm幅で載置し、セパレータを剥離した後貼り付けた。平面電極側に仮接続したので貼り付けが容易で、この後のセパレータ剥離も簡単であった。次に他の回路板と上下回路を位置合わせし、150℃、20kgf/mm、15秒で接続体を得た。
(3) Connection Two-layer FPC circuit board (circuit pitch is 70 μm, electrode of parallel circuit with electrode width of 20 μm) having a copper circuit with a height of 18 μm on a polyimide film, and an indium oxide thickness of 0 on glass 1.1 mm Connection with a planar electrode having a thin film circuit of 2 μm (ITO, surface resistance 20Ω / □) was made. At this time, the heat source of the connection device was disposed on the insulating adhesive layer side. First, the conductive adhesive layer was placed on the planar electrode side. The connecting member was placed with a width of 2 mm, and the separator was peeled off and pasted. Since it was temporarily connected to the flat electrode side, it was easy to attach, and the subsequent separation of the separator was also easy. Next, the other circuit board and the upper and lower circuits were aligned, and a connection body was obtained at 150 ° C., 20 kgf / mm 2 , and 15 seconds.

(4)評価
この接続体の断面を研磨し顕微鏡で観察したところ、図6相当の接続構造であった。隣接電極間のスペースは気泡混入がなく粒子が球状であったが、電極上は粒子が圧縮変形され上下電極と接触保持されていた。相対峙する電極間を接続抵抗、隣接する電極間を絶縁抵抗として評価したところ、接続抵抗は1Ω以下、絶縁抵抗は10Ω以上であり、これらは85℃、85%RH1000時間処理後も変化が殆どなく良好な長期信頼性を示した。本実施例における電極上(20μm×2mm)の接続に寄与している有効平均粒子数は、60個(最大66個、最小52個)であった。接続に寄与している有効粒子とは、接続面をガラス側から顕微鏡(×100)で観察し、電極との接触により光沢を有しているものとした。
(4) Evaluation When the cross section of this connection body was polished and observed with a microscope, it was a connection structure corresponding to FIG. The space between adjacent electrodes was free of bubbles and the particles were spherical, but the particles were compressed and deformed on the electrodes and held in contact with the upper and lower electrodes. When the resistance between the electrodes facing each other was evaluated as the connection resistance, and between the adjacent electrodes as the insulation resistance, the connection resistance was 1Ω or less and the insulation resistance was 10 8 Ω or more, which changed even after treatment at 85 ° C. and 85% RH for 1000 hours. No long-term reliability was observed. The number of effective average particles contributing to the connection on the electrode (20 μm × 2 mm) in this example was 60 (maximum 66 particles, minimum 52 particles). The effective particles contributing to the connection were observed by observing the connection surface from the glass side with a microscope (× 100) and having gloss due to contact with the electrode.

比較例1
実施例1と同様であるが、厚みが20μmの従来構成の単層の導電性接着層を得た。実施例1と同様に評価したところ、電極上(20μm×2mm)の粒子数は最大38個、最小0個であり、電極上に有効粒子の無いものが見られ、また実施例1に比べ最大と最小のばらつきが大きかった。また、接続体の絶縁抵抗を測定したところショート不良が発生した。接続時に導電粒子が電極上から流出し、隣接電極間(スペース部)での絶縁性が保持できなくなったと見られる。
Comparative Example 1
Although it was the same as that of Example 1, a single-layer conductive adhesive layer having a conventional structure with a thickness of 20 μm was obtained. When evaluated in the same manner as in Example 1, the number of particles on the electrode (20 μm × 2 mm) was 38 at the maximum and 0 at the minimum, and there was no effective particle on the electrode. And the smallest variation was large. Further, when the insulation resistance of the connection body was measured, a short circuit defect occurred. It seems that the conductive particles flowed out from the electrodes at the time of connection, and the insulation between adjacent electrodes (space portions) cannot be maintained.

