JP5052050B2 - Electrode connecting adhesive and connection structure of fine electrode using the same - Google Patents

Electrode connecting adhesive and connection structure of fine electrode using the same Download PDF

Info

Publication number
JP5052050B2
JP5052050B2 JP2006167596A JP2006167596A JP5052050B2 JP 5052050 B2 JP5052050 B2 JP 5052050B2 JP 2006167596 A JP2006167596 A JP 2006167596A JP 2006167596 A JP2006167596 A JP 2006167596A JP 5052050 B2 JP5052050 B2 JP 5052050B2
Authority
JP
Japan
Prior art keywords
adhesive
phenoxy resin
electrode
acrylic modified
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006167596A
Other languages
Japanese (ja)
Other versions
JP2007009201A (en
Inventor
泰史 後藤
功 塚越
幸寿 廣澤
和也 松田
正規 藤井
裕司 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2006167596A priority Critical patent/JP5052050B2/en
Publication of JP2007009201A publication Critical patent/JP2007009201A/en
Application granted granted Critical
Publication of JP5052050B2 publication Critical patent/JP5052050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Description

本発明は、第1の電子部品上の電極と第2の電子部品の電極との間に載置し、相対峙した電極間を電気的に接続、接着する目的に使用される電極接続用接着剤及びこれを用いた微細電極の接続構造に関する。   The present invention provides an electrode connection adhesive that is placed between an electrode on a first electronic component and an electrode of a second electronic component, and is used for the purpose of electrically connecting and adhering opposed electrodes. The present invention relates to an agent and a connection structure of a fine electrode using the same.

半導体パッケージや回路基板等の電子部品の小形薄形化に伴い、これらに用いる電極は高密度・高精細化している。これら微細電極の接続は、従来の半田やゴムコネクタ等では対応が困難であることから、最近では異方導電性の接着剤からなる接続部材が多用されるようになってきた。この方法は、相対峙する電極間に導電性材料を所定量含有した接着剤よりなる接続部材層を設け、加圧もしくは加熱加圧手段を講じることによって、上下電極間の電気的接続と同時に隣接電極間には絶縁性を付与し、相対峙する電極同士を接着固定するものである。接着剤の硬化手段としては、熱可塑性接着剤による室温冷却による固化や熱硬化性樹脂による加熱硬化、光硬化性樹脂による紫外線や可視光硬化等がある。また、化学反応による接着剤の硬化手段の1つに、ラジカル重合反応を利用したものが知られている。これは、熱や光エネルギーによりラジカルを発生させ、接着剤を重合硬化するものである。厚み方向にのみ導電性を有する異方導電性フィルム状接着剤に関する先行技術としては、例えば特開昭51−21192号公報(特許文献1)に開示されているように、導電粒子を非導電性ベースにより互いに接触しない状態に保持した混合体を、導電粒子の大きさにほぼ等しい厚さのシート状に成形し、導電粒子を介してシート状の厚み方向にのみ導電性を有する構造としたものがある。また、紫外線照射によるラジカル重合反応を利用した異方導電性接着剤としては、特開昭60−262436号公報(特許文献2)等に開示されている方法が知られている。これらのラジカル重合反応を利用した異方導電性接着剤は、アクリロイル基を持つモノマやオリゴマを数種組み合わせ、紫外線等でラジカルを発生する光重合開始剤を少量添加した接着剤組成である。しかし、これまでラジカル重合反応を利用した異方導電性接着剤では、耐熱性と接着力を両立した接続信頼性の高い接続が得られないという問題があった。具体的には、これまで接着剤硬化物の耐熱性を向上して高温での充分な接続信頼性を得るためには、多官能のアクリルモノマ量を多くし、接着剤中の反応性基であるアクリロイル基の濃度を高くする必要があった。しかし、この方法では高弾性で伸びの小さな硬化物になるため接着力が低下し、接続界面の剥離が進行しやすく、充分な接続信頼性が得られなかった。
特開昭51−21192号公報 特開昭60−262436号公報
As electronic parts such as semiconductor packages and circuit boards are made smaller and thinner, electrodes used for these components have become denser and more precise. Since connection of these fine electrodes is difficult with conventional solders, rubber connectors and the like, connection members made of an anisotropic conductive adhesive have recently been used frequently. In this method, a connecting member layer made of an adhesive containing a predetermined amount of a conductive material is provided between electrodes facing each other, and an electric connection between upper and lower electrodes is provided simultaneously by applying pressure or heating and pressing means. Insulation is provided between the electrodes, and the electrodes facing each other are bonded and fixed. Examples of the curing means for the adhesive include solidification by cooling at room temperature with a thermoplastic adhesive, heat curing with a thermosetting resin, and ultraviolet and visible light curing with a photocurable resin. Moreover, what utilized the radical polymerization reaction is known as one of the hardening means of the adhesive by a chemical reaction. In this method, radicals are generated by heat or light energy, and the adhesive is polymerized and cured. As a prior art regarding the anisotropic conductive film adhesive having conductivity only in the thickness direction, for example, as disclosed in Japanese Patent Application Laid-Open No. 51-21192 (Patent Document 1), conductive particles are made non-conductive. A mixture that is held in contact with each other by a base is formed into a sheet shape having a thickness approximately equal to the size of the conductive particles, and the conductive structure is provided only in the thickness direction of the sheet shape through the conductive particles. There is. As an anisotropic conductive adhesive utilizing radical polymerization reaction by ultraviolet irradiation, a method disclosed in JP-A-60-262436 (Patent Document 2) is known. These anisotropic conductive adhesives utilizing radical polymerization reaction are adhesive compositions in which a small amount of a photopolymerization initiator that generates radicals by ultraviolet rays or the like is added by combining several monomers and oligomers having an acryloyl group. However, until now, anisotropic conductive adhesives utilizing radical polymerization reactions have had the problem that high connection reliability with both heat resistance and adhesive strength cannot be obtained. Specifically, in order to improve the heat resistance of the cured adhesive and obtain sufficient connection reliability at high temperatures, the amount of polyfunctional acrylic monomer is increased and reactive groups in the adhesive are used. It was necessary to increase the concentration of certain acryloyl groups. However, since this method is a cured product having high elasticity and small elongation, the adhesive force is reduced, peeling of the connection interface easily proceeds, and sufficient connection reliability cannot be obtained.
Japanese Patent Laid-Open No. 51-21192 JP 60-262436 A

本発明は、かかる状況に鑑みてなされたもので、耐熱性並びに接続信頼性に優れた電極接続用接着剤の新規な構成を提供せんとするものである。   The present invention has been made in view of such a situation, and intends to provide a novel configuration of an electrode connecting adhesive excellent in heat resistance and connection reliability.

すなわち本発明は、ウレタン結合を有する変成フェノキシ樹脂、ウレタンアクリレート及びラジカル反応開始剤を含有する電極接続用接着剤及び前記電極接続用接着剤を用いた微細電極の接続構造に関する。   That is, the present invention relates to an electrode connection adhesive containing a modified phenoxy resin having a urethane bond, urethane acrylate and a radical reaction initiator, and a connection structure of a fine electrode using the electrode connection adhesive.

請求項1記載の電極接続用接着剤は、耐熱性と接着力の両立した接続信頼性の高い接続を得るのに好適である。請求項記載の電極接続用接着剤は、接着性が優れると共に、耐熱性と接着性の細やか設計が可能である。請求項1の電極接続用接着剤は、さらに耐熱性、靭性及び接続信頼性が優れる。請求項記載の電極接続用接着剤は、請求項1記載の効果を奏し、さらに耐熱性と接着力の両特性が優れる。請求項及至記載の電極接続用接着剤は、請求項1又は2記載の効果を奏し、さらに電極接続用接着剤の耐熱性と接着力を向上できるアクリル変成フェノキシ樹脂を容易に作製できる点で優れている。請求項記載の電極接続用接着剤は、請求項1及至記載の効果を奏し、さらに電極接続用接着剤の耐熱性と接着力を向上できる。アクリル変成フェノキシ樹脂を容易に作製できる点で優れている。請求項記載の電極接続用接着剤は、請求項1乃至記載の効果を奏し、加圧加熱による接続工程により接続可能な点で優れている。請求項記載の電極接続用接着剤は、請求項1乃至記載の効果を奏し、特に高い接続信頼性が得られる点で優れている。請求項記載の電極接続用接着剤は、請求項1乃至記載の効果を奏し、耐熱性と接続信頼性が高い微細電極の接続構造を提供することができる。 The adhesive for electrode connection according to claim 1 is suitable for obtaining a connection with high connection reliability in which heat resistance and adhesive force are compatible. Claim 1 electrode connecting adhesive according, together with contact adhesion is excellent, it is possible to adhesion fine design and heat resistance. The adhesive for electrode connection according to claim 1 is further excellent in heat resistance, toughness and connection reliability. Claim 2 electrode connecting adhesive according may provide an advantage of claim 1 Symbol placement, further excellent in both characteristics of heat resistance and adhesion. The adhesive for electrode connection according to claims 3 to 4 has the effect of claim 1 or 2 and can easily produce an acrylic modified phenoxy resin capable of improving the heat resistance and adhesive strength of the adhesive for electrode connection. Is excellent. The adhesive for electrode connection according to claim 5 has the effects of claims 1 to 4 and can further improve the heat resistance and adhesive strength of the adhesive for electrode connection. It is excellent in that an acrylic modified phenoxy resin can be easily produced. The adhesive for electrode connection according to claim 6 is excellent in that it has the effects of claims 1 to 5 and can be connected by a connection process by pressure heating .請 Motomeko 7 electrode connecting adhesive according the claim 1 to provide an advantage of 6, is excellent particularly high connection reliability in that obtained. The adhesive for electrode connection according to claim 8 has the effects according to claims 1 to 7 and can provide a connection structure of a fine electrode with high heat resistance and high connection reliability.

フェノキシ樹脂は、主鎖骨格の繰り返し単位にビスフェノールAやビスフェノールF等のビスフェノール構造を有する熱可塑性樹脂である。このフェノキシ樹脂にアクリロイル基を有する側鎖を導入することで、反応硬化性を持つアクリル変成フェノキシ樹脂とする。アクリル変成フェノキシ樹脂は、高分子樹脂であることから得られる靭性と側鎖の反応による耐熱性の向上が得られ、2官能や多官能のアクリルモノマと併用して用いることで、接続信頼性を向上することが可能となる。また、このアクリル変成フェノキシ樹脂の重量平均分子量を10,000以上とすることにより靭性が高く、より高い接着力と接続信頼性が得られる。また、後述するように、接着剤の耐熱性と接着力は、アクリル変成フェノキシ樹脂中のアクリロイル基の数で任意に調節可能なので、重量平均分子量10,000以上のアクリル変成フェノキシ樹脂を用いることで、より細かいアクリロイル基数の設計が可能となり、接着剤の耐熱性と接着力の細かい設計が可能となる。   The phenoxy resin is a thermoplastic resin having a bisphenol structure such as bisphenol A or bisphenol F in the repeating unit of the main chain skeleton. By introducing a side chain having an acryloyl group into this phenoxy resin, an acrylic modified phenoxy resin having reaction curability is obtained. Acrylic modified phenoxy resin has improved toughness and high heat resistance due to side chain reaction, as it is a polymer resin. By using it in combination with a bifunctional or polyfunctional acrylic monomer, connection reliability is improved. It becomes possible to improve. Further, by setting the weight average molecular weight of the acrylic modified phenoxy resin to 10,000 or more, the toughness is high, and higher adhesive force and connection reliability can be obtained. Further, as will be described later, the heat resistance and adhesive strength of the adhesive can be arbitrarily adjusted by the number of acryloyl groups in the acrylic modified phenoxy resin, so that by using an acrylic modified phenoxy resin having a weight average molecular weight of 10,000 or more. Therefore, it becomes possible to design a acryloyl radical number that is finer, and to design the heat resistance and adhesive strength of the adhesive.

アクリロイル基を2個以上持つアクリルモノマあるいはアクリルオリゴマとしては、種々のメタクリレートやアクリレート化合物が用いられる。アクリルモノマとしては、例えばポリエチレングリコールやポリプロピレングリコールの骨格の両端にアクリルあるいはメタクリル基があるものやビスフェノール骨格の両端にアクリルあるいはメタクリル基があるもの等を用いることができる。また、トリメチロールプロパントリメタクリレートやテトラメチロールメタンテトラアクリレート等のアクリロイル基を3個以上持つものも用いることができる。アクリルオリゴマとしては、ポリエステルアクリレートやエポキシアクリレート、ウレタンアクリレート等のオリゴマを用いることができる。これらのアクリルモノマあるいはアクリルオリゴマは、アクリル変成フェノキシ樹脂と高度な網状の反応を形成し、接着剤の接着性や靭性を損なわないものを選択する。具体的にはアクリロイル基を2個持つアクリルモノマあるいはアクリルオリゴマを接着剤の80%以下、アクリロイル基を3個以上持つアクリルモノマあるいはアクリルオリゴマを接着剤の接着剤の50%以下の範囲で使用するのが望ましい。   As the acrylic monomer or acrylic oligomer having two or more acryloyl groups, various methacrylates and acrylate compounds are used. As the acrylic monomer, for example, one having an acrylic or methacrylic group at both ends of a polyethylene glycol or polypropylene glycol skeleton or one having an acryl or methacrylic group at both ends of a bisphenol skeleton can be used. Moreover, what has three or more acryloyl groups, such as a trimethylol propane trimethacrylate and a tetramethylol methane tetraacrylate, can also be used. As the acrylic oligomer, oligomers such as polyester acrylate, epoxy acrylate, and urethane acrylate can be used. These acrylic monomers or acrylic oligomers are selected so that they form a highly reticulated reaction with the acrylic modified phenoxy resin and do not impair the adhesiveness and toughness of the adhesive. Specifically, an acrylic monomer or acrylic oligomer having two acryloyl groups is used in an amount of 80% or less of the adhesive, and an acrylic monomer or acrylic oligomer having three or more acryloyl groups is used in an amount of 50% or less of the adhesive of the adhesive. Is desirable.

アクリル変成フェノキシ樹脂中のビスフェノール構造に対するアクリロイル基の割合は、0.1から1の範囲で顕著な硬化物の耐熱性の向上が得られ、硬化物のガラス転移温度はアクリロイル基の割合が大きくなるにつれ高くなる。よって、所望の耐熱性はアクリル変成フェノキシ樹脂中のビスフェノール構造に対するアクリロイル基の割合を調節することで得ることができる。しかし、アクリロイル基の割合が多くなるにつれ硬化物の靭性が損なわれる傾向があり、高い接着力を得るには、ビスフェノール構造に対するアクリロイル基の割合がおおむね0.1から0.5の範囲でさらに最適な耐熱性との接着力の両立が得られる。ここで、ビスフェノール構造に対するアクリロイル基の割合とは、分子中に含まれるビスフェノール構造の数と分子中に含まれるアクリロイル基の数の比を表している。すなわち、分子中のビスフェノール構造の数と分子中のアクリロイル基の数が同数のとき、ビスフェノール構造に対するアクリロイル基の割合は1であり、分子中のビスフェノール構造の数に対して分子中のアクリロイル基の数が1/10のとき、ビスフェノール構造に対するアクリロイル基の割合は0.1である。   When the ratio of the acryloyl group to the bisphenol structure in the acrylic modified phenoxy resin is in the range of 0.1 to 1, a remarkable improvement in the heat resistance of the cured product is obtained, and the glass transition temperature of the cured product is increased by the ratio of the acryloyl group. As it gets higher. Therefore, the desired heat resistance can be obtained by adjusting the ratio of the acryloyl group to the bisphenol structure in the acrylic modified phenoxy resin. However, as the proportion of acryloyl groups increases, the toughness of the cured product tends to be impaired, and in order to obtain a high adhesive strength, the proportion of acryloyl groups to the bisphenol structure is generally more suitable in the range of 0.1 to 0.5. It is possible to achieve both good heat resistance and adhesive strength. Here, the ratio of the acryloyl group to the bisphenol structure represents the ratio of the number of bisphenol structures contained in the molecule to the number of acryloyl groups contained in the molecule. That is, when the number of bisphenol structures in the molecule is equal to the number of acryloyl groups in the molecule, the ratio of acryloyl groups to the bisphenol structure is 1, and the number of acryloyl groups in the molecule is relative to the number of bisphenol structures in the molecule. When the number is 1/10, the ratio of the acryloyl group to the bisphenol structure is 0.1.

フェノキシ樹脂の主鎖骨格は、ビスフェノール構造と同数の水酸基を持っているので、イソシアネート基を持つアクリレートと反応させることで、ウレタン結合を生成しアクリル変成フェノキシ樹脂を生成することができる。このとき、フェノキシ樹脂中の水酸基数とイソシアネート分子数の配合比により、ビスフェノール構造に対するアクリロイル基の割合を所望量に調製可能である。このウレタン結合の生成反応は、60℃程度の加温状態でジブチルスズラウレート等の有機スズ化合物を触媒として添加することで、速やかに進行し、容易にアクリル変成フェノキシ樹脂が得られる。また、主鎖にアミノ基が結合したフェノキシ樹脂を用いることでも同様に、イソシアネート基を持つアクリレートと反応させることで、ウレア結合を生成しアクリル変成フェノキシ樹脂を生成することができる。アミノ基とイソシアネート基のウレア結合生成反応は、水酸基とイソシアネート基のウレタン結合生成反応よりも速やかに進行するので、アミノ基と水酸基の両方の官能基を持つフェノキシ樹脂では、アミノ基数とイソシアネート分子数の配合比により、ビスフェノール構造に対するウレア結合したアクリロイル基とウレタン結合したアクリロイル基の割合を任意に調製可能である。   Since the main chain skeleton of the phenoxy resin has the same number of hydroxyl groups as the bisphenol structure, it can be reacted with an acrylate having an isocyanate group to produce a urethane bond to produce an acrylic modified phenoxy resin. At this time, the ratio of the acryloyl group to the bisphenol structure can be adjusted to a desired amount by the mixing ratio of the number of hydroxyl groups and the number of isocyanate molecules in the phenoxy resin. This urethane bond formation reaction proceeds rapidly by adding an organotin compound such as dibutyltin laurate as a catalyst in a heated state of about 60 ° C., and an acrylic modified phenoxy resin can be easily obtained. Similarly, by using a phenoxy resin having an amino group bonded to the main chain, it is possible to generate a urea bond and generate an acrylic modified phenoxy resin by reacting with an acrylate having an isocyanate group. The urea bond formation reaction between an amino group and an isocyanate group proceeds more rapidly than the urethane bond formation reaction between a hydroxyl group and an isocyanate group. The ratio of urea-bonded acryloyl groups and urethane-bonded acryloyl groups to the bisphenol structure can be arbitrarily adjusted.

イソシアネート基を有するアクリレートとして、2−メタクリロイルオキシエチルイソシアネートを用いると、イソシアネートの反応性が高いので高収率でアクリル変成フェノキシ樹脂が得られ、耐熱性と接着力の高い電極接続用接着剤が得られる。このアクリレート基を持つ樹脂からなる電極接続用接着剤に、過酸化ベンゾイル等の有機過酸化物やアゾビスイソブチルニトリル等のアゾ化合物等の熱により、ラジカルを発生する熱ラジカル開始剤を混合することで加熱硬化する電極接続用接着剤が得られ、低温で短時間の加熱加圧接続工程で信頼性の高い接続が得られる。また、熱ラジカル反応開始剤の代わりに紫外光または可視光でラジカルを発生するベンゾフェノンやチオキサントン系等のラジカル開始剤を混合すると、接続時において接着剤に紫外光または可視光を照射することで、低温で短時間の接続時間で信頼性の高い接続が得られる。この接続工程で接着した硬化物のガラス転移温度は、前記の通りアクリル変成フェノキシ樹脂のビスフェノール構造に対するアクリロイル基の割合で変化するが、ガラス転移温度が100℃以上であるとき、85℃85%RHの高温高湿試験や−40℃〜100℃の熱衝撃試験等の加速試験で接続部の剥離が無く、低抵抗な特に良好な接続信頼性が得られる。また、この電極接続用接着剤を取り扱い性やポットライフに優れたフィルム形状に成形して使用されることが多いが、このフィルム状電極接続用接着剤のフィルム形成材として、アクリル変成フェノキシ樹脂を用いることができる。このフィルム状の電極接続用接着剤の厚みは特に限定するものではないが、接続する電極部分の凹凸に接着剤が充填することで接着力や耐湿性が向上することから、FPC等の電極部の凹凸以上の厚みが適当である。また、薄くなると取り扱いが容易でなく、しわの発生等により製造が困難になってくることから、0.005mm〜1mmが適当である。   When 2-methacryloyloxyethyl isocyanate is used as an acrylate having an isocyanate group, an acrylic modified phenoxy resin can be obtained in a high yield due to the high reactivity of the isocyanate, and an adhesive for electrode connection with high heat resistance and adhesive strength can be obtained. It is done. A thermal radical initiator that generates radicals by the heat of an organic peroxide such as benzoyl peroxide or an azo compound such as azobisisobutylnitrile is mixed with the adhesive for electrode connection made of a resin having an acrylate group. In this way, an electrode connecting adhesive that is cured by heating can be obtained, and a highly reliable connection can be obtained at a low temperature in a short heating and pressurizing connection process. In addition, when a radical initiator such as benzophenone or thioxanthone that generates radicals by ultraviolet light or visible light is mixed instead of a thermal radical reaction initiator, by irradiating the adhesive with ultraviolet light or visible light at the time of connection, A reliable connection can be obtained at a low temperature and with a short connection time. As described above, the glass transition temperature of the cured product bonded in this connection step varies depending on the ratio of acryloyl groups to the bisphenol structure of the acrylic modified phenoxy resin. When the glass transition temperature is 100 ° C. or higher, 85 ° C. and 85% RH. In an accelerated test such as a high-temperature and high-humidity test and a thermal shock test of -40 ° C to 100 ° C, there is no peeling of the connection portion, and particularly good connection reliability with low resistance is obtained. In addition, this electrode connecting adhesive is often used after being formed into a film shape excellent in handleability and pot life. As a film forming material for this film electrode connecting adhesive, acrylic modified phenoxy resin is used. Can be used. The thickness of the film-like electrode connecting adhesive is not particularly limited, but the adhesive force and moisture resistance are improved by filling the unevenness of the electrode part to be connected with the adhesive. A thickness greater than or equal to the unevenness is suitable. Moreover, since it will become difficult to handle if it becomes thin, and manufacturing will become difficult by generation | occurrence | production of wrinkles etc., 0.005 mm-1 mm are suitable.

アクリル変成フェノキシ樹脂は、元の未変成のフェノキシ樹脂よりも溶融粘度が小さいので、電極接続用接着剤の接続時の樹脂粘度も小さくなり、接続する相対峙する電極間の接着剤も排除されやすくなり低抵抗の接続が可能となる。特に、この接続時の接着剤の粘度が5Pa・s以下の時低い抵抗値が得られ、さらに2Pa・s以下で安定した低い抵抗値が得られる。また、この電極接続用接着剤に導電粒子を添加することで、さらに接続抵抗が小さく、高温高湿試験等における抵抗上昇が抑えられた高信頼性の接続が得られる。この導電粒子は、Ni等の金属粒子や樹脂粒子の表面に、NiやAuのめっき層を設けた金属めっき樹脂粒子を単独または複合して使用することができる。これらの導電粒子の材質は、接続する電極の堅さや変形性等の特性により最適なものを選択して用いる。また、粒径は、接続する回路の細かさにより選択されるが、各粒子の粒径はできるだけ均一であることが望ましい。また、本発明の電極接続用接着剤は、上記した電極の接続材料だけでなく、多層回路部材の層間接続材等への応用が可能である。   Since the acrylic modified phenoxy resin has a lower melt viscosity than the original unmodified phenoxy resin, the resin viscosity during connection of the electrode connecting adhesive is also reduced, and the adhesive between the electrodes facing each other is easily eliminated. Therefore, connection with low resistance becomes possible. In particular, a low resistance value is obtained when the viscosity of the adhesive at the time of connection is 5 Pa · s or less, and a stable low resistance value is obtained at 2 Pa · s or less. In addition, by adding conductive particles to the electrode connecting adhesive, a connection with a low connection resistance and a high reliability in which an increase in resistance in a high temperature and high humidity test or the like is suppressed can be obtained. The conductive particles can be used alone or in combination with metal plating resin particles in which a plating layer of Ni or Au is provided on the surface of metal particles such as Ni or resin particles. As the material of these conductive particles, an optimum material is selected and used according to characteristics such as hardness and deformability of the electrode to be connected. The particle size is selected according to the fineness of the circuit to be connected, but it is desirable that the particle size of each particle is as uniform as possible. Further, the electrode connecting adhesive of the present invention can be applied not only to the electrode connecting material described above but also to an interlayer connecting material of a multilayer circuit member.

以下、本発明の実施例に基づいて詳細を説明するが、本発明はこれに限定されるものではない。本実施例と比較例に使用した材料と評価方法を以下に示す。アクリル変成フェノキシ樹脂は、種々のフェノキシ樹脂と2−メタクリロイルオキシエチルイソシアネート(昭和電光株式会社製、商品名カレンズMOI)を反応させて得たものを用いた。フェノキシ樹脂(ユニオンカーバイド株式会社製、商品名PKHA重量平均分子量約20,000、PKHC 重量平均分子量約25,000、PKHJ 重量平均分子量約35,000)と、2−メタクリロイルオキシエチルイソシアネート(昭和電工株式会社製、商品名カレンズMOI)を反応させて、アクリロイル基を有する側鎖がウレタン結合で結合しているアクリル変成フェノキシ樹脂(以下、ウレタン結合含有アクリル変成フェノキシ樹脂と称する)を作製し、アミン変成フェノキシ樹脂(東都化成株式会社製、商品名YP−60重量平均分子量約20,000)と、2−メタクリロイルオキシエチルイソシアネート(昭和電光株式会社製、商品名カレンズMOI)を反応させて、アクリロイル基を有する側鎖がウレア結合で結合しているアクリル変成フェノキシ樹脂(以下、ウレア結合含有アクリル変成フェノキシ樹脂と称する)を作製した。作製したアクリル変成フェノキシ樹脂のアクリロイル基含有量は、ビスフェノール構造に対するアクリロイル基の数で表した。このアクリロイル基含有量の調整は、反応させたフェノキシ樹脂と2−メタクリロイルオキシエチルイソシアネートの配合比で行い、この配合比でアクリロイル基が反応していることをラマン分光で測定し確認した。アクリルオリゴマは、ウレタンアクリレート(新中村化学工業株式会社製、商品名UA−122P)を使用し、アクリルモノマは、テトラメチロールメタントリアクリレート(新中村化学工業株式会社製、商品名A−TMM−3L)を用いた。また、接着力向上のためシランカップリング剤として、γ−メタクリロキシプロピルトリメトキシシラン(東レ・ダウコーニング・シリコーン株式会社製、商品名SZ6030)を添加した。   Hereinafter, details will be described based on examples of the present invention, but the present invention is not limited thereto. The materials and evaluation methods used in the examples and comparative examples are shown below. As the acrylic modified phenoxy resin, those obtained by reacting various phenoxy resins with 2-methacryloyloxyethyl isocyanate (trade name Karenz MOI, manufactured by Showa Denko KK) were used. Phenoxy resin (trade name PKHA weight average molecular weight about 20,000, PKHC weight average molecular weight about 25,000, PKHJ weight average molecular weight about 35,000, manufactured by Union Carbide Co., Ltd.) and 2-methacryloyloxyethyl isocyanate (Showa Denko Co., Ltd.) An acrylic modified phenoxy resin in which the side chain having an acryloyl group is bonded by a urethane bond (hereinafter referred to as an urethane modified acrylic modified phenoxy resin) is produced by reacting with a company, product name Karenz MOI) Phenoxy resin (trade name YP-60, weight average molecular weight of about 20,000, manufactured by Toto Kasei Co., Ltd.) and 2-methacryloyloxyethyl isocyanate (trade name, Karenz MOI, manufactured by Showa Denko KK) are reacted to form an acryloyl group. The side chain it has is bonded with a urea bond And is an acrylic-modified phenoxy resin (hereinafter, referred to as a urea bond-containing acrylic-modified phenoxy resin) was prepared. The acryloyl group content of the produced acrylic modified phenoxy resin was represented by the number of acryloyl groups relative to the bisphenol structure. The acryloyl group content was adjusted by the mixing ratio of the reacted phenoxy resin and 2-methacryloyloxyethyl isocyanate, and it was confirmed by Raman spectroscopy that the acryloyl group was reacted at this mixing ratio. The acrylic oligomer is urethane acrylate (made by Shin-Nakamura Chemical Co., Ltd., trade name UA-122P), and the acrylic monomer is tetramethylol methane triacrylate (made by Shin-Nakamura Chemical Co., Ltd., trade name A-TMM-3L). ) Was used. Further, γ-methacryloxypropyltrimethoxysilane (manufactured by Toray Dow Corning Silicone Co., Ltd., trade name SZ6030) was added as a silane coupling agent for improving the adhesive strength.

導電粒子は、平均粒径5μmのポリスチレン球状粒子の表面に0.1μmのNi層とAu層を設けたものを使用した。熱硬化性の電極接続用接着剤には、反応開始材として過酸化ベンゾイル(試薬)を5重量%添加し、紫外線硬化性の電極接続用接着剤には、反応開始剤としてベンゾフェノン(試薬)を4重量%、光反応促進剤として4,4−ビスジエチルアミノベンゾフェノン(保土ヶ谷化学工業株式会社製、商品名EAB)を1重量%添加した。接続温度における粘度の測定は、反応開始剤を添加しない接着剤で測定した。液状の電極接続用接着剤は、シリンジ状ディスペンサを用い、電極上に塗布して接続した。フィルム状の電極接続用接着剤は、メチルエチルケトンや酢酸エチルの溶剤で希釈した接着剤をアプリケーターでテフロンフィルム上に塗布したのち乾燥し、約20μmの厚さのフィルム状に成形した。接続時にはフィルム状の電極接続用接着剤をテフロンフィルムから電極面に転写し、テフロンフィルムを除去して用いた。接続信頼性の評価は、ポリイミドフィルム上にライン幅50μmピッチ100μm厚さ18μmの平行配列した銅電極を100本有するFPCと、表面抵抗20Ω/□のITO電極を有するガラス基板とを電極接続用接着剤により接続した試料を用いて行った。熱硬化性の電極接続用接着剤を用いたときは、20kg/cm2の圧力で150℃20秒間の加圧加熱により接続を行った。紫外線硬化性の電極接続用接着剤を用いたときは、圧力20kg/cm2で130℃20秒間の加圧加熱状態で接着剤に約2J/cm2の紫外線を照射し接続した。紫外線は高圧水銀ランプを光源とし、光ファイバにより接続部の接着剤に紫外線を導入する方法で照射した。フィルム状に成形した硬化済みの接着剤について動的粘弾性測定を行い、ガラス転移温度を測定し、耐熱性の指標とした。硬化済み接着剤の作製条件は、熱硬化性接着剤の場合には150℃20秒の加熱処理、紫外線硬化性接着剤の場合には130℃で紫外線を2J照射した硬化物を使用した。接続抵抗は、1mAの測定電流で各ラインごとに測定し、平均値を接続抵抗とした。信頼性評価は、−40℃と100℃の各試験槽に交互に試料を入れる熱サイクル試験1000サイクルにて行った。接着力の評価は、FPCのITOガラスへの接着性を90度剥離試験にて測定した。 The conductive particles used were polystyrene spherical particles having an average particle diameter of 5 μm provided with a 0.1 μm Ni layer and an Au layer on the surface. 5% by weight of benzoyl peroxide (reagent) is added as a reaction initiator to the thermosetting electrode connecting adhesive, and benzophenone (reagent) is added as a reaction initiator to the ultraviolet curable electrode connecting adhesive. 4% by weight, 4,4-bisdiethylaminobenzophenone (made by Hodogaya Chemical Co., Ltd., trade name EAB) was added as a photoreaction accelerator. The viscosity at the connection temperature was measured with an adhesive without adding a reaction initiator. The liquid electrode connecting adhesive was applied and connected on the electrode using a syringe-like dispenser. The film-like adhesive for electrode connection was formed by coating an adhesive diluted with a solvent of methyl ethyl ketone or ethyl acetate on a Teflon film with an applicator and then drying to form a film having a thickness of about 20 μm. When connecting, a film-like adhesive for electrode connection was transferred from the Teflon film to the electrode surface, and the Teflon film was removed for use. The connection reliability was evaluated by bonding an FPC having 100 copper electrodes arranged in parallel on a polyimide film with a line width of 50 μm, a pitch of 100 μm and a thickness of 18 μm, and a glass substrate having an ITO electrode with a surface resistance of 20Ω / □. This was performed using a sample connected by an agent. When a thermosetting electrode connecting adhesive was used, the connection was made by pressure heating at 150 ° C. for 20 seconds at a pressure of 20 kg / cm 2 . When an ultraviolet curable adhesive for electrode connection was used, the adhesive was irradiated with about 2 J / cm 2 of ultraviolet light at a pressure of 20 kg / cm 2 and heated at 130 ° C. for 20 seconds. Ultraviolet rays were irradiated by using a high-pressure mercury lamp as a light source and introducing ultraviolet rays into the adhesive at the connection portion by an optical fiber. The cured adhesive formed into a film was subjected to dynamic viscoelasticity measurement, the glass transition temperature was measured, and used as an index of heat resistance. For the preparation conditions of the cured adhesive, a heat-treated adhesive at 150 ° C. for 20 seconds was used, and in the case of an ultraviolet curable adhesive, a cured product irradiated with ultraviolet rays at 130 ° C. for 2 J was used. The connection resistance was measured for each line with a measurement current of 1 mA, and the average value was taken as the connection resistance. Reliability evaluation was performed in 1000 cycles of a thermal cycle test in which samples were alternately placed in each test bath at −40 ° C. and 100 ° C. For the evaluation of adhesive strength, the adhesion of FPC to ITO glass was measured by a 90-degree peel test.

(実施例1)
ビスフェノール構造に対するアクリロイル基の割合が1である重量平均分子量約20,000のウレタン結合含有アクリル変成フェノキシ樹脂20%(重量、以下同じ)、ウレタンアクリレートオリゴマ40%、テトラメチロールメタントリアクリレート25%、シランカップリング剤10%、過酸化ベンゾイル5%を均一混合し、回路接続用接着剤を作製した。
Example 1
A urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 20,000 with a ratio of acryloyl group to bisphenol structure of about 20% (weight, hereinafter the same), urethane acrylate oligomer 40%, tetramethylol methane triacrylate 25%, silane A 10% coupling agent and 5% benzoyl peroxide were uniformly mixed to prepare an adhesive for circuit connection.

(実施例2)
ビスフェノール構造に対するアクリロイル基の割合が1である重量平均分子量約20,000のウレタン結合含有アクリル変成フェノキシ樹脂20%、ウレタンアクリレートオリゴマ40%、テトラメチロールメタントリアクリレート25%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、回路接続用接着剤を作製した。
(Example 2)
20% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 20,000 with a ratio of acryloyl group to bisphenol structure of 1, 20,000, urethane acrylate oligomer 40%, tetramethylol methane triacrylate 25%, silane coupling agent 10%, A 4% photoreaction initiator and 1% photoreaction accelerator were uniformly mixed to prepare an adhesive for circuit connection.

(実施例3)
ビスフェノール構造に対するアクリロイル基の割合が0.3である重量平均分子量約25,000のウレタン結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、過酸化ベンゾイル5%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Example 3)
55% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 25,000 with a ratio of acryloyl group to bisphenol structure of about 25,000, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 % And benzoyl peroxide 5% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(実施例4)
ビスフェノール構造に対するアクリロイル基の割合が0.3である重量平均分子量約25,000のウレタン結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
Example 4
55% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 25,000 with a ratio of acryloyl group to bisphenol structure of about 25,000, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 %, A photoreaction initiator 4%, and a photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(実施例5)
ビスフェノール構造に対するアクリロイル基の割合が0.3である重量平均分子量約35,000のウレタン結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Example 5)
55% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 35,000 with a ratio of acryloyl group to bisphenol structure of about 35,000, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 %, A photoreaction initiator 4%, and a photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(実施例6)
ビスフェノール構造に対するアクリロイル基の割合が0.1である重量平均分子量約25,000のウレタン結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Example 6)
55% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 25,000 with a ratio of acryloyl group to bisphenol structure of about 25,000, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 %, A photoreaction initiator 4%, and a photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(実施例7)
ビスフェノール構造に対するアクリロイル基の割合が0.5である重量平均分子量約25,000のウレタン結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Example 7)
55% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 25,000 with a ratio of acryloyl group to bisphenol structure of about 25,000, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 %, A photoreaction initiator 4%, and a photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(実施例8)
ビスフェノール構造に対するアクリロイル基の割合が0.7である重量平均分子量約25,000のウレタン結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Example 8)
55% of urethane bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 25,000 with a ratio of acryloyl group to bisphenol structure of about 25,000, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 %, A photoreaction initiator 4%, and a photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(実施例9)
ビスフェノール構造に対するアクリロイル基の割合が0.7である重量平均分子量約20,000のウレア結合とウレタン結合を含有するアクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
Example 9
55% acrylic modified phenoxy resin containing urea bond and urethane bond having a weight average molecular weight of about 20,000 having a ratio of acryloyl group to bisphenol structure of 0.7, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, A film-like circuit connection adhesive was prepared by uniformly mixing 10% of a silane coupling agent, 4% of a photoreaction initiator, and 1% of a photoreaction accelerator.

(実施例10〜実施例18)
実施例1から実施例9に導電粒子を5体積%添加したものをそれぞれ実施例10から実施例18とした。
(Examples 10 to 18)
Examples 10 to 18 were obtained by adding 5% by volume of conductive particles to Example 1 to Example 9, respectively.

(参考例1)
ビスフェノール構造に対するアクリロイル基の割合が0.3である重量平均分子量約20,000のウレア結合含有アクリル変成フェノキシ樹脂55%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Reference Example 1)
55% of urea bond-containing acrylic modified phenoxy resin having a weight average molecular weight of about 20,000 with a ratio of acryloyl group to bisphenol structure of 0.30, urethane acrylate oligomer 20%, tetramethylol methane triacrylate 10%, silane coupling agent 10 %, A photoreaction initiator 4%, and a photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

(参考例2)
参考例1に導電粒子を5体積%添加したものを参考例2とした。
(Reference Example 2)
Reference Example 2 was obtained by adding 5% by volume of conductive particles to Reference Example 1.

(比較例1)
実施例1のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 1)
The acrylic modified phenoxy resin of Example 1 was a phenoxy resin not modified with acrylic.

(比較例2)
実施例2のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 2)
The acrylic modified phenoxy resin of Example 2 was a phenoxy resin that was not acrylic modified.

(比較例3)
実施例3のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 3)
The acrylic modified phenoxy resin of Example 3 was a phenoxy resin not subjected to acrylic modification.

(比較例4)
実施例4のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 4)
The acrylic modified phenoxy resin of Example 4 was a phenoxy resin not subjected to acrylic modification.

(比較例5)
実施例10のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 5)
The acrylic modified phenoxy resin of Example 10 was a phenoxy resin not subjected to acrylic modification.

(比較例6)
実施例11のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 6)
The acrylic modified phenoxy resin of Example 11 was a phenoxy resin not subjected to acrylic modification.

(比較例7)
実施例12のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 7)
The acrylic modified phenoxy resin of Example 12 was a phenoxy resin not subjected to acrylic modification.

(比較例8)
実施例13のアクリル変成フェノキシ樹脂をアクリル変成していないフェノキシ樹脂とした。
(Comparative Example 8)
The acrylic modified phenoxy resin of Example 13 was a phenoxy resin not subjected to acrylic modification.

(比較例9)
ビスフェノールA構造の重量平均分子量約2,000のエポキシアクリレートオリゴマ(共栄社化学株式会社製、商品名ES−4004)20%、ウレタンアクリレートオリゴマ40%、テトラメチロールメタントリアクリレート25%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、回路接続用接着剤を作製した。
(Comparative Example 9)
20% epoxy acrylate oligomer (trade name ES-4004, manufactured by Kyoeisha Chemical Co., Ltd.) having a weight average molecular weight of about 2,000 having a bisphenol A structure, urethane acrylate oligomer 40%, tetramethylol methane triacrylate 25%, silane coupling agent 10 %, Photoreaction initiator 4%, and photoreaction accelerator 1% were uniformly mixed to produce an adhesive for circuit connection.

(比較例10)
ビスフェノールA構造の重量平均分子量約2,000のエポキシアクリレートオリゴマ(共栄社化学株式会社製、商品名ES−4004)20%、重量平均分子量約25,000のフェノキシ樹脂35%、ウレタンアクリレートオリゴマ20%、テトラメチロールメタントリアクリレート10%、シランカップリング剤10%、光反応開始剤4%、光反応促進剤1%を均一混合し、フィルム状回路接続用接着剤を作製した。
(Comparative Example 10)
20% epoxy acrylate oligomer (trade name ES-4004, manufactured by Kyoeisha Chemical Co., Ltd.) having a weight average molecular weight of about 2,000 having a bisphenol A structure, 35% phenoxy resin having a weight average molecular weight of about 25,000, 20% urethane acrylate oligomer, Tetramethylolmethane triacrylate 10%, silane coupling agent 10%, photoreaction initiator 4%, and photoreaction accelerator 1% were uniformly mixed to prepare an adhesive for film-like circuit connection.

各実施例と比較例の粘度、ガラス転移温度、接着力、初期接続抵抗、信頼性試験後の接続抵抗を表1に示した。本発明に係る電極接続用接着剤はいずれも耐熱性および接続信頼性に優れている。












Table 1 shows the viscosity, glass transition temperature, adhesive strength, initial connection resistance, and connection resistance after the reliability test of each Example and Comparative Example. All of the adhesives for electrode connection according to the present invention are excellent in heat resistance and connection reliability.












Figure 0005052050
Figure 0005052050



本発明にかかる導電粒子を含有した電極接続用接着剤を用いた電極接続構造の断面図。Sectional drawing of the electrode connection structure using the adhesive agent for electrode connection containing the electrically-conductive particle concerning this invention.

符号の説明Explanation of symbols

1…電極接続用接着剤、2…接着剤、3…導電粒子、4…第1の電極、5…第2の電極
DESCRIPTION OF SYMBOLS 1 ... Adhesive for electrode connection, 2 ... Adhesive, 3 ... Conductive particle, 4 ... 1st electrode, 5 ... 2nd electrode

Claims (8)

第1の電子部品上の電極と第2の電子部品の電極との間に載置し、相対峙した電極間を電気的に接続、接着するための電極接続用接着剤において、
ウレタン結合を有する重量平均分子量が20,000〜35,000であるアクリル変成フェノキシ樹脂、アクリロイル基を2個以上持つウレタンアクリレート及びラジカル反応開始剤を含有し、
前記アクリル変成フェノキシ樹脂のビスフェノール構造に対するアクリロイル基の割合が0.1から1である、電極接続用接着剤。
In the adhesive for electrode connection for placing between the electrode on the first electronic component and the electrode of the second electronic component and electrically connecting and bonding between the opposed electrodes,
An acrylic modified phenoxy resin having a urethane bond and a weight average molecular weight of 20,000 to 35,000, a urethane acrylate having two or more acryloyl groups, and a radical reaction initiator,
The adhesive for electrode connection whose ratio of the acryloyl group with respect to the bisphenol structure of the said acrylic modified phenoxy resin is 0.1-1.
前記アクリルフェノキシ樹脂のビスフェノール構造に対するアクリロイル基の割合が0.1から0.5である請求項1に記載の電極接続用接着剤。 The acrylic phenoxy electrode connecting adhesive mounting serial to claim 1 ratio of acryloyl groups to the bisphenol structure is 0.5 0.1 of the resin. 前記アクリル変成フェノキシ樹脂は、フェノキシ樹脂の主鎖とアクリロイル基を有する側鎖がウレタン結合で結合している請求項1又は2に記載の電極接続用接着剤。 The adhesive for electrode connection according to claim 1 or 2 , wherein the acrylic modified phenoxy resin has a main chain of the phenoxy resin and a side chain having an acryloyl group bonded by a urethane bond. 前記アクリル変成フェノキシ樹脂は、フェノキシ樹脂の主鎖とウレタン結合で結合しているアクリロイル基を有する側鎖と、主鎖とウレア結合で結合しているアクリロイル基を有する側鎖の両方を含有する請求項1〜のいずれか一項に記載の電極接続用接着剤。 The acrylic modified phenoxy resin contains both a side chain having an acryloyl group bonded to the main chain of the phenoxy resin by a urethane bond and a side chain having an acryloyl group bonded to the main chain by a urea bond. Item 4. The adhesive for electrode connection according to any one of Items 1 to 3 . 前記アクリル変成フェノキシ樹脂は、フェノキシ樹脂の主鎖の水酸基と、2−メタクリロイルオキシエチルイソシアネートのイソシアネート基の反応生成物である請求項1〜のいずれか一項に記載の電極接続用接着剤。 The adhesive for electrode connection according to any one of claims 1 to 4 , wherein the acrylic modified phenoxy resin is a reaction product of a hydroxyl group of a main chain of a phenoxy resin and an isocyanate group of 2-methacryloyloxyethyl isocyanate. 前記ラジカル反応開始剤が有機過酸化物等の熱ラジカル反応開始剤からなる請求項1〜のいずれか一項に記載の電極接続用接着剤。 The adhesive for electrode connection according to any one of claims 1 to 5 , wherein the radical reaction initiator is a thermal radical reaction initiator such as an organic peroxide. 導電粒子を添加してなる請求項1〜のいずれか一項に記載の電極接続用接着剤。 The adhesive agent for electrode connection as described in any one of Claims 1-6 formed by adding electroconductive particle. 請求項1〜のいずれか一項に記載の電極接続用接着剤を用いた微細電極の接続構造。
Connecting structure of the fine electrode using the electrode connecting adhesive according to any one of claims 1-7.
JP2006167596A 2006-06-16 2006-06-16 Electrode connecting adhesive and connection structure of fine electrode using the same Expired - Lifetime JP5052050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167596A JP5052050B2 (en) 2006-06-16 2006-06-16 Electrode connecting adhesive and connection structure of fine electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167596A JP5052050B2 (en) 2006-06-16 2006-06-16 Electrode connecting adhesive and connection structure of fine electrode using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03948198A Division JP4081839B2 (en) 1998-02-23 1998-02-23 Electrode connecting adhesive and connection structure of fine electrode using the same

Publications (2)

Publication Number Publication Date
JP2007009201A JP2007009201A (en) 2007-01-18
JP5052050B2 true JP5052050B2 (en) 2012-10-17

Family

ID=37748097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167596A Expired - Lifetime JP5052050B2 (en) 2006-06-16 2006-06-16 Electrode connecting adhesive and connection structure of fine electrode using the same

Country Status (1)

Country Link
JP (1) JP5052050B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716881B2 (en) 2008-10-04 2015-05-13 スリーボンドファインケミカル株式会社 Photocurable adhesive composition
KR101075192B1 (en) 2009-03-03 2011-10-21 도레이첨단소재 주식회사 Adhesive tape for manufacturing electronic component
JP5668636B2 (en) * 2010-08-24 2015-02-12 日立化成株式会社 Method for manufacturing circuit connection structure
JP6108232B2 (en) * 2012-12-12 2017-04-05 日立金属株式会社 Adhesive composition, adhesive varnish, adhesive film, and wiring film
KR102024909B1 (en) * 2015-10-05 2019-11-05 주식회사 엘지화학 Adhesive film and method of producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081839B2 (en) * 1998-02-23 2008-04-30 日立化成工業株式会社 Electrode connecting adhesive and connection structure of fine electrode using the same

Also Published As

Publication number Publication date
JP2007009201A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
KR100671312B1 (en) Adhesive film for connecting wiring terminals
JP5855459B2 (en) Circuit member connection structure
JP5823117B2 (en) Anisotropic conductive film, bonded body, and manufacturing method of bonded body
KR20040052126A (en) Anisotropic-electroconductive adhesive, circuit connection using the same, and circuit connection structure
JP4081839B2 (en) Electrode connecting adhesive and connection structure of fine electrode using the same
KR101383933B1 (en) Adhesive composition, use thereof, connection structure for circuit members, and method for producing same
JP5052050B2 (en) Electrode connecting adhesive and connection structure of fine electrode using the same
WO2005066298A1 (en) Circuit connection material, film-shaped circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP2008195852A (en) Film adhesive composition and joined structure in circuit terminal using the same composition
JP4151101B2 (en) Electrode connecting adhesive, fine electrode connecting structure using the same, and electrode connecting method
JP6337630B2 (en) Circuit connection material and circuit connection structure
JP2008258607A (en) Adhesive for electrode connection, connection structure of fine electrode using this, and connection method of electrode
JP2024152781A (en) Conductive adhesive, method for producing circuit connection structure, and circuit connection structure
KR100710957B1 (en) Anisotropic-electroconductive adhesive, circuit connection using the same, and circuit connection structure
JP2012041540A (en) Circuit connecting material, connecting method using the same, and connection structure
JP2014067705A (en) Anisotropic conductive material, connection structure, and manufacturing method of connection structure
CN118291047A (en) Adhesive composition for circuit connection and structure
JP2015195199A (en) Photocurable conductive material, connection structure and method of producing connection structure
JP6302336B2 (en) Conductive particles for photocurable conductive material, photocurable conductive material, method for producing connection structure, and connection structure
KR100727741B1 (en) Anisotropic conductive adhesive for hyper speed hardening, and anisotropic conductive film using the same
JP2013214417A (en) Circuit connection material, circuit connection material structure and manufacturing method of circuit connection material structure
JP2011204898A (en) Adhesive composition, and connection structure for circuit member
KR100871503B1 (en) Anisotropic-electroconductive adhesive, circuit connection using the same, and circuit connection structure
JP6438305B2 (en) Photocurable conductive material, connection structure, and method of manufacturing connection structure
WO2017090693A1 (en) Adhesive composition and structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100216

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term