JP2009170898A - Circuit connecting material and connecting structure of circuit member - Google Patents

Circuit connecting material and connecting structure of circuit member Download PDF

Info

Publication number
JP2009170898A
JP2009170898A JP2008319815A JP2008319815A JP2009170898A JP 2009170898 A JP2009170898 A JP 2009170898A JP 2008319815 A JP2008319815 A JP 2008319815A JP 2008319815 A JP2008319815 A JP 2008319815A JP 2009170898 A JP2009170898 A JP 2009170898A
Authority
JP
Japan
Prior art keywords
circuit
adhesive layer
connection
conductive particles
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319815A
Other languages
Japanese (ja)
Other versions
JP5067355B2 (en
Inventor
Takashi Tatezawa
貴 立澤
Koji Kobayashi
宏治 小林
Mitsugi Fujinawa
貢 藤縄
Masahiro Arifuku
征宏 有福
Akihiro Ito
彰浩 伊藤
Kotaro Seki
耕太郎 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008319815A priority Critical patent/JP5067355B2/en
Priority to KR20080128345A priority patent/KR101020469B1/en
Publication of JP2009170898A publication Critical patent/JP2009170898A/en
Application granted granted Critical
Publication of JP5067355B2 publication Critical patent/JP5067355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit connecting material having higher capturing efficiency of electrically conductive particles on electrodes and superior connection reliability than those of conventional ones, and also to provide a connecting structure of a circuit member using the same. <P>SOLUTION: The circuit connecting material 1 intervening between facing circuit electrodes 2 and 8 and imparting pressure to them to electrically connect the electrodes in the pressure imparting direction has a two layer configuration in which an electrically conductive anisotropic adhesive layer 15 in which conductive particles 7 are dispersed and an insulating adhesive layer 16 are laminated, where the relation between the average particle size "a" of the electrically conductive particles and the thickness "b" of the anisotropic electrically conductive adhesive layer satisfies the following formula (1): a≥b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回路接続材料及びこれを用いた回路部材の接続構造に関する。   The present invention relates to a circuit connection material and a circuit member connection structure using the same.

相対向する回路を加熱、加圧し加圧方向の電極間を電気的に接続する回路接続材料、例えば、エポキシ系接着剤やアクリル系接着剤に導電粒子を分散させた異方導電接着フィルムは、主に液晶ディスプレイ(LCD)を駆動させる半導体が搭載されたTCP(Tape Carrier Package)又はCOF(Chip On Flex)とLCDパネル、あるいは、TCP又はCOFとプリント配線板との電気的接続に広く使用されている。   A circuit connecting material that heats and presses opposite circuits to electrically connect electrodes in the pressing direction, for example, an anisotropic conductive adhesive film in which conductive particles are dispersed in an epoxy adhesive or an acrylic adhesive, Widely used for electrical connection between TCP (Tape Carrier Package) or COF (Chip On Flex) and LCD panel, or TCP or COF and printed wiring board, which is mainly equipped with a semiconductor that drives liquid crystal display (LCD) ing.

また、最近では、半導体をフェイスダウンで直接LCDパネルやプリント配線板に実装する場合でも、従来のワイヤーボンディング法ではなく、薄型化や狭ピッチ接続に有利なフリップチップ実装が採用されており、ここでも異方導電接着フィルムが回路接続材料として用いられている(例えば特許文献1〜4参照)。   Recently, even when semiconductors are directly mounted face-down on LCD panels and printed wiring boards, flip chip mounting, which is advantageous for thinning and narrow pitch connection, has been adopted instead of the conventional wire bonding method. However, anisotropic conductive adhesive films are used as circuit connection materials (see, for example, Patent Documents 1 to 4).

また、近年、LCDモジュールのCOF化やファインピッチ化に伴い、回路接続材料を用いた接続の際に、隣り合う電極間に短絡が発生するという問題を有している。これらの対応策として、接着剤成分中に絶縁粒子を分散させて短絡を防止する技術がある(例えば特許文献5〜9参照)。   Further, in recent years, with the increase in COF and fine pitch of LCD modules, there is a problem that a short circuit occurs between adjacent electrodes when connecting using a circuit connecting material. As these countermeasures, there is a technique for preventing short circuit by dispersing insulating particles in an adhesive component (see, for example, Patent Documents 5 to 9).

また、基板が絶縁性有機物又はガラスからなる配線部材や、表面の少なくとも一部に窒化シリコン、シリコーン樹脂及び/又はポリイミド樹脂を備える配線部材等に接着するため、接着剤成分にシリコーン粒子を含有させたり(例えば、特許文献10参照)、接着後の熱膨張率差に基づく内部応力を低減させるため、接着剤にゴム粒子を分散させる技術がある(例えば、特許文献11参照)。
特開昭59−120436号公報 特開昭60−191228号公報 特開平1−251787号公報 特開平7−90237号公報 特開昭51−20941号公報 特開平3−29207号公報 特開平4−174980号公報 特許第3048197号公報 特許第3477367号公報 国際公開第01/014484号パンフレット 特開2001−323249号公報
In addition, in order to adhere to a wiring member made of an insulating organic material or glass, or a wiring member having silicon nitride, silicone resin and / or polyimide resin on at least a part of the surface, the adhesive component contains silicone particles. In order to reduce internal stress based on the difference in coefficient of thermal expansion after bonding, there is a technique of dispersing rubber particles in an adhesive (for example, see Patent Document 11).
JP 59-120436 A JP-A-60-191228 JP-A-1-251787 JP-A-7-90237 JP 51-20941 A JP-A-3-29207 JP-A-4-174980 Japanese Patent No. 3048197 Japanese Patent No. 3477367 International Publication No. 01/014484 Pamphlet JP 2001-323249 A

しかしながら、これら従来の回路接続材料では、基板となるガラスのガラスエッジ部に形成された有機膜の突起により、流動した導電粒子がせき止められて凝集することによりショートが発生するという問題がある。この対応策として電極上での導電粒子の捕捉効率を向上させ、余分な導電粒子を削減することで導電粒子の凝集によるショートを防止することが求められている。   However, these conventional circuit connection materials have a problem that a short circuit occurs because the flowing conductive particles are dammed and aggregated by the protrusions of the organic film formed on the glass edge portion of the glass serving as the substrate. As a countermeasure, it is required to improve the trapping efficiency of the conductive particles on the electrode and to prevent the short-circuit due to the aggregation of the conductive particles by reducing unnecessary conductive particles.

上記事情に鑑み本発明は、従来の回路接続材料に比べ電極上での導電粒子の捕捉効率が高く、かつ接続信頼性にも優れる回路接続材料及びこれを用いた回路部材の接続構造を提供することを目的とする。   In view of the above circumstances, the present invention provides a circuit connection material that has a higher efficiency of capturing conductive particles on an electrode than a conventional circuit connection material and is excellent in connection reliability, and a circuit member connection structure using the circuit connection material. For the purpose.

本発明は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、導電粒子を分散した異方導電接着剤層と絶縁性接着剤層とが積層された構成を有し、導電粒子の平均粒径aと異方導電接着剤層の厚みbとが、下記式(1)の関係を満たす2層構成の回路接続材料を提供する。
a≧b …(1)
The present invention relates to a circuit connecting material that is interposed between circuit electrodes facing each other and presses opposite circuit electrodes to electrically connect the electrodes in the pressurizing direction. A two-layer structure in which the agent layer and the insulating adhesive layer are laminated, and the average particle diameter a of the conductive particles and the thickness b of the anisotropic conductive adhesive layer satisfy the relationship of the following formula (1) The circuit connection material is provided.
a ≧ b (1)

かかる回路接続材料によれば、従来の回路接続材料に比べ電極上での導電粒子の捕捉効率が高く、かつ接続信頼性にも優れる。   According to such a circuit connection material, the conductive particle capturing efficiency on the electrode is higher than that of the conventional circuit connection material, and the connection reliability is also excellent.

本発明の回路接続材料によりこのような効果が得られる理由は必ずしも明らかでないが、本発明者らの考えを図2〜4に基づいて説明する。   Although the reason why such an effect can be obtained by the circuit connecting material of the present invention is not necessarily clear, the present inventors' idea will be described with reference to FIGS.

図2は、従来の導電粒子7及び樹脂9を含有するフィルム状の回路接続材料1を用いて、回路基板5上に設けられた回路電極6と、回路基板4上に設けられた回路電極2とを電気的に接続するときの導電粒子7の挙動を示す模式断面図である。   FIG. 2 shows a circuit electrode 6 provided on a circuit board 5 and a circuit electrode 2 provided on the circuit board 4 by using a film-like circuit connection material 1 containing conventional conductive particles 7 and a resin 9. It is a schematic cross section which shows the behavior of the electroconductive particle 7 when these are electrically connected.

図2(a)に示す回路基板4及び5を加圧して接続すると、フィルム状の回路接続材料は圧縮され、図2(a)の矢印で示すように、基板の主面と平行な方向に導電粒子が移動しようとする力が生ずる。これにより、導電粒子が大きく移動し、絶縁部分であるレジスト8にまで導電粒子が到達するために、ショートが発生するものと考えられる。   When the circuit boards 4 and 5 shown in FIG. 2A are pressed and connected, the film-like circuit connecting material is compressed, and in a direction parallel to the main surface of the board as indicated by the arrow in FIG. A force is generated to move the conductive particles. As a result, the conductive particles move greatly, and the conductive particles reach the resist 8 which is an insulating portion, so it is considered that a short circuit occurs.

