JPH09306231A - Conductive particulate and substrate - Google Patents

Conductive particulate and substrate

Info

Publication number
JPH09306231A
JPH09306231A JP13760596A JP13760596A JPH09306231A JP H09306231 A JPH09306231 A JP H09306231A JP 13760596 A JP13760596 A JP 13760596A JP 13760596 A JP13760596 A JP 13760596A JP H09306231 A JPH09306231 A JP H09306231A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
substrate
plating layer
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13760596A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kamiyoshi
和彦 神吉
Yoshiaki Kodera
嘉秋 小寺
Kazuo Ukai
和男 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP13760596A priority Critical patent/JPH09306231A/en
Publication of JPH09306231A publication Critical patent/JPH09306231A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve bonding between semiconductor chips or electrode substrates and elasticity thereof and prevent contact failures due to a thermal cycle by using a conductive particulate in which a nickel plating layer is applied to the bonding face. SOLUTION: A ceramic plate 2 and a glass fiber reinforce epoxy plate 3 having Cu electrodes 3, respectively, are conducted and bonded using a conductive particulate 4 and constitutes a substrate. An LSI chip 1 is connected to the ceramic plate 2. A cream solder 5 is applied to the respective Cu electrodes 3, and the conductive particulate 4 are adhered therebetween. A bonding part between the LSI semiconductor chip 1 and the ceramic substrate 2 may be conducted and bonded using the conductive particulate 4. A nickel plating layer of 0.5 to 100μm in thickness may be applied to the surface of the conductive particulate 4. Further, a solder plating layer may be applied to that plating layer. In this case, there is no need for using the cream solder 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体等の素子、
電極基板等を導電接合する際に用いられる導電性微粒子
及びそれを用いて導電接合された基板に関する。
TECHNICAL FIELD The present invention relates to an element such as a semiconductor,
The present invention relates to conductive fine particles used for conductively bonding an electrode substrate and the like, and a substrate conductively bonded using the same.

【0002】[0002]

【従来の技術】液晶表示素子等の電子機器を製造する際
に、集積回路(LSI)半導体チップと液晶表示パネル
等の電極を有する基板との接合においては、従来より導
電接合が行われている。導電接合に使用される材料とし
ては、例えば、特開昭62−61204号公報には、ハ
ンダ合金とプラスチック材料とを混練してなる導電性接
着シートが開示されており、特開昭62−61396号
公報、特開昭62−161187号公報、特開昭62−
127194号公報には、電極基板と半導体チップ等の
電子部品とをハンダを利用して導電接合するための材料
が開示されている。
2. Description of the Related Art When manufacturing an electronic device such as a liquid crystal display element, conductive bonding has been conventionally performed for bonding an integrated circuit (LSI) semiconductor chip and a substrate having electrodes such as a liquid crystal display panel. . As a material used for conductive bonding, for example, JP-A-62-61204 discloses a conductive adhesive sheet obtained by kneading a solder alloy and a plastic material, and JP-A-62-61396. JP-A-62-161187, JP-A-62-1816
Japanese Patent No. 127194 discloses a material for conductively bonding an electrode substrate and an electronic component such as a semiconductor chip by using solder.

【0003】また、導電性微粒子を用いて導電接合させ
る方法としては、例えば、特開昭62−41238号公
報には、銅からなる芯体の表面に厚さ0.1〜5μmの
ニッケル又はニッケル合金の被覆層を設けた導電性充填
材が開示されており、実開昭62−86011号公報に
は、ハンダコートされたニッケル粒子が開示されてお
り、これらの導電性充填材は、有機高分子材料や塗料に
配合して接着剤として使用される。
Further, as a method for conductively bonding by using conductive fine particles, for example, in JP-A-62-41238, nickel or nickel having a thickness of 0.1 to 5 μm is formed on the surface of a core body made of copper. A conductive filler provided with an alloy coating layer is disclosed, and Japanese Utility Model Laid-Open No. 62-86011 discloses solder-coated nickel particles. Used as an adhesive by blending with molecular materials and paints.

【0004】特開昭62−199611号公報には、プ
ラチナ、パラジウム、金より選ばれる金属からなる導電
性外表面を有する球状粒子を含有した導電性組成物が開
示されており、特開平1−246705号公報、特開平
1−246706号公報には、銅粒子の表面に銀、ニッ
ケル、金、パラジウム等の耐酸化性金属からなる層を有
する球状微粒子を含有した導電性ペーストが開示されて
いる。この他に、銀の微粉をエポキシ樹脂中に混合さ
せ、粒子状に成型した導電性微粒子を使用する方法も提
案されている。
JP-A-62-199611 discloses a conductive composition containing spherical particles having a conductive outer surface made of a metal selected from platinum, palladium and gold. JP-A-246705 and JP-A-1-246706 disclose a conductive paste containing spherical fine particles having a layer made of an oxidation resistant metal such as silver, nickel, gold or palladium on the surface of copper particles. . In addition to this, a method has also been proposed in which fine silver powder is mixed in an epoxy resin and conductive fine particles formed into particles are used.

【0005】これらの技術では、銅、ニッケル等の金属
球状粒子を芯体としており、その表面がパラジウム、金
等の金属で被覆された微粒子を使用している。しかしな
がら、銅等の金属粒子を芯体として使用すると、導電性
微粒子が硬く、弾力性が悪いので、接合部分に応力が集
中しやすく、得られる電子機器の信頼性を低下させる欠
点があり、芯体となる金属球状粒子の粒径分布が広くな
りすぎたり、表面を被覆している金属が高価である等の
問題点もあった。また、銀の微粉をエポキシ樹脂中に混
合したものを粒子状に成型して使用すると、電気抵抗値
を下げることが困難である。
In these techniques, spherical particles of metal such as copper and nickel are used as a core, and fine particles whose surface is coated with metal such as palladium and gold are used. However, when metal particles such as copper are used as the core body, the conductive fine particles are hard and have poor elasticity, so that stress is likely to be concentrated at the joint portion, and there is a drawback that the reliability of the obtained electronic device is deteriorated. There are also problems that the particle size distribution of the metallic spherical particles forming the body becomes too wide, and that the metal coating the surface is expensive. Further, if a mixture of fine silver powder in an epoxy resin is molded into particles and used, it is difficult to reduce the electric resistance value.

【0006】更に、接合に際して、有機高分子材料等を
接着剤として使用しているため、導電性微粒子により電
気的接続が行われ、有機高分子材料等により機械的接続
が行われるので、このような接合方法で接合された電子
部品は、高温になると有機高分子材料等が熱膨張して電
気的接続が不良となったり、電気抵抗値が増大する等の
問題点があった。
Furthermore, since an organic polymer material or the like is used as an adhesive at the time of joining, the conductive fine particles make an electrical connection, and the organic polymer material or the like makes a mechanical connection. The electronic components joined by various joining methods have problems that the organic polymer material or the like thermally expands at a high temperature to cause a poor electrical connection or an increase in the electrical resistance value.

【0007】有機高分子材料等の接着剤を使用しない導
電接合方法としては、現在、ボールグリップアレイ(B
GA)やフリップチック等が行われており、導電性微粒
子としてハンダ粒子が広く使用されている。しかしなが
ら、ハンダ粒子は、加熱溶融させて接合する際に、接合
部分のハンダが拡がりやすいこと、隣接する電極をショ
ートさせやすいこと、電極基板と半導体チップ等の電子
部品との間隔が変化すると、特定の接合部分に負荷が掛
かりやすいこと等の問題点があった。
As a conductive bonding method which does not use an adhesive such as an organic polymer material, a ball grip array (B
GA) and flip-ticking are performed, and solder particles are widely used as conductive fine particles. However, when the solder particles are heated and melted to be joined, the solder at the joining portion is likely to spread, the adjacent electrodes are easily short-circuited, and the distance between the electrode substrate and the electronic component such as the semiconductor chip is changed. However, there is a problem that a load is likely to be applied to the joint portion of.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記に鑑
み、BGAやフリップチック等の導電接合方法によって
電極基板及び半導体チップ等の素子、又は、電極基板同
士の接合を良好に行うことができ、かつ、弾力性に優れ
た導電性微粒子、並びに、それを用いて導電接合され、
熱サイクルによる接続不良がない基板を提供することを
目的とする。
In view of the above, the present invention can satisfactorily bond elements such as an electrode substrate and a semiconductor chip, or electrode substrates to each other by a conductive bonding method such as BGA or flip tic. , And conductive fine particles having excellent elasticity, and conductively bonded using the same,
It is an object of the present invention to provide a substrate that does not have a connection failure due to thermal cycles.

【0009】[0009]

【課題を解決するための手段】上記の目的は、樹脂から
なる基材微粒子の表面に厚み0.5〜100μmのニッ
ケルメッキ層を有してなる導電性微粒子(以下、「導電
性微粒子(1)」という。)によって達成することがで
きる。また、上記の目的は、上記導電性微粒子(1)の
表面にハンダメッキ層を有してなる導電性微粒子(以
下、「導電性微粒子(2)」という。)によっても達成
することができる。以下に本発明を詳述する。
The above-mentioned object is to provide conductive fine particles (hereinafter referred to as “conductive fine particles (1) which have a nickel plating layer having a thickness of 0.5 to 100 μm) on the surface of base fine particles made of resin. ) ”.) Can be achieved. The above object can also be achieved by conductive fine particles (hereinafter, referred to as "conductive fine particles (2)") having a solder plating layer on the surface of the conductive fine particles (1). Hereinafter, the present invention will be described in detail.

【0010】本発明で使用される基材微粒子は、樹脂か
らなる。上記樹脂としては特に限定されず、例えば、フ
ェノール樹脂、アミノ樹脂、アクリル樹脂、ポリエステ
ル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリ
イミド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又
は非架橋型合成樹脂;有機−無機ハイブリッド重合体等
が挙げられる。
The base fine particles used in the present invention are made of resin. The resin is not particularly limited, and examples thereof include cross-linked or non-cross-linked synthetic resins such as phenol resin, amino resin, acrylic resin, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, and epoxy resin. An organic-inorganic hybrid polymer and the like can be mentioned.

【0011】上記基材微粒子の圧縮硬さ(K値)は、1
00〜1000kg/mm2 が好ましい。100kg/
mm2 未満であると、実用的でなく、1000kg/m
2を超えると、硬すぎて導電性微粒子として使用する
と、接合部分に応力が掛かりやすい。ここで、K値と
は、下記式(1)で定義される値であり、球体の硬さを
普遍的かつ定量的に表すものである。 K=(3/√2)・F・S-3/2/R-1/2 (1) 式中、Fは、基材微粒子の10%圧縮変形における荷重
値(kg)を表し、Sは、圧縮変位(mm)を表し、R
は、粒子の半径(mm)を表す。
The compression hardness (K value) of the base fine particles is 1
It is preferably from 00 to 1000 kg / mm 2 . 100kg /
If it is less than mm 2, it is not practical and 1000 kg / m
When it exceeds m 2 , it is too hard and when used as conductive fine particles, stress tends to be applied to the joint portion. Here, the K value is a value defined by the following formula (1), which universally and quantitatively represents the hardness of a sphere. K = (3 / √2) · F · S −3/2 / R −1/2 (1) In the formula, F represents the load value (kg) at 10% compressive deformation of the base fine particles, and S is , Compression displacement (mm), R
Represents the radius (mm) of the particle.

【0012】上記基材微粒子の平均粒子径は、1μm〜
3mmが好ましい。1μm未満であると、電極基板同士
が直接接触してショートするおそれがあり、3mmを超
えると、微細ピッチ電極接合が困難となることがある。
The average particle diameter of the base fine particles is from 1 μm to
3 mm is preferred. If it is less than 1 μm, the electrode substrates may directly contact each other to cause a short circuit. If it exceeds 3 mm, it may be difficult to bond the fine pitch electrodes.

【0013】本発明1の導電性微粒子(1)は、基材微
粒子の表面に厚膜のニッケルメッキ層を有する。上記ニ
ッケルメッキ層の厚みは、0.5〜100μmである。
0.5μm未満であると、導電接合に使用された場合、
加熱により表面からメッキ層が剥離するおそれがあり、
更に、導電メッキ層の厚みが薄いために好ましい導電性
が得られないことがある。一方、100μmを超える
と、導電メッキ層の厚みが厚くなりすぎて、基材微粒子
の機械的特性が失われることがあるので、上記範囲に限
定される。
The conductive fine particles (1) of the present invention 1 have a thick nickel plating layer on the surface of the base fine particles. The nickel plating layer has a thickness of 0.5 to 100 μm.
If it is less than 0.5 μm, when used for conductive bonding,
The heating may cause the plating layer to peel off from the surface,
In addition, the conductive plating layer may have a small thickness, so that preferable conductivity may not be obtained. On the other hand, when it exceeds 100 μm, the thickness of the conductive plating layer becomes too thick and the mechanical properties of the base fine particles may be lost, so the range is limited to the above range.

【0014】上記ニッケルメッキ層の形成方法としては
特に限定されず、例えば、無電解メッキ、溶融メッキ、
拡散メッキ、電気メッキ、溶射、蒸着等が挙げられる。
これらの方法を単独で、又は、これらを組み合わせるこ
とにより上記ニッケルメッキ層を形成することができ
る。例えば、まず、上記基材微粒子に無電解ニッケルメ
ッキを行い、0.01〜0.3μmの厚さのニッケルメ
ッキ層を形成させた後、電気ニッケルメッキを行い、
0.5〜100μmのニッケルメッキ層を形成する方法
等が挙げられる。
The method of forming the nickel plating layer is not particularly limited, and examples thereof include electroless plating, hot dipping,
Diffusion plating, electroplating, thermal spraying, vapor deposition and the like can be mentioned.
The nickel plating layer can be formed by using these methods alone or by combining these methods. For example, first, electroless nickel plating is performed on the base fine particles to form a nickel plating layer having a thickness of 0.01 to 0.3 μm, and then electric nickel plating is performed,
Examples include a method of forming a nickel plating layer having a thickness of 0.5 to 100 μm.

【0015】本発明1の導電性微粒子(1)は、基材微
粒子として樹脂粒子を使用しているので、弾力性に優
れ、導電接合に使用された場合に接合部分に応力が掛か
りにくい。また、基材微粒子の表面にニッケル厚膜メッ
キ層を有しているので、基材微粒子を形成する樹脂が電
気抵抗値に影響することがなく、LSI半導体チップ等
の素子や電極基板の導電接合に好適に使用することがで
きる。
Since the conductive fine particles (1) of the present invention 1 use resin particles as the base fine particles, they are excellent in elasticity and are less likely to be stressed at the joint portion when used for conductive joining. In addition, since the base material fine particles have a nickel thick film plating layer on the surface, the resin forming the base material fine particles does not affect the electric resistance value, and conductive bonding of elements such as LSI semiconductor chips and electrode substrates is achieved. Can be suitably used.

【0016】本発明1の導電性微粒子(2)は、上記導
電性微粒子(1)の表面にハンダメッキ層を有する。上
記ハンダメッキ層の厚みは、5〜30μmが好ましい。
5μm未満であると、導電性微粒子が素子や電極基板に
充分に接合されないことがあり、30μmを超えると、
加熱溶融を行う際に余分なハンダが拡がって、電極をシ
ョートさせてしまうおそれがある。
The conductive fine particles (2) of the present invention 1 have a solder plating layer on the surface of the conductive fine particles (1). The thickness of the solder plating layer is preferably 5 to 30 μm.
If it is less than 5 μm, the conductive fine particles may not be sufficiently bonded to the element or the electrode substrate, and if it exceeds 30 μm,
Excessive solder may spread during heating and melting, resulting in a short circuit of the electrodes.

【0017】上記ハンダメッキ層の形成方法としては特
に限定されず、例えば、電気メッキ等が挙げられる。
The method for forming the solder plating layer is not particularly limited, and examples thereof include electroplating.

【0018】本発明1の導電性微粒子(2)は、導電性
微粒子(1)の表面にハンダメッキ層を有するものであ
るので、LSI半導体チップ等の素子や電極基板の導電
接合に用いる場合、接合面がハンダをスクリーン印刷す
るのに不適当であっても、素子及び電極基板、又は、電
極基板同士の接合を良好に行うことができる。
Since the conductive fine particles (2) of the present invention 1 have a solder plating layer on the surface of the conductive fine particles (1), when used for conductive bonding of an element such as an LSI semiconductor chip or an electrode substrate, Even if the joint surface is not suitable for screen-printing solder, the element and the electrode substrate or the electrode substrates can be well joined.

【0019】本発明2は、素子及び電極基板、又は、2
枚以上の電極基板が、導電接合されてなる基板である。
上記素子としては特に限定されず、例えば、LSI半導
体チップ、コンデンサーチップ等が挙げられる。上記電
極基板としては特に限定されず、例えば、ガラス板、セ
ラミック板、合成樹脂製板等の表面にITO等で電極を
形成させたもの等が挙げられる。
The present invention 2 is directed to an element and an electrode substrate, or 2
It is a substrate formed by conductively bonding at least one electrode substrate.
The element is not particularly limited, and examples thereof include an LSI semiconductor chip and a capacitor chip. The electrode substrate is not particularly limited, and examples thereof include a glass plate, a ceramic plate, a synthetic resin plate, etc., on the surface of which electrodes are formed of ITO or the like.

【0020】上記導電接合は、上記素子及び上記電極基
板の接合部分、又は、上記2枚以上の電極基板の接合部
分が、上記導電性微粒子(1)又は上記導電性微粒子
(2)を介して接合されているものである。上記導電接
合の方法としては特に限定されず、例えば、BGA、フ
リップチック等が挙げられる。上記導電接合は、例え
ば、以下のようにして行うことができる。LSI半導体
チップの接合部分に、クリームハンダを50〜80μm
の厚さでスクリーン印刷する。その上に、本発明1の導
電性微粒子(1)又は導電性微粒子(2)を配置し、上
記LSI半導体チップと同様に接合部分にクリームハン
ダをスクリーン印刷した電極基板を重ね合わせ、約30
0℃で加熱して接合する。
In the conductive bonding, the bonding portion between the element and the electrode substrate or the bonding portion between the two or more electrode substrates is connected through the conductive fine particles (1) or the conductive fine particles (2). It is joined. The conductive bonding method is not particularly limited, and examples thereof include BGA and flip-tic. The conductive bonding can be performed as follows, for example. 50-80 μm of cream solder on the joint of LSI semiconductor chip
Screen print with the thickness of. On top of that, the conductive fine particles (1) or the conductive fine particles (2) of the present invention 1 are arranged, and the electrode substrate having the cream solder screen-printed on the bonding portion is laid on it in the same manner as the above-mentioned LSI semiconductor chip.
Heat and bond at 0 ° C.

【0021】また、LSI半導体チップの接合部分に直
接本発明1の導電性微粒子(2)を配置し、電極基板を
重ね合わせ、約300℃に加熱する事によっても導電接
合することができる。
Alternatively, the conductive particles (2) of the present invention 1 may be placed directly on the bonding portion of the LSI semiconductor chip, the electrode substrates may be overlapped and heated to about 300 ° C. to conduct the conductive bonding.

【0022】[0022]

【発明の実施の形態】ここで、本発明2の基板を、図を
参照しながら詳述する。図1は、Cu電極3を有するセ
ラミック板2と、Cu電極3を有するガラスファイバー
強化エポキシ板6とを導電性微粒子4を用いて導電接合
した基板である。セラミック板2には、LSI半導体チ
ップ1が接続されている。セラミック板2側のCu電極
3及びガラスファイバー強化エポキシ板6側のCu電極
3の間は、クリームハンダ5によって導電性微粒子4が
接着されている。また、電極基板同士だけではなく、L
SI半導体チップ1とセラミック板2との接続部分も、
導電性微粒子4を使用して導電接合したものであっても
よい。
BEST MODE FOR CARRYING OUT THE INVENTION Here, the substrate of the present invention 2 will be described in detail with reference to the drawings. FIG. 1 shows a substrate in which a ceramic plate 2 having a Cu electrode 3 and a glass fiber reinforced epoxy plate 6 having a Cu electrode 3 are conductively bonded using conductive fine particles 4. The LSI semiconductor chip 1 is connected to the ceramic plate 2. The conductive fine particles 4 are bonded by the cream solder 5 between the Cu electrode 3 on the ceramic plate 2 side and the Cu electrode 3 on the glass fiber reinforced epoxy plate 6 side. Also, not only the electrode substrates but also L
The connection part between the SI semiconductor chip 1 and the ceramic plate 2 is also
It may be conductively bonded by using the conductive fine particles 4.

【0023】図1では、導電性微粒子4が表面にニッケ
ル厚膜メッキ層を有しているものを使用しているが、本
発明においては、導電性微粒子として、ニッケル厚膜メ
ッキ層の上に更にハンダメッキ層を有しているものを使
用してもよい。この場合には、クリームハンダを使用す
る必要はない。
In FIG. 1, the conductive fine particles 4 have a nickel thick film plating layer on the surface, but in the present invention, as the conductive fine particles, a nickel thick film plating layer is formed on the nickel thick film plating layer. Further, one having a solder plating layer may be used. In this case, it is not necessary to use cream solder.

【0024】本発明2の基板は、電極基板やLSI半導
体チップ等の素子が導電性微粒子と接触する部分に必要
以上のハンダを使用していないので、接合部分のハンダ
が拡がることなく、隣接する電極をショートさせること
はない。
Since the substrate of the present invention 2 does not use more solder than necessary at the portion where the element such as the electrode substrate or the LSI semiconductor chip comes into contact with the conductive fine particles, the solder at the joint portion does not spread and is adjacent to each other. It does not short the electrodes.

【0025】[0025]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0026】実施例1 ジビニルベンゼン及びテトラメチロールメタンテトラア
クリレート(重量比1/1)からなる共重合架橋体微粒
子を基材微粒子として用いた(平均粒子径650μm、
標準偏差19μm)。無電解メッキ法により、0.18
μm厚みのニッケル層を下地メッキ層として形成した。
この微粒子50gを用いて図2に示した電気メッキ装置
により、ニッケル厚膜メッキを行った。メッキ浴は、硫
酸ニッケル水溶液であり、浴電圧25V、電流密度1.
0A/dm2 の条件下で、24分間メッキを行った結
果、5μm厚さのニッケル層を有する導電性微粒子を得
た。
EXAMPLE 1 Copolymerized crosslinked fine particles of divinylbenzene and tetramethylolmethane tetraacrylate (weight ratio 1/1) were used as base fine particles (average particle size 650 μm,
Standard deviation 19 μm). 0.18 by electroless plating
A nickel layer having a thickness of μm was formed as a base plating layer.
Using 50 g of these fine particles, nickel thick film plating was performed by the electroplating apparatus shown in FIG. The plating bath was an aqueous solution of nickel sulfate, and the bath voltage was 25 V and the current density was 1.
As a result of plating for 24 minutes under the condition of 0 A / dm 2 , conductive fine particles having a nickel layer with a thickness of 5 μm were obtained.

【0027】図1に示したガラスファイバー強化エポキ
シ樹脂製電極基板のCu電極部に、スクリーン印刷によ
りクリームハンダを80μmの厚さで形成した。つい
で、この上に、上記導電性微粒子を配置した。同様に、
クリームハンダを塗布したセラミック製の電極基板を互
いの電極部が対向する配置で重ね合わせ、300℃に加
熱しながら接合させた。両基板電極間の導電接合状態は
良好であり、−40℃/120℃の熱サイクル試験を1
000サイクル実施した後も、性能低下は全く認められ
なかった。
Cream solder having a thickness of 80 μm was formed on the Cu electrode portion of the glass fiber reinforced epoxy resin electrode substrate shown in FIG. 1 by screen printing. Then, the above conductive fine particles were arranged on this. Similarly,
The ceramic electrode substrates coated with cream solder were placed one on top of the other with their electrode parts facing each other, and joined while heating at 300 ° C. The conductive connection between both substrate electrodes is good, and the thermal cycle test at -40 ° C / 120 ° C
No performance deterioration was observed after 000 cycles.

【0028】実施例2 ニッケルメッキ浴の浴電圧を26V、電流密度を1.3
A/dm2 、通電時間を37分としたこと以外は実施例
1と同様にしてメッキを行った。その結果、12μm厚
さのニッケル層を有する導電性微粒子を得た。この微粒
子を用いて実施例1と同様の基板接合試験を行った結
果、両基板電極間の導電接合状態は良好であり、−40
℃/120℃の熱サイクル試験を1000サイクル実施
した後も、性能低下は全く認められなかった。
Example 2 The nickel plating bath had a bath voltage of 26 V and a current density of 1.3.
Plating was performed in the same manner as in Example 1 except that A / dm 2 and the energization time were 37 minutes. As a result, conductive fine particles having a nickel layer with a thickness of 12 μm were obtained. As a result of carrying out a substrate bonding test similar to that of Example 1 using these fine particles, the conductive bonding state between both substrate electrodes was good, and -40
No deterioration in performance was observed even after 1000 cycles of the heat cycle test of ° C / 120 ° C.

【0029】実施例3 実施例1で得た5μm厚さのニッケル層を有する導電性
微粒子を再度図2に示した電気メッキ装置により、その
外周にハンダ層を形成させた。この際のメッキ条件は、
微粒子26gを使用し、電流密度2A/dm2 で通電時
間は8分間であった。なお、ハンダ組成は、Sn60重
量%、Pb40重量%であった。この結果、5μmニッ
ケル層の外周に11μm厚さのハンダ層を有する導電性
微粒子を得た。この微粒子を用いて実施例1と同様の基
板接合試験を行った結果、両基板電極間の導電接合状態
は良好であり、−40℃/120℃の熱サイクル試験を
1000サイクル実施した後も、性能低下は全く認めら
れなかった。
Example 3 The conductive fine particles having a nickel layer of 5 μm thick obtained in Example 1 were again formed with a solder layer on the outer periphery thereof by the electroplating apparatus shown in FIG. The plating conditions at this time are
26 g of fine particles were used, the current density was 2 A / dm 2 , and the energization time was 8 minutes. The solder composition was 60 wt% Sn and 40 wt% Pb. As a result, conductive fine particles having a solder layer with a thickness of 11 μm on the outer periphery of the nickel layer of 5 μm were obtained. As a result of carrying out a substrate bonding test similar to that of Example 1 using these fine particles, the conductive bonding state between both substrate electrodes is good, and even after 1000 cycles of the −40 ° C./120° C. thermal cycle test, No performance deterioration was observed.

【0030】比較例1 ジビニルベンゼン及びテトラメチロールメタンテトラア
クリレート(重量比1/1)からなる共重合架橋体微粒
子を基材微粒子として用いた(平均粒子径650μm、
標準偏差19μm)。無電解メッキ法により、0.35
μm厚みのニッケル層を形成した。この微粒子を用い
て、図1に示したガラスファイバー強化エポキシ製電極
基板のCu電極部にスクリーン印刷によりクリームハン
ダを80μm厚さで形成した。ついで、この上に、上記
ニッケル被覆微粒子を配置した。同様に、クリームハン
ダを塗布したセラミック製の電極基板を互いの電極部が
対向する配置で重ね合わせ、300℃に加熱しながら接
合させた。両基板電極間の導電接合状態は不良であり、
その原因を調べたところ、加熱時にクリームハンダ中の
フラックスの作用により、ニッケルメッキ層の基材表面
からの剥離が生じていることが明らかとなった。
Comparative Example 1 Copolymerized crosslinked fine particles composed of divinylbenzene and tetramethylolmethane tetraacrylate (weight ratio 1/1) were used as base material fine particles (average particle diameter 650 μm,
Standard deviation 19 μm). 0.35 by electroless plating
A μm thick nickel layer was formed. Using these fine particles, cream solder having a thickness of 80 μm was formed on the Cu electrode portion of the glass fiber reinforced epoxy electrode substrate shown in FIG. 1 by screen printing. Then, the above nickel-coated fine particles were arranged on this. Similarly, the ceramic electrode substrates coated with cream solder were superposed on each other such that their electrode portions face each other, and joined while heating at 300 ° C. The conductive connection between both board electrodes is poor,
When the cause was investigated, it became clear that the nickel plating layer was peeled from the substrate surface due to the action of the flux in the cream solder during heating.

【0031】比較例2 比較例1で得た0.35μm厚みのニッケル層を有する
微粒子を図2に示した電気メッキ装置によりその外周に
ハンダ層を形成させた。この際のメッキ条件は、微粒子
30gを使用し、電流密度2A/dm2 で通電時間は1
0分間であった。なお、ハンダ組成は、Sn60重量
%、Pb40重量%であった。この結果、0.35μm
ニッケル層の外周に12μm厚さのハンダ層を有する導
電性微粒子が得られた。この微粒子を用いて比較例1と
同様の方法で基板の接合試験を行った。両基板電極間の
導電接合状態は不良であり、その原因を調べたところ、
加熱時にクリームハンダ中のフラックスの作用により、
ニッケルメッキ層の基材の表面からの剥離が生じている
ことが明らかであった。
Comparative Example 2 The fine particles having a nickel layer having a thickness of 0.35 μm obtained in Comparative Example 1 were formed with a solder layer on the outer periphery thereof by the electroplating apparatus shown in FIG. The plating conditions used at this time were 30 g of fine particles, a current density of 2 A / dm 2 and an energization time of 1
0 minutes. The solder composition was 60 wt% Sn and 40 wt% Pb. As a result, 0.35 μm
Conductive fine particles having a solder layer with a thickness of 12 μm on the outer periphery of the nickel layer were obtained. Using these fine particles, a substrate joining test was conducted in the same manner as in Comparative Example 1. The conductive joint state between both board electrodes is poor, and when the cause was investigated,
By the action of the flux in the cream solder during heating,
It was clear that peeling of the nickel plating layer from the surface of the base material occurred.

【0032】[0032]

【発明の効果】本発明の導電性微粒子及び基板は上述の
構成よりなるので、電極基板及び素子、又は、電極基板
同士の接合を良好に行うことができ、熱サイクルによる
接続不良がなく、LSI半導体チップ等の電子部品と電
極基板とを導電接合する液晶表示素子等の製造に好適に
使用することができる。
EFFECTS OF THE INVENTION Since the conductive fine particles and the substrate of the present invention have the above-mentioned constitution, the electrode substrate and the element, or the electrode substrates can be satisfactorily bonded to each other, and there is no connection failure due to the thermal cycle. It can be suitably used for manufacturing a liquid crystal display element or the like in which an electronic component such as a semiconductor chip and an electrode substrate are conductively joined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基板の一実施形態を表す断面図であ
る。
FIG. 1 is a cross-sectional view showing an embodiment of a substrate of the present invention.

【図2】本発明の導電性微粒子を製造する際に使用する
電気メッキ装置の断面図である。
FIG. 2 is a cross-sectional view of an electroplating apparatus used when producing the conductive fine particles of the present invention.

【符号の説明】[Explanation of symbols]

1 LSI半導体チップ 2 セラミック板 3 Cu電極 4 導電性微粒子 5 クリームハンダ 6 ガラスファイバー強化エポキシ板 10 電気メッキ装置 11 陽極 12 陰極 13 メッキ液供給管 14 電極 15 回転軸 16 メッキ液排出管 17 フィルター 18 基材微粒子 1 LSI Semiconductor Chip 2 Ceramic Plate 3 Cu Electrode 4 Conductive Fine Particles 5 Cream Solder 6 Glass Fiber Reinforced Epoxy Plate 10 Electroplating Device 11 Anode 12 Cathode 13 Plating Liquid Supply Pipe 14 Electrode 15 Rotating Shaft 16 Plating Liquid Discharge Pipe 17 Filter 18 Units Wood particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/36 H05K 3/36 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H05K 3/36 H05K 3/36 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 樹脂からなる基材微粒子の表面に厚み
0.5〜100μmのニッケルメッキ層を有してなるこ
とを特徴とする導電性微粒子。
1. A conductive fine particle comprising a base fine particle made of a resin and having a nickel plating layer having a thickness of 0.5 to 100 μm on the surface.
【請求項2】 請求項1記載の導電性微粒子の表面にハ
ンダメッキ層を有してなることを特徴とする導電性微粒
子。
2. A conductive fine particle having a solder plating layer on the surface of the conductive fine particle according to claim 1.
【請求項3】 素子及び電極基板、又は、2枚以上の電
極基板が、導電接合されてなる基板であって、前記導電
接合は、前記素子及び前記電極基板の接合部分、又は、
前記2枚以上の電極基板の接合部分が、請求項1又は2
記載の導電性微粒子を介して接合されているものである
ことを特徴とする基板。
3. An element and an electrode substrate, or a substrate in which two or more electrode substrates are conductively bonded, wherein the conductive bonding is a bonding portion of the element and the electrode substrate, or
The joint portion of the two or more electrode substrates is formed according to claim 1 or 2.
A substrate which is bonded via the conductive fine particles described in the above.
JP13760596A 1996-05-07 1996-05-07 Conductive particulate and substrate Pending JPH09306231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13760596A JPH09306231A (en) 1996-05-07 1996-05-07 Conductive particulate and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13760596A JPH09306231A (en) 1996-05-07 1996-05-07 Conductive particulate and substrate

Publications (1)

Publication Number Publication Date
JPH09306231A true JPH09306231A (en) 1997-11-28

Family

ID=15202604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13760596A Pending JPH09306231A (en) 1996-05-07 1996-05-07 Conductive particulate and substrate

Country Status (1)

Country Link
JP (1) JPH09306231A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093329A (en) * 1999-09-20 2001-04-06 Sekisui Chem Co Ltd Solder plating polymeric micro-sphere and connecting structure
WO2002013205A1 (en) * 2000-08-04 2002-02-14 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structural body
JP2002260446A (en) * 2001-02-27 2002-09-13 Sekisui Chem Co Ltd Conductive fine particle and conductive connecting structure
JP2005108871A (en) * 2003-09-26 2005-04-21 Sekisui Chem Co Ltd Metal bump, its forming method, semiconductor chip, and conductive connection structure
JP2008028210A (en) * 2006-07-24 2008-02-07 Sumitomo Bakelite Co Ltd Structure and method for manufacturing the same
JP2009205842A (en) * 2008-02-26 2009-09-10 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material, and connection structure
JP2012142137A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093329A (en) * 1999-09-20 2001-04-06 Sekisui Chem Co Ltd Solder plating polymeric micro-sphere and connecting structure
WO2002013205A1 (en) * 2000-08-04 2002-02-14 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structural body
US7226660B2 (en) 2000-08-04 2007-06-05 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structural body
JP2002260446A (en) * 2001-02-27 2002-09-13 Sekisui Chem Co Ltd Conductive fine particle and conductive connecting structure
JP2005108871A (en) * 2003-09-26 2005-04-21 Sekisui Chem Co Ltd Metal bump, its forming method, semiconductor chip, and conductive connection structure
JP2008028210A (en) * 2006-07-24 2008-02-07 Sumitomo Bakelite Co Ltd Structure and method for manufacturing the same
JP2009205842A (en) * 2008-02-26 2009-09-10 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material, and connection structure
JP2012142137A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure

Similar Documents

Publication Publication Date Title
US5667884A (en) Area bonding conductive adhesive preforms
KR100290993B1 (en) Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
JP3420917B2 (en) Semiconductor device
JPH08227613A (en) Conductive material and usage thereof
JPH07161400A (en) Anisotropic conductive film, its manufacture and connector using it
JPH04234139A (en) Method for direct attachment of semicon- ductor chip to board
WO1998038261A1 (en) Adhesive, liquid crystal device, method of manufacturing liquid crystal device, and electronic apparatus
CN101090610A (en) Process for producing multilayer board
US6675474B2 (en) Electronic component mounted member and repair method thereof
JPH09306231A (en) Conductive particulate and substrate
JPH09198916A (en) Conductive fine grain
JP2004342766A (en) Circuit board and electronic component mounted body
JP3505321B2 (en) Conductive fine particles and substrate
JP5143329B2 (en) Manufacturing method of circuit connection body
JP2003068145A (en) Conductive fine particle and conductive connection structure
JP4378788B2 (en) IC chip connection method
JPH0574846A (en) Electrically connecting method
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
KR100310037B1 (en) Method for fabricating flexible printed circuit boad with a plurality of chip
JPS63122135A (en) Electrically connecting method for semiconductor chip
JP2003068142A (en) Conductive fine particle and conductive connection structure
JP2004149923A (en) Electrically-conductive particulate and substrate
JPS60120588A (en) Printed circuit board
JP2000003621A (en) Anisotropic conductive film and conductive connecting structure
JPH0265147A (en) Ic chip mounting method