実施例2
実施例1の導電性接着層の他の面に、さらに同様に絶縁性接着層を形成し、図2の3層構成の多層接続部材を得た。実施例1のFPC同様に接続し、図7相当の接続体を得た。実施例1と同様に評価したところ良好な接続特性を示した。電極上の有効粒子数は、突出電極同士の接続なので粒子が流出しやすい構成にもかかわらず、全電極において10個以上の確保が可能であった。
Example 2
Similarly, an insulating adhesive layer was formed on the other surface of the conductive adhesive layer of Example 1 to obtain a multi-layer connecting member having a three-layer structure shown in FIG. Connections were made in the same manner as the FPC of Example 1 to obtain a connection body corresponding to FIG. When evaluated in the same manner as in Example 1, good connection characteristics were shown. The number of effective particles on the electrodes can be secured to 10 or more in all the electrodes regardless of the configuration in which the particles easily flow out because of the connection between the protruding electrodes.

実施例3〜5
実施例1と同様であるが、絶縁性接着層のフェノキシ樹脂と液状エポキシ樹脂の配合比を変えることで、両層の150℃における粘度の差を変化させた。結果を前述実施例1と共に表1に示す。各実施例では、電極上の有効粒子数が多くばらつきも比較的少なく、実施例1と同様に良好な接続特性を示した。
Examples 3-5
Although it is the same as that of Example 1, the difference in the viscosity at 150 ° C. of both layers was changed by changing the blending ratio of the phenoxy resin and the liquid epoxy resin of the insulating adhesive layer. The results are shown in Table 1 together with Example 1 described above. In each example, the number of effective particles on the electrode was large and the variation was relatively small, and good connection characteristics were exhibited as in Example 1.

Figure 0004661914
Figure 0004661914

実施例6
実施例1と同様であるが、FPCに変えて、ICチップ(2×10mm、高さ0.5mm、4辺周囲にバンプと呼ばれる50μm角、高さ20μmの金電極が200個形成)を用いた。ガラス側のITO電極を、前記ICチップのバンプ電極のサイズに対応するように変更した。接続体は図6にほぼ相当する構成であるが、良好な接続特性を示した。本実施例では、バンプがマッシュルーム形で頂部を有しているも拘らず、粒子は圧縮変形され上下電極と接触保持されていた。隣接バンプ間に気泡混入がなく、良好な長期信頼性を示した。導電粒子は、相対峙する電極間距離に応じて粒子の変形度が異なり、部分的にバンプに食い込むものも見られた。パンプ上の有効粒子数は、全電極において5個以上の確保が可能であった。
Example 6
Same as Example 1, but instead of FPC, an IC chip (2 × 10 mm, height 0.5 mm, 200 gold electrodes of 50 μm square and 20 μm height called bumps are formed around 4 sides) is used. It was. The ITO electrode on the glass side was changed to correspond to the size of the bump electrode of the IC chip. The connection body has a configuration substantially corresponding to that shown in FIG. 6, but showed good connection characteristics. In this example, the particles were compressed and deformed and held in contact with the upper and lower electrodes even though the bumps were mushroom-shaped and had tops. Air bubbles were not mixed between adjacent bumps, and good long-term reliability was demonstrated. As for the conductive particles, the degree of deformation of the particles differs depending on the distance between the opposing electrodes, and some of the conductive particles bite into the bumps. The number of effective particles on the pump could be 5 or more for all electrodes.

実施例7〜8
実施例6と同様であるが、ガラス基板上に5個のICチップを搭載できる基板に変更し、加熱加圧工程を2段階とした。まず、150℃、20kgf/mm、2秒後に加圧しながら各接続点の接続抵抗をマルチメータで測定検査した(実施例7)。同様であるが他の一方は、150℃、20kgf/mm、3秒後に接続装置から除去した。加熱加圧により接着剤の凝集力が向上したので、各ICチップは、ガラス側に仮固定が可能で無加圧で同様に検査(実施例8)した。両実施例ともに1個のICチップが異常であった。そこで異常チップを剥離して新規チップで前記同様の接続を行ったところ、今度はいずれも良好であった。接着剤は硬化反応の不十分な状態なので、チップの剥離や、その後のアセトンを用いた清浄化も極めて簡単であり、リペア作業が容易であった。以上の通電検査工程およびリペア工程の後で、150℃、20kgf/mm、15秒で接続したところ、両実施例ともに良好な接続特性を示した。バンプ上の有効粒子数は、全電極において7個以上の確保が可能であった。本実施例では、実施例6に比べバンプ上の有効粒子数が増加し、電極上からの流出が少ない。加熱加圧工程を2段階としたことで、粒子の保持性がさらに向上したものと見られる。
Examples 7-8
Although it is the same as that of Example 6, it changed into the board | substrate which can mount five IC chips on a glass substrate, and made the heating-pressing process into two steps. First, the connection resistance at each connection point was measured and inspected with a multimeter while applying pressure after 150 seconds at 20 ° C. and 20 kgf / mm 2 (Example 7). Similar but the other was removed from the connecting device after 150 seconds at 20 ° C. and 20 kgf / mm 2 . Since the cohesive force of the adhesive was improved by heating and pressing, each IC chip could be temporarily fixed on the glass side and similarly tested without pressure (Example 8). In both examples, one IC chip was abnormal. Then, when the abnormal chip was peeled off and the same connection as described above was performed with a new chip, both were good this time. Since the adhesive is in a state where the curing reaction is insufficient, the chip peeling and the subsequent cleaning with acetone are very simple, and the repair work is easy. After the above energization inspection process and repair process, when connected at 150 ° C., 20 kgf / mm 2 for 15 seconds, both examples showed good connection characteristics. The number of effective particles on the bumps could be secured to 7 or more for all electrodes. In the present embodiment, the number of effective particles on the bumps is increased and the outflow from the electrodes is less than in the sixth embodiment. It is considered that the retention property of the particles is further improved by making the heating and pressing step into two stages.

実施例9
実施例2の接続部材と同様であるが、接着層の厚みを片側25μm、他の面を50μmに形成した。電極は、QFP形ICのリード(厚み100μm、ピッチ300μm)であり、ガラスエポキシ基板上の銅の厚み35μmの端子と接続した。本構成は図7類似であるが、ICのリード側(片側)に基板のない構成である。本実施例は、高さの大きな電極同士の接続であるが、電極ずれがなく良好な接続特性を示した。導電性シート中の導電材料は図示していないが、粒子は圧縮変形され上下電極と接触保持されていた。隣接電極間に気泡混入がなく、良好な長期信頼性を示した。本実施例では、基板のない部分もリード高さに沿って接着層が形成され、リードを固定できた。電極上の有効粒子数は、全電極において10個以上の確保が可能であった。
Example 9
Although it is the same as that of the connection member of Example 2, the thickness of the adhesive layer was formed to 25 μm on one side and the other surface to 50 μm. The electrodes were QFP type IC leads (thickness: 100 μm, pitch: 300 μm), and were connected to terminals of copper on a glass epoxy substrate having a thickness of 35 μm. This configuration is similar to that shown in FIG. 7, but has no substrate on the lead side (one side) of the IC. In this example, the electrodes were connected to each other with a large height, but there was no electrode displacement and good connection characteristics were shown. Although the conductive material in the conductive sheet is not shown, the particles were compressed and deformed and held in contact with the upper and lower electrodes. Air bubbles were not mixed between adjacent electrodes, and good long-term reliability was demonstrated. In this example, the adhesive layer was formed along the lead height even in the portion without the substrate, and the lead could be fixed. The number of effective particles on the electrode could be 10 or more for all electrodes.

実施例10
実施例1の接続部材と同様であるが、導電粒子を表面に凹凸を有するカルボニルニッケル(平均粒径3μm)に変更し、絶縁性接着層をカルボキシル変性SEBS(スチレン−エチレン−ブチレン−スチレンブロック共重合体)とマイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185)の比率を20/80とし、厚み15μmのシートを前記と同様に作製し、導電性接着層面とラミネートした。前記と同様に測定した150℃における粘度は100ポイズであった。したがって導電性接着層と絶縁性接着層との粘度の差は20ポイズである。実施例1と同様に評価したところ、電極に導電粒子の先端が食い込んでおり、電極上の有効粒子数は、100個以上が確保できた。接続抵抗、絶縁抵抗、長期信頼性ともに良好あった。本実施例では、導電性接着層と絶縁性接着層とで、高分子成分を変えたので接着後に、絶縁性接着層側の面から綺麗に剥離可能であった。このことは、リペア作業の容易さを意味する。導電性接着層と絶縁性接着層とのTMA(熱機械分析)による引っ張り法で求めたTg(ガラス転移点)は、前者が125℃、後者が100℃であった。これはリペア作業において剥離温度を高温下とし、耐熱性の差を利用して剥離するときに有効である。
Example 10
Although it is the same as that of the connecting member of Example 1, the conductive particles are changed to carbonyl nickel having an unevenness on the surface (average particle size 3 μm), and the insulating adhesive layer is made of carboxyl-modified SEBS (styrene-ethylene-butylene-styrene block co-polymer). The ratio of the polymer) to the liquid epoxy resin (epoxy equivalent 185) containing the microcapsule type latent curing agent was 20/80, and a sheet having a thickness of 15 μm was prepared in the same manner as described above, and laminated with the conductive adhesive layer surface. The viscosity at 150 ° C. measured in the same manner as described above was 100 poise. Therefore, the difference in viscosity between the conductive adhesive layer and the insulating adhesive layer is 20 poise. As a result of evaluation in the same manner as in Example 1, the tip of the conductive particles bite into the electrode, and the number of effective particles on the electrode was 100 or more. Good connection resistance, insulation resistance, and long-term reliability. In this example, since the polymer component was changed between the conductive adhesive layer and the insulating adhesive layer, it could be cleanly peeled off from the surface on the insulating adhesive layer side after bonding. This means the ease of repair work. The Tg (glass transition point) determined by the TMA (thermomechanical analysis) tensile method between the conductive adhesive layer and the insulating adhesive layer was 125 ° C. for the former and 100 ° C. for the latter. This is effective when the peeling temperature is set to a high temperature during repair work and peeling is performed using the difference in heat resistance.

実施例11〜13
実施例1の接続部材と同様であるが、絶縁粒子として実施例1の導電粒子の核体であるポリスチレン系粒子を1体積%、導電性接着層(実施例11)、絶縁性接着層(実施例12)、両層(実施例13)にそれぞれ混合分散した。実施例1と同様に評価したところ、接続抵抗、絶縁抵抗、長期信頼性ともに良好であった。絶縁粒子の添加量が少ないので、各実施例で流動性に対する影響は見られなかった。実施例11では、導電粒子の間に絶縁粒子が分散され導電性接着層のみの異方導電性の分解能向上に有効であった。実施例12は、絶縁性接着層の絶縁性保持に有効で、実施例13は、実施例11〜12の両者の特徴を有していた。実施例11と13の絶縁粒子は、電極間で導電粒子と同様に変形保持された。
Examples 11-13
Same as the connection member of Example 1, but 1% by volume of polystyrene particles which are the cores of the conductive particles of Example 1 as insulating particles, a conductive adhesive layer (Example 11), and an insulating adhesive layer (implemented) Example 12) and both layers (Example 13) were mixed and dispersed. When evaluated in the same manner as in Example 1, the connection resistance, insulation resistance, and long-term reliability were all good. Since the addition amount of the insulating particles was small, no influence on the fluidity was observed in each example. In Example 11, the insulating particles were dispersed between the conductive particles, which was effective in improving the resolution of the anisotropic conductivity of only the conductive adhesive layer. Example 12 was effective in maintaining the insulating property of the insulating adhesive layer, and Example 13 had the characteristics of both Examples 11-12. The insulating particles of Examples 11 and 13 were deformed and held between the electrodes in the same manner as the conductive particles.

実施例14
実施例1の接続部材と同様であるが、導電粒子の表面を絶縁被覆処理を行った。すなわち、平均粒径5μmの導電粒子の表面を、ガラス転移点127℃のナイロン樹脂で厚み約0.2μm被覆し、添加量を10体積%に増加した。実施例1と同様に評価したが、良好な接続特性を示した。本実施例では、電極上の粒子数が著しく増加した。電極接続部は、接続時の熱圧による絶縁層およびバインダの軟化により導通可能であるが、隣接電極列のスペース部は熱圧が少なく導電材料の表面が絶縁層で被覆されたままなので、絶縁性も良好であった。バンプ上の有効粒子数は、全電極で20個以上の確保が可能であった。本構成では、導電材料のバインダに対する濃度を高密度に構成できた。
Example 14
Although it is the same as that of the connection member of Example 1, the surface of the conductive particles was subjected to an insulation coating treatment. That is, the surface of conductive particles having an average particle diameter of 5 μm was coated with a nylon resin having a glass transition point of 127 ° C. to a thickness of about 0.2 μm, and the amount added was increased to 10% by volume. Evaluation was performed in the same manner as in Example 1, but good connection characteristics were exhibited. In this example, the number of particles on the electrode increased significantly. The electrode connection can be conducted by softening the insulating layer and binder due to the thermal pressure at the time of connection, but the space part of the adjacent electrode row has little heat pressure and the surface of the conductive material is still covered with the insulating layer. The property was also good. The number of effective particles on the bumps could be 20 or more for all electrodes. In this structure, the density | concentration with respect to the binder of an electroconductive material was able to be comprised with high density.

本発明の接続部材を示す断面模式図。The cross-sectional schematic diagram which shows the connection member of this invention. 本発明の他の接続部材を示す断面模式図。The cross-sectional schematic diagram which shows the other connection member of this invention. 本発明における導電性接着層を示す断面模式図。The cross-sectional schematic diagram which shows the electroconductive contact bonding layer in this invention. 本発明における接着剤層の溶融粘度を示す線図。The diagram which shows the melt viscosity of the adhesive bond layer in this invention. 本発明における接続過程を示す説明図(a)(b)。Explanatory drawing (a) (b) which shows the connection process in this invention. 本発明の接続部材を用いた電極の接続構造例を示す断面模式図。The cross-sectional schematic diagram which shows the example of a connection structure of the electrode using the connection member of this invention. 本発明の接続部材を用いた電極の接続構造例を示す断面模式図。The cross-sectional schematic diagram which shows the example of a connection structure of the electrode using the connection member of this invention. 本発明の接続部材を用いた電極の接続構造例を示す断面模式図。The cross-sectional schematic diagram which shows the example of a connection structure of the electrode using the connection member of this invention.

符号の説明Explanation of symbols

1 導電性接着層
2 絶縁性接着層
3 導電材料
4 バインダ
5 セパレータ
11 基板
12 突出電極
13 平面電極
14 周囲
15 空隙部
16 頂部
DESCRIPTION OF SYMBOLS 1 Conductive adhesive layer 2 Insulating adhesive layer 3 Conductive material 4 Binder 5 Separator 11 Substrate 12 Protruding electrode 13 Planar electrode 14 Perimeter 15 Cavity 16 Top

Claims (3)

導電材料とバインダとよりなる加圧方向に導電性を有する導電性接着層の片面に硬化性絶縁性接着層が形成されてなり、剥離可能なセパレータが前記硬化性絶縁性接着層に接してなる回路接続部材を用いた電極の接続方法であって、
前記バインダ成分の加熱接続時の溶融粘度が500ポイズ以下であり、かつ、前記バインダ成分の加熱接続時の溶融粘度が前記硬化性絶縁性接着層の加熱接続時の溶融粘度以下で、その溶融粘度の差が0〜1000ポイズであり、
一方の基板上に形成された突出電極と、もう一方の基板上に形成された平面電極とが相対峙する電極列間に、前記回路接続部材を、前記導電性接着層が前記平面電極側となるように載置し、前記平面電極側に前記導電性接着層を仮貼り付け後、前記セパレータを剥離し、前記突出電極側に前記硬化性絶縁性接着層を貼り付ける、電極の接続方法。
A curable insulating adhesive layer is formed on one side of a conductive adhesive layer having conductivity in a pressurizing direction composed of a conductive material and a binder, and a peelable separator is in contact with the curable insulating adhesive layer. An electrode connection method using a circuit connection member,
The melt viscosity at the time of heat connection of the binder component is 500 poise or less, and the melt viscosity at the time of heat connection of the binder component is equal to or less than the melt viscosity at the time of heat connection of the curable insulating adhesive layer. The difference between 0 and 1000 poise,
Between the protruding electrode formed on one substrate and the electrode array where the planar electrode formed on the other substrate faces each other, the circuit connecting member is disposed between the conductive adhesive layer and the planar electrode side. The electrode connecting method, wherein the electrode layer is placed so that the conductive adhesive layer is temporarily attached to the planar electrode side, the separator is peeled off, and the curable insulating adhesive layer is attached to the protruding electrode side.
前記平面電極は、前記基板からの凹凸が0.2μm以下である、請求項1記載の電極の接続方法。   The electrode connection method according to claim 1, wherein the planar electrode has an unevenness of 0.2 μm or less from the substrate. 前記絶縁性接着層側に熱源を配し加熱加圧する、請求項1又は2記載の電極の接続方法。   The electrode connection method according to claim 1, wherein a heat source is disposed on the insulating adhesive layer side and heated and pressurized.
JP2008189038A 1995-02-07 2008-07-22 Electrode connection method Expired - Fee Related JP4661914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189038A JP4661914B2 (en) 1995-02-07 2008-07-22 Electrode connection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1912995 1995-02-07
JP2008189038A JP4661914B2 (en) 1995-02-07 2008-07-22 Electrode connection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004203180A Division JP4473661B2 (en) 1995-02-07 2004-07-09 Connecting member

Publications (2)

Publication Number Publication Date
JP2008300360A JP2008300360A (en) 2008-12-11
JP4661914B2 true JP4661914B2 (en) 2011-03-30

Family

ID=40173648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189038A Expired - Fee Related JP4661914B2 (en) 1995-02-07 2008-07-22 Electrode connection method

Country Status (1)

Country Link
JP (1) JP4661914B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170009822A (en) * 2014-05-15 2017-01-25 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
US20180022968A1 (en) * 2015-03-20 2018-01-25 Dexerials Corporation Anisotropic conductive film and connection structure
JP6889020B2 (en) * 2016-05-02 2021-06-18 デクセリアルズ株式会社 Manufacturing method of anisotropic conductive film and anisotropic conductive film
WO2017191776A1 (en) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 Method for manufacturing anisotropic conductive film, and anisotropic conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722478U (en) * 1993-09-30 1995-04-21 信越ポリマー株式会社 Heat seal connector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107888A (en) * 1989-09-21 1991-05-08 Sharp Corp Connecting structure for circuit board
JPH0777136B2 (en) * 1990-10-31 1995-08-16 信越ポリマー株式会社 Thermosetting anisotropic conductive connection member
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH0645024A (en) * 1992-07-22 1994-02-18 Hitachi Chem Co Ltd Anisotropic conductive adhesive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722478U (en) * 1993-09-30 1995-04-21 信越ポリマー株式会社 Heat seal connector

Also Published As

Publication number Publication date
JP2008300360A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4032439B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
US6338195B1 (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JP4661914B2 (en) Electrode connection method
JP2006339160A (en) Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP4595981B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4631893B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP2010010142A (en) Thermosetting circuit connection member and connection structure of electrode using it and connecting method of electrode
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP4473661B2 (en) Connecting member
KR100251675B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP4595980B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4631889B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP2008031483A (en) Connecting member, connecting structure of electrodes connected with the same, and connecting method
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP4181239B2 (en) Connecting member
JP4155470B2 (en) Electrode connection method using connecting members
JP2008112732A (en) Connecting method of electrode
JP2004165659A (en) Method of connecting electrodes and connecting structure of electrodes obtained by the same
JP4670858B2 (en) Repair property imparting method and connecting member
JP4760992B2 (en) Connection member and electrode connection structure using the same
JP4760993B2 (en) Connection member and electrode connection structure using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees