WO2012026470A1 - Circuit connecting material and method for connecting circuit members using same - Google Patents

Circuit connecting material and method for connecting circuit members using same Download PDF

Info

Publication number
WO2012026470A1
WO2012026470A1 PCT/JP2011/068982 JP2011068982W WO2012026470A1 WO 2012026470 A1 WO2012026470 A1 WO 2012026470A1 JP 2011068982 W JP2011068982 W JP 2011068982W WO 2012026470 A1 WO2012026470 A1 WO 2012026470A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
connection
polymerizable substance
radical polymerizable
substrate
Prior art date
Application number
PCT/JP2011/068982
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 相澤
藤縄 貢
立澤 貴
雅英 久米
小林 宏治
源太郎 関
伊藤 彰浩
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Publication of WO2012026470A1 publication Critical patent/WO2012026470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Definitions

  • the present invention relates to a circuit connecting material and a circuit member connecting method using the same.
  • anisotropic conductive adhesive films are known as circuit connection materials for heating and pressurizing opposing circuits to electrically connect electrodes in the pressurizing direction, for example, epoxy adhesives and acrylic adhesives.
  • An anisotropic conductive adhesive film in which conductive particles are dispersed in an agent is known.
  • Such an anisotropic conductive adhesive film is mainly composed of a TCP (Tape Carrier Package) or COF (Chip On Flex) on which a semiconductor for driving a liquid crystal display (hereinafter referred to as “LCD”) is mounted and an LCD panel. Widely used for electrical connection or electrical connection between a TCP or COF and a printed wiring board.
  • flip-chip mounting which is advantageous for thinning and narrow pitch connection, is adopted instead of the conventional wire bonding method even when a semiconductor is directly mounted face-down on an LCD panel or a printed wiring board.
  • anisotropic conductive adhesive films are used as circuit connection materials (see, for example, Patent Documents 1 to 4).
  • connection of circuit members using an anisotropic conductive adhesive film conductive particles are sandwiched between the electrodes arranged opposite to each other by heating and pressurization, and conduction between the electrodes is ensured.
  • the circuit member connecting step sufficient heat for flowing the adhesive component and sufficient pressure for bringing the conductive particles into close contact with the electrode are required.
  • a thermosetting resin-based circuit connection material a relatively high connection temperature is required to heat the thermosetting resin to a temperature at which the curing agent sufficiently reacts.
  • the connection of the circuit members requires thermal stress necessary for curing the adhesive component and pressure stress for crushing the particles between the electrodes. Therefore, the connection of the circuit connection material is usually performed at a pressure of 3 MPa or more. These stresses are likely to cause damage to the adherend and cause poor display and reduced reliability. In particular, in touch panel applications using a PET film as the adherend, it is required to reduce pressure stress. Yes.
  • the present invention provides a circuit connection material that enables connection with good formation of indentation and connection resistance even when the pressure at the time of circuit connection is lower than conventional pressure, and the circuit connection material. It aims at providing the connection method of the used circuit member.
  • the circuit connection material is sandwiched between the circuit electrodes to be connected, and a crimping rod heated to a high temperature is pressed from the side of the adherend.
  • the circuit connection material heated by the crimping rod exhibits fluidity, and unnecessary adhesive components between the connection circuits are pushed out of the connection portion.
  • the space between the opposing electrodes becomes narrower than the diameter of the conductive particles, the conductive particles are crushed by the opposing electrodes, and conduction between the electrodes is ensured. Therefore, when circuit connection is performed under a lower pressure condition, it is necessary to select a circuit connection material that exhibits sufficiently high fluidity.
  • the present inventors paid attention to radical polymerizable substances that are constituent components of radical polymerization circuit connection materials, and as a result of intensive studies, the formation of indentations and connection resistance were good even when the pressure during circuit connection was low.
  • the circuit connection material which enables a certain connection was discovered.
  • the present invention provides a first circuit member in which a first circuit electrode is formed on a main surface of a first substrate, and a second circuit member in which a second circuit electrode is formed on a main surface of a second substrate.
  • a circuit connecting material for electrically connecting the first circuit electrode and the second circuit electrode in a state of being opposed to each other by heating and pressurizing It is carried out at 1.5 MPa or less, contains a film-imparting polymer, a radical polymerizable substance, a radical polymerization initiator and conductive particles, and the radical polymerizable substance contains a bifunctional or lower radical polymerizable substance and has a bifunctional or lower functional group.
  • a circuit connecting material in which the blending amount of the radical polymerizable substance is 50 to 70% by mass based on the total amount of the film-imparting polymer and the radical polymerizable substance.
  • the blending amount of the bifunctional or lower radical polymerizable substance is preferably 50 to 65% by mass based on the total amount of the film-imparting polymer and the radical polymerizable substance. Thereby, the said connection can be performed still more favorably.
  • a bifunctional or lower radical polymerizable substance is contained in an amount of 50% by mass or more based on the total amount of the radical polymerizable substance.
  • the present invention also provides a first circuit member in which a first circuit electrode is formed on a main surface of a first substrate, and a second circuit electrode in which a second circuit electrode is formed on a main surface of a second substrate. Heating the second circuit member and the circuit connecting material disposed between the first circuit member and the second circuit member in a state where the first circuit electrode and the second circuit electrode are opposed to each other.
  • the connection structure connected by such a method has good indentation and connection resistance.
  • the circuit connection material that enables the formation of indentation and the connection resistance is good, and the circuit member using the circuit connection material A connection method can be provided.
  • the circuit connection material of this embodiment contains an adhesive component and conductive particles.
  • an adhesive component means what contains all materials other than electroconductive particle among the constituent materials of a circuit connection material.
  • the circuit connection material of this embodiment contains a film property-imparting polymer, a radical polymerizable substance, and a radical polymerization initiator as an adhesive component.
  • the adhesive component may contain a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone as necessary.
  • the film property-imparting polymer is used as a resin for forming a film, and any known polymer can be used without particular limitation.
  • a polymer polyimide, polyamide, phenoxy resins, poly (meth) acrylates, polyimides, polyurethanes, polyesters, polyester urethanes, polyvinyl butyrals, and the like can be used. These can be used individually by 1 type or in mixture of 2 or more types.
  • the weight average molecular weight of the film imparting polymer is preferably 5000 to 150,000, and more preferably 10,000 to 80,000. When this value is less than 5000, the film-forming property when the circuit connecting material of the present embodiment is used in a film form tends to be inferior, and when it exceeds 150,000, the compatibility with other components tends to deteriorate.
  • the weight average molecular weight is determined by gel permeation chromatography (GPC) analysis under the following conditions and conversion using a standard polystyrene calibration curve.
  • the GPC conditions are as follows. Equipment used: Hitachi L-6000 type (manufactured by Hitachi, Ltd., trade name) Detector: L-3300RI (trade name, manufactured by Hitachi, Ltd.) Column: Gel pack GL-R420 + Gel pack GL-R430 + Gel pack GL-R440 (3 in total) (trade name, manufactured by Hitachi Chemical Co., Ltd.) Eluent: Tetrahydrofuran Measurement temperature: 40 ° C Flow rate: 1.75 mL / min
  • the glass transition temperature (Tg) of the film property-imparting polymer is preferably 40 to 150 ° C, more preferably 60 to 100 ° C.
  • the glass transition temperature is measured under the following conditions by differential scanning calorimetry (DSC). That is, 0.01 g of each polyester urethane resin was weighed and measured using a DSC7 (trade name) manufactured by Perkin Elmer under a nitrogen atmosphere at a temperature range of 25 to 200 ° C. and a heating rate of 10 ° C./min. The straight line before and after the inflection point of the obtained endothermic curve is extended, and the temperature at which the endothermic curve intersects with the half line between the two extended lines is defined as the glass transition temperature.
  • DSC7 trade name
  • the film property-imparting polymer preferably has a pour point measured by a flow tester method of 60 to 170 ° C., more preferably 80 to 120 ° C.
  • the pour point measured by the flow tester method is a temperature at which the cylinder starts to move when a die having a diameter of 1 mm is used and a pressure of 3 MPa is applied and the temperature is increased at a rate of temperature increase of 2 ° C./min. Measure using a flow tester.
  • the pour point in the flow tester method is less than 40 ° C., film moldability and adhesiveness may be deteriorated, and when it exceeds 140 ° C., fluidity may be deteriorated.
  • the radical polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include (meth) acrylates and maleimide compounds.
  • the circuit connection material of the present embodiment has a bifunctional or lower (that is, monofunctional or bifunctional) radical polymerizable substance as an essential component as a radical polymerizable substance.
  • a bifunctional or lower radical polymerizable substance as an essential component as a radical polymerizable substance.
  • Specific examples thereof include (meth) acrylates such as urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, and ethylene glycol di (meth).
  • maleimide compound those containing at least two maleimide groups in the molecule are preferable.
  • the radical polymerizable substances having 2 or less functional groups urethane (meth) acrylate is preferable from the viewpoint of adhesiveness.
  • the glass transition temperature (Tg) of the polymer after crosslinking with an organic peroxide (one kind of radical polymerization initiator) described later is 100 ° C. or more alone.
  • a radically polymerizable substance in combination.
  • a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring can be used.
  • a radical polymerizable substance having a tricyclodecanyl group or a triazine ring is preferably used.
  • a radically polymerizable substance having a functionality of 3 or more may be included as long as the effect of the present embodiment is not hindered.
  • radical polymerizable substances include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, ⁇ -caprolactone modified tris ((meth) acryloxyethyl) isocyanurate, tris ((meth)). Acryloxyethyl) isocyanurate.
  • the radical polymerizable substance may have a phosphate structure.
  • Specific examples include 2-methacryloyloxyethyl acid phosphate and 2-acryloyloxyethyl acid phosphate.
  • the radical polymerizable substance having a phosphate ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyl (meth) acrylate.
  • a radically polymerizable substance having a phosphate ester structure when used in an amount of 0.1 to 10% by mass based on the total solid content of the adhesive component (100% by mass), the adhesive strength on the surface of an inorganic substance such as a metal is reduced. It is preferable because it improves, and more preferably 0.5 to 5% by mass is used.
  • the above radical polymerizable substances can be used singly or in combination of two or more.
  • the radical polymerizable substance contains at least one radical polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa ⁇ s from the viewpoint of facilitating temporary fixing of the circuit member before curing the circuit connecting material. It is preferable to contain a radical polymerizable substance having a viscosity (25 ° C.) of 100,000 to 500,000 mPa ⁇ s.
  • the viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.
  • the blending amount of the bifunctional or lower radical polymerizable substance is 50 to 70% by mass based on the total amount of the film-imparting polymer and the radical polymerizable substance, and is 50 to 65% by mass.
  • the bifunctional or lower-functional radical polymerizable substance is preferably contained in an amount of 50 to 100% by mass, more preferably 65 to 100% by mass, and more preferably 80 to 100% by mass based on the total amount of the radical polymerizable substance. preferable.
  • liquidity of resin increases in the crimping
  • the weight-average molecular weight of the bifunctional or lower radical polymerizable substance is preferably 100 to 20000, and more preferably 600 to 13000.
  • radical polymerization initiators include those that decompose free radicals by heating or light of peroxide compounds, azo compounds, and the like.
  • the radical polymerization initiator is appropriately selected according to the intended connection temperature, connection time, pot life, etc. From the viewpoint of high reactivity and pot life, the temperature of the half-life of 10 hours is 40 ° C. or more and half. An organic peroxide having a period of 1 minute at a temperature of 180 ° C. or less is preferred.
  • the blending amount of the radical polymerization initiator is preferably about 0.05 to 10% by mass, more preferably 0.1 to 5% by mass based on the total solid content of the adhesive component.
  • radical polymerization initiator examples include diacyl peroxides, peroxydicarbonates, peroxyesters, peroxyketals, dialkyl peroxides, hydroperoxides, and the like.
  • peroxyesters, dialkyl peroxides, and hydroperoxides are preferable from the viewpoint of suppressing corrosion of circuit electrodes of the circuit member, and peroxyesters are more preferable from the viewpoint of obtaining high reactivity. .
  • diacyl peroxides examples include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide.
  • diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide.
  • examples thereof include oxide, benzoylperoxytoluene, and benzoyl peroxide.
  • peroxydicarbonates examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate.
  • peroxyesters examples include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2- Ethyl hexanoate, t-butyl peroxyisobutyrate, 1,1-bis (t-butyl peroxy) Rhohexan
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. Examples thereof include (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis (t-butylperoxy) decane.
  • dialkyl peroxides examples include ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples thereof include t-butyl cumyl peroxide.
  • hydroperoxides examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • radical polymerization initiators can be used singly or in combination of two or more.
  • the radical polymerization initiator may be used by mixing a decomposition accelerator, an inhibitor or the like.
  • the circuit connection material of the present embodiment contains conductive particles.
  • the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon.
  • the conductive particles may have non-conductive glass, ceramic, plastic, or the like as a core, and the core, the metal, metal particles, or carbon may be coated on the core. If the conductive particles are made of plastic as a core and the core is coated with the above metal, metal particles or carbon, or if it is a hot-melt metal particle such as solder, circuit connection is possible because it has deformability due to heat and pressure. This is preferable because it sometimes improves the reliability by absorbing variations in electrode thickness or increasing the contact area with the electrode.
  • the conductive particles may be particles in which metal particles made of copper are coated with silver, for example. Further, as the conductive particles, a metal powder having a shape in which a large number of fine metal particles are connected in a chain shape described in JP-A-2005-116291 can also be used.
  • fine particles in which the surface of these conductive particles is further coated with a polymer resin or the like, or those in which an insulating layer made of an insulating material is provided on the surface of the conductive particles by a method such as hybridization are mixed with conductive particles. Since short-circuiting due to contact between particles when the amount is increased can be suppressed and insulation between electrode circuits can be improved, this may be used alone or mixed with conductive particles as appropriate.
  • the blending amount of the conductive particles is preferably 0.1 to 30% by volume, and more preferably 0.1 to 10% by volume based on the total volume of solid content in the circuit connecting material.
  • the total volume of the solid content is determined by, for example, the sum of the volume of each component of the circuit connection material before curing at 23 ° C.
  • the volume of each component can be determined, for example, by converting mass to volume using specific gravity.
  • the average particle diameter of the conductive particles is preferably 1 to 18 ⁇ m from the viewpoint of dispersibility and conductivity.
  • the circuit connection material of this embodiment can be used more suitably for connection between circuit members.
  • the first circuit member having the first circuit electrode formed on the main surface of the first substrate and the second circuit electrode formed on the main surface of the second substrate The second circuit member thus made can be electrically connected. More specifically, the two circuit electrodes are electrically connected to each other by heating and pressurizing the circuit connection material of the present embodiment with the two electrodes facing each other.
  • the pressurization at this time is 1.5 MPa or less. According to the circuit connection material of this embodiment, even if the pressure at the time of pressurization is as low as 1.5 MPa or less, the indentation and connection resistance in the connection structure are good.
  • FIG. 1 is a sectional view showing one embodiment of an adhesive sheet provided with circuit connection material and a support substrate.
  • An adhesive sheet 100 shown in FIG. 1 includes a support base 8 and a film-like circuit connection material 10 that is detachably laminated on the support base 8.
