JPH1125760A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH1125760A
JPH1125760A JP17843397A JP17843397A JPH1125760A JP H1125760 A JPH1125760 A JP H1125760A JP 17843397 A JP17843397 A JP 17843397A JP 17843397 A JP17843397 A JP 17843397A JP H1125760 A JPH1125760 A JP H1125760A
Authority
JP
Japan
Prior art keywords
particles
diameter
conductive
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17843397A
Other languages
Japanese (ja)
Inventor
Shinji Terasaka
信治 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17843397A priority Critical patent/JPH1125760A/en
Publication of JPH1125760A publication Critical patent/JPH1125760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film for surely and easily connecting electrodes to be connected one with the other on a substrate surface by breaking oxide films on surfaces of the electrodes to be connected. SOLUTION: Two kinds of particles, metal particles 2 having a particle diameter of 2 to 15 μm and fine metal particles 3 having a particle diameter of 0.01 to 0.05 μm are used as conductive particles in this film, and these are mixed together and dispersed in an adhesive agent 4. When the film is interposed between electrodes to be connected on a substrate and put to pressure- attachment, the fine metal particles 3 break on oxide film on surfaces of the electrodes, and electrical connection between the upper and lower electrode to be connected is ensured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方性導電フィル
ムに関し、特に、対面する二枚の基板どうしに対しては
導電性を示す一方で、同一基板内の回路や電極どうしに
対しては絶縁性を示す異方性導電フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film, and more particularly, to an anisotropic conductive film, which exhibits electrical conductivity between two substrates facing each other, while showing electrical conductivity between circuits and electrodes on the same substrate. The present invention relates to an anisotropic conductive film having an insulating property.

【0002】[0002]

【従来の技術】異方性導電フィルム(以下、ACFと記
す)は、例えば印刷配線板のような薄板表面に回路や電
極が形成された基板を対面させ、二つの基板の対向する
電極どうしを電気的に接続する目的で開発されている材
料である。図5にその断面図を示すように、剥離性基材
1上に導電性粒子11を含有した接着剤4を塗布したも
のであり、例えば特開昭61−55809号公報などに
開示されている。
2. Description of the Related Art An anisotropic conductive film (hereinafter, referred to as ACF) is a device in which a circuit or an electrode is formed on the surface of a thin plate such as a printed wiring board. It is a material developed for the purpose of electrical connection. As shown in the cross-sectional view of FIG. 5, the adhesive 4 containing the conductive particles 11 is applied on the releasable substrate 1 and disclosed in, for example, JP-A-61-55809. .

【0003】図6に、ACFを用いて基板どうしを接続
したときの断面図を示す。図6を参照して、先ず、片方
の基板(この図の例では、ガラス基板9)上に、ACF
をその接着剤層が基板表面に形成されている電極8側に
向くようにして貼り付け、剥離性の基材を剥がす。次
に、もう片方の基板(同、フィルム6)を、その電極7
をガラス基板側の電極8に位置合せして、基材を取り去
った後のACF上に載置し加圧、加熱圧着すると、接着
剤4が硬化し、基板9,6どうしの接着がなされる。こ
のとき、両基板の電極7,8間に導電性粒子11が入り
込み、基板9,6相互間の電気的接続がなされる。一
方、同一基板内の横方向については、隣接する電極8,
8どうし又は電極7,7どうしの間が接着剤層4で満た
されるので、絶縁性が保たれる。このような、紙面垂直
方向(基板9,6に垂直な方向)には導電性を有し、一
方、基板面に水平な方向には絶縁性を持つACFを用い
ることで、液晶表示素子などの狭ピッチな電極どうしの
接続が可能になっている。
FIG. 6 is a sectional view showing a case where substrates are connected to each other using an ACF. Referring to FIG. 6, first, the ACF is placed on one of the substrates (the glass substrate 9 in the example of this figure).
Is applied so that the adhesive layer faces the electrode 8 formed on the substrate surface, and the peelable substrate is peeled off. Next, the other substrate (same as above, film 6) is
Is positioned on the electrode 8 on the glass substrate side, placed on the ACF after removing the base material, pressurized and heated and pressed, the adhesive 4 is cured, and the substrates 9 and 6 are bonded together. . At this time, the conductive particles 11 enter between the electrodes 7 and 8 of both substrates, and electrical connection between the substrates 9 and 6 is made. On the other hand, in the horizontal direction in the same substrate, the adjacent electrodes 8 and
Since the gap between the electrodes 8 or between the electrodes 7 is filled with the adhesive layer 4, the insulation is maintained. By using an ACF having conductivity in a direction perpendicular to the paper surface (a direction perpendicular to the substrates 9 and 6) and having an insulating property in a direction horizontal to the substrate surface, a liquid crystal display element or the like can be used. It is possible to connect electrodes with a narrow pitch.

【0004】ところで、ACF中に含ませる導電性粒子
には、ACF自体の厚さ、接続すべき電極或いは回路の
微細さなどに応じて粒子径や配合量に好適な範囲があ
り、例えば前述の特開昭61−55809号公報では、
接着剤中の導電性粒子の平均粒子径を0.01〜50μ
mとし、配合量を0.1〜10体積%としている。又、
特開昭61−74205号公報は、塗料として塗装して
薄膜を形成した際に垂直方向の導電性と水平方向の絶縁
性とが確実に得られるようにするために、直径が0.5
μm以下で配合量が0.2〜20重量%の導電性粒子
と、直径が1μm以上で配合量が10〜75重量%の導
電性粒子の二種類の粒子を混在させたACFを開示して
いる
[0004] The conductive particles contained in the ACF have a suitable range of particle diameter and compounding amount depending on the thickness of the ACF itself, the fineness of the electrode or circuit to be connected, and the like. In JP-A-61-55809,
The average particle diameter of the conductive particles in the adhesive 0.01 ~ 50μ
m, and the blending amount is 0.1 to 10% by volume. or,
Japanese Patent Application Laid-Open No. 61-74205 discloses a method of forming a thin film by coating as a paint in order to ensure that vertical conductivity and horizontal insulation are obtained.
Disclosed is an ACF in which two types of conductive particles having a particle size of 0.2 μm or less and a compounding amount of 0.2 to 20% by weight and a conductive particle having a diameter of 1 μm or more and a compounding amount of 10 to 75% by weight are mixed. Is

【0005】[0005]

【発明が解決しようとする課題】上述した従来の技術に
よるACFを用いて、例えば電極間(同一基板内の隣接
する電極間の距離)が30μm、幅が40μmの電極が
形成された基板どうしを接続したとすると、粒子径が5
0μmであれば、圧着後に、隣接する電極間に導電性粒
子が跨って入り込むというショート不良が発生しやす
い。また、特開昭61−74205号公報のように導電
性粒子の配合量を75重量%にすると、図7(a)に示
すような導電性粒子どうしの数珠繋ぎが発生し、やはり
隣接電極間のショート不良が生じやすい。従って、導電
性粒子の粒径、配合量については、用途に応じて最適と
なるように設計する必要がある。
By using the above-mentioned ACF according to the prior art, for example, a substrate having electrodes formed between electrodes (distance between adjacent electrodes in the same substrate) of 30 μm and width of 40 μm is formed. If connected, the particle size is 5
If the thickness is 0 μm, short-circuit failure, in which conductive particles are straddled between adjacent electrodes after compression, is likely to occur. When the blending amount of the conductive particles is 75% by weight as disclosed in JP-A-61-74205, beads of the conductive particles are connected as shown in FIG. Short circuit is likely to occur. Therefore, it is necessary to design the particle size and the amount of the conductive particles to be optimal according to the application.

【0006】ところで、接続される電極表面が酸化しや
すいような金属、例えば図7(b)に示すような、ガラ
ス基板9上に成膜されたクロム(Cr)電極8にACF
による接続技術を適用すると、Cr電極表面の数nmの
酸化膜10が絶縁膜として介在し、接続不良が生じる。
この絶縁性のCrの酸化膜は、熱圧着の際に大きな荷重
を加えることにより、破壊することができる。しかし、
この方法は、接続される相手側の電極の材質が柔らかい
ときは、必ずしも十分な効果をもたらすとは限らない。
例えば、図7(b)に示すように、接続相手の電極7が
SnやCu製の電極7である場合には、導電性粒子11
がそちら側の電極7に食い込んでしまうため、Crの酸
化膜10を十分に破ることができない。
By the way, ACF is applied to a metal whose surface of the electrode to be connected is easily oxidized, for example, a chromium (Cr) electrode 8 formed on a glass substrate 9 as shown in FIG.
Is applied, the oxide film 10 of several nm on the surface of the Cr electrode is interposed as an insulating film, resulting in poor connection.
The insulating Cr oxide film can be broken by applying a large load during thermocompression bonding. But,
This method does not always provide a sufficient effect when the material of the electrode to be connected is soft.
For example, as shown in FIG. 7B, when the electrode 7 to be connected is an electrode 7 made of Sn or Cu, the conductive particles 11
Bites into the electrode 7 on that side, so that the Cr oxide film 10 cannot be sufficiently broken.

【0007】電極表面の酸化膜を破って導通を得る方法
として、特開平5−47428号公報は、多孔性絶縁膜
の貫通孔部分に突起電極構造の導電部を形成した異方性
導電膜を用いる技術を開示している。上記突起電極構造
の導電部は、例えばAuやNiのような耐酸化性金属中
に、アルミナや炭化珪素のような高硬度の微粒子を含ま
せたものである。このような構造の異方性導電膜の導電
部を接続すべき両基板の電極間に介在させ、超音波を加
えながら圧着すると、高硬度微粒子が電極表面の自然酸
化膜を破り、良好な接触が得られる。しかし、この方法
には、電極どうしの接着を突起電極構造の導電部のみで
行っていることから、振動などによるストレスに弱いこ
とと、突起電極部の作製にコストが掛るという問題があ
った。
Japanese Patent Laid-Open Publication No. Hei 5-47428 discloses a method of obtaining conduction by breaking an oxide film on an electrode surface by using an anisotropic conductive film in which a conductive portion having a protruding electrode structure is formed in a through-hole portion of a porous insulating film. The technology used is disclosed. The conductive portion of the bump electrode structure is made of an oxidation-resistant metal such as Au or Ni containing high-hardness fine particles such as alumina or silicon carbide. When the conductive part of the anisotropic conductive film having such a structure is interposed between the electrodes of the two substrates to be connected, and pressed by applying ultrasonic waves, the fine particles of high hardness break the natural oxide film on the surface of the electrode, resulting in good contact. Is obtained. However, in this method, since the electrodes are bonded only to the conductive portions of the protruding electrode structure, there are problems that they are weak against stress due to vibration or the like and that the production of the protruding electrode portion is costly.

【0008】従って、本発明は、電子部品の接続に用い
るACFにおいて、接続すべき電極表面の酸化膜を破っ
て、電子部品電極どうしを確実かつ容易に接続するAC
Fを提供することを目的とするものである。
Accordingly, the present invention provides an ACF for connecting an electronic component, which breaks an oxide film on the surface of an electrode to be connected and connects the electronic component electrodes reliably and easily.
F is provided.

【0009】[0009]

【課題を解決するための手段】本発明の異方性導電フィ
ルムは、剥離性基材と、その剥離性基材上に形成された
接着性の絶縁性樹脂膜と、前記絶縁性樹脂膜中に分散さ
れた導電性粒子とを含んでなる異方性導電フィルムにお
いて、前記導電性粒子に、粒径が2〜15μmの大径の
金属粒子と、粒径が0.01〜0.05μmの小径の金
属粒子とを用い、前記二種類の金属粒子を前記絶縁性樹
脂膜中に分散させ混在させたことを特徴とする。
According to the present invention, there is provided an anisotropic conductive film comprising a releasable substrate, an adhesive insulating resin film formed on the releasable substrate, and In the anisotropic conductive film comprising conductive particles dispersed in the conductive particles, the conductive particles, the metal particles having a large diameter of 2 to 15 μm, the particle size of 0.01 to 0.05 μm The two types of metal particles are dispersed and mixed in the insulating resin film using small-diameter metal particles.

【0010】又は、前記導電性粒子に、粒径が2〜15
μmの表面が金属めっきされた大径の樹脂粒子と、粒径
が0.01〜0.05μmの小径の金属粒子とを用い、
前記大径の樹脂粒子と前記小径の金属粒子とを前記絶縁
性樹脂膜中に分散させ混在させたことを特徴とする。
Alternatively, the conductive particles have a particle size of 2 to 15
Using large-diameter resin particles having a metal surface plated with μm and small-diameter metal particles having a particle size of 0.01 to 0.05 μm,
The large-diameter resin particles and the small-diameter metal particles are dispersed and mixed in the insulating resin film.

【0011】又は、前記導電性粒子に、粒径が2〜15
μmの表面が金属めっきされた大径のセラミック粒子
と、粒径が0.01〜0.05μmの小径の金属粒子と
を用い、前記大径のセラミック粒子と前記小径の金属粒
子とを前記絶縁性樹脂膜中に分散させ混在させたことを
特徴とする。
Alternatively, the conductive particles may have a particle size of 2 to 15
Using large-diameter ceramic particles having a metal surface plated with μm and small-diameter metal particles having a particle size of 0.01 to 0.05 μm, the insulating between the large-diameter ceramic particles and the small-diameter metal particles is performed. Characterized by being dispersed and mixed in a conductive resin film.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態につい
て、実施例を用い図面を参照して説明する。図1は、本
発明の第1の実施例によるACF断面図である。図1を
参照して、本実施例のACFは、剥離性基材1と、接着
に寄与するエポキシ系接着剤4と、電気的な接続を行う
役目を果たす金属粒子2及びその金属粒子より粒径の小
さい金属微粒子3とからなる。粒子の製造法は一般に粉
体の製造に用いられているものと同じで、金属粒子2は
噴霧法水熱法等、金属微粒子3はプラズマジェット加熱
法などにより製造する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings using examples. FIG. 1 is an ACF sectional view according to a first embodiment of the present invention. Referring to FIG. 1, an ACF according to the present embodiment includes a releasable substrate 1, an epoxy-based adhesive 4 contributing to adhesion, metal particles 2 serving to make an electrical connection, and particles of the metal particles. And metal fine particles 3 having a small diameter. The method of producing the particles is the same as that generally used in the production of powder. The metal particles 2 are produced by a spray hydrothermal method or the like, and the metal fine particles 3 are produced by a plasma jet heating method or the like.

【0013】図2に、ガラス基板9上に成膜されたCr
電極8と、フイルム6上に形成されたCu電極7とを本
実施例のACFを用いて接続したときの断面図を示す。
フィルム6の厚みは75μm、Cu電極7の厚みは18
μm、Snメッキ厚は0.2μmであり、電極幅は40
μmである。一方、ガラス基板上のCr電極8は、膜厚
が0.2μmであり、その表面に電極母材であるCrが
自然に酸化されてできた5nmの酸化膜10が形成され
ている。次に、図2中に丸で囲ったA部の拡大図を図3
(a)に示し、B部の拡大図を図3(b)に示す。図2
及び図3を参照して、フィルム6上に形成されたCu電
極7に、大きい方の金属粒子2が食い込んでいる。一
方、ガラス基板9上のCrの酸化膜10には小さい方の
金属微粒子3が食い込んで、電極母材であるCrの表面
と直接接触している。これにより、電極間の電気的接続
が確実になされる。このように小径の金属微粒子3は、
圧着の際に応力を集中させ、Crの酸化膜を破る働きを
する。一方、上下の基板同士の接着は、ガラス基板9−
フィルム6間に満たされた接着剤4がその役割を担って
いる。
FIG. 2 shows a Cr film formed on a glass substrate 9.
FIG. 3 is a cross-sectional view when an electrode 8 and a Cu electrode 7 formed on a film 6 are connected using the ACF of the present embodiment.
The thickness of the film 6 is 75 μm, and the thickness of the Cu electrode 7 is 18
μm, the Sn plating thickness is 0.2 μm, and the electrode width is 40 μm.
μm. On the other hand, the Cr electrode 8 on the glass substrate has a thickness of 0.2 μm, and has a 5 nm oxide film 10 formed by naturally oxidizing Cr as an electrode base material on the surface thereof. Next, an enlarged view of the portion A circled in FIG. 2 is shown in FIG.
FIG. 3A shows an enlarged view of the portion B shown in FIG. FIG.
Referring to FIG. 3 and FIG. 3, larger metal particles 2 penetrate into Cu electrode 7 formed on film 6. On the other hand, the smaller metal fine particles 3 penetrate into the Cr oxide film 10 on the glass substrate 9 and are in direct contact with the surface of Cr as the electrode base material. As a result, electrical connection between the electrodes is ensured. Such small-diameter metal fine particles 3
It acts to concentrate stress during crimping and break the Cr oxide film. On the other hand, the bonding between the upper and lower substrates is performed using the glass substrate 9-.
The adhesive 4 filled between the films 6 plays the role.

【0014】本実施例においては、先ず、接着剤のもと
になるエポキシ系の樹脂および硬化剤と、溶剤と、金属
粒子および金属微粒子とを所定の割合で混合し、撹拌し
て、粒子を均一に分散させた。次に、この樹脂を剥離性
の基材上に10〜30μmの厚みに塗布し、40〜60
℃の温度で数分間乾燥させてシート状のACFとした
後、用途に応じて1mm〜10mm程度の幅に切断し
た。
In the present embodiment, first, an epoxy resin and a curing agent, which are the basis of the adhesive, a solvent, metal particles and metal fine particles are mixed at a predetermined ratio, and the mixture is agitated. Dispersed uniformly. Next, this resin is applied on a peelable substrate to a thickness of 10 to 30 μm,
After drying at a temperature of ° C. for several minutes to obtain a sheet-like ACF, it was cut into a width of about 1 mm to 10 mm depending on the use.

【0015】次いで、ガラス基板9のCr電極形成面に
ACFを貼り付け、剥離性の基材1を剥がし、フィルム
6上に形成されたCu電極7をガラス基板9側の電極8
に位置合せし、フィルム6の側から加圧、加熱圧着し
た。このとき、径の小さい金属微粒子3は、電極7,8
と金属粒子2との間に挟まった状態となる。
Next, ACF is adhered to the surface of the glass substrate 9 on which the Cr electrode is formed, the peelable substrate 1 is peeled off, and the Cu electrode 7 formed on the film 6 is replaced with the electrode 8 on the glass substrate 9 side.
And pressurized and heated and pressed from the film 6 side. At this time, the fine metal particles 3 having a small diameter are
And the metal particles 2.

【0016】本実施例によるACFは、剥離性基材1の
厚みは50μm、接着剤4の厚みは15μmである。導
電粒子の平均径は、径の大きい方の金属粒子は直径5μ
m、小いさい方の金属微粒子は直径0.03μmであ
る。それぞれの配合比は、剥離性基材を除いた総重量に
対して、大径の金属粒子2は1重量%、小径の金属微粒
子3は0.02重量%である。
In the ACF according to the present embodiment, the thickness of the peelable substrate 1 is 50 μm, and the thickness of the adhesive 4 is 15 μm. The average diameter of the conductive particles is 5 μm for the larger metal particles.
m, the smaller metal fine particles have a diameter of 0.03 μm. The mixing ratio is such that the large-diameter metal particles 2 are 1% by weight and the small-diameter metal fine particles 3 are 0.02% by weight, based on the total weight excluding the peelable substrate.

【0017】この配合比にしたのは圧着後、隣接電極
7,7又は8,8間でショートを起こさない範囲で、金
属粒子2と電極7,8との間に確実に金属微粒子3が挟
まるようにするためである。また、金属粒子2の大きさ
を2〜15μmの範囲にしたのは、被接続電極7,8間
でのオープンや隣接電極でのショート不良を発生させな
いためである。粒径が2μmより小さいとCu電極7表
面にある1μm程度の凹凸を十分に吸収できず接続が不
安定になり、オープン不良が発生する。逆に、粒径が1
5μmを越えると、電極ピッチにもよるが、2〜3個程
度の導電粒子が数珠つなぎになっただけで隣接電極間に
ショート不良が生じる。径の小さい金属微粒子3は応力
を集中させるために用いるので、大きい方の金属粒子2
に対し1/100以下の大きさが好ましく、一方、厚さ
数nmのCrの酸化膜10を破る大きさが必要であるの
で、直径0.01〜0.05μmの範囲が適当である。
これら金属粒子2及び金属微粒子3には、硬い材質であ
るNiを使用した。尚、粒子は、硬い材料で導電性のあ
るものであればよいので、Co、Ti或いはWなどでも
良い。
The reason for this mixing ratio is that the metal fine particles 3 are reliably sandwiched between the metal particles 2 and the electrodes 7 and 8 within a range in which short circuit does not occur between the adjacent electrodes 7, 7 or 8, 8 after the pressure bonding. That's why. The reason why the size of the metal particles 2 is set in the range of 2 to 15 μm is to prevent an open between the connected electrodes 7 and 8 and a short circuit failure between adjacent electrodes. If the particle size is smaller than 2 μm, irregularities of about 1 μm on the surface of the Cu electrode 7 cannot be sufficiently absorbed, and the connection becomes unstable, and an open failure occurs. Conversely, if the particle size is 1
If it exceeds 5 μm, depending on the electrode pitch, short-circuit failure occurs between adjacent electrodes when only two or three conductive particles are connected in a daisy chain. Since the fine metal particles 3 having a small diameter are used to concentrate stress, the larger metal particles 2 are used.
Is preferably 1/100 or less. On the other hand, it is necessary to have a size that can break the Cr oxide film 10 having a thickness of several nm, so that the diameter is suitably in the range of 0.01 to 0.05 μm.
Ni, which is a hard material, was used for the metal particles 2 and the metal fine particles 3. The particles may be made of a hard material having conductivity and may be Co, Ti, W or the like.

【0018】次に、本発明の第二の実施例について、説
明する。図4は、本発明の第2の実施例によるACFの
断面図である。本実施例では、径の大きい方の導電粒子
に、表面を金属めっきしたプラスチック粒子5を用いて
いる点が、第1の実施例と異なっている。めっきの材質
はNiである。プラスチック粒子は、材質はポリスチレ
ンで、粒径は5μmである。めっきの厚さは、金属微粒
子3の粒径より厚ければよいので、0.1〜0.5μm
とした。
Next, a second embodiment of the present invention will be described. FIG. 4 is a sectional view of an ACF according to a second embodiment of the present invention. This embodiment is different from the first embodiment in that plastic particles 5 whose surface is metal-plated are used for the conductive particles having a larger diameter. The material of the plating is Ni. The plastic particles are made of polystyrene and have a particle size of 5 μm. The thickness of the plating may be larger than the particle size of the fine metal particles 3,
And

【0019】プラスチック粒子の替わりにアルミナなど
のセラミック粒子に金属めっきしたものも、同等に使用
可能である。このときも、粒径は5μm、めっき厚は
0.1〜0.5μmが適当である。このように、大径の
導電粒子は必ずしも純粋な金属でなくてもよいので、粒
子の製造コストが安価なもの選択するとよい。
Instead of plastic particles, ceramic particles such as alumina, which are metal-plated, can be used equally. Also in this case, it is appropriate that the particle size is 5 μm and the plating thickness is 0.1 to 0.5 μm. As described above, the large-diameter conductive particles do not necessarily have to be pure metal, and therefore, it is preferable to select one having a low particle manufacturing cost.

【0020】[0020]

【発明の効果】以上説明したように、本発明の異方性導
電フィルムは、導電性粒子に大小2種類の粒子を用い、
それぞれの粒径を特定の範囲に限定している。
As described above, the anisotropic conductive film of the present invention uses two kinds of particles, large and small, as the conductive particles.
Each particle size is limited to a specific range.

【0021】これにより本発明によれば、小径の導電粒
子に応力を集中させて電極上の自然酸化膜破壊能力を高
めることができるので、同一基板上では隣接する電極間
にショートを生じさせることなく、接続すべき基板間で
は電極間を確実に接続して、接続の信頼性を向上させる
ことができる。
Thus, according to the present invention, the stress can be concentrated on the small-diameter conductive particles, and the ability to destroy the natural oxide film on the electrodes can be increased. Instead, the electrodes can be reliably connected between the substrates to be connected, and the reliability of the connection can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例によるACFの断面図で
ある。
FIG. 1 is a sectional view of an ACF according to a first embodiment of the present invention.

【図2】第1の実施例において、ガラス基板上の電極と
フィルム上の電極とを接続したときの断面図である。
FIG. 2 is a cross-sectional view when an electrode on a glass substrate and an electrode on a film are connected in the first embodiment.

【図3】図2中に丸で囲って示すA部およびB部の拡大
断面図である。
FIG. 3 is an enlarged sectional view of a portion A and a portion B shown by circles in FIG. 2;

【図4】本発明の第2の実施例によるACFの断面図で
ある。
FIG. 4 is a cross-sectional view of an ACF according to a second embodiment of the present invention.

【図5】従来の技術によるACFの一例の断面図であ
る。
FIG. 5 is a cross-sectional view of an example of a conventional ACF.

【図6】図5に示すACFを用いてガラス基板上の電極
とフィルム上の電極とを接続したときの断面図である。
6 is a cross-sectional view when an electrode on a glass substrate and an electrode on a film are connected using the ACF shown in FIG.

【図7】従来の技術によるACF接続構造において、同
一基板上の隣接電極間にショートが生じた状態を示す断
面図および、電極表面の自然酸化膜によりオープンが発
生した状態を示す図である。
FIG. 7 is a cross-sectional view showing a state in which a short circuit has occurred between adjacent electrodes on the same substrate in an ACF connection structure according to a conventional technique, and a view showing a state in which an open has occurred due to a natural oxide film on the electrode surface.

【符号の説明】[Explanation of symbols]

1 剥離性基材 2 金属粒子 3 金属微粒子 4 接着剤 5 プラスチック粒子 6 フィルム 7 Cu端子 8 Cr端子 9 ガラス基板 10 酸化膜 11 導電性粒子 DESCRIPTION OF SYMBOLS 1 Peelable base material 2 Metal particle 3 Metal particle 4 Adhesive 5 Plastic particle 6 Film 7 Cu terminal 8 Cr terminal 9 Glass substrate 10 Oxide film 11 Conductive particle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 剥離性基材と、その剥離性基材上に形成
された接着性の絶縁性樹脂膜と、前記絶縁性樹脂膜中に
分散された導電性粒子とを含んでなる異方性導電フィル
ムにおいて、 前記導電性粒子に、粒径が2〜15μmの大径の金属粒
子と、粒径が0.01〜0.05μmの小径の金属粒子
とを用い、前記二種類の金属粒子を前記絶縁性樹脂膜中
に分散させ混在させたことを特徴とする異方性導電フィ
ルム。
1. An anisotropic composition comprising a releasable substrate, an adhesive insulating resin film formed on the releasable substrate, and conductive particles dispersed in the insulating resin film. In the conductive conductive film, the conductive particles, using a large-diameter metal particles having a particle size of 2 to 15 μm and a small-diameter metal particles having a particle size of 0.01 to 0.05 μm, the two types of metal particles Is dispersed and mixed in the insulating resin film.
【請求項2】 剥離性基材と、その剥離性基材上に形成
された接着性の絶縁性樹脂膜と、前記絶縁性樹脂膜中に
分散させた導電性粒子とを含んでなる異方性導電フィル
ムにおいて、 前記導電性粒子に、粒径が2〜15μmの表面が金属め
っきされた大径の樹脂粒子と、粒径が0.01〜0.0
5μmの小径の金属粒子とを用い、前記大径の樹脂粒子
と前記小径の金属粒子とを前記絶縁性樹脂膜中に分散さ
せ混在させたことを特徴とする異方性導電フィルム。
2. An anisotropic composition comprising a releasable substrate, an adhesive insulating resin film formed on the releasable substrate, and conductive particles dispersed in the insulating resin film. In the conductive film, the conductive particles have a particle diameter of 2 to 15 μm, a large-diameter resin particle having a metal-plated surface, and a particle diameter of 0.01 to 0.0
An anisotropic conductive film, wherein metal particles having a small diameter of 5 μm are used, and the resin particles having a large diameter and the metal particles having a small diameter are dispersed and mixed in the insulating resin film.
【請求項3】 剥離性基材と、その剥離性基材上に形成
された接着性の絶縁性樹脂膜と、前記絶縁性樹脂膜中に
分散させた導電性粒子とを含んでなる異方性導電フィル
ムにおいて、 前記導電性粒子に、粒径が2〜15μmの表面が金属め
っきされた大径のセラミック粒子と、粒径が0.01〜
0.05μmの小径の金属粒子とを用い、前記大径のセ
ラミック粒子と前記小径の金属粒子とを前記絶縁性樹脂
膜中に分散させ混在させたことを特徴とする異方性導電
フィルム。
3. An anisotropic composition comprising a releasable substrate, an adhesive insulating resin film formed on the releasable substrate, and conductive particles dispersed in the insulating resin film. In the conductive film, the conductive particles have a diameter of 2 to 15 μm, a large-diameter ceramic particle whose surface is metal-plated, and a particle size of 0.01 to
An anisotropic conductive film, wherein said large-diameter ceramic particles and said small-diameter metal particles are dispersed and mixed in said insulating resin film using small-diameter metal particles of 0.05 μm.
JP17843397A 1997-07-03 1997-07-03 Anisotropic conductive film Pending JPH1125760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17843397A JPH1125760A (en) 1997-07-03 1997-07-03 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17843397A JPH1125760A (en) 1997-07-03 1997-07-03 Anisotropic conductive film

Publications (1)

Publication Number Publication Date
JPH1125760A true JPH1125760A (en) 1999-01-29

Family

ID=16048435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17843397A Pending JPH1125760A (en) 1997-07-03 1997-07-03 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JPH1125760A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037944A (en) * 2011-08-09 2013-02-21 Takigawa Tadahiro Anisotropic conductive film and conductive connector
WO2013129437A1 (en) * 2012-03-02 2013-09-06 デクセリアルズ株式会社 Method for manufacturing connection element, and anisotropic electroconductive adhesive
JP2015005503A (en) * 2013-05-22 2015-01-08 積水化学工業株式会社 Connection structure
JP2015149313A (en) * 2014-02-04 2015-08-20 日立化成株式会社 Adhesive for electronic device and method of bonding electronic device
JP2016040771A (en) * 2015-08-27 2016-03-24 デクセリアルズ株式会社 Anisotropic conductive film, bonded body, and bonding method
JPWO2018030438A1 (en) * 2016-08-08 2019-06-13 積水化学工業株式会社 Conductivity inspection member and continuity inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037944A (en) * 2011-08-09 2013-02-21 Takigawa Tadahiro Anisotropic conductive film and conductive connector
WO2013129437A1 (en) * 2012-03-02 2013-09-06 デクセリアルズ株式会社 Method for manufacturing connection element, and anisotropic electroconductive adhesive
JP2015005503A (en) * 2013-05-22 2015-01-08 積水化学工業株式会社 Connection structure
JP2015149313A (en) * 2014-02-04 2015-08-20 日立化成株式会社 Adhesive for electronic device and method of bonding electronic device
JP2016040771A (en) * 2015-08-27 2016-03-24 デクセリアルズ株式会社 Anisotropic conductive film, bonded body, and bonding method
JPWO2018030438A1 (en) * 2016-08-08 2019-06-13 積水化学工業株式会社 Conductivity inspection member and continuity inspection device

Similar Documents

Publication Publication Date Title
JP3400051B2 (en) Anisotropic conductive film, method of manufacturing the same, and connector using the same
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
EP0914027A1 (en) Film-like adhesive for connecting circuit and circuit board
EP0827632A1 (en) Semiconductor device having a semiconductor chip electrically connected to a wiring substrate
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JPS62188184A (en) Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH08279371A (en) Connecting member and connecting structure and connecting method of electrode by using the connecting member
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP4190424B2 (en) Conductive particles and adhesives
JPH0945731A (en) Connection structure of semiconductor chip and interconnection substrate therefor
JPH1125760A (en) Anisotropic conductive film
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP3876993B2 (en) Adhesive structure, liquid crystal device, and electronic device
KR100251673B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH09306231A (en) Conductive particulate and substrate
JPH09147928A (en) Connecting member
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JPH05174890A (en) Joining structure
JPH08148210A (en) Connection member
JPH03101007A (en) Anisotropic conductive film
JP4155470B2 (en) Electrode connection method using connecting members
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
KR0178129B1 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000404