図3に示すように、従来の導電粒子7及び樹脂9を含有する異方導電接着剤層15と絶縁性接着剤層16とが積層された構成を有するフィルム状の回路接続材料1を用いた場合にも、加圧により導電粒子が大きく移動するため、これによりショートが発生する。   As shown in FIG. 3, a film-like circuit connection material 1 having a configuration in which an anisotropic conductive adhesive layer 15 containing a conventional conductive particle 7 and resin 9 and an insulating adhesive layer 16 are laminated is used. Even in this case, the conductive particles move greatly due to the pressurization, thereby causing a short circuit.

一方、図4に示すように、本発明のフィルム状の回路接続材料1を用いた場合には、導電粒子の平均粒径が前記異方導電接着剤層の厚みよりも大きい又は同じであるため、導電粒子の移動距離を小さくすることができ、これにより電極上での導電粒子の捕捉効率が向上し、ショートを防止することができると本発明者らは考えている。   On the other hand, as shown in FIG. 4, when the film-like circuit connecting material 1 of the present invention is used, the average particle diameter of the conductive particles is larger or the same as the thickness of the anisotropic conductive adhesive layer. The present inventors consider that the moving distance of the conductive particles can be reduced, thereby improving the trapping efficiency of the conductive particles on the electrode and preventing a short circuit.

上記導電粒子の平均粒径は2〜6μmであると好ましく、また上記異方導電接着剤層の厚みは1〜5μmであると好ましい。   The conductive particles preferably have an average particle size of 2 to 6 μm, and the anisotropic conductive adhesive layer preferably has a thickness of 1 to 5 μm.

上記異方導電接着剤層の厚みは、導電粒子の平均粒径に対して20〜100%の厚みであると好ましく、また上記導電粒子は、上記異方導電接着剤層と上記絶縁性接着剤層とにまたがって存在すると好ましい。   The thickness of the anisotropic conductive adhesive layer is preferably 20 to 100% of the average particle diameter of the conductive particles, and the conductive particles are composed of the anisotropic conductive adhesive layer and the insulating adhesive. Preferably it exists across the layers.

上記絶縁性接着剤層に対する上記異方導電接着剤層の最低溶融粘度比が、少なくとも10倍以上であると好ましい。   The minimum melt viscosity ratio of the anisotropic conductive adhesive layer to the insulating adhesive layer is preferably at least 10 times or more.

本発明はまた、第一の接続端子を有する第一の回路部材と第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子とが対向するように配置し、対向配置した第一の接続端子と第二の接続端子との間に、上記本発明の回路接続材料を介在させ、加熱加圧して、第一の接続端子と第二の接続端子とを電気的に接続させてなる回路部材の接続構造を提供する。   In the present invention, the first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged so that the first connection terminal and the second connection terminal face each other. The first connection terminal and the second connection terminal are disposed between the first connection terminal and the second connection terminal that are disposed opposite to each other, and the circuit connection material of the present invention is interposed between the first connection terminal and the second connection terminal. A circuit member connection structure is provided.

かかる回路部材の接続構造によれば、上記本発明の回路接続材料を用いているので、電極上での導電粒子の捕捉効率が高く、かつ接続信頼性にも優れる。   According to such a circuit member connection structure, since the circuit connection material of the present invention is used, the trapping efficiency of the conductive particles on the electrode is high and the connection reliability is also excellent.

本発明によれば、従来の回路接続材料に比べ電極上での導電粒子の捕捉効率が高く、導電粒子の凝集によるショートを防止することができ、かつ接続信頼性にも優れる回路接続材料及びこれを用いた回路部材の接続構造を提供することができる。   According to the present invention, there is provided a circuit connection material that has higher efficiency of capturing conductive particles on the electrode than conventional circuit connection materials, can prevent short-circuiting due to aggregation of conductive particles, and is excellent in connection reliability. The connection structure of the circuit member using can be provided.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary.

本発明の2層構成の回路接続材料は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、導電粒子を分散した異方導電接着剤層と絶縁性接着剤層とが積層された構成を有する。   A circuit connection material having a two-layer structure according to the present invention is a circuit connection material that is interposed between circuit electrodes facing each other, pressurizes circuit electrodes facing each other, and electrically connects the electrodes in the pressurizing direction. An anisotropic conductive adhesive layer in which particles are dispersed and an insulating adhesive layer are laminated.

導電粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン等が挙げられる。導電粒子は、核となる粒子を1又は2以上の層で被覆し、最外層が導電性の層である粒子であってもよい。この場合、十分なポットライフを得るためには、最外層はNi、Cu等の遷移金属類よりもAu、Ag、白金族の貴金属類が好ましく、Auがより好ましい。   Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. The conductive particles may be particles in which core particles are covered with one or more layers, and the outermost layer is a conductive layer. In this case, in order to obtain a sufficient pot life, the outermost layer is preferably Au, Ag, or a platinum group noble metal, more preferably Au, than transition metals such as Ni and Cu.

また、導電粒子は、Ni等の遷移金属類の表面をAuの貴金属類で被覆したものでもよい。さらに、導電粒子は、非導電性のガラス、セラミック、プラスチック等の絶縁粒子に金属等の導電性物質を被覆したものであってもよい。導電粒子が絶縁粒子に導電性物質を被覆したものであって、最外層を貴金属類、核となる絶縁粒子をプラスチックとした場合、又は導電粒子が熱溶融金属粒子の場合、加熱加圧により変形性を有し、接続時に電極との接触面積が増加し信頼性が向上するので好ましい。   The conductive particles may be those in which the surface of a transition metal such as Ni is coated with a noble metal such as Au. Furthermore, the conductive particles may be those obtained by coating nonconductive glass, ceramic, plastic, or other insulating particles with a conductive material such as metal. When conductive particles are made of insulating particles coated with a conductive material and the outermost layer is precious metal and the core insulating particles are plastic, or the conductive particles are hot-melt metal particles, they are deformed by heating and pressing. This is preferable because the contact area with the electrode increases at the time of connection and the reliability is improved.

貴金族類の被覆層の厚みは、良好な抵抗を得るためには、100Å以上であると好ましい。ただし、Ni等の遷移金属の上に貴金属類の被覆層を設ける場合には、貴金属類の被覆層の欠損や導電粒子の混合分散時に生じる貴金属類の被覆層の欠損等により生じる酸化還元作用で遊離ラジカルが発生しポットライフ低下を引き起こすため、ラジカル重合系の接着剤成分を使用するときには被覆層の厚みは300Å以上が好ましい。   In order to obtain good resistance, the thickness of the noble metal coating layer is preferably 100 mm or more. However, when a noble metal coating layer is provided on a transition metal such as Ni, the oxidation-reduction action caused by the noble metal coating layer deficiency or the noble metal coating layer deficiency generated when the conductive particles are mixed and dispersed. Since free radicals are generated and pot life is reduced, the thickness of the coating layer is preferably 300 mm or more when using a radical polymerization type adhesive component.

導電粒子は、通常、接着剤成分100体積部に対して0.1〜30体積部の範囲で含有させることができるが、用途により好適な含有量は異なる。例えば、導電粒子による隣接回路の短絡等を一層十分に防止するためには0.1〜10体積部とするとより好ましい。   Although electroconductive particle can be contained normally in 0.1-30 volume parts with respect to 100 volume parts of adhesive components, suitable content changes with uses. For example, 0.1 to 10 parts by volume is more preferable in order to more sufficiently prevent a short circuit between adjacent circuits due to conductive particles.

導電粒子の平均粒径は、接続する回路の電極高さより低くすると隣接電極間の短絡が減少する等の点から、1〜10μmであると好ましく、1〜8μmであると好ましく、2〜6μmであるとさらに好ましく、3〜5μmであると特に好ましく、3〜4μmであると最も好ましい。また10%圧縮弾性率(K値)が100〜1000kgf/mmのものを適宜選択して使用することができる。 The average particle diameter of the conductive particles is preferably 1 to 10 μm, preferably 1 to 8 μm, and preferably 2 to 6 μm from the viewpoint that the short circuit between adjacent electrodes decreases when the electrode height is lower than the electrode height of the circuit to be connected. More preferably, it is 3-5 μm, and most preferably 3-4 μm. Further, those having a 10% compression modulus (K value) of 100 to 1000 kgf / mm 2 can be appropriately selected and used.

導電粒子の平均粒径は、次のようにして求めることができる。すなわち、1個の核粒子を任意に選択し、これを示差走査電子顕微鏡で観察してその最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。この方法で、任意に選択した核粒子50個について粒径を測定し、その平均値を導電粒子の平均粒径とする。   The average particle diameter of the conductive particles can be determined as follows. That is, one core particle is arbitrarily selected, and this is observed with a differential scanning electron microscope, and its maximum diameter and minimum diameter are measured. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. By this method, the particle diameter of 50 arbitrarily selected core particles is measured, and the average value is taken as the average particle diameter of the conductive particles.

上記異方導電接着剤層の厚みは、導電粒子の流動を抑制するため、1〜5μmであると好ましく、1〜4μmであるとより好ましい。   The thickness of the anisotropic conductive adhesive layer is preferably 1 to 5 μm and more preferably 1 to 4 μm in order to suppress the flow of the conductive particles.

上記絶縁性接着剤層の厚みは、2〜21μmであると好ましく、4〜14μmであるとより好ましい。   The thickness of the insulating adhesive layer is preferably 2 to 21 μm, and more preferably 4 to 14 μm.

本発明の回路接続材料においては、導電粒子の平均粒径aと異方導電接着剤層の厚みbとが、下記式(1)の関係を満たす。
a≧b …(1)
In the circuit connection material of the present invention, the average particle diameter a of the conductive particles and the thickness b of the anisotropic conductive adhesive layer satisfy the relationship of the following formula (1).
a ≧ b (1)

上記異方導電接着剤層の厚みは、導電粒子の平均粒径に対して、20〜100%の厚みであると好ましく、25〜75%であるとより好ましい。   The anisotropic conductive adhesive layer has a thickness of preferably 20 to 100% and more preferably 25 to 75% with respect to the average particle diameter of the conductive particles.

上記絶縁性接着剤層に対する上記異方導電接着剤層の最低溶融粘度比は、少なくとも10倍以上であることが好ましい。これにより、加圧の際の導電粒子の移動抑制効果がより向上する。これにより、加圧の際の導電粒子の移動抑制効果がより向上する。なお、上記最低溶融粘度比の上限は特に限定されないが、例えば1000倍以下とすることができる。   The minimum melt viscosity ratio of the anisotropic conductive adhesive layer to the insulating adhesive layer is preferably at least 10 times or more. Thereby, the movement inhibitory effect of the conductive particles during pressurization is further improved. Thereby, the movement inhibitory effect of the conductive particles during pressurization is further improved. In addition, although the upper limit of the said minimum melt viscosity ratio is not specifically limited, For example, it can be 1000 times or less.

本発明の回路接続材料は、(a)エポキシ樹脂、及び(b)潜在性硬化剤からなる接着剤を異方導電接着剤層及び絶縁性接着剤層における接着剤成分として含有することが好ましい。   The circuit connection material of the present invention preferably contains (a) an epoxy resin and (b) an adhesive composed of a latent curing agent as an adhesive component in the anisotropic conductive adhesive layer and the insulating adhesive layer.

(a)エポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、ビスフェノールF及び/又はビスフェノールAD等とから誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックとから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独にあるいは2種以上を混合して用いることが可能である。これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロンマイグレーション防止のために好ましい。 (A) Epoxy resins include bisphenol type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F and / or bisphenol AD, and epoxy novolac resins and naphthalene rings derived from epichlorohydrin and phenol novolac or cresol novolac. Naphthalene type epoxy resin having a skeleton containing, glycidylamine, glycidyl ether, biphenyl, alicyclic, etc., each epoxy compound having two or more glycidyl groups in one molecule or a mixture of two or more Can be used. For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na + , Cl −, etc.), hydrolyzable chlorine and the like are reduced to 300 ppm or less, in order to prevent electron migration.

(b)潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。これらは、1種を単独又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるために好ましい。   (B) Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. These can be used individually by 1 type or in mixture of 2 or more types, You may mix and use a decomposition accelerator, an inhibitor, etc. In addition, those encapsulating these curing agents with polyurethane-based or polyester-based polymeric substances and the like and microencapsulated are preferable because the pot life is extended.

また、本発明の回路接続材料は、(c)加熱若しくは光によって遊離ラジカルを発生する硬化剤(以下、「遊離ラジカル発生剤」ともいう。)、及び(d)ラジカル重合性物質からなる接着剤を異方導電接着剤層及び絶縁性接着剤層における接着剤成分として含有することも好ましい。   The circuit connecting material of the present invention includes (c) a curing agent that generates free radicals by heating or light (hereinafter, also referred to as “free radical generator”), and (d) an adhesive comprising a radical polymerizable substance. Is preferably contained as an adhesive component in the anisotropic conductive adhesive layer and the insulating adhesive layer.

(c)遊離ラジカル発生剤としては、過酸化化合物、アゾ系化合物等の加熱により分解して遊離ラジカルを発生するものであり、目的とする接続温度、接続時間、ポットライフ等により適宜選定されるが、高反応性とポットライフの点から、半減期10時間の温度が40℃以上かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましい。この場合、(c)遊離ラジカル発生剤の配合量は、接着剤の固形分全体に対して、0.05〜10重量%であると好ましく、0.1〜5重量%であるとより好ましい。   (C) The free radical generator is one that decomposes by heating a peroxide compound, an azo compound or the like to generate free radicals, and is appropriately selected depending on the intended connection temperature, connection time, pot life, etc. However, from the viewpoint of high reactivity and pot life, an organic peroxide having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less is preferred. In this case, the amount of the (c) free radical generator is preferably 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the entire solid content of the adhesive.

(c)遊離ラジカル発生剤は、具体的には、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等から選定できる。回路部材の接続端子の腐食を抑えるために、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイドから選定されることが好ましく、高反応性が得られるパーオキシエステルから選定されることがより好ましい。   (C) Specifically, the free radical generator can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like. In order to suppress the corrosion of the connection terminals of the circuit member, it is preferably selected from peroxyesters, dialkyl peroxides, and hydroperoxides, and more preferably selected from peroxyesters that provide high reactivity.

ジアシルパーオキサイドとしては、例えば、イソブチルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。   Examples of the diacyl peroxide include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide. , Benzoylperoxytoluene, benzoyl peroxide and the like.

パーオキシジカーボネートとしては、例えば、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等が挙げられる。   Examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, Examples include di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate, and the like.

パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシノエデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノネート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノネート、t−ヘキシルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ビス(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が挙げられる。   Examples of peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethyl Hexanonate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cyclo Xane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m- Toluoyl peroxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like.

パーオキシケタールとしては、例えば、1,1−ビス(t−ヘキシルパーオキシ)−3,5,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン、1,1−(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が挙げられる。   Examples of the peroxyketal include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis ( t-Butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like.

ジアルキルパーオキサイドとしては、例えば、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド等が挙げられる。   Examples of the dialkyl peroxide include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t -Butyl cumyl peroxide etc. are mentioned.

ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。   Examples of the hydroperoxide include diisopropylbenzene hydroperoxide and cumene hydroperoxide.

これらの(c)遊離ラジカル発生剤は1種を単独で又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。   These (c) free radical generators can be used singly or in combination of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like.

(d)ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質であり、その具体例としては、アクリレート、メタクリレート、マレイミド化合物等が挙げられる。(d)ラジカル重合性物質の配合量は、接着剤の固形分全体に対して、25〜55重量%であると好ましく、30〜50重量%であるとより好ましい。   (D) The radically polymerizable substance is a substance having a functional group that is polymerized by radicals, and specific examples thereof include acrylates, methacrylates, maleimide compounds, and the like. (D) The compounding amount of the radically polymerizable substance is preferably 25 to 55% by weight and more preferably 30 to 50% by weight with respect to the entire solid content of the adhesive.

アクリレート(メタクリレート)としては、例えば、ウレタンアクリレート、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス〔4−(アクリロキシメトキシ)フェニル〕プロパン、2,2−ビス〔4−(アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、ビス(アクリロキシエチル)イソシアヌレート、ε−カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。   Examples of the acrylate (methacrylate) include urethane acrylate, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, and tetramethylolmethane tetraacrylate. 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, di Cyclopentenyl acrylate, tricyclodecanyl acrylate, bis (acryloxyethyl) isocyanurate, ε-caprolactone modified tris (a Rirokishiechiru) isocyanurate, tris (acryloyloxyethyl) isocyanurate.

マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するものが好ましく、例えば、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−P−フェニレンビスマレイミド、N,N’−m−トルイレンビスマレイミド、N,N’−4,4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3’−ジメチル−ビフェニレン)ビスマレイミド、N,N’−4,4−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[3−s−ブチル−4,8−(4−マレイミドフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]デカン、4,4’−シクロヘキシリデン−ビス[1−(4−マレイミドフェノキシ)−2−シクロヘキシル]ベンゼン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。これらは、1種を単独で又は2種以上を併用して用いたり、アリルフェノール、アリルフェニルエーテル、安息香酸アリル等のアリル化合物と併用して用いてもよい。   As the maleimide compound, those containing at least two maleimide groups in the molecule are preferable. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′ -P-phenylene bismaleimide, N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethyl-biphenylene ) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N ′ -4,4-diphenylmethane bismaleimide, N, N'-4,4-diphenylpropane bismaleimide, N, N'-4,4-diphenyl ether bisma Imido, N, N′-3,3′-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-s-butyl-4,8 -(4-maleimidophenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] decane, 4,4'-cyclohexylidene-bis [1- (4-maleimidophenoxy) -2 -Cyclohexyl] benzene, 2,2-bis [4- (4-maleimidophenoxy) phenyl] hexafluoropropane and the like. These may be used alone or in combination of two or more, or may be used in combination with allyl compounds such as allylphenol, allylphenyl ether, and allyl benzoate.

このような(d)ラジカル重合性物質は、1種を単独で又は2種以上を併用して用いることができる。(d)ラジカル重合性物質は、25℃での粘度が100000〜1000000mPa・sであるラジカル重合性物質を少なくとも含有することが好ましく、特に100000〜500000mPa・sの粘度(25℃)を有するラジカル重合性物質を含有することが好ましい。(d)ラジカル重合性物質の粘度の測定は、市販のE型粘度計を用いて測定できる。   Such (d) radical polymerizable substances can be used alone or in combination of two or more. (D) The radically polymerizable substance preferably contains at least a radically polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa · s, and particularly has a viscosity (25 ° C.) of 100,000 to 500,000 mPa · s. It is preferable to contain a sex substance. (D) The viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.

(d)ラジカル重合性物質の中でもウレタンアクリレート又はウレタンメタアクリレートが接着性の観点から好ましく、また、耐熱性を向上させるために用いる有機過酸化物との橋かけ後、単独で100℃以上のTgを示すラジカル重合性物質を併用して用いることが特に好ましい。このようなラジカル重合性物質としては、ジシクロペンテニル基、トリシクロデカニル基及び/又はトリアジン環を有するものを用いることができる。特に、トリシクロデカニル基やトリアジン環を有するラジカル重合性物質が好適に用いられる。   (D) Among radically polymerizable substances, urethane acrylate or urethane methacrylate is preferable from the viewpoint of adhesiveness, and after crosslinking with an organic peroxide used for improving heat resistance, Tg of 100 ° C. or more alone. It is particularly preferable to use in combination with a radically polymerizable substance showing As such a radically polymerizable substance, a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring can be used. In particular, a radical polymerizable substance having a tricyclodecanyl group or a triazine ring is preferably used.

本発明の回路接続材料には、必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類等の重合禁止剤を適宜用いてもよい。   In the circuit connection material of the present invention, a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.

また、更に、リン酸エステル構造を有するラジカル重合性物質を0.1〜10重量%用いた場合、金属等の無機物表面での接着強度が向上するので好ましく、0.5〜5重量%であるとより好ましい。リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2−ヒドロキシル(メタ)アクリレートの反応物として得られる。具体的には、2−メタクリロイロキシエチルアッシドフォスヘート、2−アクリロイロキシエチルアッシドフォスヘート等があげられる。こららは、1種を単独で又は2種以上を組み合わせて使用できる。   Further, when 0.1 to 10% by weight of a radical polymerizable substance having a phosphate ester structure is used, the adhesive strength on the surface of an inorganic substance such as a metal is preferably improved, and is 0.5 to 5% by weight. And more preferred. The radically polymerizable substance having a phosphoric ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyl (meth) acrylate. Specific examples include 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, and the like. These can be used singly or in combination of two or more.

また、本実施形態の回路接続材料はフィルム状で使用することが取り扱い性に優れることから好ましく、その場合フィルム形成性高分子を含有してもよい。フィルム形成性高分子としては、ポリスチレン、ポリエチレン、ポリビニルブチラール、ポリビニルホルマール、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリフェニレンオキサイド、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、エポキシ樹脂、ポリイソシアネート樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリエステルウレタン樹脂等が用いられる。これらの中でも水酸基等の官能基を有する樹脂は接着性が向上することができるので、より好ましい。また、これらの高分子をラジカル重合性の官能基で変性したものも用いることができる。これら高分子の重量平均分子量は10000以上が好ましい。また、重量平均分子量が1000000以上になると混合性が低下するため、1000000未満であると好ましい。   In addition, the circuit connection material of the present embodiment is preferably used in the form of a film because it is excellent in handleability. In that case, it may contain a film-forming polymer. Film-forming polymers include polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, epoxy resin, polyisocyanate resin, Phenoxy resin, polyimide resin, polyester urethane resin or the like is used. Among these, a resin having a functional group such as a hydroxyl group is more preferable because adhesiveness can be improved. Also, those obtained by modifying these polymers with radically polymerizable functional groups can be used. These polymers preferably have a weight average molecular weight of 10,000 or more. Moreover, since mixing property will fall when a weight average molecular weight becomes 1000000 or more, it is preferable in it being less than 1 million.

更に、本実施形態の回路接続材料は、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。   Furthermore, the circuit connection material of the present embodiment includes a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, an isocyanate, and the like. It can also be contained.

本実施形態の回路接続材料が充填材を含有する場合、接続信頼性等の向上が得られるので好ましい。充填材は、その最大径が導電粒子の粒径未満であれば使用でき、5〜60体積%の範囲が好ましい。60体積%を超えると、信頼性向上の効果が飽和する。   When the circuit connection material of this embodiment contains a filler, it is preferable because improvement in connection reliability and the like can be obtained. The filler can be used if its maximum diameter is smaller than the particle diameter of the conductive particles, and the range of 5 to 60% by volume is preferable. If it exceeds 60% by volume, the effect of improving reliability is saturated.

カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基からなる群より選ばれる1種以上の基を含有する化合物が、接着性の向上の点から好ましい。   As the coupling agent, a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable from the viewpoint of improving adhesiveness.

上記異方導電接着剤層及び絶縁性接着剤層は、上述の接着剤成分を含有することができるが、それぞれの層の成分の少なくとも一部は異なっていることが好ましい。   The anisotropic conductive adhesive layer and the insulating adhesive layer can contain the above-mentioned adhesive component, but it is preferable that at least some of the components of the respective layers are different.

また、本実施形態の構成の回路接続材料は、反応性樹脂を含有する層と潜在性硬化剤を含有する層に分離した場合や、遊離ラジカルを発生する硬化剤を含有する層と導電粒子を含有する層に分離した場合、従来の高精細化可能の効果に加えて、ポットライフの向上効果が得られる。   In addition, the circuit connection material of the configuration of the present embodiment is divided into a layer containing a reactive resin and a layer containing a latent curing agent, or a layer containing a curing agent that generates free radicals and conductive particles. In the case where the layer is separated, the effect of improving pot life can be obtained in addition to the conventional effect of high definition.

本実施形態の回路接続材料は、ICチップと基板との接着や電気回路相互の接着用の材料としても有用である。すなわち、第一の接続端子を有する第一の回路部材と第二の接続端子を有する第二の回路部材とを、第一の接続端子と第二の接続端子とが対向するように配置し、対向配置した第一の接続端子と第二の接続端子との間に、上記本発明の回路接続材料を介在させ、加熱加圧して、第一の接続端子と第二の接続端子とを電気的に接続させることにより、回路部材の接続構造を作製することができる。   The circuit connection material of the present embodiment is also useful as a material for bonding an IC chip and a substrate or bonding electric circuits. That is, the first circuit member having the first connection terminal and the second circuit member having the second connection terminal are arranged so that the first connection terminal and the second connection terminal face each other, The circuit connection material of the present invention is interposed between the first connection terminal and the second connection terminal that are arranged opposite to each other, and heated and pressed to electrically connect the first connection terminal and the second connection terminal. By connecting to the circuit member, it is possible to produce a circuit member connection structure.

このような回路部材の接続構造としては、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板等が挙げられる。これらの回路部材の接続構造には接続端子が通常は多数(場合によっては単数でもよい)設けられており、回路部材の接続構造の少なくとも1組をそれらの回路部材の接続構造に設けられた接続端子の少なくとも一部を対向配置し、対向配置した接続端子間に接着剤を介在させ、加熱加圧して対向配置した接続端子同士を電気的に接続して回路板とする。回路部材の接続構造の少なくとも1組を加熱加圧することにより、対向配置した接続端子同士は、異方導電性接着剤(回路接続材料)の導電粒子を介して電気的に接続することができる。   Examples of such circuit member connection structures include chip components such as semiconductor chips, resistor chips, and capacitor chips, and substrates such as printed boards. These circuit member connection structures are usually provided with a large number of connection terminals (or a single terminal in some cases), and at least one set of circuit member connection structures is provided in the connection structure of these circuit members. At least a part of the terminals are arranged opposite to each other, an adhesive is interposed between the opposed arranged connection terminals, and the connection terminals arranged opposite to each other by heating and pressing are electrically connected to form a circuit board. By heating and pressurizing at least one set of the circuit member connection structure, the connection terminals arranged opposite to each other can be electrically connected via conductive particles of an anisotropic conductive adhesive (circuit connection material).

次に本発明に係る回路部材の接続構造の製造方法の一実施形態を説明する。図1は、本発明の一実施形態に係る回路部材の接続構造の製造方法を模式的に示す工程断面図である。図1(a)は回路部材同士を接続する前の回路部材の断面図であり、図1(b)は回路部材同士を接続する際の回路部材の接続構造の断面図であり、図1(c)は回路部材同士を接続した回路部材の接続構造の断面図である。   Next, an embodiment of a method for manufacturing a circuit member connection structure according to the present invention will be described. FIG. 1 is a process cross-sectional view schematically showing a method for manufacturing a circuit member connection structure according to an embodiment of the present invention. FIG. 1A is a cross-sectional view of the circuit members before connecting the circuit members, and FIG. 1B is a cross-sectional view of the connection structure of the circuit members when connecting the circuit members. c) is a cross-sectional view of a circuit member connection structure in which circuit members are connected to each other.

まず、図1(a)に示すように、LCDパネル3上に設けられた回路電極2の上に、回路接続材料をフィルム状に成形してなるフィルム状の回路接続材料1を載置する。   First, as shown in FIG. 1A, a film-like circuit connection material 1 formed by forming a circuit connection material into a film shape is placed on the circuit electrode 2 provided on the LCD panel 3.

次に、図1(b)に示すように、位置あわせをしながら回路電極6が設けられた回路基板5を回路電極2と回路電極6とが互いに対向するようにフィルム状の回路接続材料1の上に載置して、フィルム状の回路接続材料1を回路電極2と回路電極6との間に介在させる。なお、回路電極2及び6は奥行き方向に複数の電極が並んだ構造を有する(図示しない)。   Next, as shown in FIG. 1B, the circuit board 5 on which the circuit electrode 6 is provided while being aligned is placed on the circuit-connecting material 1 in the form of a film so that the circuit electrode 2 and the circuit electrode 6 face each other. The film-like circuit connecting material 1 is interposed between the circuit electrode 2 and the circuit electrode 6. The circuit electrodes 2 and 6 have a structure in which a plurality of electrodes are arranged in the depth direction (not shown).

フィルム状の回路接続材料1はフィルム状であるため取扱いが容易である。このため、このフィルム状の回路接続材料1を回路電極2と回路電極6との間に容易に介在させることができ、LCDパネル3と回路基板5との接続作業を容易にすることができる。   The film-like circuit connecting material 1 is easy to handle because it is in the form of a film. Therefore, the film-like circuit connecting material 1 can be easily interposed between the circuit electrode 2 and the circuit electrode 6, and the connection work between the LCD panel 3 and the circuit board 5 can be facilitated.

次に、加熱しながらLCDパネル3と回路基板5とを介して、フィルム状の回路接続材料1を図1(b)の矢印Aの方向に加圧して硬化処理を行う。これによって図1(c)に示すような回路部材同士を接続した回路部材の接続構造20が得られる。硬化処理の方法は、使用する接着剤組成物に応じて、加熱及び光照射の一方又は双方を採用することができる。   Next, the film-like circuit connecting material 1 is pressed in the direction of arrow A in FIG. 1B through the LCD panel 3 and the circuit board 5 while being heated to perform a curing process. As a result, a circuit member connection structure 20 in which the circuit members are connected to each other as shown in FIG. 1C is obtained. As a method for the curing treatment, one or both of heating and light irradiation can be employed depending on the adhesive composition to be used.

本実施形態の回路接続材料は、接続時に接着剤が溶融流動し相対向する回路電極の接続を得た後、硬化して接続を保持するものであり、接着剤の流動性は重要な因子である。厚み0.7mm、15mm×15mmのガラス板に、厚み35μm、5mm×5mmの回路接続材料を挟み、170℃、2MPa、10秒の条件で加熱加圧を行った場合、初期の接着剤の主面の面積(A)と加熱加圧後の主面の面積(B)とを用いて表される流動性(B)/(A)の値は1.3〜3.0であることが好ましく、1.5〜2.5であることがより好ましい。1.3未満では流動性が悪く、良好な接続が得られない傾向があり、3.0を超える場合は、気泡が発生しやすく信頼性に劣る傾向がある。   The circuit connection material of the present embodiment is one in which the adhesive melts and flows at the time of connection and obtains connection of the opposite circuit electrodes, and then cures to hold the connection. The fluidity of the adhesive is an important factor. is there. When a circuit connection material of thickness 35 μm, 5 mm × 5 mm is sandwiched between a glass plate of thickness 0.7 mm, 15 mm × 15 mm and heated and pressed under the conditions of 170 ° C., 2 MPa, 10 seconds, the initial adhesive The value of fluidity (B) / (A) expressed using the area (A) of the surface and the area (B) of the main surface after heating and pressing is preferably 1.3 to 3.0. 1.5 to 2.5 is more preferable. If it is less than 1.3, the fluidity is poor and there is a tendency that good connection cannot be obtained. If it exceeds 3.0, bubbles tend to be generated and the reliability tends to be poor.

本実施形態の回路接続材料の硬化後の40℃での弾性率は100〜3000MPaが好ましく、500〜2000MPaがより好ましい。   100-3000 MPa is preferable and, as for the elasticity modulus in 40 degreeC after hardening of the circuit connection material of this embodiment, 500-2000 MPa is more preferable.

本実施形態の回路電極の接続方法は、熱又は光による硬化性を有する回路接続材料を表面が金、銀、錫及び白金属から選ばれる金属である一方の電極回路に形成した後、もう一方の回路電極を位置合わせし加熱、加圧して接続することができる。   In the circuit electrode connection method of this embodiment, after forming a circuit connection material having curability by heat or light on one electrode circuit whose surface is a metal selected from gold, silver, tin and white metal, the other These circuit electrodes can be aligned, heated and pressurized to be connected.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
(d)ラジカル重合性物質として、ウレタンアクリレート(製品名:UA−5500T、新中村化学工業社製)20重量部、ビス(アクリロキシエチル)イソシアヌレート(製品名:M−215、東亞合成社製)15重量部、ジメチロールトリシクロデカンジアクリレート(製品名:DCP−A、共栄社化学社製)5重量部、2−メタクリロイロキシエチルアッシドフォスヘート(製品名:P−2M、共栄社化学社製)3重量部、(c)遊離ラジカル発生剤としてベンゾイルパーオキサイド(製品名:ナイパーBMT−K、日本油脂製)4重量部、ポリエステルウレタン樹脂(製品名:UR4800、東洋紡績社製)をトルエン/メチルエチルケトン=50/50の混合溶剤に溶解して得られた40重量%の溶液60重量部に混合し、攪拌しバインダ樹脂とした。更に、ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.04μmの金層を設けた平均粒径4μmの導電粒子(10%圧縮弾性率(K値):410Kgf/mm)をバインダ樹脂に対して3体積%配合分散させ、かつ平均粒径2μmのシリコーン微粒子(製品名:KMP−605、信越化学社製)をバインダ樹脂100重量部に対して20重量部分散させ、分散液を得た。この分散液を、厚み50μmの片面を表面処理したPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、接着剤層の厚みが4.0μmの異方導電接着剤層A(幅15cm、長さ70m)を得た。
次いで、(d)ラジカル重合性物質として、ウレタンアクリレート(製品名:UA−5500T、新中村化学工業社製)20重量部、ビス(アクリロキシエチル)イソシアヌレート(製品名:M−215、東亞合成社製)20重量部、ジメチロールトリシクロデカンジアクリレート(製品名:DCP−A、共栄社化学社製)10重量部、2−メタクリロイロキシエチルアッシドフォスヘート(製品名:P−2M、共栄社化学社製)3重量部、(c)遊離ラジカル発生剤としてベンゾイルパーオキサイド(製品名:ナイパーBMT−K、日本油脂製)4重量部、ポリエステルウレタン樹脂(製品名:UR4125、東洋紡績社製)をトルエン/メチルエチルケトン=50/50の混合溶剤に溶解して得られた23重量%の溶液50重量部に混合し、攪拌しバインダ樹脂とした。このバインダ樹脂を、厚み50μmの片面を表面処理したPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、厚みが10μmの絶縁性接着剤層B(幅15cm、長さ70m)を得た。
得られた接着剤層A、Bを接着剤が向き合う方向に重ね合わせ、ラミネーター(Dupont社製RISTON、モデル;HRL、ロール圧力はバネ加重のみ、ロール温度40℃、速度50cm/分)を用いてラミネートした後に、異方導電接着剤層A側のPETを剥離し、厚み14μmの異方導電接着剤(幅15cm、長さ60m)を得た。得られた異方導電接着剤を1.5mm幅に裁断し、内径40mm、外径48mmのプラスチック製リールの側面(厚み1.7mm)に接着フィルム面を内側にして50m巻きつけ、テープ状の回路接続材料を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 1
(D) As radically polymerizable substances, urethane acrylate (product name: UA-5500T, manufactured by Shin-Nakamura Chemical Co., Ltd.) 20 parts by weight, bis (acryloxyethyl) isocyanurate (product name: M-215, manufactured by Toagosei Co., Ltd.) ) 15 parts by weight, dimethylol tricyclodecane diacrylate (product name: DCP-A, manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by weight, 2-methacryloyloxyethyl acid phosphate (product name: P-2M, Kyoeisha Chemical Co., Ltd.) 3 parts by weight, (c) 4 parts by weight of benzoyl peroxide (product name: Nyper BMT-K, manufactured by NOF Corporation) as a free radical generator, polyester urethane resin (product name: UR4800, manufactured by Toyobo Co., Ltd.) in toluene / Methyl ethyl ketone = mixed in 60 parts by weight of a 40% by weight solution obtained by dissolving in a 50/50 mixed solvent and stirred. It was Indah resin. Furthermore, a conductive layer having an average particle diameter of 4 μm (10% compression), in which a nickel layer having a thickness of 0.2 μm is provided on the surface of particles having polystyrene as a core, and a gold layer having a thickness of 0.04 μm is provided outside the nickel layer. 3% by volume of elastic modulus (K value): 410 kgf / mm 2 ) is dispersed in the binder resin, and silicone fine particles having an average particle diameter of 2 μm (product name: KMP-605, manufactured by Shin-Etsu Chemical Co., Ltd.) are added to the binder resin 100. A dispersion was obtained by dispersing 20 parts by weight with respect to parts by weight. This dispersion is applied to a PET film having a surface of 50 μm on one surface using a coating apparatus and dried with hot air at 70 ° C. for 10 minutes, whereby an anisotropic conductive adhesive having an adhesive layer thickness of 4.0 μm is applied. Agent layer A (width 15 cm, length 70 m) was obtained.
Next, (d) 20 parts by weight of urethane acrylate (product name: UA-5500T, manufactured by Shin-Nakamura Chemical Co., Ltd.), bis (acryloxyethyl) isocyanurate (product name: M-215, Toagosei Co., Ltd.) as a radical polymerizable substance 20 parts by weight, dimethylol tricyclodecane diacrylate (product name: DCP-A, manufactured by Kyoeisha Chemical Co., Ltd.) 10 parts by weight, 2-methacryloyloxyethyl acid phosphate (product name: P-2M, Kyoeisha) 3 parts by weight (made by Kagaku Co.), (c) 4 parts by weight of benzoyl peroxide (product name: Nyper BMT-K, manufactured by NOF Corporation) as a free radical generator, polyester urethane resin (product name: UR4125, manufactured by Toyobo Co., Ltd.) Was dissolved in a mixed solvent of toluene / methyl ethyl ketone = 50/50 and mixed with 50 parts by weight of a 23% by weight solution obtained. , It was stirred binder resin. This binder resin is applied to a PET film having a surface treated with a thickness of 50 μm using a coating apparatus, and dried with hot air at 70 ° C. for 10 minutes, whereby an insulating adhesive layer B having a thickness of 10 μm (width 15 cm, A length of 70 m) was obtained.
The obtained adhesive layers A and B are overlapped in the direction in which the adhesive faces each other, and a laminator (Dupont RISTON, model: HRL, roll pressure is spring load only, roll temperature 40 ° C., speed 50 cm / min) is used. After laminating, the anisotropic conductive adhesive layer A side PET was peeled off to obtain an anisotropic conductive adhesive having a thickness of 14 μm (width 15 cm, length 60 m). The obtained anisotropic conductive adhesive was cut into a width of 1.5 mm, and wound on a side surface (thickness 1.7 mm) of a plastic reel having an inner diameter of 40 mm and an outer diameter of 48 mm with the adhesive film surface facing inward for 50 m. A circuit connection material was obtained.

(実施例2〜5)
導電粒子の粒径、各接着剤層の厚みを表1に示すように変化させた以外は、実施例1と同様にして、テープ状の回路接続材料を作製した。
(Examples 2 to 5)
A tape-shaped circuit connecting material was produced in the same manner as in Example 1 except that the particle diameter of the conductive particles and the thickness of each adhesive layer were changed as shown in Table 1.

(比較例1)
導電粒子の粒径、絶縁性接着剤層Bの厚みを表2に示すように変化させ、異方導電接着剤層Aの厚みを導電粒子径よりも厚くした以外は、実施例1と同様にして、テープ状の回路接続材料を作製した。
(Comparative Example 1)
As in Example 1, except that the particle diameter of the conductive particles and the thickness of the insulating adhesive layer B were changed as shown in Table 2, and the anisotropic conductive adhesive layer A was made thicker than the conductive particle diameter. Thus, a tape-like circuit connecting material was produced.

(比較例2)
導電粒子の粒径、異方導電接着剤層A、絶縁性接着剤層Bの厚みを表2に示すように変化させ、異方導電接着剤層Aと絶縁性接着剤層Bの接着剤組成(溶融粘度)を同じにした以外は、実施例1と同様にして、テープ状の回路接続材料を作製した。
(Comparative Example 2)
The particle size of the conductive particles, the anisotropic conductive adhesive layer A, and the thickness of the insulating adhesive layer B are changed as shown in Table 2, and the adhesive composition of the anisotropic conductive adhesive layer A and the insulating adhesive layer B is changed. A tape-like circuit connecting material was produced in the same manner as in Example 1 except that the (melt viscosity) was the same.

(比較例3)
導電粒子の粒径、異方導電接着剤層Aの厚みを表2に示すように変化させ、単層とした以外は、実施例1と同様にして、テープ状の回路接続材料を作製した。
(Comparative Example 3)
A tape-shaped circuit connecting material was produced in the same manner as in Example 1 except that the particle diameter of the conductive particles and the thickness of the anisotropic conductive adhesive layer A were changed as shown in Table 2 to obtain a single layer.

Figure 2009170898
Figure 2009170898

Figure 2009170898
Figure 2009170898

(評価用接続体の作製)
接続抵抗及び接着力の測定には、次のようにして得られた接続体を用いた。
実施例、比較例で得られた回路接続材料(幅1.5mm、長さ3cm)の接着剤面を、70℃、1MPaで2秒間加熱加圧して厚み0.7mmのITOコートガラス基板(15Ω□)上に転写し、PETフィルムを剥離した。次いで、ピッチ50μm、厚み8μmのすずめっき銅回路を600本有するフレキシブル回路板(FPC)を転写した接着剤上に置き、24℃、0.5MPaで1秒間加圧して仮固定した。このFPCが回路接続材料によって仮固定されたガラス基板を本圧着装置に設置し、200μm厚みのシリコーンゴムをクッション材とし、フレキシブル配線板側から、ヒートツールによって170℃、3MPaで6秒間加熱加圧して幅1.5mmにわたり接続し、評価用の接続体(回路部材の接続構造)を得た。
(Preparation of evaluation connector)
A connection body obtained as follows was used for measurement of connection resistance and adhesive force.
The adhesive coated surface of the circuit connecting material (width 1.5 mm, length 3 cm) obtained in the examples and comparative examples was heated and pressed at 70 ° C. and 1 MPa for 2 seconds to form an ITO-coated glass substrate (15Ω) □) Transferred onto and peeled off the PET film. Next, a flexible circuit board (FPC) having 600 tin-plated copper circuits with a pitch of 50 μm and a thickness of 8 μm was placed on the transferred adhesive, and temporarily fixed by pressing at 24 ° C. and 0.5 MPa for 1 second. A glass substrate on which this FPC is temporarily fixed with a circuit connecting material is placed in a main pressure bonding apparatus, and 200 μm-thick silicone rubber is used as a cushioning material, and heated and pressurized at 170 ° C. and 3 MPa for 6 seconds from the flexible wiring board side by a heat tool. Then, connection was made over a width of 1.5 mm to obtain a connection body for evaluation (circuit member connection structure).

導電粒子捕捉効率の測定には、次のようにして得られた接続体を用いた。
実施例、比較例で得られた回路接続材料(幅1.5mm、長さ3cm)の接着剤面を、70℃、1MPaで2秒間加熱加圧して厚み0.7mmのAlコートガラス基板(10Ω□)上に転写し、PETフィルムを剥離した。次いで、ピッチ50μm、厚み8μmのすずめっき銅回路を600本有するフレキシブル回路板(FPC)を転写した接着剤上に置き、24℃、0.5MPaで1秒間加圧して仮固定した。このFPCが回路接続材料によって仮固定されたガラス基板を本圧着装置に設置し、200μm厚みのシリコーンゴムをクッション材とし、フレキシブル配線板側から、ヒートツールによって170℃、3MPaで6秒間加熱加圧して幅1.5mmにわたり接続し、評価用の接続体を得た。
The connection body obtained as follows was used for the measurement of the conductive particle trapping efficiency.
The adhesive surface of the circuit connection material (width 1.5 mm, length 3 cm) obtained in Examples and Comparative Examples was heated and pressed at 70 ° C. and 1 MPa for 2 seconds to obtain an Al-coated glass substrate (10Ω) □) Transferred onto and peeled off the PET film. Next, a flexible circuit board (FPC) having 600 tin-plated copper circuits with a pitch of 50 μm and a thickness of 8 μm was placed on the transferred adhesive, and temporarily fixed by pressing at 24 ° C. and 0.5 MPa for 1 second. A glass substrate on which this FPC is temporarily fixed with a circuit connecting material is placed in a main pressure bonding apparatus, and 200 μm-thick silicone rubber is used as a cushioning material, and heated and pressurized at 170 ° C. and 3 MPa for 6 seconds from the flexible wiring board side by a heat tool. Then, connection was made over a width of 1.5 mm to obtain a connection body for evaluation.

(接続抵抗の測定)
上述の接続体の接続部を含むFPCの隣接回路間の抵抗値をマルチメータ(装置名:TR6845、アドバンテスト社製)で測定した。抵抗値は隣接回路間の抵抗40点を測定し、平均値を求めた。得られた結果を表3、4に示す。
(Measurement of connection resistance)
The resistance value between adjacent circuits of the FPC including the connection part of the connection body described above was measured with a multimeter (device name: TR6845, manufactured by Advantest Corporation). For the resistance value, 40 points of resistance between adjacent circuits were measured, and an average value was obtained. The obtained results are shown in Tables 3 and 4.

(接着力の測定)
上述の接続体を、剥離速度50mm/分で90度剥離することにより接着力の測定を行った。得られた結果を表3、4に示す。
(Measurement of adhesive strength)
The above-mentioned connection body was peeled 90 degrees at a peeling speed of 50 mm / min to measure the adhesive force. The obtained results are shown in Tables 3 and 4.

(導電粒子補足効率の測定)
上述の接続体における電極上に捕捉された導電粒子数を、オリンパス株式会社製BH3−MJL液晶パネル検査用顕微鏡を用い、ガラス側からノマルスキー微分干渉観察により1電極当たりの圧痕の数を20電極分測定し平均値を算出することにより求めた。一方、接着剤中の単位面積当たりの導電粒子個数を、オリンパス株式会社製BH3−MJL液晶パネル検査用顕微鏡にて計測した。得られた結果を次式に代入して導電粒子捕捉効率を算出した。
導電粒子捕捉効率=(電極上導電粒子数[個])×100/{(接着剤中単位面積当たり導電粒子数[個/mm])×(電極1本当たりの接続面積[mm])}
得られた結果を表3、4に示す。
(Measurement of conductive particle capture efficiency)
The number of conductive particles trapped on the electrodes in the above-mentioned connection body was measured for 20 electrodes by Nomarski differential interference observation from the glass side using a BH3-MJL liquid crystal panel inspection microscope manufactured by Olympus Corporation. It was determined by measuring and calculating the average value. On the other hand, the number of conductive particles per unit area in the adhesive was measured with a BH3-MJL liquid crystal panel inspection microscope manufactured by Olympus Corporation. The obtained result was substituted into the following equation to calculate the conductive particle trapping efficiency.
Conductive particle capture efficiency = (number of conductive particles on electrode [number]) × 100 / {(number of conductive particles per unit area in adhesive [number / mm 2 ]) × (connection area [mm 2 ] per electrode) }
The obtained results are shown in Tables 3 and 4.

Figure 2009170898
Figure 2009170898

Figure 2009170898
Figure 2009170898

表3、4から明らかであるように、実施例1〜5の回路接続材料は、比較例1〜3の回路接続材料に比べ、導電粒子の電極上捕捉効率が向上し、回路間におけるショートが発生し難く、かつ接続信頼性にも優れる。   As is clear from Tables 3 and 4, the circuit connection materials of Examples 1 to 5 improved the efficiency of capturing conductive particles on the electrodes compared to the circuit connection materials of Comparative Examples 1 to 3, and short-circuits between the circuits were reduced. Less likely to occur and excellent connection reliability.

本発明の一実施形態に係る回路部材の接続構造の製造方法を模式的に示す工程断面図である。It is process sectional drawing which shows typically the manufacturing method of the connection structure of the circuit member which concerns on one Embodiment of this invention. 従来の1層のフィルム状の回路接続材料を用いた場合の導電粒子の挙動を示す模式断面図である。It is a schematic cross section which shows the behavior of the electroconductive particle at the time of using the conventional 1 layer film-form circuit connection material. 従来の2層のフィルム状の回路接続材料を用いた場合の導電粒子の挙動を示す模式断面図である。It is a schematic cross section which shows the behavior of the electroconductive particle at the time of using the conventional two-layer film-form circuit connection material. 本発明のフィルム状の回路接続材料を用いた場合の導電粒子の挙動を示す模式断面図である。It is a schematic cross section which shows the behavior of the electroconductive particle at the time of using the film-form circuit connection material of this invention.

符号の説明Explanation of symbols

1…回路接続材料、2…回路電極、3…LCDパネル、4…回路基板、5…回路基板、6…回路電極、7…導電粒子、8…レジスト、9…樹脂、15…異方導電接着剤層、16…絶縁性接着剤層、20…回路部材の接続構造。   DESCRIPTION OF SYMBOLS 1 ... Circuit connection material, 2 ... Circuit electrode, 3 ... LCD panel, 4 ... Circuit board, 5 ... Circuit board, 6 ... Circuit electrode, 7 ... Conductive particle, 8 ... Resist, 9 ... Resin, 15 ... Anisotropic conductive adhesion Agent layer, 16 ... insulating adhesive layer, 20 ... connection structure of circuit members.

Claims (7)

相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、
導電粒子を分散した異方導電接着剤層と絶縁性接着剤層とが積層された構成を有し、
前記導電粒子の平均粒径aと前記異方導電接着剤層の厚みbとが、下記式(1)の関係を満たす2層構成の回路接続材料。
a≧b …(1)
A circuit connecting material that is interposed between circuit electrodes facing each other, presses opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction,
It has a configuration in which an anisotropic conductive adhesive layer in which conductive particles are dispersed and an insulating adhesive layer are laminated,
A circuit connection material having a two-layer structure in which the average particle diameter a of the conductive particles and the thickness b of the anisotropic conductive adhesive layer satisfy the relationship of the following formula (1).
a ≧ b (1)
前記導電粒子の平均粒径が2〜6μmであることを特徴とする、請求項1に記載の回路接続材料。   The circuit connection material according to claim 1, wherein an average particle diameter of the conductive particles is 2 to 6 μm. 前記異方導電接着剤層の厚みが1〜5μmであることを特徴とする、請求項1又は2に記載の回路接続材料。   The circuit connection material according to claim 1, wherein the anisotropic conductive adhesive layer has a thickness of 1 to 5 μm. 前記異方導電接着剤層の厚みが、前記導電粒子の平均粒径に対して20〜100%の厚みであることを特徴とする、請求項1〜3のいずれか一項に記載の回路接続材料。   The circuit connection according to any one of claims 1 to 3, wherein the anisotropic conductive adhesive layer has a thickness of 20 to 100% with respect to an average particle diameter of the conductive particles. material. 前記導電粒子が、前記異方導電接着剤層と前記絶縁性接着剤層とにまたがって存在することを特徴とする、請求項1〜4のいずれか一項に記載の回路接続材料。   The circuit connection material according to claim 1, wherein the conductive particles exist across the anisotropic conductive adhesive layer and the insulating adhesive layer. 前記絶縁性接着剤層に対する前記異方導電接着剤層の最低溶融粘度比が、少なくとも10倍以上であることを特徴とする、請求項1〜5のいずれか一項に記載の回路接続材料。   The circuit connection material according to claim 1, wherein a minimum melt viscosity ratio of the anisotropic conductive adhesive layer to the insulating adhesive layer is at least 10 times or more. 第一の接続端子を有する第一の回路部材と、
第二の接続端子を有する第二の回路部材とを、
前記第一の接続端子と前記第二の接続端子とが対向するように配置し、
対向配置した前記第一の接続端子と前記第二の接続端子との間に、請求項1〜6のいずれか一項に記載の回路接続材料を介在させ、加熱加圧して、前記第一の接続端子と前記第二の接続端子とを電気的に接続させてなる回路部材の接続構造。
A first circuit member having a first connection terminal;
A second circuit member having a second connection terminal;
Arrange the first connection terminal and the second connection terminal to face each other,
The circuit connection material according to any one of claims 1 to 6 is interposed between the first connection terminal and the second connection terminal that are arranged to face each other, and the first connection terminal is heated and pressurized, and then the first connection terminal is disposed. A circuit member connection structure in which a connection terminal and the second connection terminal are electrically connected.
JP2008319815A 2007-12-17 2008-12-16 Circuit connection material and circuit member connection structure Active JP5067355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008319815A JP5067355B2 (en) 2007-12-17 2008-12-16 Circuit connection material and circuit member connection structure
KR20080128345A KR101020469B1 (en) 2007-12-17 2008-12-17 Circuit connecting material and connection structure of circuit member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007324618 2007-12-17
JP2007324618 2007-12-17
JP2008319815A JP5067355B2 (en) 2007-12-17 2008-12-16 Circuit connection material and circuit member connection structure

Publications (2)

Publication Number Publication Date
JP2009170898A true JP2009170898A (en) 2009-07-30
JP5067355B2 JP5067355B2 (en) 2012-11-07

Family

ID=40971688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319815A Active JP5067355B2 (en) 2007-12-17 2008-12-16 Circuit connection material and circuit member connection structure

Country Status (2)

Country Link
JP (1) JP5067355B2 (en)
KR (1) KR101020469B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083824A1 (en) * 2010-01-08 2011-07-14 日立化成工業株式会社 Circuit connecting adhesion film and circuit connecting structure
JP2011192651A (en) * 2011-04-28 2011-09-29 Sony Chemical & Information Device Corp Anisotropic conductive film, connection method, and connection structure
WO2013042203A1 (en) * 2011-09-20 2013-03-28 日立化成株式会社 Adhesive composition, film adhesive, adhesive sheet, circuit connector and circuit member connection method
CN103155050A (en) * 2010-10-08 2013-06-12 第一毛织株式会社 Anisotropic conducting film
JP2013131605A (en) * 2011-12-21 2013-07-04 Cmk Corp Multilayer printed wiring board including anisotropic conductive film
WO2013146888A1 (en) * 2012-03-30 2013-10-03 デクセリアルズ株式会社 Circuit connection material and manufacturing method for assembly using same
WO2016087516A1 (en) * 2014-12-05 2016-06-09 Scapa Group Plc. Electrically conductive adhesive tape
US10141084B2 (en) 2010-10-08 2018-11-27 Cheil Industries, Inc. Electronic device
WO2019050011A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
WO2019050012A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2019065062A (en) * 2017-09-28 2019-04-25 日立化成株式会社 Conductive adhesive film
WO2021161948A1 (en) * 2020-02-10 2021-08-19 パイオニア株式会社 Electronic device and method for manufacturing electronic device
JP2021157189A (en) * 2015-07-24 2021-10-07 株式会社半導体エネルギー研究所 Semiconductor device
CN113557274A (en) * 2019-03-13 2021-10-26 昭和电工材料株式会社 Adhesive film for circuit connection and method for manufacturing same, method for manufacturing circuit connection structure, and adhesive film housing set

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271470B1 (en) 2011-08-08 2013-06-05 도레이첨단소재 주식회사 Dielectric adhesive film for flexible display device with electronic paper
KR101659139B1 (en) * 2014-01-29 2016-09-22 제일모직주식회사 An anisotropic conductive film comprising a curing agent layer and a semi-conductive device connected by the film
KR101822700B1 (en) * 2014-12-23 2018-01-30 삼성에스디아이 주식회사 Adhesive composition, adhesive film prepared by the same and display member comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH06283225A (en) * 1993-03-25 1994-10-07 Nippon Kokuen Kogyo Kk Manufacture of three-layer structural anisotropic conductive film member
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JPH08148213A (en) * 1994-11-25 1996-06-07 Hitachi Chem Co Ltd Connection member and structure and method for connecting electrode using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035686A (en) * 2002-07-02 2004-02-05 Bridgestone Corp Anisotropic electrically conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH06283225A (en) * 1993-03-25 1994-10-07 Nippon Kokuen Kogyo Kk Manufacture of three-layer structural anisotropic conductive film member
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JPH08148213A (en) * 1994-11-25 1996-06-07 Hitachi Chem Co Ltd Connection member and structure and method for connecting electrode using the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752986B1 (en) * 2010-01-08 2011-08-17 日立化成工業株式会社 Adhesive film for circuit connection and circuit connection structure
CN102474025A (en) * 2010-01-08 2012-05-23 日立化成工业株式会社 Circuit connecting adhesion film and circuit connecting structure
WO2011083824A1 (en) * 2010-01-08 2011-07-14 日立化成工業株式会社 Circuit connecting adhesion film and circuit connecting structure
CN103155050A (en) * 2010-10-08 2013-06-12 第一毛织株式会社 Anisotropic conducting film
US10141084B2 (en) 2010-10-08 2018-11-27 Cheil Industries, Inc. Electronic device
JP2011192651A (en) * 2011-04-28 2011-09-29 Sony Chemical & Information Device Corp Anisotropic conductive film, connection method, and connection structure
JPWO2013042724A1 (en) * 2011-09-20 2015-03-26 日立化成株式会社 Adhesive composition, film adhesive, adhesive sheet, circuit connector, circuit member connection method, use of adhesive composition, use of film adhesive and use of adhesive sheet
WO2013042203A1 (en) * 2011-09-20 2013-03-28 日立化成株式会社 Adhesive composition, film adhesive, adhesive sheet, circuit connector and circuit member connection method
WO2013042724A1 (en) * 2011-09-20 2013-03-28 日立化成株式会社 Adhesive composition, adhesive film, adhesive sheet, circuitry connector, method for connecting circuitry member, use of adhesive composition, use of adhesive film, and use of adhesive sheet
JP2017052956A (en) * 2011-09-20 2017-03-16 日立化成株式会社 Adhesive composition, film-like adhesive, adhesive sheet, circuit connection body, method for connecting circuit member, use of adhesive composition, use of film-like adhesive and use of adhesive sheet
JP2013131605A (en) * 2011-12-21 2013-07-04 Cmk Corp Multilayer printed wiring board including anisotropic conductive film
WO2013146888A1 (en) * 2012-03-30 2013-10-03 デクセリアルズ株式会社 Circuit connection material and manufacturing method for assembly using same
KR20150005560A (en) 2012-03-30 2015-01-14 데쿠세리아루즈 가부시키가이샤 Circuit connection material and manufacturing method for assembly using same
TWI596184B (en) * 2012-03-30 2017-08-21 Dexerials Corp Circuit connecting material, and manufacturing method of a package using the same
JP2013211353A (en) * 2012-03-30 2013-10-10 Dexerials Corp Circuit connection material, and manufacturing method of mounting body using circuit connection material
WO2016087516A1 (en) * 2014-12-05 2016-06-09 Scapa Group Plc. Electrically conductive adhesive tape
FR3029530A1 (en) * 2014-12-05 2016-06-10 Scapa Group Plc ELECTRICALLY CONDUCTIVE ADHESIVE TAPE
JP7139490B2 (en) 2015-07-24 2022-09-20 株式会社半導体エネルギー研究所 semiconductor equipment
JP2021157189A (en) * 2015-07-24 2021-10-07 株式会社半導体エネルギー研究所 Semiconductor device
JPWO2019050012A1 (en) * 2017-09-11 2020-08-27 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set
CN111051456A (en) * 2017-09-11 2020-04-21 日立化成株式会社 Adhesive film for circuit connection and method for producing same, method for producing circuit connection structure, and adhesive film housing module
JPWO2019050011A1 (en) * 2017-09-11 2020-08-20 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set
WO2019050012A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
CN111051456B (en) * 2017-09-11 2022-08-05 昭和电工材料株式会社 Adhesive film for circuit connection and method for producing same, method for producing circuit connection structure, and adhesive film housing module
WO2019050011A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP7210846B2 (en) 2017-09-11 2023-01-24 株式会社レゾナック Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP7264054B2 (en) 2017-09-11 2023-04-25 株式会社レゾナック Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2019065062A (en) * 2017-09-28 2019-04-25 日立化成株式会社 Conductive adhesive film
JP7020029B2 (en) 2017-09-28 2022-02-16 昭和電工マテリアルズ株式会社 Conductive adhesive film
CN113557274A (en) * 2019-03-13 2021-10-26 昭和电工材料株式会社 Adhesive film for circuit connection and method for manufacturing same, method for manufacturing circuit connection structure, and adhesive film housing set
CN113557274B (en) * 2019-03-13 2023-08-01 株式会社力森诺科 Adhesive film for circuit connection, method for producing same, method for producing circuit connection structure, and adhesive film housing set
WO2021161948A1 (en) * 2020-02-10 2021-08-19 パイオニア株式会社 Electronic device and method for manufacturing electronic device

Also Published As

Publication number Publication date
KR20090065462A (en) 2009-06-22
JP5067355B2 (en) 2012-11-07
KR101020469B1 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP4862944B2 (en) Circuit connection material
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
KR101140067B1 (en) Circuit connecting adhesive film and circuit connecting structure
US20100012358A1 (en) Circuit connecting material, connection structure for circuit member using the same and production method thereof
WO2011083824A1 (en) Circuit connecting adhesion film and circuit connecting structure
WO2012026470A1 (en) Circuit connecting material and method for connecting circuit members using same
TW201330008A (en) Circuit connecting material, connection body and method of manufacturing the same
JP5176139B2 (en) Circuit connection material and circuit member connection structure using the same
JP4916677B2 (en) Wiring connecting material and wiring board manufacturing method using the same
CN118291047A (en) Adhesive composition for circuit connection and structure
JP7020029B2 (en) Conductive adhesive film
JP4605184B2 (en) Wiring connecting material and wiring board manufacturing method using the same
JP3877090B2 (en) Circuit connection material and circuit board manufacturing method
JP7006029B2 (en) Adhesive compositions and structures for circuit connections
JP4945881B2 (en) Adhesive with support for circuit connection and circuit connection structure using the same
JP2008133411A (en) Adhesive film for electrical connection
JP4794703B2 (en) Circuit connection material, circuit terminal connection structure, and circuit terminal connection method
JP4654599B2 (en) Anisotropic conductive adhesive film, method for producing the same, and circuit connection structure using the same
JP2009289729A (en) Anisotropic conductive film
JP2002226807A (en) Adhesive for connecting circuit, method for connecting circuit by using the same, and connecting structure
JP4905502B2 (en) Circuit board manufacturing method and circuit connecting material
JP2010004067A (en) Circuit connection material
JP2013103947A (en) Adhesive film for circuit connection, circuit-connected body using the adhesive film, and method of producing the circuit-connected body
JP4572960B2 (en) Anisotropic conductive adhesive film for circuit connection, circuit terminal connection method and circuit terminal connection structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5067355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350