  • the circuit connecting material 10 includes an insulating adhesive component 5 and conductive particles 7 dispersed in the adhesive component 5.
  • the support base material 8 can be maintained in the circuit connection material 10 film shape, the shape and the material thereof are arbitrary. Specifically, a fluororesin film, a polyethylene terephthalate film (PET), a biaxially stretched polypropylene film (OPP), a nonwoven fabric, or the like can be used as a supporting substrate.
  • PET polyethylene terephthalate film
  • OPP biaxially stretched polypropylene film
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit member connection structure according to this embodiment.
  • the circuit member connection structure 1 shown in FIG. 2 includes a first circuit member 20 and a second circuit member 30 that face each other, and is provided between the first circuit member 20 and the second circuit member 30. Is provided with a circuit connecting material 10 for connecting them.
  • the first circuit member 20 includes a first substrate 21 and first connection terminals 22 formed on the main surface 21a of the first substrate 21.
  • the second circuit member 30 includes a second substrate 31 and second connection terminals 32 formed on the main surface 31 a of the second substrate 31.
  • An insulating layer (not shown) may be formed on the main surface 21a of the first substrate 21 and / or the main surface 31a of the second substrate 31, as the case may be. That is, the insulating layer formed as necessary is formed between at least one of the first circuit member 20 and the second circuit member 30 and the circuit connection material 10.
  • inorganic materials such as semiconductors, glass and ceramics, polyimide resins typified by flexible printed wiring boards such as TCP and COF, polyester terephthalates such as polycarbonate and polyethylene terephthalate, polyethersulphates Examples thereof include substrates made of organic materials such as phon, epoxy resin, and acrylic resin, and materials obtained by combining these inorganic materials and organic materials.
  • at least one of the first and second substrates is selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin, polyimide resin, and glass.
  • a substrate made of a material containing at least one selected resin is preferable.
  • the insulating layer is at least one selected from the group consisting of silicone resin, acrylic resin, and polyimide resin. A layer containing a resin is preferred. Thereby, compared with the thing in which the said insulating layer is not formed, the adhesive strength of the 1st board
  • At least one of the first connecting terminal 22 and the second connecting terminal 32 has at least one surface selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide (ITO). It is preferable to consist of a material containing. Thereby, the resistance value between the opposing connection terminals 22 and 32 can be further reduced while maintaining insulation between the connection terminals 22 or 32 adjacent on the same circuit member 20 or 30.
  • ITO indium-tin oxide
  • first and second circuit members 20 and 30 include a glass substrate or a plastic substrate, a printed circuit board, a ceramic circuit board, and a flexible circuit board, which are used in a liquid crystal display and have connection terminals formed of ITO or the like.
  • Examples thereof include a printed wiring board and a semiconductor silicon chip.
  • plastic substrates are represented by, for example, polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene naphthalate (PEN), and are used for touch panels and electronic paper.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • connection between flexible printed wiring boards such as TCP and COF and glass substrates Connection between flexible printed wiring boards such as TCP and COF and plastic substrates, Connection between flexible printed wiring boards such as TCP and COF and printed wiring boards, and Examples include connection between a flexible printed wiring board such as TCP and COF and a ceramic wiring board.
  • the circuit connection material 10 is formed from a cured product of the circuit connection material of the present embodiment containing the conductive particles 7.
  • the circuit connection material 10 includes an adhesive component 11 and conductive particles 7 dispersed in the adhesive component 11.
  • the conductive particles 7 in the circuit connection material 10 are arranged not only between the first connection terminal 22 and the second connection terminal 32 facing each other but also between the main surfaces 21a and 31a.
  • the conductive particles 7 are in direct contact with both the first and second connection terminals 22, 32 and are flat between the first and second connection terminals 22, 32. It is compressed. Thereby, the first and second connection terminals 22 and 32 are electrically connected via the conductive particles 7. For this reason, the connection resistance between the first connection terminal 22 and the second connection terminal 32 is sufficiently reduced. Therefore, the flow of current between the first and second connection terminals 22 and 32 can be made smooth, and the functions of the circuit can be fully exhibited.
  • Circuit member connection method 3 (a) to 3 (c) are process diagrams showing one embodiment of the circuit member connecting method according to the present embodiment in schematic cross-sectional views.
  • first, the first circuit member 20 and the film-like circuit connecting material 40 described above are prepared.
  • the thickness of the film-like circuit connecting material 40 is preferably 5 to 50 ⁇ m. If the thickness of the circuit connection material 40 is less than 5 ⁇ m, the filling of the circuit connection material 40 between the first and second connection terminals 22 and 32 tends to be insufficient. On the other hand, if it exceeds 50 ⁇ m, it tends to be difficult to ensure conduction between the first and second connection terminals 22 and 32.
  • the film-like circuit connection material 40 is placed on the surface on which the connection terminals 22 of the first circuit member 20 are formed. And the film-form circuit connection material 40 is pressurized to the arrow A and B direction of Fig.3 (a), and the film-form circuit connection material 40 is temporarily bonded to the 1st circuit member 20 (FIG.3 (b)).
  • the pressure at this time is not particularly limited as long as it does not damage the circuit member, but is generally preferably 0.1 to 30 MPa, more preferably 0.5 to 1.5 MPa. .
  • you may pressurize, heating, and let heating temperature be the temperature which the circuit connection material 40 does not harden
  • the heating temperature is preferably 50 to 190 ° C. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds.
  • the second circuit member 30 is placed on the film-like circuit connection material 40 so that the second connection terminal 32 faces the first circuit member 20 side.
  • the film-like circuit connection material 40 is provided in close contact with a support base (not shown)
  • the second circuit member 30 is removed from the support base after the second base member 30 is peeled off. 40. And the whole is pressurized in the arrow A and B directions of FIG.3 (c), heating the circuit connection material 40.
  • the heating temperature is 90 to 200 ° C., for example, and the connection time is 1 second to 10 minutes, for example.
  • the pressure is 1.5 MPa or less.
  • the heating temperature and the connection time are appropriately selected depending on the intended use, circuit connection material, and circuit member, and post-curing may be performed as necessary.
  • the heating temperature when the circuit connecting material contains a radical polymerizable substance is set to a temperature at which the radical polymerization initiator can generate radicals. As a result, radicals are generated in the radical polymerization initiator, and polymerization of the radical polymerizable substance is started.
  • connection under the low pressure condition of 1.5 MPa or less as described above is possible.
  • the lower limit of this pressure is about 0.5 MPa, preferably about 0.8 MPa, and more preferably about 0.9 MPa.
  • the pressure is preferably 0.8 to 1.5 MPa, more preferably 0.9 to 1.3 MPa, and particularly preferably 0.9 to 1.2 MPa.
  • FIG. 5 is a plan view showing a state before a circuit member (a flexible printed circuit board such as FPC, TCP, COF) is connected using a film-like circuit connecting material.
  • the applied pressure at the time of connection mentioned above means the pressure with respect to the total area of a connection part.
  • the “total area of the connection portion” means the total area of the connection terminal 22 connected by the circuit connection material and the area including the gap between the connection terminals 22, and is shown in FIGS. 5 (a) and 5 (b). Thus, it is obtained by the product of the width x in which the connection terminals 22 are arranged in parallel and the length y of the connection terminal in the direction perpendicular to the width.
  • the applied pressure can be obtained as follows. For example, when the width of the connection portion is 30 mm and the length of the connection terminal in the direction perpendicular to the width is 2 mm, the pressure at the connection portion is 1.0 MPa ( ⁇ 10 kgf / cm 2 ).
  • the pressure applied to the apparatus can be obtained by the following calculation. The following pressure may be applied to the corresponding crimping head.
  • Target pressure 1.0 MPa (10 kgf / cm 2 )
  • the film-like circuit connection material 40 By heating the film-like circuit connection material 40, the film-like circuit connection material 40 is cured in a state where the distance between the first connection terminal 22 and the second connection terminal 32 is sufficiently small, and the first circuit. The member 20 and the second circuit member 30 are firmly connected via the circuit connection material 10.
  • the circuit connection material 10 is formed by curing the film-like circuit connection material 40, and a circuit member connection structure 1 as shown in FIG. 2 is obtained.
  • the conductive particles 7 can be brought into contact with both the first and second connection terminals 22 and 32 facing each other.
  • the connection resistance between the connection terminals 22 and 32 can be sufficiently reduced, and the insulation between the adjacent first or second connection terminals 22 and 32 can be sufficiently ensured.
  • the circuit connection material 10 is comprised by the hardened
  • the circuit connection material of this embodiment can also be suitably used for a solar cell module in which a plurality of solar cells are electrically connected.
  • the solar cell module according to the present embodiment will be described.
  • the solar cell module according to the present embodiment includes a solar cell having electrodes, a wiring member, and a connection member that bonds the solar cell and the wiring member so that the electrode and the wiring member are electrically connected. And comprising. And the said connection member contains the hardened
  • FIG. 6 is a schematic cross-sectional view showing an embodiment of the solar cell module of the present embodiment.
  • the solar cell module 200 includes a solar cell 150 ⁇ / b> A and a wiring member 94, and a connecting member 95 that electrically connects them is between the solar cell 150 ⁇ / b> A and the wiring member 94. Is provided.
  • the solar battery cell 150 ⁇ / b> A has an electrode 96 on the substrate 92 and is electrically connected to the wiring member 94 through the electrode 96.
  • the surface on the side provided with the electrode 96 is a light receiving surface 98.
  • the solar cell 150 ⁇ / b> A is provided with a back electrode 97 on the back surface 99 opposite to the light receiving surface 98.
  • the substrate 92 is made of at least one of, for example, Si single crystal, polycrystal, and amorphous.
  • the wiring member 94 is a member for electrically connecting the solar battery cell 150A and other members.
  • the electrode 96 of the solar battery cell 150 ⁇ / b> A and the back electrode 97 of the solar battery cell 100 ⁇ / b> B are electrically connected by the wiring member 94.
  • the wiring member 94 and the back surface electrode 97 of the solar battery cell 150B are electrically connected by the connecting member 95 containing the cured product of the circuit connecting material. 94 and the solar battery cell 150B are bonded together.
  • the connecting member 95 contains conductive particles
  • the electrode 96 and the wiring member 94 of the solar battery cell 150A can be electrically connected via the conductive particles.
  • the back electrode 97 of the solar battery cell 150B and the wiring member 94 can also be electrically connected via conductive particles.
  • connection member 95 is made of a cured product of the circuit connection material. From this, the adhesive strength of the connection member 95 between the solar battery cell 150A and the wiring member 94 is sufficiently high, and the connection resistance between the solar battery cell 150A and the wiring member 94 is sufficiently low. Moreover, even when it is left for a long time in a high temperature and high humidity environment, it is possible to sufficiently suppress a decrease in adhesive strength and an increase in connection resistance. Further, the connection member 95 can be formed by a heat treatment at a low temperature for a short time. Therefore, the solar battery module 200 shown in FIG. 6 can be manufactured without deteriorating the solar battery cell 150A at the time of connection, and can have higher reliability than before.
  • the solar cell 150A and the wiring member 94 can be used as the first and second circuit members 20 and 30 in the circuit member connection method described above. It can manufacture by implementing the method similar to this connection method.
  • Example 1 (Preparation of adhesive sheet) A polyester urethane resin (trade name: UR4125, manufactured by Toyobo Co., Ltd.) as a film-imparting polymer and a bifunctional radically polymerizable substance (trade name: UA5500T, manufactured by Shin-Nakamura Chemical Co., Ltd.) in a mass ratio of 40:60.
  • nickel plated plastic particles having a diameter of 4 ⁇ m are added as conductive particles to 5% by mass (2.1% by volume), and further 4 masses of peroxide (HTP-65W, manufactured by Kayaku Akzo) as a curing agent.
  • This varnish was cast and dried on a 50 ⁇ m polyethylene terephthalate resin film subjected to a release treatment as a supporting group to prepare an adhesive sheet.
  • the average thickness of the film-like circuit connecting material formed on the supporting substrate was 15 ⁇ m.
  • circuit connection structure (Production of circuit connection structure)
  • the adhesive sheet was cut into a size of 1.5 mm in width, and the film-like circuit connecting material surface was temporarily bonded to a glass substrate on which an ITO electrode and an Al electrode were formed under conditions of 70 ° C., 1 MPa, and 2 seconds.
  • COF internal electrode pitch: 50 ⁇ m, electrode width 25 ⁇ m, space 25 ⁇ m
  • main connection is performed under conditions of 170 ° C., 1 MPa, 10 seconds to obtain a circuit connection structure. It was.
  • a circuit connection structure was obtained in the same manner except that the conditions for this connection were changed to 170 ° C., 3 MPa, and 10 seconds.
  • Example 2 A circuit connection structure was produced in the same manner as in Example 1 except that the mixing ratio of the polyester urethane resin and the bifunctional radical polymerizable substance was changed to a mass ratio of 50:50.
  • Example 3 In addition to the polyester urethane resin and the bifunctional radical polymerizable substance, a 10 functional radical polymerizable substance (manufactured by Negami Kogyo Co., Ltd., trade name: UN-952) was used, and the mixing ratio was 40:55: A circuit connection structure was fabricated in the same manner as in Example 1 except that the number was 5.
  • Example 4 In addition to the polyester urethane resin and the bifunctional radically polymerizable substance, a monofunctional radically polymerizable substance (manufactured by Kojin Co., Ltd., trade name: ACMO) is used, and the mixing ratio thereof is 40:50:10. A circuit connection structure was fabricated in the same manner as in Example 1 except that.
  • a monofunctional radically polymerizable substance manufactured by Kojin Co., Ltd., trade name: ACMO
  • Example 1 A circuit connection structure was produced in the same manner as in Example 1 except that the mixing ratio of the polyester urethane resin and the bifunctional radically polymerizable substance was changed to a mass ratio of 60:40.
  • Example 2 A circuit connection structure was produced in the same manner as in Example 1 except that the mixing ratio of the polyester urethane resin and the bifunctional radically polymerizable substance was changed to a mass ratio of 20:80.
  • connection resistance Using the digital multimeter (trade name: TR-6845, manufactured by Advantest Corporation), the obtained circuit connection structure was measured for 37 points of resistance between adjacent electrodes under a constant current of 1 mA. When the average value of the measurement was less than 3 ⁇ , “A” was set, and when it was 3 ⁇ or more, “B” was set.
  • FIG. 4 shows an example of a photograph of the observed indentation.
  • FIG. 4A is a photograph showing a state where the indentation is sufficiently strong and has no unevenness.
  • FIG. 4B is a photograph showing a case where the indentation is weak or uneven. As shown in FIG. 4A, when the indentation strength is sufficiently strong and uneven, “A”, and when the indentation strength is weak or uneven as shown in FIG. 4B, “B” "
  • Table 1 shows the blending ratio of the film property-imparting polymer and the radical polymerizable substance constituting the circuit connection materials obtained in the above Examples and Comparative Examples, and the evaluation results of the circuit connection structure.
  • the circuit connection material of the present invention can satisfactorily achieve circuit connection under a low pressure condition of 1.5 MPa or less, which has been difficult to achieve in the past, and can reduce the load on the adherend during crimping. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Combinations Of Printed Boards (AREA)
  • Adhesive Tapes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to a circuit connecting material which is interposed between a first circuit member, wherein a first circuit electrode is formed on a main surface of a first substrate, and a second circuit member, wherein a second circuit electrode is formed on a main surface of a second substrate, in order to electrically connect the first circuit electrode and the second circuit electrode by the application of heat and pressure, while having the first circuit electrode and the second circuit electrode face each other. In this connection, a pressure of 1.5 MPa or less is applied. The circuit connecting material contains a film property-imparting polymer, a radically polymerizable substance, a radical polymerization initiator and conductive particles. The radically polymerizable substance contains a bi- or less-functional radically polymerizable substance, and the blending amount of the bi- or less-functional radically polymerizable substance is 50-70% by mass based on the total mass of the film property-imparting polymer and the radically polymerizable substance.

Description

回路接続材料及びこれを用いた回路部材の接続方法Circuit connection material and circuit member connection method using the same
 本発明は、回路接続材料及びこれを用いた回路部材の接続方法に関する。 The present invention relates to a circuit connecting material and a circuit member connecting method using the same.
 従来、相対向する回路を加熱、加圧し加圧方向の電極間を電気的に接続する回路接続材料として、異方導電性接着フィルムが知られており、例えば、エポキシ系接着剤やアクリル系接着剤に導電粒子を分散させた異方導電性接着フィルムが知られている。かかる異方導電性接着フィルムは、主に液晶ディスプレイ(以下、「LCD」とする。)を駆動させる半導体が搭載されたTCP(Tape Carrier Package)又はCOF(Chip On Flex)とLCDパネルとの電気的接続、あるいは、TCP又はCOFとプリント配線板との電気的接続に広く使用されている。 Conventionally, anisotropic conductive adhesive films are known as circuit connection materials for heating and pressurizing opposing circuits to electrically connect electrodes in the pressurizing direction, for example, epoxy adhesives and acrylic adhesives. An anisotropic conductive adhesive film in which conductive particles are dispersed in an agent is known. Such an anisotropic conductive adhesive film is mainly composed of a TCP (Tape Carrier Package) or COF (Chip On Flex) on which a semiconductor for driving a liquid crystal display (hereinafter referred to as “LCD”) is mounted and an LCD panel. Widely used for electrical connection or electrical connection between a TCP or COF and a printed wiring board.
 また、最近では、半導体をフェイスダウンで直接LCDパネルやプリント配線板に実装する場合でも、従来のワイヤーボンディング法ではなく、薄型化や狭ピッチ接続に有利なフリップチップ実装が採用されている。フリップチップ実装においても、異方導電性接着フィルムが回路接続材料として用いられている(例えば、特許文献1~4参照)。 Also, recently, flip-chip mounting, which is advantageous for thinning and narrow pitch connection, is adopted instead of the conventional wire bonding method even when a semiconductor is directly mounted face-down on an LCD panel or a printed wiring board. Also in flip chip mounting, anisotropic conductive adhesive films are used as circuit connection materials (see, for example, Patent Documents 1 to 4).
特開昭59-120436号公報JP 59-120436 A 特開昭60-191228号公報JP-A-60-191228 特開平01-251787号公報Japanese Patent Laid-Open No. 01-251787 特開平07-090237号公報Japanese Unexamined Patent Publication No. 07-090237
 異方導電性接着フィルムを用いた回路部材の接続では、加熱及び加圧により、対向配置された電極の間に導電粒子が挟まれ、電極間の導通が確保される。回路部材の接続工程では、接着剤成分を流動させるための十分な熱と、導電粒子を電極に密着させるための十分な圧力が必要となる。熱硬化樹脂系の回路接続材料では、硬化剤が十分に反応するための温度まで加熱するために、比較的高い接続温度が必要である。また、回路部材の接続には、接着剤成分の硬化に必要な熱的ストレスと、粒子を電極間で押し潰すための圧力ストレスとを要する。そのため、回路接続材料の接続は、通常3MPa以上の圧力で行われる。これらのストレスは、被着体にダメージを与え、表示不良や信頼性の低下の原因となりやすく、特に、被着体にPETフィルムを用いるタッチパネル用途等では、圧力ストレスを低減することが求められている。 In connection of circuit members using an anisotropic conductive adhesive film, conductive particles are sandwiched between the electrodes arranged opposite to each other by heating and pressurization, and conduction between the electrodes is ensured. In the circuit member connecting step, sufficient heat for flowing the adhesive component and sufficient pressure for bringing the conductive particles into close contact with the electrode are required. In a thermosetting resin-based circuit connection material, a relatively high connection temperature is required to heat the thermosetting resin to a temperature at which the curing agent sufficiently reacts. Further, the connection of the circuit members requires thermal stress necessary for curing the adhesive component and pressure stress for crushing the particles between the electrodes. Therefore, the connection of the circuit connection material is usually performed at a pressure of 3 MPa or more. These stresses are likely to cause damage to the adherend and cause poor display and reduced reliability. In particular, in touch panel applications using a PET film as the adherend, it is required to reduce pressure stress. Yes.
 ラジカル硬化系の回路接続材料の登場により、低温・短時間での接続が可能となりつつある。しかし、従来のラジカル硬化系の回路接続材料では、1.5MPa以下の低圧条件で接続した場合に、接着剤成分の流動性が不足し、導通不良や圧痕不良が起こりやすい。 With the advent of radical curing system circuit connection materials, connection at low temperatures and in a short time is becoming possible. However, in a conventional radical curing system circuit connecting material, when connected under a low pressure condition of 1.5 MPa or less, the fluidity of the adhesive component is insufficient, and continuity failure and indentation failure are likely to occur.
 そこで本発明は、上記事情に鑑み、回路接続時の圧力を従来よりも低くした場合でも、圧痕の形成及び接続抵抗が良好である接続を可能とする回路接続材料、及び、その回路接続材料を用いた回路部材の接続方法を提供することを目的とする。 Therefore, in view of the above circumstances, the present invention provides a circuit connection material that enables connection with good formation of indentation and connection resistance even when the pressure at the time of circuit connection is lower than conventional pressure, and the circuit connection material. It aims at providing the connection method of the used circuit member.
 回路接続材料を用いた回路接続では、接続を行う回路電極で回路接続材料を挟み、被着材の側から高温に加熱した圧着棒を押し当てる。圧着棒により加熱された回路接続材料は、流動性を示し、接続回路間における不要な接着剤成分が接続部外に押し出される。そして、対向する電極間のスペースが、導電粒子の直径よりも狭くなると、導電粒子が対抗する電極に押し潰され、電極間の導通が確保される。したがって、より低い圧力条件で回路接続を行う場合、十分に高い流動性を示す回路接続材料を選択する必要がある。 In the circuit connection using the circuit connection material, the circuit connection material is sandwiched between the circuit electrodes to be connected, and a crimping rod heated to a high temperature is pressed from the side of the adherend. The circuit connection material heated by the crimping rod exhibits fluidity, and unnecessary adhesive components between the connection circuits are pushed out of the connection portion. When the space between the opposing electrodes becomes narrower than the diameter of the conductive particles, the conductive particles are crushed by the opposing electrodes, and conduction between the electrodes is ensured. Therefore, when circuit connection is performed under a lower pressure condition, it is necessary to select a circuit connection material that exhibits sufficiently high fluidity.
 本発明者らは、ラジカル重合系の回路接続材料の構成成分であるラジカル重合性物質に着目し、鋭意検討を重ねた結果、回路接続時の圧力が低くとも圧痕の形成及び接続抵抗が良好である接続を可能とする回路接続材料を見出した。 The present inventors paid attention to radical polymerizable substances that are constituent components of radical polymerization circuit connection materials, and as a result of intensive studies, the formation of indentations and connection resistance were good even when the pressure during circuit connection was low. The circuit connection material which enables a certain connection was discovered.
 すなわち本発明は、第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材との間に介在させ、加熱及び加圧により第一の回路電極及び第二の回路電極を対向配置された状態で電気的に接続するための回路接続材料であって、加圧は1.5MPa以下で行われ、フィルム性付与ポリマー、ラジカル重合性物質、ラジカル重合開始剤及び導電粒子を含有し、ラジカル重合性物質が、2官能以下のラジカル重合性物質を含み、2官能以下のラジカル重合性物質の配合量が、フィルム性付与ポリマー及びラジカル重合性物質の総量を基準として50~70質量%である、回路接続材料を提供する。 That is, the present invention provides a first circuit member in which a first circuit electrode is formed on a main surface of a first substrate, and a second circuit member in which a second circuit electrode is formed on a main surface of a second substrate. A circuit connecting material for electrically connecting the first circuit electrode and the second circuit electrode in a state of being opposed to each other by heating and pressurizing, It is carried out at 1.5 MPa or less, contains a film-imparting polymer, a radical polymerizable substance, a radical polymerization initiator and conductive particles, and the radical polymerizable substance contains a bifunctional or lower radical polymerizable substance and has a bifunctional or lower functional group. Provided is a circuit connecting material in which the blending amount of the radical polymerizable substance is 50 to 70% by mass based on the total amount of the film-imparting polymer and the radical polymerizable substance.
 ここで、2官能以下のラジカル重合性物質の配合量が、フィルム性付与ポリマー及びラジカル重合性物質の総量を基準として50~65質量%であることが好ましい。これにより、上記接続を一層良好に行うことができる。 Here, the blending amount of the bifunctional or lower radical polymerizable substance is preferably 50 to 65% by mass based on the total amount of the film-imparting polymer and the radical polymerizable substance. Thereby, the said connection can be performed still more favorably.
 さらに、2官能以下のラジカル重合性物質を、ラジカル重合性物質の全量を基準として50質量%以上含むことが好ましい。これにより、上記回路接続材料の流動性をより向上することができる。 Furthermore, it is preferable that a bifunctional or lower radical polymerizable substance is contained in an amount of 50% by mass or more based on the total amount of the radical polymerizable substance. Thereby, the fluidity | liquidity of the said circuit connection material can be improved more.
 また、本発明は、第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材と、第一の回路部材及び第二の回路部材の間に配置された上記回路接続材料とを第一の回路電極と第二の回路電極とが対向配置された状態で加熱及び加圧して、第一の回路電極と第二の回路電極とを電気的に接続する回路部材の接続方法であって、加圧が1.5MPa以下で行われる回路部材の接続方法を提供する。このような方法で接続された接続構造は、圧痕及び接続抵抗が良好である。 The present invention also provides a first circuit member in which a first circuit electrode is formed on a main surface of a first substrate, and a second circuit electrode in which a second circuit electrode is formed on a main surface of a second substrate. Heating the second circuit member and the circuit connecting material disposed between the first circuit member and the second circuit member in a state where the first circuit electrode and the second circuit electrode are opposed to each other. A circuit member connection method for applying pressure and electrically connecting a first circuit electrode and a second circuit electrode, wherein the circuit member is connected at a pressure of 1.5 MPa or less. The connection structure connected by such a method has good indentation and connection resistance.
 本発明によれば、回路接続時の圧力を従来よりも低くした場合でも、圧痕の形成及び接続抵抗が良好である接続を可能とする回路接続材料、及び、その回路接続材料用いた回路部材の接続方法を提供することができる。 According to the present invention, even when the pressure at the time of circuit connection is lower than that of the prior art, the circuit connection material that enables the formation of indentation and the connection resistance is good, and the circuit member using the circuit connection material A connection method can be provided.
フィルム状の回路接続材料の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a film-form circuit connection material. 本実施形態に係る回路接続材料で接続された接続構造の好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the connection structure connected with the circuit connection material which concerns on this embodiment. 本実施形態の回路部材の接続方法の一実施形態を概略断面図により示す工程図である。It is process drawing which shows one Embodiment of the connection method of the circuit member of this embodiment with a schematic sectional drawing. 実施例で観察した回路接続構造体の圧痕の写真である。It is the photograph of the indentation of the circuit connection structure observed in the Example. フィルム状回路接続材料を用いて回路部材を接続する前の状態を示す平面図である。It is a top view which shows the state before connecting a circuit member using a film-form circuit connection material. 太陽電池モジュールの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a solar cell module.
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。また、本明細書における「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味し、「(メタ)アクリロキシ」とは、「アクリロキシ」及びそれに対応する「メタクリロキシ」を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. In the present specification, “(meth) acrylate” means “acrylate” and its corresponding “methacrylate”, and “(meth) acryloxy” means “acryloxy” and its corresponding “methacryloxy”. To do.
(回路接続材料)
 本実施形態の回路接続材料は、接着剤成分と、導電粒子とを含有するものである。本実施形態において接着剤成分とは、回路接続材料の構成材料のうち、導電粒子以外の全ての材料を含むものを意味する。本実施形態の回路接続材料は、接着剤成分として、フィルム性付与ポリマー、ラジカル重合性物質及びラジカル重合開始剤を含む。また、接着剤成分は、必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類等の重合禁止剤を含んでもよい。
(Circuit connection material)
The circuit connection material of this embodiment contains an adhesive component and conductive particles. In this embodiment, an adhesive component means what contains all materials other than electroconductive particle among the constituent materials of a circuit connection material. The circuit connection material of this embodiment contains a film property-imparting polymer, a radical polymerizable substance, and a radical polymerization initiator as an adhesive component. Further, the adhesive component may contain a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone as necessary.
 フィルム性付与ポリマーは、フィルムを形成する樹脂として用いられるものであり、特に制限なく公知のものを使用することができる。このようなポリマーとしては、ポリイミド、ポリアミド、フェノキシ樹脂類、ポリ(メタ)アクリレート類、ポリイミド類、ポリウレタン類、ポリエステル類、ポリエステルウレタン類、ポリビニルブチラール類等を用いることができる。これらは1種を単独で又は2種以上を混合して用いることができる。 The film property-imparting polymer is used as a resin for forming a film, and any known polymer can be used without particular limitation. As such a polymer, polyimide, polyamide, phenoxy resins, poly (meth) acrylates, polyimides, polyurethanes, polyesters, polyester urethanes, polyvinyl butyrals, and the like can be used. These can be used individually by 1 type or in mixture of 2 or more types.
 フィルム性付与ポリマーの重量平均分子量は、5000~150000が好ましく、10000~80000がより好ましい。この値が5000未満であると本実施形態の回路接続材料をフィルム状で用いる場合のフィルム形成性が劣る傾向があり、また150000を超えると他の成分との相溶性が悪くなる傾向がある。なお、重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)分析により下記の条件で測定し、標準ポリスチレンの検量線を使用して換算することにより求められるものである。 The weight average molecular weight of the film imparting polymer is preferably 5000 to 150,000, and more preferably 10,000 to 80,000. When this value is less than 5000, the film-forming property when the circuit connecting material of the present embodiment is used in a film form tends to be inferior, and when it exceeds 150,000, the compatibility with other components tends to deteriorate. The weight average molecular weight is determined by gel permeation chromatography (GPC) analysis under the following conditions and conversion using a standard polystyrene calibration curve.
 GPC条件は、以下のとおりである。
 使用機器:日立L-6000型((株)日立製作所製、商品名)
 検出器:L-3300RI((株)日立製作所製、商品名)
 カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440(計3本)(日立化成工業(株)製、商品名)
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:1.75mL/分
The GPC conditions are as follows.
Equipment used: Hitachi L-6000 type (manufactured by Hitachi, Ltd., trade name)
Detector: L-3300RI (trade name, manufactured by Hitachi, Ltd.)
Column: Gel pack GL-R420 + Gel pack GL-R430 + Gel pack GL-R440 (3 in total) (trade name, manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.75 mL / min
 フィルム性付与ポリマーのガラス転移温度(Tg)は、40~150℃であることが好ましく、60~100℃であとが更に好ましい。ガラス転移温度は、示差走査熱量測定(DSC)により次の条件で測定される。すなわち、各ポリエステルウレタン樹脂を0.01g秤量し、パーキンエルマー社製のDSC7(商品名)を用いて、窒素雰囲気下、温度範囲25~200℃、昇温速度10℃/分で測定する。得られる吸熱曲線の変極点前後の直線を延長し、2本の延長線間の2分の1となる直線と吸熱曲線が交差する温度をガラス転移温度とする。 The glass transition temperature (Tg) of the film property-imparting polymer is preferably 40 to 150 ° C, more preferably 60 to 100 ° C. The glass transition temperature is measured under the following conditions by differential scanning calorimetry (DSC). That is, 0.01 g of each polyester urethane resin was weighed and measured using a DSC7 (trade name) manufactured by Perkin Elmer under a nitrogen atmosphere at a temperature range of 25 to 200 ° C. and a heating rate of 10 ° C./min. The straight line before and after the inflection point of the obtained endothermic curve is extended, and the temperature at which the endothermic curve intersects with the half line between the two extended lines is defined as the glass transition temperature.
 フィルム性付与ポリマーは、フローテスタ法により測定される流動点が60~170℃であることが好ましく、80~120℃であることが更に好ましい。なお、フローテスタ法により測定される流動点とは、直径1mmのダイを用い、3MPaの圧力をかけて、昇温速度2℃/分で昇温させた場合のシリンダが動き始める温度であり、フローテスタを用いて測定する。フローテスタ法での流動点が40℃未満では、フィルム成形性及び接着性が低下する場合があり、140℃を超えると流動性が低下する場合がある。 The film property-imparting polymer preferably has a pour point measured by a flow tester method of 60 to 170 ° C., more preferably 80 to 120 ° C. In addition, the pour point measured by the flow tester method is a temperature at which the cylinder starts to move when a die having a diameter of 1 mm is used and a pressure of 3 MPa is applied and the temperature is increased at a rate of temperature increase of 2 ° C./min. Measure using a flow tester. When the pour point in the flow tester method is less than 40 ° C., film moldability and adhesiveness may be deteriorated, and when it exceeds 140 ° C., fluidity may be deteriorated.
 ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質であり、例えば、(メタ)アクリレート、マレイミド化合物等が挙げられる。 The radical polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include (meth) acrylates and maleimide compounds.
 本実施形態の回路接続材料は、ラジカル重合性物質として、2官能以下(すなわち単官能又は2官能)のラジカル重合性物質を必須の成分とする。その具体例として、(メタ)アクリレートとしては、例えば、ウレタン(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス〔4-((メタ)アクリロキシメトキシ)フェニル〕プロパン、2,2-ビス〔4-((メタ)アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ビス((メタ)アクリロキシエチル)イソシアヌレートが挙げられる。 The circuit connection material of the present embodiment has a bifunctional or lower (that is, monofunctional or bifunctional) radical polymerizable substance as an essential component as a radical polymerizable substance. Specific examples thereof include (meth) acrylates such as urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, and ethylene glycol di (meth). Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2-bis [4-((meth) acryloxymethoxy) Phenyl] propane, 2,2-bis [4-((meth) acryloxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate, bis ((meth) acryloxyethyl) ) Isocyanurate Door and the like.
 マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するものが好ましく、例えば、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチル-ビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[3-s-ブチル-4,8-(4-マレイミドフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]デカン、4,4’-シクロヘキシリデン-ビス[1-(4-マレイミドフェノキシ)-2-シクロヘキシル]ベンゼン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ヘキサフルオロプロパンが挙げられる。これらはアリルフェノール、アリルフェニルエーテル、安息香酸アリル等のアリル化合物と組み合わせて用いてもよい。 As the maleimide compound, those containing at least two maleimide groups in the molecule are preferable. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′ -P-phenylene bismaleimide, N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethyl-biphenylene ) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bismaleimide, N, N′— 4,4-diphenylmethane bismaleimide, N, N'-4,4-diphenylpropane bismaleimide, N, N'-4,4-diphenyl ether bisma Imido, N, N′-3,3′-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-s-butyl-4,8 -(4-maleimidophenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] decane, 4,4'-cyclohexylidene-bis [1- (4-maleimidophenoxy) -2 -Cyclohexyl] benzene, 2,2-bis [4- (4-maleimidophenoxy) phenyl] hexafluoropropane. These may be used in combination with allyl compounds such as allylphenol, allylphenyl ether, and allyl benzoate.
 2官能以下のラジカル重合性物質の中でも、ウレタン(メタ)アクリレートが接着性の観点から好ましい。また、耐熱性を向上させるために、後述する有機過酸化物(ラジカル重合開始剤の1種)との橋かけ後の重合物のガラス転移温度(Tg)が、単独で100℃以上となるようなラジカル重合性物質を併用することが好ましい。このようなラジカル重合性物質としては、ジシクロペンテニル基、トリシクロデカニル基及び/又はトリアジン環を有するものを用いることができる。特に、トリシクロデカニル基やトリアジン環を有するラジカル重合性物質が好適に用いられる。 Among the radical polymerizable substances having 2 or less functional groups, urethane (meth) acrylate is preferable from the viewpoint of adhesiveness. Moreover, in order to improve heat resistance, the glass transition temperature (Tg) of the polymer after crosslinking with an organic peroxide (one kind of radical polymerization initiator) described later is 100 ° C. or more alone. It is preferable to use a radically polymerizable substance in combination. As such a radically polymerizable substance, a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring can be used. In particular, a radical polymerizable substance having a tricyclodecanyl group or a triazine ring is preferably used.
 ラジカル重合性物質としては、本実施形態の効果を阻害しない範囲で、3官能以上のラジカル重合性物質を含有させてもよい。そのようなラジカル重合性物質として、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ε-カプロラクトン変性トリス((メタ)アクリロキシエチル)イソシアヌレート、トリス((メタ)アクリロキシエチル)イソシアヌレートが挙げられる。 As the radically polymerizable substance, a radically polymerizable substance having a functionality of 3 or more may be included as long as the effect of the present embodiment is not hindered. Examples of such radical polymerizable substances include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, ε-caprolactone modified tris ((meth) acryloxyethyl) isocyanurate, tris ((meth)). Acryloxyethyl) isocyanurate.
 また、ラジカル重合性物質はリン酸エステル構造を有したものでもよい。具体的には、2-メタクリロイルオキシエチルアシッドフォスフェート、2-アクリロイルオキシエチルアシッドフォスフェート等が挙げられる。なお、リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2-ヒドロキシル(メタ)アクリレートとの反応物として得られる。 Further, the radical polymerizable substance may have a phosphate structure. Specific examples include 2-methacryloyloxyethyl acid phosphate and 2-acryloyloxyethyl acid phosphate. The radical polymerizable substance having a phosphate ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyl (meth) acrylate.
 さらに、リン酸エステル構造を有するラジカル重合性物質を、接着剤成分の固形分全量を基準(100質量%)として0.1~10質量%用いた場合、金属等の無機物表面での接着強度が向上するので好ましく、0.5~5質量%用いるとより好ましい。 Further, when a radically polymerizable substance having a phosphate ester structure is used in an amount of 0.1 to 10% by mass based on the total solid content of the adhesive component (100% by mass), the adhesive strength on the surface of an inorganic substance such as a metal is reduced. It is preferable because it improves, and more preferably 0.5 to 5% by mass is used.
 以上のラジカル重合性物質は、1種を単独で又は2種以上を組み合わせて用いることができる。 The above radical polymerizable substances can be used singly or in combination of two or more.
 ラジカル重合性物質としては、回路接続材料を硬化する前の回路部材の仮固定を容易にする観点から、25℃での粘度が100000~1000000mPa・sであるラジカル重合性物質を少なくとも1種含有することが好ましく、100000~500000mPa・sの粘度(25℃)を有するラジカル重合性物質を含有することがより好ましい。ラジカル重合性物質の粘度は、市販のE型粘度計を用いて測定することができる。 The radical polymerizable substance contains at least one radical polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa · s from the viewpoint of facilitating temporary fixing of the circuit member before curing the circuit connecting material. It is preferable to contain a radical polymerizable substance having a viscosity (25 ° C.) of 100,000 to 500,000 mPa · s. The viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.
 本実施形態の回路接続材料は、2官能以下のラジカル重合性物質の配合量は、フィルム性付与ポリマー及びラジカル重合性物質の総量を基準として50~70質量%であり、50~65質量%であることが好ましい。また、2官能以下のラジカル重合性物質をラジカル重合性物質の全量を基準として50~100質量%含むことが好ましく、65~100質量%含むことがより好ましく、80~100質量%含むことが更に好ましい。これにより、回路接続時の圧着において、樹脂の流動性が高まる。 In the circuit connecting material of the present embodiment, the blending amount of the bifunctional or lower radical polymerizable substance is 50 to 70% by mass based on the total amount of the film-imparting polymer and the radical polymerizable substance, and is 50 to 65% by mass. Preferably there is. Further, the bifunctional or lower-functional radical polymerizable substance is preferably contained in an amount of 50 to 100% by mass, more preferably 65 to 100% by mass, and more preferably 80 to 100% by mass based on the total amount of the radical polymerizable substance. preferable. Thereby, the fluidity | liquidity of resin increases in the crimping | compression-bonding at the time of circuit connection.
 2官能以下のラジカル重合性物質の重量平均分子量は、100~20000であることが好ましく、600~13000であることが更に好ましい。 The weight-average molecular weight of the bifunctional or lower radical polymerizable substance is preferably 100 to 20000, and more preferably 600 to 13000.
 ラジカル重合開始剤(遊離ラジカル発生剤)としては、過酸化化合物、アゾ系化合物等の加熱又は光により分解して遊離ラジカルを発生するものが挙げられる。ラジカル重合開始剤は、目的とする接続温度、接続時間、ポットライフ等に応じて適宜選定されるが、高反応性とポットライフの観点から、半減期10時間の温度が40℃以上、かつ半減期1分の温度が180℃以下の有機過酸化物が好ましい。 Examples of radical polymerization initiators (free radical generators) include those that decompose free radicals by heating or light of peroxide compounds, azo compounds, and the like. The radical polymerization initiator is appropriately selected according to the intended connection temperature, connection time, pot life, etc. From the viewpoint of high reactivity and pot life, the temperature of the half-life of 10 hours is 40 ° C. or more and half. An organic peroxide having a period of 1 minute at a temperature of 180 ° C. or less is preferred.
 ラジカル重合開始剤の配合量は、接着剤成分の固形分全量を基準として0.05~10質量%程度であることが好ましく、0.1~5質量%であることがより好ましい。 The blending amount of the radical polymerization initiator is preferably about 0.05 to 10% by mass, more preferably 0.1 to 5% by mass based on the total solid content of the adhesive component.
 ラジカル重合開始剤としては、具体的には、ジアシルパーオキサイド類、パーオキシジカーボネート類、パーオキシエステル類、パーオキシケタール類、ジアルキルパーオキサイド類、ハイドロパーオキサイド類等が挙げられる。これらの中でも、回路部材の回路電極の腐食を抑える観点から、パーオキシエステル類、ジアルキルパーオキサイド類、ハイドロパーオキサイド類が好ましく、さらに高反応性が得られる観点から、パーオキシエステル類がより好ましい。 Specific examples of the radical polymerization initiator include diacyl peroxides, peroxydicarbonates, peroxyesters, peroxyketals, dialkyl peroxides, hydroperoxides, and the like. Among these, peroxyesters, dialkyl peroxides, and hydroperoxides are preferable from the viewpoint of suppressing corrosion of circuit electrodes of the circuit member, and peroxyesters are more preferable from the viewpoint of obtaining high reactivity. .
 ジアシルパーオキサイド類としては、例えば、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイドが挙げられる。 Examples of diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide. Examples thereof include oxide, benzoylperoxytoluene, and benzoyl peroxide.
 パーオキシジカーボネート類としては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ジ(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートが挙げられる。 Examples of peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. Di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, and di (3-methyl-3-methoxybutylperoxy) dicarbonate.
 パーオキシエステル類としては、例えば、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテートが挙げられる。 Examples of peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2- Ethyl hexanoate, t-butyl peroxyisobutyrate, 1,1-bis (t-butyl peroxy) Rhohexane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m- Toluoyl peroxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate.
 パーオキシケタール類としては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(t-ブチルパーオキシ)デカンが挙げられる。 Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. Examples thereof include (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis (t-butylperoxy) decane.
 ジアルキルパーオキサイド類としては、例えば、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイドが挙げられる。 Examples of dialkyl peroxides include α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples thereof include t-butyl cumyl peroxide.
 ハイドロパーオキサイド類としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドが挙げられる。 Examples of hydroperoxides include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
 以上のラジカル重合開始剤は、1種を単独で又は2種以上を混合して使用することができる。また、ラジカル重合開始剤は、分解促進剤や抑制剤等を混合して用いてもよい。 These radical polymerization initiators can be used singly or in combination of two or more. In addition, the radical polymerization initiator may be used by mixing a decomposition accelerator, an inhibitor or the like.
 本実施形態の回路接続材料は、導電粒子を含有する。導電粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン等が挙げられる。また、導電粒子は、非導電性のガラス、セラミック、プラスチック等を核とし、この核に上記金属、金属粒子やカーボンを被覆したものでもよい。導電粒子が、プラスチックを核としてこの核に上記金属、金属粒子やカーボンを被覆したものである場合、又ははんだ等の熱溶融金属粒子である場合は、加熱加圧による変形性を有するため回路接続時に電極の厚みバラツキを吸収したり、電極との接触面積が増加したりして信頼性が向上するので好ましい。 The circuit connection material of the present embodiment contains conductive particles. Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. Further, the conductive particles may have non-conductive glass, ceramic, plastic, or the like as a core, and the core, the metal, metal particles, or carbon may be coated on the core. If the conductive particles are made of plastic as a core and the core is coated with the above metal, metal particles or carbon, or if it is a hot-melt metal particle such as solder, circuit connection is possible because it has deformability due to heat and pressure. This is preferable because it sometimes improves the reliability by absorbing variations in electrode thickness or increasing the contact area with the electrode.
 導電粒子は、例えば、銅からなる金属粒子に銀を被覆した粒子であってもよい。また、導電粒子として、特開2005-116291号公報に記載された、多数の微細な金属粒子が鎖状に繋がった形状を有する金属粉末を用いることもできる。 The conductive particles may be particles in which metal particles made of copper are coated with silver, for example. Further, as the conductive particles, a metal powder having a shape in which a large number of fine metal particles are connected in a chain shape described in JP-A-2005-116291 can also be used.
 また、これらの導電粒子の表面をさらに高分子樹脂等で被覆した微粒子や、ハイブリダイゼーション等の方法により上記導電粒子の表面に絶縁性物質からなる絶縁層が設けられたものは、導電粒子の配合量を増加した場合の粒子同士の接触による短絡を抑制し、電極回路間の絶縁性が向上できることから、適宜これを単独あるいは導電粒子と混合して用いてもよい。 In addition, fine particles in which the surface of these conductive particles is further coated with a polymer resin or the like, or those in which an insulating layer made of an insulating material is provided on the surface of the conductive particles by a method such as hybridization are mixed with conductive particles. Since short-circuiting due to contact between particles when the amount is increased can be suppressed and insulation between electrode circuits can be improved, this may be used alone or mixed with conductive particles as appropriate.
 導電粒子の配合量は、回路接続材料中の固形分の総体積を基準として、0.1~30体積%とすることが好ましく、0.1~10体積%とすることがより好ましい。導電粒子の配合量が0.1体積%未満であると、導電性が劣る傾向があり、30体積%を超えると回路電極間の短絡が生じやすくなる傾向がある。上記固形分の総体積は、例えば、23℃での硬化前の回路接続材料の各成分の体積の和で決定される。各成分の体積は、例えば、比重を利用して質量を体積に換算することで求めることができる。また、体積を測定しようとする成分を溶解したり膨潤させたりせず、その成分をよくぬらすことができる適当な溶媒(水、アルコール等)をメスシリンダー等の容器に入れ、該容器へ測定対象の成分を投入し、増加した体積をその成分の体積として求めることもできる。 The blending amount of the conductive particles is preferably 0.1 to 30% by volume, and more preferably 0.1 to 10% by volume based on the total volume of solid content in the circuit connecting material. When the blending amount of the conductive particles is less than 0.1% by volume, the conductivity tends to be inferior, and when it exceeds 30% by volume, a short circuit between the circuit electrodes tends to occur. The total volume of the solid content is determined by, for example, the sum of the volume of each component of the circuit connection material before curing at 23 ° C. The volume of each component can be determined, for example, by converting mass to volume using specific gravity. Also, put an appropriate solvent (water, alcohol, etc.) that can wet well the component that does not dissolve or swell the component whose volume is to be measured, into a container such as a graduated cylinder, and put it into the container. And the increased volume can be obtained as the volume of the component.
 この導電粒子の平均粒径は、分散性、導電性の点から1~18μmであることが好ましい。このような導電粒子を含有する場合、回路部材同士の接続に本実施形態の回路接続材料をより好適に用いることができる。 The average particle diameter of the conductive particles is preferably 1 to 18 μm from the viewpoint of dispersibility and conductivity. When such a conductive particle is contained, the circuit connection material of this embodiment can be used more suitably for connection between circuit members.
 以上に示した回路接続材料により、第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材とを電気的に接続することができる。より具体的には、上記二つの電極が対向配置された状態で本実施形態の回路接続材料を介在させ、加熱及び加圧して、上記二つの回路電極同士を電気的に接続する。このときの加圧は、1.5MPa以下である。本実施形態の回路接続材料によれば、加圧時の圧力が1.5MPa以下と低い場合であっても、接続構造における圧痕及び接続抵抗は良好である。 With the circuit connection material shown above, the first circuit member having the first circuit electrode formed on the main surface of the first substrate and the second circuit electrode formed on the main surface of the second substrate The second circuit member thus made can be electrically connected. More specifically, the two circuit electrodes are electrically connected to each other by heating and pressurizing the circuit connection material of the present embodiment with the two electrodes facing each other. The pressurization at this time is 1.5 MPa or less. According to the circuit connection material of this embodiment, even if the pressure at the time of pressurization is as low as 1.5 MPa or less, the indentation and connection resistance in the connection structure are good.
 また、本実施形態の回路接続材料は、フィルム状とすることができる。図1は、回路接続材料及び支持基材を備える接着シートの一実施形態を示す断面図である。図1に示す接着シート100は、支持基材8と、支持基材8上に剥離可能に積層されたフィルム状の回路接続材料10とを備える。回路接続材料10は、絶縁性の接着剤成分5と、接着剤成分5内に分散した導電粒子7とを含む。 Also, the circuit connection material of the present embodiment can be in the form of a film. Drawing 1 is a sectional view showing one embodiment of an adhesive sheet provided with circuit connection material and a support substrate. An adhesive sheet 100 shown in FIG. 1 includes a support base 8 and a film-like circuit connection material 10 that is detachably laminated on the support base 8. The circuit connecting material 10 includes an insulating adhesive component 5 and conductive particles 7 dispersed in the adhesive component 5.
 支持基材8は、回路接続材料10フィルム状に保つことができるものであれば、その形状や素材は任意である。具体的には、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム(PET)、二軸延伸ポリプロピレンフィルム(OPP)又は不織布等を支持基材として用いることができる。 If the support base material 8 can be maintained in the circuit connection material 10 film shape, the shape and the material thereof are arbitrary. Specifically, a fluororesin film, a polyethylene terephthalate film (PET), a biaxially stretched polypropylene film (OPP), a nonwoven fabric, or the like can be used as a supporting substrate.
(回路部材の接続構造)
 図2は、本実施形態に係る回路部材の接続構造の一実施形態を示す概略断面図である。図2に示す回路部材の接続構造1は、相互に対向する第一の回路部材20及び第二の回路部材30を備えており、第一の回路部材20と第二の回路部材30との間には、これらを接続する回路接続材料10が設けられている。
(Circuit member connection structure)
FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit member connection structure according to this embodiment. The circuit member connection structure 1 shown in FIG. 2 includes a first circuit member 20 and a second circuit member 30 that face each other, and is provided between the first circuit member 20 and the second circuit member 30. Is provided with a circuit connecting material 10 for connecting them.
 第一の回路部材20は、第一の基板21と、第一の基板21の主面21a上に形成された第一の接続端子22とを有する。第二の回路部材30は、第二の基板31と、第二の基板31の主面31a上に形成された第二の接続端子32とを有する。第一の基板21の主面21a上、及び/又は第二の基板31の主面31a上には、場合により絶縁層(図示せず)が形成されていてもよい。つまり、必要に応じて形成される絶縁層は、第一の回路部材20及び第二の回路部材30のうち少なくとも一方と回路接続材料10との間に形成される。 The first circuit member 20 includes a first substrate 21 and first connection terminals 22 formed on the main surface 21a of the first substrate 21. The second circuit member 30 includes a second substrate 31 and second connection terminals 32 formed on the main surface 31 a of the second substrate 31. An insulating layer (not shown) may be formed on the main surface 21a of the first substrate 21 and / or the main surface 31a of the second substrate 31, as the case may be. That is, the insulating layer formed as necessary is formed between at least one of the first circuit member 20 and the second circuit member 30 and the circuit connection material 10.
 第一及び第二の基板21,31としては、半導体、ガラス、セラミック等の無機物、TCP、COF等のフレキシブルプリント配線板に代表されるポリイミド樹脂、ポリカーボネート、ポリエチレンテレフタレート等のポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂等の有機物、これらの無機物や有機物を複合化した材料からなる基板が挙げられる。回路接続材料10との接着強度を更に高める観点から、第一及び第二の基板のうちの少なくとも一方は、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂及びガラスからなる群より選ばれる少なくとも1種の樹脂を含む材料からなる基板であることが好ましい。 As the first and second substrates 21 and 31, inorganic materials such as semiconductors, glass and ceramics, polyimide resins typified by flexible printed wiring boards such as TCP and COF, polyester terephthalates such as polycarbonate and polyethylene terephthalate, polyethersulphates Examples thereof include substrates made of organic materials such as phon, epoxy resin, and acrylic resin, and materials obtained by combining these inorganic materials and organic materials. From the viewpoint of further increasing the adhesive strength with the circuit connection material 10, at least one of the first and second substrates is selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin, polyimide resin, and glass. A substrate made of a material containing at least one selected resin is preferable.
 また、回路部材の、回路接続材料10と接する面に絶縁層がコーティングされている場合又は付着している場合、絶縁層はシリコーン樹脂、アクリル樹脂及びポリイミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含む層であることが好ましい。これにより、上記絶縁層が形成されていないものに比べて、第一の基板21及び/又は第二の基板31と回路接続材料10との接着強度がより一層向上する。 Further, when the insulating layer is coated on or attached to the surface of the circuit member that contacts the circuit connecting material 10, the insulating layer is at least one selected from the group consisting of silicone resin, acrylic resin, and polyimide resin. A layer containing a resin is preferred. Thereby, compared with the thing in which the said insulating layer is not formed, the adhesive strength of the 1st board | substrate 21 and / or the 2nd board | substrate 31, and the circuit connection material 10 improves further.
 第一の接続端子22及び第二の接続端子32のうち少なくとも一方は、その表面が金、銀、錫、白金族の金属及びインジウム-錫酸化物(ITO)からなる群より選ばれる少なくとも1種を含む材料からなることが好ましい。これにより、同一回路部材20又は30上で隣り合う接続端子22又は32同士の間で絶縁性を維持しつつ、対向する接続端子22及び32間の抵抗値をより一層低減させることができる。 At least one of the first connecting terminal 22 and the second connecting terminal 32 has at least one surface selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide (ITO). It is preferable to consist of a material containing. Thereby, the resistance value between the opposing connection terminals 22 and 32 can be further reduced while maintaining insulation between the connection terminals 22 or 32 adjacent on the same circuit member 20 or 30.
 第一及び第二の回路部材20,30の具体例としては、液晶ディスプレイに用いられている、ITO等で接続端子が形成されたガラス基板又はプラスチック基板や、プリント配線板、セラミック配線板、フレキシブルプリント配線板、半導体シリコンチップ等が挙げられる。これらのうちプラスチック基板は、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)に代表されるものであり、タッチパネルや電子ペーパー等に用いられる。特にこのようなプラスチック基板は機械的強度が比較的低い材質であるため低圧条件での接続が効果的である。これらは必要に応じて組み合わせて使用される。 Specific examples of the first and second circuit members 20 and 30 include a glass substrate or a plastic substrate, a printed circuit board, a ceramic circuit board, and a flexible circuit board, which are used in a liquid crystal display and have connection terminals formed of ITO or the like. Examples thereof include a printed wiring board and a semiconductor silicon chip. Among these, plastic substrates are represented by, for example, polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene naphthalate (PEN), and are used for touch panels and electronic paper. In particular, since such a plastic substrate is a material having a relatively low mechanical strength, connection under low pressure conditions is effective. These are used in combination as necessary.
 本実施形態において効果的な回路部材の組み合わせとしては、例えば、
 TCP、COF等のフレキシブルプリント配線板とガラス基板との接続、
 TCP、COF等のフレキシブルプリント配線板とプラスチック基板との接続、
 TCP、COF等のフレキシブルプリント配線板とプリント配線板との接続、及び、
 TCP、COF等のフレキシブルプリント配線板とセラミック配線板との接続が挙げられる。
As an effective combination of circuit members in the present embodiment, for example,
Connection between flexible printed wiring boards such as TCP and COF and glass substrates,
Connection between flexible printed wiring boards such as TCP and COF and plastic substrates,
Connection between flexible printed wiring boards such as TCP and COF and printed wiring boards, and
Examples include connection between a flexible printed wiring board such as TCP and COF and a ceramic wiring board.
 回路接続材料10は、導電粒子7を含有する上記本実施形態の回路接続材料の硬化物から形成されている。回路接続材料10は、接着剤成分11と、該接着剤成分11内に分散している導電粒子7とから構成される。回路接続材料10中の導電粒子7は、対向する第一の接続端子22と第二の接続端子32との間のみならず、主面21a,31a同士間にも配置されている。回路部材の接続構造1においては、導電粒子7が第一及び第二の接続端子22,32の双方に直接接触しているとともに、第一及び第二の接続端子22,32間で扁平状に圧縮されている。これにより、第一及び第二の接続端子22,32が、導電粒子7を介して電気的に接続されている。このため、第一の接続端子22及び第二の接続端子32間の接続抵抗が十分に低減される。したがって、第一及び第二の接続端子22,32の間の電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる。 The circuit connection material 10 is formed from a cured product of the circuit connection material of the present embodiment containing the conductive particles 7. The circuit connection material 10 includes an adhesive component 11 and conductive particles 7 dispersed in the adhesive component 11. The conductive particles 7 in the circuit connection material 10 are arranged not only between the first connection terminal 22 and the second connection terminal 32 facing each other but also between the main surfaces 21a and 31a. In the circuit member connection structure 1, the conductive particles 7 are in direct contact with both the first and second connection terminals 22, 32 and are flat between the first and second connection terminals 22, 32. It is compressed. Thereby, the first and second connection terminals 22 and 32 are electrically connected via the conductive particles 7. For this reason, the connection resistance between the first connection terminal 22 and the second connection terminal 32 is sufficiently reduced. Therefore, the flow of current between the first and second connection terminals 22 and 32 can be made smooth, and the functions of the circuit can be fully exhibited.
(回路部材の接続方法)
 図3(a)~(c)は、本実施形態に係る回路部材の接続方法の一実施形態を概略断面図により示す工程図である。
(Circuit member connection method)
3 (a) to 3 (c) are process diagrams showing one embodiment of the circuit member connecting method according to the present embodiment in schematic cross-sectional views.
 本実施形態では、まず、上述した第一の回路部材20と、フィルム状回路接続材料40とを用意する。 In this embodiment, first, the first circuit member 20 and the film-like circuit connecting material 40 described above are prepared.
 フィルム状回路接続材料40の厚さは、5~50μmであることが好ましい。回路接続材料40の厚さが5μm未満では、第一及び第二の接続端子22,32間への回路接続材料40の充填が不十分となる傾向がある。他方、50μmを超えると、第一及び第二の接続端子22,32間の導通の確保が困難となる傾向がある。 The thickness of the film-like circuit connecting material 40 is preferably 5 to 50 μm. If the thickness of the circuit connection material 40 is less than 5 μm, the filling of the circuit connection material 40 between the first and second connection terminals 22 and 32 tends to be insufficient. On the other hand, if it exceeds 50 μm, it tends to be difficult to ensure conduction between the first and second connection terminals 22 and 32.
 次に、フィルム状回路接続材料40を第一の回路部材20の接続端子22が形成されている面上に載せる。そして、フィルム状回路接続材料40を、図3(a)の矢印A及びB方向に加圧し、フィルム状回路接続材料40を第一の回路部材20に仮接着する(図3(b))。 Next, the film-like circuit connection material 40 is placed on the surface on which the connection terminals 22 of the first circuit member 20 are formed. And the film-form circuit connection material 40 is pressurized to the arrow A and B direction of Fig.3 (a), and the film-form circuit connection material 40 is temporarily bonded to the 1st circuit member 20 (FIG.3 (b)).
 このときの圧力は、回路部材に損傷を与えない範囲であれば特に制限されないが、一般的には0.1~30MPaとすることが好ましく、0.5~1.5MPaとすることがより好ましい。また、加熱しながら加圧してもよく、加熱温度は回路接続材料40が実質的に硬化しない温度とする。加熱温度は、一般的には50~190℃にするのが好ましい。これらの加熱及び加圧は0.5~120秒間の範囲で行うことが好ましい。 The pressure at this time is not particularly limited as long as it does not damage the circuit member, but is generally preferably 0.1 to 30 MPa, more preferably 0.5 to 1.5 MPa. . Moreover, you may pressurize, heating, and let heating temperature be the temperature which the circuit connection material 40 does not harden | cure substantially. In general, the heating temperature is preferably 50 to 190 ° C. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds.
 次いで、図3(c)に示すように、第二の回路部材30を、第二の接続端子32を第一の回路部材20の側に向けるようにしてフィルム状回路接続材料40上に載せる。なお、フィルム状回路接続材料40が支持基材(図示せず)上に密着して設けられている場合には、支持基材を剥離してから第二の回路部材30をフィルム状回路接続材料40上に載せる。そして、回路接続材料40を加熱しながら、図3(c)の矢印A及びB方向に全体を加圧する。 Next, as shown in FIG. 3C, the second circuit member 30 is placed on the film-like circuit connection material 40 so that the second connection terminal 32 faces the first circuit member 20 side. When the film-like circuit connection material 40 is provided in close contact with a support base (not shown), the second circuit member 30 is removed from the support base after the second base member 30 is peeled off. 40. And the whole is pressurized in the arrow A and B directions of FIG.3 (c), heating the circuit connection material 40. FIG.
 加熱温度は、例えば、90~200℃とし、接続時間は例えば1秒~10分とする。圧力は1.5MPa以下とする。加熱温度及び接続時間は、使用する用途、回路接続材料、回路部材によって適宜選択され、必要に応じて、後硬化を行ってもよい。例えば、回路接続材料がラジカル重合性物質を含有する場合の加熱温度は、ラジカル重合開始剤がラジカルを発生可能な温度とする。これにより、ラジカル重合開始剤においてラジカルが発生し、ラジカル重合性物質の重合が開始される。 The heating temperature is 90 to 200 ° C., for example, and the connection time is 1 second to 10 minutes, for example. The pressure is 1.5 MPa or less. The heating temperature and the connection time are appropriately selected depending on the intended use, circuit connection material, and circuit member, and post-curing may be performed as necessary. For example, the heating temperature when the circuit connecting material contains a radical polymerizable substance is set to a temperature at which the radical polymerization initiator can generate radicals. As a result, radicals are generated in the radical polymerization initiator, and polymerization of the radical polymerizable substance is started.
 本実施形態の回路接続材料を用いることにより、前述した1.5MPa以下という低圧条件での接続が可能である。この圧力の下限は0.5MPa程度であり、0.8MPa程度であることが好ましく、0.9MPa程度であることがより好ましい。量産性の観点からは、0.8~1.5MPaの圧力であることが好ましく、0.9~1.3MPaであることがより好ましく、0.9~1.2MPaであることが特に好ましい。 By using the circuit connection material of the present embodiment, connection under the low pressure condition of 1.5 MPa or less as described above is possible. The lower limit of this pressure is about 0.5 MPa, preferably about 0.8 MPa, and more preferably about 0.9 MPa. From the viewpoint of mass productivity, the pressure is preferably 0.8 to 1.5 MPa, more preferably 0.9 to 1.3 MPa, and particularly preferably 0.9 to 1.2 MPa.
 図5は、フィルム状回路接続材料を用いて回路部材(FPC、TCP、COF等のフレキシブル基板プリント配線板)を接続する前の状態を示す平面図である。上述した接続時の加圧力は、接続部の総面積に対する圧力を意味する。「接続部の総面積」とは、回路接続材料により接続される接続端子22及び接続端子22間の隙間を含む領域の面積の合計を意味し、図5(a)及び(b)に示されるように、接続端子22が並設された幅xと、その幅に垂直な方向の接続端子の長さyとの積により求められる。この計算方法は、接続部とフィルム状回路接続材料40の大きさがほぼ等しい場合(図5(a))も、フィルム状回路接続材料40が接続部よりも広い領域にわたる場合(図5(b))も同様である。 FIG. 5 is a plan view showing a state before a circuit member (a flexible printed circuit board such as FPC, TCP, COF) is connected using a film-like circuit connecting material. The applied pressure at the time of connection mentioned above means the pressure with respect to the total area of a connection part. The “total area of the connection portion” means the total area of the connection terminal 22 connected by the circuit connection material and the area including the gap between the connection terminals 22, and is shown in FIGS. 5 (a) and 5 (b). Thus, it is obtained by the product of the width x in which the connection terminals 22 are arranged in parallel and the length y of the connection terminal in the direction perpendicular to the width. In this calculation method, when the size of the connection portion and the film-like circuit connection material 40 are substantially equal (FIG. 5A), the case where the film-like circuit connection material 40 covers a wider area than the connection portion (FIG. 5B). The same applies to)).
 加圧力は、具体的には次のようにして求めることができる。例えば、接続部の幅が30mm、この幅に垂直な方向の接続端子の長さが2mmである場合に、接続部における圧力を1.0MPa(≒10kgf/cm)とするには、加圧装置に設定する加圧力は次に示す計算により求めることができる。対応する圧着ヘッドに下記の加圧力がかかるようにすればよい。
 目標圧力=1.0MPa(10kgf/cm
 接続部の総面積=0.2cm×3.0cm=0.6cm
 加圧力=(接続部の総面積)×(目標圧力)=0.6cm×10kgf/cm=6kgf
Specifically, the applied pressure can be obtained as follows. For example, when the width of the connection portion is 30 mm and the length of the connection terminal in the direction perpendicular to the width is 2 mm, the pressure at the connection portion is 1.0 MPa (≈10 kgf / cm 2 ). The pressure applied to the apparatus can be obtained by the following calculation. The following pressure may be applied to the corresponding crimping head.
Target pressure = 1.0 MPa (10 kgf / cm 2 )
Total area of connection part = 0.2 cm × 3.0 cm = 0.6 cm 2
Applied pressure = (total area of connection part) × (target pressure) = 0.6 cm 2 × 10 kgf / cm 2 = 6 kgf
 なお、上記例において、接続部が複数(例えば10個)存在し、各部分を同時に加圧する場合、加圧力は次のようになる。
 目標圧力=1.0MPa(10kgf/cm
 接続部の総面積=0.2cm×3.0cm×10=6cm
 加圧力=(接続部の総面積)×(目標圧力)=6cm×10kgf/cm=60kgf
In the above example, when there are a plurality of (for example, 10) connecting portions and each portion is pressurized simultaneously, the applied pressure is as follows.
Target pressure = 1.0 MPa (10 kgf / cm 2 )
Total area of connection part = 0.2 cm × 3.0 cm × 10 = 6 cm 2
Applied pressure = (total area of connection part) × (target pressure) = 6 cm 2 × 10 kgf / cm 2 = 60 kgf
 フィルム状回路接続材料40の加熱により、第一の接続端子22と第二の接続端子32との間の距離を十分に小さくした状態でフィルム状回路接続材料40が硬化して、第一の回路部材20と第二の回路部材30とが回路接続材料10を介して強固に接続される。 By heating the film-like circuit connection material 40, the film-like circuit connection material 40 is cured in a state where the distance between the first connection terminal 22 and the second connection terminal 32 is sufficiently small, and the first circuit. The member 20 and the second circuit member 30 are firmly connected via the circuit connection material 10.
 フィルム状回路接続材料40の硬化により回路接続材料10が形成されて、図2に示すような回路部材の接続構造1が得られる。 The circuit connection material 10 is formed by curing the film-like circuit connection material 40, and a circuit member connection structure 1 as shown in FIG. 2 is obtained.
 本実施形態によれば、得られる回路部材の接続構造1において、導電粒子7を対向する第一及び第二の接続端子22,32の双方に接触させることが可能となり、第一及び第二の接続端子22,32間の接続抵抗を十分に低減することができるとともに、隣接する第一又は第二の接続端子22,32間の絶縁性を十分に確保することができる。また、回路接続材料10が上記回路接続材料の硬化物により構成されていることから、第一及び第二の回路部材20又は30に対する回路接続材料10の接着力が十分に高いものとなる。 According to the present embodiment, in the obtained circuit member connection structure 1, the conductive particles 7 can be brought into contact with both the first and second connection terminals 22 and 32 facing each other. The connection resistance between the connection terminals 22 and 32 can be sufficiently reduced, and the insulation between the adjacent first or second connection terminals 22 and 32 can be sufficiently ensured. Moreover, since the circuit connection material 10 is comprised by the hardened | cured material of the said circuit connection material, the adhesive force of the circuit connection material 10 with respect to the 1st and 2nd circuit members 20 or 30 becomes a thing sufficiently high.
(太陽電池モジュール)
 本実施形態の回路接続材料は、複数の太陽電池セルが電気的に接続された太陽電池モジュールにも好適に用いることができる。以下、本実施形態に係る太陽電池モジュールについて説明する。
(Solar cell module)
The circuit connection material of this embodiment can also be suitably used for a solar cell module in which a plurality of solar cells are electrically connected. Hereinafter, the solar cell module according to the present embodiment will be described.
 本実施形態に係る太陽電池モジュールは、電極を有する太陽電池セルと、配線部材と、上記電極と上記配線部材が電気的に接続されるように上記太陽電池セルと上記配線部材を接着する接続部材と、を備える。そして、上記接続部材は、上記接着剤組成物の硬化物を含有する。 The solar cell module according to the present embodiment includes a solar cell having electrodes, a wiring member, and a connection member that bonds the solar cell and the wiring member so that the electrode and the wiring member are electrically connected. And comprising. And the said connection member contains the hardened | cured material of the said adhesive composition.
 図6は、本実施形態の太陽電池モジュールの一実施形態を示す模式断面図である。図6に示すように、太陽電池モジュール200は、太陽電池セル150A及び配線部材94を備えており、太陽電池セル150A及び配線部材94の間には、これらを電気的に接続する接続部材95が設けられている。 FIG. 6 is a schematic cross-sectional view showing an embodiment of the solar cell module of the present embodiment. As shown in FIG. 6, the solar cell module 200 includes a solar cell 150 </ b> A and a wiring member 94, and a connecting member 95 that electrically connects them is between the solar cell 150 </ b> A and the wiring member 94. Is provided.
 太陽電池セル150Aは、基板92上に電極96を有し、該電極96を介して配線部材94と電気的に接続している。なお、電極96を備える側の面が受光面98である。太陽電池セル150Aには、受光面98と反対側の裏面99に、裏面電極97が設けられている。基板92は、例えばSiの単結晶、多結晶、及び非晶質のうち少なくとも一つからなるものである。 The solar battery cell 150 </ b> A has an electrode 96 on the substrate 92 and is electrically connected to the wiring member 94 through the electrode 96. The surface on the side provided with the electrode 96 is a light receiving surface 98. The solar cell 150 </ b> A is provided with a back electrode 97 on the back surface 99 opposite to the light receiving surface 98. The substrate 92 is made of at least one of, for example, Si single crystal, polycrystal, and amorphous.
 配線部材94は、太陽電池セル150Aと他の部材とを電気的に接続するための部材である。例えば、図6においては、配線部材94により、太陽電池セル150Aの電極96と、太陽電池セル100Bの裏面電極97とが電気的に接続されている。 The wiring member 94 is a member for electrically connecting the solar battery cell 150A and other members. For example, in FIG. 6, the electrode 96 of the solar battery cell 150 </ b> A and the back electrode 97 of the solar battery cell 100 </ b> B are electrically connected by the wiring member 94.
 図6に示す太陽電池モジュール200においては、上記回路接続材料の硬化物を含有する接続部材95により、配線部材94と太陽電池セル150Bの裏面電極97とが電気的に接続するように、配線部材94と太陽電池セル150Bとが接着されている。 In the solar cell module 200 shown in FIG. 6, the wiring member 94 and the back surface electrode 97 of the solar battery cell 150B are electrically connected by the connecting member 95 containing the cured product of the circuit connecting material. 94 and the solar battery cell 150B are bonded together.
 接続部材95は導電粒子を含有するため、太陽電池セル150Aの電極96と配線部材94とは、導電粒子を介して電気的に接続され得る。また、太陽電池セル150Bの裏面電極97と配線部材94もまた、導電粒子を介して電気的に接続され得る。 Since the connecting member 95 contains conductive particles, the electrode 96 and the wiring member 94 of the solar battery cell 150A can be electrically connected via the conductive particles. Further, the back electrode 97 of the solar battery cell 150B and the wiring member 94 can also be electrically connected via conductive particles.
 図6に示す太陽電池モジュールは、接続部材95が上記回路接続材料の硬化物により構成されている。このことから、太陽電池セル150A及び配線部材94間に対する接続部材95の接着強度は十分高く、かつ、太陽電池セル150A及び配線部材94間の接続抵抗は十分小さくなっている。また、高温高湿環境下に長期間おかれた場合であっても、接着強度の低下及び接続抵抗の増大を十分に抑制することができる。さらに、接続部材95は低温短時間の加熱処理により形成され得るものである。よって、図6に示す太陽電池モジュール200は、接続時に太陽電池セル150Aを劣化させることなく製造することができ、従来よりも高い信頼性を有することが可能である。 In the solar cell module shown in FIG. 6, the connection member 95 is made of a cured product of the circuit connection material. From this, the adhesive strength of the connection member 95 between the solar battery cell 150A and the wiring member 94 is sufficiently high, and the connection resistance between the solar battery cell 150A and the wiring member 94 is sufficiently low. Moreover, even when it is left for a long time in a high temperature and high humidity environment, it is possible to sufficiently suppress a decrease in adhesive strength and an increase in connection resistance. Further, the connection member 95 can be formed by a heat treatment at a low temperature for a short time. Therefore, the solar battery module 200 shown in FIG. 6 can be manufactured without deteriorating the solar battery cell 150A at the time of connection, and can have higher reliability than before.
 また、図6に示す太陽電池モジュール200において、上述した回路部材の接続方法における第一及び第二の回路部材20,30として太陽電池セル150A及び配線部材94を用いることができ、上述した回路部材の接続方法と同様の方法を実施することにより製造することができる。 In the solar cell module 200 shown in FIG. 6, the solar cell 150A and the wiring member 94 can be used as the first and second circuit members 20 and 30 in the circuit member connection method described above. It can manufacture by implementing the method similar to this connection method.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
[実施例1]
(接着シートの作製)
 フィルム性付与ポリマーとしてのポリエステルウレタン樹脂(東洋紡社製、商品名:UR4125)と、2官能のラジカル重合性物質(新中村化学社製、商品名:UA5500T)とを質量比40:60となるように混合した。ここに、導電粒子として直径4μmのニッケルめっきプラスチック粒子を5質量%(2.1体積%)となるように加え、さらに硬化剤として過酸化物(HTP-65W、化薬アクゾ製)を4質量%になるように加え、混合して接着剤ワニス(回路接続材料)を調製した。このワニスを、支持基である離型処理した50μmのポリエチレンテレフタレート樹脂フィルム上に流延・乾燥して、接着シートを作製した。支持基材上に形成されたフィルム状回路接続材料の平均厚さは、15μmであった。
[Example 1]
(Preparation of adhesive sheet)
A polyester urethane resin (trade name: UR4125, manufactured by Toyobo Co., Ltd.) as a film-imparting polymer and a bifunctional radically polymerizable substance (trade name: UA5500T, manufactured by Shin-Nakamura Chemical Co., Ltd.) in a mass ratio of 40:60. Mixed. Here, nickel plated plastic particles having a diameter of 4 μm are added as conductive particles to 5% by mass (2.1% by volume), and further 4 masses of peroxide (HTP-65W, manufactured by Kayaku Akzo) as a curing agent. % And mixed to prepare an adhesive varnish (circuit connection material). This varnish was cast and dried on a 50 μm polyethylene terephthalate resin film subjected to a release treatment as a supporting group to prepare an adhesive sheet. The average thickness of the film-like circuit connecting material formed on the supporting substrate was 15 μm.
(回路接続構造体の作製)
 上記接着シートを幅1.5mmのサイズに切り出し、フィルム状回路接続材料面をITO電極及びAl電極が形成されたガラス基板に、70℃、1MPa、2秒間の条件で仮接着した。次いで、支持基材を剥離した後、COF(電極間ピッチ:50μm、電極幅25μm、スペース25μm)を積層し、170℃、1MPa、10秒間の条件で本接続を行い、回路接続構造体を得た。また、比較のため、本接続の条件を170℃、3MPa、10秒間に変更した以外は同様に操作して、回路接続構造体を得た。
(Production of circuit connection structure)
The adhesive sheet was cut into a size of 1.5 mm in width, and the film-like circuit connecting material surface was temporarily bonded to a glass substrate on which an ITO electrode and an Al electrode were formed under conditions of 70 ° C., 1 MPa, and 2 seconds. Next, after peeling off the supporting substrate, COF (interelectrode pitch: 50 μm, electrode width 25 μm, space 25 μm) is laminated, and main connection is performed under conditions of 170 ° C., 1 MPa, 10 seconds to obtain a circuit connection structure. It was. For comparison, a circuit connection structure was obtained in the same manner except that the conditions for this connection were changed to 170 ° C., 3 MPa, and 10 seconds.
[実施例2]
 ポリエステルウレタン樹脂と2官能のラジカル重合性物質との混合比を質量比50:50に変更したこと以外は実施例1と同様にして、回路接続構造体を作製した。
[Example 2]
A circuit connection structure was produced in the same manner as in Example 1 except that the mixing ratio of the polyester urethane resin and the bifunctional radical polymerizable substance was changed to a mass ratio of 50:50.
[実施例3]
 ポリエステルウレタン樹脂と2官能のラジカル重合性物質に加え、さらに10官能のラジカル重合性物質(根上工業社製、商品名:UN-952)を使用し、それらの混合比を質量比40:55:5としたこと以外は実施例1と同様にして、回路接続構造体を作製した。
[Example 3]
In addition to the polyester urethane resin and the bifunctional radical polymerizable substance, a 10 functional radical polymerizable substance (manufactured by Negami Kogyo Co., Ltd., trade name: UN-952) was used, and the mixing ratio was 40:55: A circuit connection structure was fabricated in the same manner as in Example 1 except that the number was 5.
[実施例4]
 ポリエステルウレタン樹脂と2官能のラジカル重合性物質に加え、さらに単官能のラジカル重合性物質(興人社製、商品名:ACMO)を使用し、それらの混合比を質量比40:50:10としたこと以外は実施例1と同様にして、回路接続構造体を作製した。
[Example 4]
In addition to the polyester urethane resin and the bifunctional radically polymerizable substance, a monofunctional radically polymerizable substance (manufactured by Kojin Co., Ltd., trade name: ACMO) is used, and the mixing ratio thereof is 40:50:10. A circuit connection structure was fabricated in the same manner as in Example 1 except that.
[比較例1]
 ポリエステルウレタン樹脂と2官能のラジカル重合性物質との混合比を質量比60:40に変更したこと以外は実施例1と同様にして、回路接続構造体を作製した。
[Comparative Example 1]
A circuit connection structure was produced in the same manner as in Example 1 except that the mixing ratio of the polyester urethane resin and the bifunctional radically polymerizable substance was changed to a mass ratio of 60:40.
[比較例2]
 ポリエステルウレタン樹脂と2官能のラジカル重合性物質との混合比を質量比20:80に変更したこと以外は実施例1と同様にして、回路接続構造体を作製した。
[Comparative Example 2]
A circuit connection structure was produced in the same manner as in Example 1 except that the mixing ratio of the polyester urethane resin and the bifunctional radically polymerizable substance was changed to a mass ratio of 20:80.
[比較例3]
 2官能のラジカル重合性物質を10官能のラジカル重合性物質(根上工業社製、商品名:UN-952)に変更したこと以外は実施例1と同様にして、回路接続構造体を作製した。
[Comparative Example 3]
A circuit connection structure was produced in the same manner as in Example 1 except that the bifunctional radical polymerizable substance was changed to a 10 functional radical polymerizable substance (trade name: UN-952, manufactured by Negami Kogyo Co., Ltd.).
(接続抵抗の測定)
 得られた回路接続構造体について、デジタルマルチメータ(アドバンテスト社製、商品名:TR-6845)を用い、測定電流1mAの定電流下での隣接電極間の抵抗を37点測定した。測定の平均値が3Ω未満の場合「A」、3Ω以上場合「B」とした。
(Measurement of connection resistance)
Using the digital multimeter (trade name: TR-6845, manufactured by Advantest Corporation), the obtained circuit connection structure was measured for 37 points of resistance between adjacent electrodes under a constant current of 1 mA. When the average value of the measurement was less than 3Ω, “A” was set, and when it was 3Ω or more, “B” was set.
(圧痕の評価)
 回路接続部の圧痕の形状を、オリンパス者製BH3-MJL液晶パネル検査用顕微鏡を用い、ガラス基板側からノマルスキー微分干渉観察により評価した。図4に、観察した圧痕の写真の一例を示す。図4(a)は、圧痕の強度が十分に強くむらがない状態を示す写真である。図4(b)は圧痕の強度が弱い場合やむらがある状態を示す写真である。図4(a)に示すように圧痕の強度が十分に強くむらがなく場合には「A」、図4(b)に示すように圧痕の強度が弱い場合やむらがある場合には「B」とした。
(Evaluation of indentation)
The shape of the indentation at the circuit connection portion was evaluated by Nomarski differential interference observation from the glass substrate side using an Olympus BH3-MJL liquid crystal panel inspection microscope. FIG. 4 shows an example of a photograph of the observed indentation. FIG. 4A is a photograph showing a state where the indentation is sufficiently strong and has no unevenness. FIG. 4B is a photograph showing a case where the indentation is weak or uneven. As shown in FIG. 4A, when the indentation strength is sufficiently strong and uneven, “A”, and when the indentation strength is weak or uneven as shown in FIG. 4B, “B” "
 上記実施例及び比較例で得られた回路接続材料を構成するフィルム性付与ポリマー及びラジカル重合性物質の配合割合、及び、回路接続構造体の評価結果を表1に示す。 Table 1 shows the blending ratio of the film property-imparting polymer and the radical polymerizable substance constituting the circuit connection materials obtained in the above Examples and Comparative Examples, and the evaluation results of the circuit connection structure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1MPaで圧着を行った場合、実施例1~4で作製した回路接続材料は、圧痕の形成及び接続抵抗ともに良好な結果を示した。これに対し、2官能以下のラジカル重合性物質の含有量が少ない比較例1や、2官能以下のラジカル重合性物質を配合していない比較例3では、回路接続材料の流動性が不足し、圧痕の形成が不十分であり、接続抵抗も高かった。また、2官能のラジカル重合性物質の含有量が多い比較例2では、圧痕の形成にむらが生じており、圧痕の不良が観察された。一方、3MPaで圧着を行った場合は、いずれの回路接続材料を用いても圧痕・接続抵抗ともに良好な結果を示した。 When pressure bonding was performed at 1 MPa, the circuit connection materials produced in Examples 1 to 4 showed good results in both formation of indentations and connection resistance. In contrast, in Comparative Example 1 in which the content of the bifunctional or lower radical polymerizable substance is small or in Comparative Example 3 in which the bifunctional or lower radical polymerizable substance is not blended, the fluidity of the circuit connecting material is insufficient. Indentation was insufficiently formed and the connection resistance was high. Further, in Comparative Example 2 in which the content of the bifunctional radically polymerizable substance was large, unevenness was formed in the formation of the indentation, and a defect in the indentation was observed. On the other hand, when pressure bonding was performed at 3 MPa, both the indentation and connection resistance showed good results regardless of which circuit connection material was used.
 本発明の回路接続材料は、従来達成が困難であった1.5MPa以下の低い圧力条件における回路接続を良好に達成することができ、圧着時に被着体への負荷を低減することが可能である。 The circuit connection material of the present invention can satisfactorily achieve circuit connection under a low pressure condition of 1.5 MPa or less, which has been difficult to achieve in the past, and can reduce the load on the adherend during crimping. is there.
 1…回路部材の接続構造、5,11…接着剤成分、7…導電粒子、8…支持基材、10…回路接続材料、20…第一の回路部材、21…第一の基板、21a…第一の基板主面、22…第一の接続端子、30…第二の回路部材、31…第二の基板、31a…第二の基板主面、32…第二の接続端子、40…フィルム状回路接続材料、92…基板、94…配線部材、95…接続部材、96…電極、97…裏面電極、98…受光面、99…裏面、100…接着シート、150A,150B…太陽電池セル、200…太陽電池モジュール。 DESCRIPTION OF SYMBOLS 1 ... Circuit member connection structure, 5, 11 ... Adhesive component, 7 ... Conductive particle, 8 ... Support base material, 10 ... Circuit connection material, 20 ... First circuit member, 21 ... First substrate, 21a ... 1st board | substrate main surface, 22 ... 1st connection terminal, 30 ... 2nd circuit member, 31 ... 2nd board | substrate, 31a ... 2nd board | substrate main surface, 32 ... 2nd connection terminal, 40 ... film Circuit connection material, 92 ... substrate, 94 ... wiring member, 95 ... connection member, 96 ... electrode, 97 ... back electrode, 98 ... light receiving surface, 99 ... back surface, 100 ... adhesive sheet, 150A, 150B ... solar cell, 200: Solar cell module.

Claims (4)

  1.  第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材との間に介在させ、加熱及び加圧により前記第一の回路電極及び前記第二の回路電極を対向配置された状態で電気的に接続するための回路接続材料であって、
     前記加圧は1.5MPa以下で行われ、
     フィルム性付与ポリマー、ラジカル重合性物質、ラジカル重合開始剤及び導電粒子を含有し、
     前記ラジカル重合性物質が、2官能以下のラジカル重合性物質を含み、
     前記2官能以下のラジカル重合性物質の配合量が、前記フィルム性付与ポリマー及び前記ラジカル重合性物質の総量を基準として50~70質量%である、回路接続材料。
    A first circuit member having a first circuit electrode formed on the main surface of the first substrate; and a second circuit member having a second circuit electrode formed on the main surface of the second substrate. A circuit connection material for electrically connecting the first circuit electrode and the second circuit electrode in a state of being opposed to each other by being interposed between them, by heating and pressurization,
    The pressurization is performed at 1.5 MPa or less,
    Containing a film-imparting polymer, a radical polymerizable substance, a radical polymerization initiator and conductive particles,
    The radical polymerizable substance includes a bifunctional or lower radical polymerizable substance,
    A circuit connecting material, wherein a blending amount of the bifunctional or lower radical polymerizable substance is 50 to 70% by mass based on a total amount of the film property-imparting polymer and the radical polymerizable substance.
  2.  前記2官能以下のラジカル重合性物質の配合量が、前記フィルム性付与ポリマー及び前記ラジカル重合性物質の総量を基準として50~65質量%である、請求項1に記載の回路接続材料。 2. The circuit connecting material according to claim 1, wherein the amount of the bifunctional or lower functional polymerizable material is 50 to 65% by mass based on the total amount of the film-imparting polymer and the radical polymerizable material.
  3.  前記2官能以下のラジカル重合性物質を前記ラジカル重合性物質の全量を基準として50質量%以上含む、請求項1又は2に記載の回路接続材料。 The circuit connection material according to claim 1 or 2, wherein the bifunctional or lower functional polymerizable material contains 50 mass% or more based on the total amount of the radical polymerizable material.
  4.  第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、
     第二の基板の主面上に第二の回路電極が形成された第二の回路部材と、
     前記第一の回路部材及び前記第二の回路部材の間に配置された請求項1~3のいずれか一項に記載の回路接続材料と、
    を前記第一の回路電極と前記第二の回路電極とが対向配置された状態で加熱及び加圧して、前記第一の回路電極と前記第二の回路電極とを電気的に接続する回路部材の接続方法であって、
     前記加圧が1.5MPa以下で行われる、回路部材の接続方法。
    A first circuit member having a first circuit electrode formed on a main surface of the first substrate;
    A second circuit member having a second circuit electrode formed on the main surface of the second substrate;
    The circuit connection material according to any one of claims 1 to 3, which is disposed between the first circuit member and the second circuit member;
    Circuit member for electrically connecting the first circuit electrode and the second circuit electrode by heating and pressurizing the first circuit electrode and the second circuit electrode facing each other Connection method,
    A method for connecting circuit members, wherein the pressing is performed at 1.5 MPa or less.
PCT/JP2011/068982 2010-08-24 2011-08-23 Circuit connecting material and method for connecting circuit members using same WO2012026470A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-187456 2010-08-24
JP2010-187451 2010-08-24
JP2010187451 2010-08-24
JP2010187456 2010-08-24
JP2011-173136 2011-08-08
JP2011173136A JP5668636B2 (en) 2010-08-24 2011-08-08 Method for manufacturing circuit connection structure

Publications (1)

Publication Number Publication Date
WO2012026470A1 true WO2012026470A1 (en) 2012-03-01

Family

ID=45723464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068982 WO2012026470A1 (en) 2010-08-24 2011-08-23 Circuit connecting material and method for connecting circuit members using same

Country Status (5)

Country Link
JP (1) JP5668636B2 (en)
KR (1) KR101227358B1 (en)
CN (1) CN102417794B (en)
TW (1) TWI436709B (en)
WO (1) WO2012026470A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022229A (en) * 2012-07-19 2014-02-03 Hitachi Chemical Co Ltd Film shape circuit connection material, and circuit connection structure
JP2014024949A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Adhesive for circuit connection, connection structure of circuit member, and solar cell module
JP2015096603A (en) * 2013-10-09 2015-05-21 日立化成株式会社 Circuit connection material, connection structure of circuit member and manufacturing method of connection structure of circuit member
JP2015140409A (en) * 2014-01-29 2015-08-03 日立化成株式会社 Adhesive composition, electronic member using the adhesive composition and manufacturing method of semiconductor device
WO2022245957A1 (en) * 2021-05-20 2022-11-24 Illinois Tool Works Inc. Air damper with integrated heater

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065407B2 (en) * 2012-04-27 2017-01-25 日立化成株式会社 Circuit connection material, film-like circuit connection material, circuit connection sheet, circuit connection body and circuit member connection method
JP6107175B2 (en) * 2013-01-29 2017-04-05 日立化成株式会社 Circuit connection material, circuit member connection structure, and method of manufacturing circuit member connection structure
CN103336558B (en) * 2013-06-13 2016-12-28 业成光电(深圳)有限公司 Electronic installation
JP6425382B2 (en) * 2014-01-08 2018-11-21 デクセリアルズ株式会社 Connection method and joined body
JP6374192B2 (en) * 2014-03-25 2018-08-15 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249287A (en) * 2002-02-25 2003-09-05 Shin Etsu Polymer Co Ltd Anisotropically conductive adhesive, heat seal connector and connection structure
JP2006199825A (en) * 2005-01-20 2006-08-03 Soken Chem & Eng Co Ltd Anisotropic conductive adhesive tape and anisotropic conductive bonded wiring board
JP2008235556A (en) * 2007-03-20 2008-10-02 Sumitomo Electric Ind Ltd Wiring board module and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049228A (en) * 1999-08-12 2001-02-20 Sony Chem Corp Low-temperature-curing adhesive and anisotropically conductive adhesive film using the same
AU2001252557A1 (en) * 2000-04-25 2001-11-07 Hitachi Chemical Co. Ltd. Adhesive for circuit connection, circuit connection method using the same, and circuit connection structure
JP4747396B2 (en) * 2000-05-17 2011-08-17 日立化成工業株式会社 Adhesive composition, circuit terminal connection method using the same, and circuit terminal connection structure
JP2006173100A (en) * 2005-11-18 2006-06-29 Hitachi Chem Co Ltd Method for connecting electrode
KR100747336B1 (en) * 2006-01-20 2007-08-07 엘에스전선 주식회사 Connecting structure of PCB using anisotropic conductive film, manufacturing method thereof and estimating method of connecting condition thereof
JP5052050B2 (en) * 2006-06-16 2012-10-17 日立化成工業株式会社 Electrode connecting adhesive and connection structure of fine electrode using the same
CN101794638B (en) * 2006-07-21 2012-06-06 日立化成工业株式会社 Circuit connecting material, connecting structure for circuit parts and connecting method for circuit parts
JP5023901B2 (en) * 2007-05-23 2012-09-12 日立化成工業株式会社 Adhesive composition, circuit connection structure, and semiconductor device
JP5029372B2 (en) * 2007-09-14 2012-09-19 日立化成工業株式会社 Anisotropic conductive adhesive, anisotropic conductive film, and method for manufacturing circuit connection structure
KR101240009B1 (en) * 2007-09-19 2013-03-06 히타치가세이가부시끼가이샤 Adhesive composition and bonded body
JP5176139B2 (en) * 2008-05-12 2013-04-03 日立化成株式会社 Circuit connection material and circuit member connection structure using the same
JP4862921B2 (en) * 2008-07-01 2012-01-25 日立化成工業株式会社 Circuit connection material, circuit connection structure and manufacturing method thereof
JP5445455B2 (en) * 2008-08-04 2014-03-19 日立化成株式会社 Adhesive composition, film adhesive, adhesive sheet and semiconductor device
JP2010100840A (en) * 2008-09-24 2010-05-06 Hitachi Chem Co Ltd Adhesive film and circuit connection material
JP4900490B2 (en) * 2010-01-27 2012-03-21 日立化成工業株式会社 Circuit connection material, circuit member connection structure, and circuit member connection method.
JP2011204898A (en) * 2010-03-25 2011-10-13 Hitachi Chem Co Ltd Adhesive composition, and connection structure for circuit member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249287A (en) * 2002-02-25 2003-09-05 Shin Etsu Polymer Co Ltd Anisotropically conductive adhesive, heat seal connector and connection structure
JP2006199825A (en) * 2005-01-20 2006-08-03 Soken Chem & Eng Co Ltd Anisotropic conductive adhesive tape and anisotropic conductive bonded wiring board
JP2008235556A (en) * 2007-03-20 2008-10-02 Sumitomo Electric Ind Ltd Wiring board module and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022229A (en) * 2012-07-19 2014-02-03 Hitachi Chemical Co Ltd Film shape circuit connection material, and circuit connection structure
JP2014024949A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Adhesive for circuit connection, connection structure of circuit member, and solar cell module
JP2015096603A (en) * 2013-10-09 2015-05-21 日立化成株式会社 Circuit connection material, connection structure of circuit member and manufacturing method of connection structure of circuit member
JP2015140409A (en) * 2014-01-29 2015-08-03 日立化成株式会社 Adhesive composition, electronic member using the adhesive composition and manufacturing method of semiconductor device
WO2022245957A1 (en) * 2021-05-20 2022-11-24 Illinois Tool Works Inc. Air damper with integrated heater

Also Published As

Publication number Publication date
JP2012067281A (en) 2012-04-05
CN102417794B (en) 2013-12-04
TW201220995A (en) 2012-05-16
JP5668636B2 (en) 2015-02-12
TWI436709B (en) 2014-05-01
CN102417794A (en) 2012-04-18
KR101227358B1 (en) 2013-01-28
KR20120022655A (en) 2012-03-12

Similar Documents

Publication Publication Date Title
WO2012026470A1 (en) Circuit connecting material and method for connecting circuit members using same
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP4862944B2 (en) Circuit connection material
US7776438B2 (en) Adhesive film for circuit connection, and circuit connection structure
KR101970376B1 (en) Adhesive composition and connection body
JP5176139B2 (en) Circuit connection material and circuit member connection structure using the same
JP2013076089A (en) Circuit connecting material, connection structure of circuit connencting member, and semiconductor devices
JP2001323224A (en) Adhesive composition, method for connecting circuit terminal using the same and connection structure of the circuit terminal
JP2019065062A (en) Conductive adhesive film
JP2010100840A (en) Adhesive film and circuit connection material
JP3877090B2 (en) Circuit connection material and circuit board manufacturing method
JP4752107B2 (en) Film adhesive for circuit connection, circuit terminal connection structure, and circuit terminal connection method
JP4945881B2 (en) Adhesive with support for circuit connection and circuit connection structure using the same
JP2005197089A (en) Circuit connection material, film-like circuit connection material using it, connection structure of circuit member and its manufacturing method
JP2019044043A (en) Adhesive composition for circuit connection and structure
JP2006127956A (en) Anisotropic conductive film, manufacturing method of anisotropic conductive film, and connection body and semi-conductor device using this
CN115516057A (en) Conductive adhesive, method for manufacturing circuit connection structure, and circuit connection structure
JP5067101B2 (en) Adhesive composition
JP4386145B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP4743204B2 (en) Modified polyurethane resin, adhesive composition using the same, circuit member connection method, and circuit member connection structure
JP2013103947A (en) Adhesive film for circuit connection, circuit-connected body using the adhesive film, and method of producing the circuit-connected body
JP2009289729A (en) Anisotropic conductive film
JP4905502B2 (en) Circuit board manufacturing method and circuit connecting material
JP2004217781A (en) Anisotropically conductive adhesive composition for circuit connection, method for connecting circuit terminals by using the same, and connected structure of circuit terminals
JP2010004067A (en) Circuit connection material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP