JP3505321B2 - Conductive fine particles and substrate - Google Patents

Conductive fine particles and substrate

Info

Publication number
JP3505321B2
JP3505321B2 JP13760696A JP13760696A JP3505321B2 JP 3505321 B2 JP3505321 B2 JP 3505321B2 JP 13760696 A JP13760696 A JP 13760696A JP 13760696 A JP13760696 A JP 13760696A JP 3505321 B2 JP3505321 B2 JP 3505321B2
Authority
JP
Japan
Prior art keywords
fine particles
substrate
conductive
solder
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13760696A
Other languages
Japanese (ja)
Other versions
JPH09306232A (en
Inventor
和彦 神吉
嘉秋 小寺
和男 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP13760696A priority Critical patent/JP3505321B2/en
Publication of JPH09306232A publication Critical patent/JPH09306232A/en
Application granted granted Critical
Publication of JP3505321B2 publication Critical patent/JP3505321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体等の素子、
電極基板等を導電接合する際に用いられる導電性微粒子
を用いて導電接合された基板に関する。 【0002】 【従来の技術】液晶表示素子等の電子機器を製造する際
に、集積回路(LSI)半導体チップと液晶表示パネル
等の電極を有する基板との接合においては、従来より導
電接合が行われている。導電接合に使用される材料とし
ては、例えば、特開昭62−61204号公報には、ハ
ンダ合金とプラスチック材料とを混練してなる導電性接
着シートが開示されており、特開昭62−61396号
公報、特開昭62−161187号公報、特開昭62−
127194号公報には、電極基板と半導体チップ等の
電子部品とをハンダを利用して導電接合するための材料
が開示されている。 【0003】また、導電性微粒子を用いて導電接合させ
る方法としては、例えば、特開昭62−41238号公
報には、銅からなる芯体の表面に厚さ0.1〜5μmの
ニッケル又はニッケル合金の被覆層を設けた導電性充填
材が開示されており、実開昭62−86011号公報に
は、ハンダコートされたニッケル粒子が開示されてお
り、これらの導電性充填材は、有機高分子材料や塗料に
配合して接着剤として使用される。 【0004】特開昭62−199611号公報には、プ
ラチナ、パラジウム、金より選ばれる金属からなる導電
性外表面を有する球状粒子を含有した導電性組成物が開
示されており、特開平1−246705号公報、特開平
1−246706号公報には、銅粒子の表面に銀、ニッ
ケル、金、パラジウム等の耐酸化性金属からなる層を有
する球状微粒子を含有した導電性ペーストが開示されて
いる。この他に、銀の微粉をエポキシ樹脂中に混合さ
せ、粒子状に成型した導電性微粒子を使用する方法も提
案されている。 【0005】これらの技術では、銅、ニッケル等の金属
球状粒子を芯体としており、その表面がパラジウム、金
等の金属で被覆された微粒子を使用している。しかしな
がら、銅等の金属粒子を芯体として使用すると、導電性
微粒子が硬く、弾力性が悪いので、接合部分に応力が集
中しやすく、得られる電子機器の信頼性を低下させる欠
点があり、芯体となる金属球状粒子の粒径分布が広くな
りすぎたり、表面を被覆している金属が高価である等の
問題点もあった。また、銀の微粉をエポキシ樹脂中に混
合したものを粒子状に成型して使用すると、電気抵抗値
を下げることが困難である。 【0006】更に、接合に際して、有機高分子材料等を
接着剤として使用しているため、導電性微粒子により電
気的接続が行われ、有機高分子材料等により機械的接続
が行われるので、このような接合方法で接合された電子
部品は、高温になると有機高分子材料等が熱膨張して電
気的接続が不良となったり、電気抵抗値が増大する等の
問題点があった。 【0007】有機高分子材料等の接着剤を使用しない導
電接合方法としては、現在、ボールグリップアレイ(B
GA)やフリップチック等が行われており、導電性微粒
子としてハンダ粒子が広く使用されている。しかしなが
ら、ハンダ粒子は、加熱溶融させて接合する際に、接合
部分のハンダが拡がりやすいこと、隣接する電極をショ
ートさせやすいこと、電極基板と半導体チップ等の電子
部品との間隔が変化すると、特定の接合部分に負荷が掛
かりやすいこと等の問題点があった。 【0008】 【発明が解決しようとする課題】本発明は、上記に鑑
み、BGAやフリップチック等の導電接合方法によって
電極基板及び半導体チップ等の素子、又は、電極基板同
士の接合を良好に行うことができ、かつ、弾力性に優れ
た導電性微粒子、並びに、それを用いて導電接合され、
熱サイクルによる接続不良がない基板を提供することを
目的とする。 【0009】 【課題を解決するための手段】上記の目的は、樹脂から
なる基材微粒子の表面にハンダ濡れ性を有する金属メッ
キ層を有してなる導電性微粒子によって達成することが
できる。以下に本発明を詳述する。 【0010】本発明で使用される基材微粒子は、樹脂か
らなる。上記樹脂としては特に限定されず、例えば、フ
ェノール樹脂、アミノ樹脂、アクリル樹脂、ポリエステ
ル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリ
イミド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又
は非架橋型合成樹脂;有機−無機ハイブリッド重合体等
が挙げられる。 【0011】上記基材微粒子の圧縮硬さ(K値)は、1
00〜1000kg/mm2 が好ましい。100kg/
mm2 未満であると、実用的でなく、1000kg/m
2を超えると、硬すぎるために導電性微粒子として使
用すると、接合部分に応力が掛かりやすい。ここで、K
値とは、下記式(1)で定義される値であり、球体の硬
さを普遍的かつ定量的に表すものである。 K=(3/√2)・F・S-3/2/R-1/2 (1) 式中、Fは、基材微粒子の10%圧縮変形における荷重
値(kg)を表し、Sは、圧縮変位(mm)を表し、R
は、粒子の半径(mm)を表す。 【0012】上記基材微粒子の平均粒子径は、1μm〜
3mmが好ましい。1μm未満であると、電極基板同士
が直接接触してショートするおそれがあり、3mmを超
えると、微細ピッチ電極接合が困難となることがある。 【0013】本発明1の導電性微粒子は、基材微粒子の
表面にハンダ濡れ性を有する金属メッキ層を有する。本
明細書中、ハンダ濡れ性とは、加熱溶融されたハンダを
均一かつ途切れることなく滑らかに拡がらせる性質、及
び、加熱時に、溶融されたハンダと一つの液相を形成す
ることができ、冷却時に共晶することができる性質を意
味する。 【0014】上記ハンダ濡れ性を有する金属メッキ層を
形成する金属としては、ハンダ濡れ性が良好である高融
点ハンダが用いられる。上記高融点ハンダの融点は、3
00℃以上である。 【0015】上記金属メッキ層の厚みは、0.01〜5
00μmが好ましい。0.01μm未満であると、導電
接合に使用された場合、加熱により表面から金属メッキ
層が剥離するおそれがあり、更に、導電メッキ層の厚み
が薄いために好ましい導電性が得られないことがある。
一方、500μmを超えると、導電メッキ層の厚みが厚
くなりすぎて、基材微粒子の機械的特性が失われること
がある。上記金属メッキ層を形成する金属として、高融
点ハンダを使用する場合、金属メッキ層の厚みは、0.
01〜100μmが好ましい。 【0016】上記金属メッキ層の形成方法としては特に
限定されず、例えば、無電解メッキ、溶融メッキ、拡散
メッキ、電気メッキ、溶射、蒸着等が挙げられる。これ
らの方法を単独で、又は、これらを組み合わせることに
より上記金属メッキ層を形成することができる。 【0017】本発明1の導電性微粒子は、上記金属メッ
キ層の下地メッキ層を有する。上記下地メッキ層を形成
する金属としては特に限定されず、例えば、ニッケル等
が挙げられる。 【0018】本発明1の導電性微粒子は、基材微粒子と
して樹脂粒子を使用しているので、弾力性に優れ、導電
接合に使用された場合に接合部分に応力が掛かりにくい
うえ、対向する電極基板等の間隔を一定に保持すること
ができる。また、温度変化による電極基板、素子等の熱
膨張及び収縮による電極間の相対位置のズレによる剪断
応力を緩和することができる。 【0019】更に、本発明1の導電性微粒子は、基材微
粒子の表面にハンダ濡れ性を有する金属メッキ層を有し
ているので、導電接合に使用された場合、接合部分に充
分量の共晶ハンダが浸透し、接合させる電極基板等に本
発明1の導電性微粒子が充分に接着されるため、接触抵
抗値を極めて低いレベルに保つことができる。 【0020】本発明1は、素子及び電極基板、又は、2
枚以上の電極基板が、導電接合されてなる基板である。
上記素子としては特に限定されず、例えば、LSI半導
体チップ、コンデンサーチップ等が挙げられる。上記電
極基板としては特に限定されず、例えば、ガラス板、セ
ラミック板、合成樹脂製板等の表面にITO等で電極を
形成させたもの等が挙げられる。 【0021】上記導電接合は、上記素子及び上記電極基
板の接合部分、又は、上記2枚以上の電極基板の接合部
分が、上記導電性微粒子を介して接合されているもので
ある。上記導電接合の方法としては特に限定されず、例
えば、BGA、フリップチック等が挙げられる。上記導
電接合は、例えば、以下のようにして行うことができ
る。LSI半導体チップの接合部分に、クリームハンダ
を50〜80μmの厚さでスクリーン印刷する。その上
に、本発明1の導電性微粒子を配置し、上記LSI半導
体チップと同様に接合部分にクリームハンダをスクリー
ン印刷した電極基板を重ね合わせ、約300℃で加熱し
て接合する。 【0022】 【発明の実施の形態】ここで、本発明1の基板を、図を
参照しながら詳述する。図1は、Cu電極3を有するセ
ラミック板2と、Cu電極3を有するガラスファイバー
強化エポキシ板6とを導電性微粒子4を用いて導電接合
した基板である。セラミック板2には、LSI半導体チ
ップ1が接続されている。導電性微粒子4は、本発明1
の導電性微粒子である。 【0023】セラミック板2側のCu電極3及びガラス
ファイバー強化エポキシ樹脂板6側のCu電極3の間
は、共晶ハンダ5によって導電性微粒子4が接着されて
いる。また、電極基板同士だけではなく、LSI半導体
チップ1とセラミック板2との接続部分も、導電性微粒
子4を使用して導電接合したものであってもよい。 【0024】本発明2の基板は、LSI半導体チップ等
の素子や電極基板と導電性微粒子とが接触する部分が共
晶ハンダにより充分に接合されているので、接触抵抗値
を極めて低いレベルに保つことができ、接合部分のハン
ダが拡がることなく、隣接する電極をショートさせるこ
とはない。 【0025】 【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。 【0026】実施例1 ジビニルベンゼン及びテトラメチロールメタンテトラア
クリレート(重量比1/1)からなる共重合架橋体微粒
子を基材微粒子として用いた(平均粒子径650μm、
標準偏差19μm)。無電解メッキ法により、0.18
μm厚みのニッケル層を下地メッキ層として形成した。
この微粒子27gを用いて図2に示した電気メッキ装置
により、高融点ハンダメッキを行った。メッキ浴は、鉛
が11.5g/L、錫が3.5g/Lの組成からなる水
溶液を使用し、浴電圧11.6V、電流密度2A/dm
2 の条件下で、5分間メッキを行った。その結果、5μ
m厚さのハンダ層を有する導電性微粒子を得た。 【0027】図1に示したガラスファイバー強化エポキ
シ樹脂製電極基板のCu電極部に、スクリーン印刷によ
りクリームハンダを80μmの厚さで形成した。つい
で、この上に、上記導電性微粒子を配置した。同様に、
クリームハンダを塗布したセラミック製の電極基板を互
いの電極部が対向する配置で重ね合わせ、300℃に加
熱しながら接合させた。両基板電極間の導電接合状態は
良好であり、−40℃/120℃の熱サイクル試験を1
000サイクル実施した後も、性能低下は全く認められ
なかった。 【0028】実施例2 ニッケルメッキ時間を9分間としたこと以外は実施例1
と同様の条件でメッキを行った。その結果、11μm厚
さのハンダ層を有する導電性微粒子を得た。この微粒子
を用いて、実施例1と同様の基板接合試験を行った結
果、両基板電極間の導電接合状態は良好であり、−40
℃/120℃の熱サイクル試験を1000サイクル実施
した後も、性能低下は全く認められなかった。 【0029】比較例1 ジビニルベンゼン及びテトラメチロールメタンテトラア
クリレート(重量比1/1)からなる共重合架橋体微粒
子を基材微粒子として用いた(平均粒子径650μm、
標準偏差19μm)。無電解メッキ法により、0.18
μm厚みのニッケル層を形成した。この微粒子を用い
て、図1に示したガラスファイバー強化エポキシ樹脂製
電極基板のCu電極部にスクリーン印刷によりクリーム
ハンダを80μm厚さで形成した。ついで、この上に、
上記ニッケル被覆微粒子を配置した。同様に、クリーム
ハンダを塗布したセラミック製の電極基板を互いの電極
部が対向する配置で重ね合わせ、300℃に加熱しなが
ら接合させた。両基板電極間の導電接合状態は不良であ
り、その原因を調べたところ、加熱時にクリームハンダ
中のフラックスの作用により、ニッケルメッキ層の基材
表面からの剥離が生じていることが明らかとなった。 【0030】 【発明の効果】本発明の導電性微粒子及び基板は上述の
構成よりなるので、電極基板及び素子、又は、電極基板
同士の接合を良好に行うことができ、熱サイクルによる
接続不良がなく、LSI半導体チップ等の電子部品と電
極基板とを導電接合する液晶表示素子等の製造に好適に
使用することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device such as a semiconductor,
The present invention relates to a substrate which is conductively bonded using conductive fine particles used for conductively bonding an electrode substrate or the like. 2. Description of the Related Art When manufacturing electronic devices such as liquid crystal display elements, conductive bonding has conventionally been performed in bonding an integrated circuit (LSI) semiconductor chip to a substrate having electrodes such as a liquid crystal display panel. Has been done. As a material used for conductive bonding, for example, JP-A-62-61204 discloses a conductive adhesive sheet obtained by kneading a solder alloy and a plastic material. JP, JP-A-62-161187, JP-A-62-161187
Japanese Patent No. 127194 discloses a material for conductively joining an electrode substrate and an electronic component such as a semiconductor chip by using solder. [0003] As a method for conducting conductive bonding using conductive fine particles, for example, Japanese Patent Application Laid-Open No. 62-41238 discloses a method in which nickel or nickel having a thickness of 0.1 to 5 µm is coated on the surface of a copper core. A conductive filler provided with a coating layer of an alloy is disclosed. Japanese Utility Model Application Laid-Open No. 62-86011 discloses solder-coated nickel particles. It is used as an adhesive when blended with molecular materials and paints. Japanese Patent Application Laid-Open No. 62-199611 discloses a conductive composition containing spherical particles having a conductive outer surface made of a metal selected from platinum, palladium and gold. JP-A-246705 and JP-A-1-246706 disclose a conductive paste containing spherical fine particles having a layer made of an oxidation-resistant metal such as silver, nickel, gold, or palladium on the surface of copper particles. . In addition, there has been proposed a method in which silver fine powder is mixed into an epoxy resin and conductive fine particles formed into a particle shape are used. In these techniques, metal spherical particles of copper, nickel or the like are used as a core, and fine particles whose surface is coated with a metal such as palladium or gold are used. However, when metal particles such as copper are used as the core, the conductive fine particles are hard and have poor elasticity, so that stress tends to concentrate on the joints, and there is a disadvantage that the reliability of the obtained electronic device is reduced. There are also problems such as the particle size distribution of the metal spherical particles that become the body being too wide, and the metal covering the surface being expensive. Further, when a mixture of silver fine powder in an epoxy resin is molded into particles and used, it is difficult to lower the electric resistance value. Further, at the time of joining, since an organic polymer material or the like is used as an adhesive, electrical connection is made by conductive fine particles, and mechanical connection is made by an organic polymer material or the like. The electronic components joined by the simple joining method have problems such as that when the temperature is high, the organic polymer material or the like thermally expands and the electrical connection becomes poor, and the electric resistance value increases. [0007] As a conductive bonding method without using an adhesive such as an organic polymer material, a ball grip array (B) is currently used.
GA), flip tics, etc., and solder particles are widely used as conductive fine particles. However, when the solder particles are joined by heating and melting, when the solder at the joining portion is easy to spread, the adjacent electrodes are easily short-circuited, and the gap between the electrode substrate and the electronic component such as a semiconductor chip changes, the solder particles are identified. There is a problem that a load is likely to be applied to the joint portion of the above. SUMMARY OF THE INVENTION In view of the above, the present invention satisfactorily performs bonding of elements such as an electrode substrate and a semiconductor chip, or of electrode substrates by a conductive bonding method such as BGA or flip tic. Can be, and conductive fine particles with excellent elasticity, as well as conductively joined using it,
An object of the present invention is to provide a substrate free from connection failure due to a thermal cycle. The above object can be achieved by conductive fine particles having a metal plating layer having solder wettability on the surface of base fine particles made of resin. Hereinafter, the present invention will be described in detail. The base particles used in the present invention are made of a resin. The resin is not particularly limited, for example, a phenol resin, an amino resin, an acrylic resin, a polyester resin, a urea resin, a melamine resin, an alkyd resin, a polyimide resin, a urethane resin, a cross-linked or non-cross-linked synthetic resin such as an epoxy resin. An organic-inorganic hybrid polymer and the like. The compression hardness (K value) of the base fine particles is 1
00-1000 kg / mm < 2 > is preferable. 100kg /
If it is less than 2 mm 2, it is not practical and 1000 kg / m
If it exceeds m 2 , it is too hard, and when used as conductive fine particles, stress is likely to be applied to the joint. Where K
The value is a value defined by the following equation (1), and represents universally and quantitatively the hardness of a sphere. K = (3 / √2) · F · S −3/2 / R −1/2 (1) In the formula, F represents a load value (kg) at 10% compressive deformation of the base fine particles, and S represents , The compression displacement (mm), R
Represents the radius (mm) of the particle. The average particle diameter of the base fine particles is 1 μm to
3 mm is preferred. If it is less than 1 μm, the electrode substrates may come into direct contact with each other to cause a short circuit, and if it exceeds 3 mm, it may be difficult to perform fine pitch electrode bonding. The conductive fine particles of the present invention 1 have a metal plating layer having solder wettability on the surface of the base fine particles. In the present specification, the solder wettability, the property of spreading the solder melted smoothly and smoothly without interruption, and, when heated, can form one liquid phase with the molten solder, It means a property that can be eutectic when cooled. The metal forming the metal plating layer having solder wettability is preferably a high melting point metal having good solder wettability.
Point solder is used. The melting point of the high melting point solder is 3
It is 00 ° C or higher. The thickness of the metal plating layer is 0.01 to 5
00 μm is preferred. When the thickness is less than 0.01 μm, when used for conductive bonding, the metal plating layer may be peeled off from the surface by heating, and furthermore, a preferable conductivity cannot be obtained because the thickness of the conductive plating layer is thin. is there.
On the other hand, if it exceeds 500 μm, the thickness of the conductive plating layer becomes too large, and the mechanical properties of the base particles may be lost. When a high melting point solder is used as the metal forming the metal plating layer, the thickness of the metal plating layer is set to 0.1 mm.
It is preferably from 01 to 100 μm. The method for forming the metal plating layer is not particularly limited, and examples thereof include electroless plating, hot dipping, diffusion plating, electroplating, thermal spraying, and vapor deposition. The metal plating layer can be formed by using these methods alone or by combining them. The conductive fine particles according to the first aspect of the present invention include the above-described metal mesh.
It has an underlying plating layer. The metal forming the base plating layer is not particularly limited, and examples thereof include nickel. Since the conductive fine particles of the present invention 1 use resin particles as the base fine particles, they have excellent elasticity, and when used for conductive bonding, stress is not easily applied to the bonding portion. The distance between the substrates and the like can be kept constant. Further, it is possible to reduce a shear stress due to a relative position shift between the electrodes due to thermal expansion and contraction of the electrode substrate and the element due to a temperature change. Further, the conductive fine particles of the present invention 1 have a metal plating layer having solder wettability on the surface of the base fine particles. Since the conductive fine particles of the present invention 1 are sufficiently adhered to the electrode substrate and the like to which the crystal solder permeates and are bonded, the contact resistance value can be kept at an extremely low level. The present invention 1 provides a device and an electrode substrate, or 2
This is a substrate formed by conductively bonding at least one electrode substrate.
The element is not particularly limited, and examples include an LSI semiconductor chip and a capacitor chip. The electrode substrate is not particularly limited, and examples thereof include a glass plate, a ceramic plate, a synthetic resin plate, and the like, on the surface of which an electrode is formed with ITO or the like. In the conductive bonding, a bonding portion between the element and the electrode substrate or a bonding portion between the two or more electrode substrates is bonded via the conductive fine particles. The method of the conductive bonding is not particularly limited, and examples thereof include BGA and flip tic. The conductive joining can be performed, for example, as follows. The cream solder is screen-printed on the bonding portion of the LSI semiconductor chip with a thickness of 50 to 80 μm. The conductive fine particles of the present invention 1 are placed thereon, and an electrode substrate on which cream solder is screen-printed is bonded to the bonding portion in the same manner as the above-mentioned LSI semiconductor chip, and heated at about 300 ° C. for bonding. Here, the substrate of the present invention 1 will be described in detail with reference to the drawings. FIG. 1 shows a substrate in which a ceramic plate 2 having a Cu electrode 3 and a glass fiber reinforced epoxy plate 6 having a Cu electrode 3 are conductively bonded using conductive fine particles 4. An LSI semiconductor chip 1 is connected to the ceramic plate 2. The conductive fine particles 4 according to the present invention 1
Conductive fine particles. Between the Cu electrode 3 on the ceramic plate 2 side and the Cu electrode 3 on the glass fiber reinforced epoxy resin plate 6 side, conductive fine particles 4 are adhered by eutectic solder 5. In addition, not only the electrode substrates but also the connection between the LSI semiconductor chip 1 and the ceramic plate 2 may be conductively bonded using the conductive fine particles 4. In the substrate according to the second aspect of the present invention, the contact portion between the element such as an LSI semiconductor chip or the electrode substrate and the conductive fine particles is sufficiently bonded by eutectic solder, so that the contact resistance value is kept at an extremely low level. It is possible to prevent the adjacent electrodes from being short-circuited without spreading the solder at the joint. The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 Crosslinked copolymer fine particles comprising divinylbenzene and tetramethylolmethanetetraacrylate (weight ratio: 1/1) were used as base particles (average particle diameter: 650 μm,
Standard deviation 19 μm). 0.18 by electroless plating
A nickel layer having a thickness of μm was formed as a base plating layer.
Using 27 g of the fine particles, high melting point solder plating was performed by the electroplating apparatus shown in FIG. As the plating bath, an aqueous solution having a composition of 11.5 g / L of lead and 3.5 g / L of tin was used, a bath voltage of 11.6 V, and a current density of 2 A / dm.
Under the conditions of 2 , plating was performed for 5 minutes. As a result, 5μ
Conductive fine particles having a m-thick solder layer were obtained. A cream solder having a thickness of 80 μm was formed by screen printing on the Cu electrode portion of the glass fiber reinforced epoxy resin electrode substrate shown in FIG. Next, the conductive fine particles were disposed thereon. Similarly,
The electrode substrates made of ceramic to which cream solder was applied were overlapped with each other so that the electrode portions faced each other, and were joined while being heated to 300 ° C. The conductive bonding state between both substrate electrodes was good, and a heat cycle test at -40 ° C / 120 ° C
No performance degradation was observed after 000 cycles. Example 2 Example 1 except that the nickel plating time was 9 minutes.
The plating was carried out under the same conditions as described above. As a result, conductive fine particles having a solder layer having a thickness of 11 μm were obtained. As a result of performing a substrate bonding test in the same manner as in Example 1 using these fine particles, the conductive bonding state between the two substrate electrodes was good, and −40.
Even after 1000 cycles of the thermal cycle test of 120 ° C./120° C., no deterioration in performance was observed. Comparative Example 1 Crosslinked copolymer fine particles comprising divinylbenzene and tetramethylolmethanetetraacrylate (weight ratio: 1/1) were used as base particles (average particle diameter: 650 μm,
Standard deviation 19 μm). 0.18 by electroless plating
A nickel layer having a thickness of μm was formed. Using these fine particles, a cream solder having a thickness of 80 μm was formed on the Cu electrode portion of the glass fiber reinforced epoxy resin electrode substrate shown in FIG. 1 by screen printing. Then, on this,
The nickel-coated fine particles were arranged. Similarly, a ceramic electrode substrate to which cream solder was applied was overlapped in an arrangement in which the electrode portions face each other, and joined while heating to 300 ° C. The conductive bonding state between the two substrate electrodes was poor, and the cause was investigated. It was found that the nickel plating layer was peeled off from the substrate surface due to the action of the flux in the cream solder during heating. Was. Since the conductive fine particles and the substrate of the present invention have the above-mentioned constitution, the electrode substrate and the element or the electrode substrate can be joined well, and the connection failure due to the heat cycle is reduced. Therefore, the present invention can be suitably used for manufacturing a liquid crystal display element or the like in which an electronic component such as an LSI semiconductor chip and an electrode substrate are conductively joined.

【図面の簡単な説明】 【図1】本発明の基板の一実施形態を表す断面図であ
る。 【図2】本発明の導電性微粒子を製造する際に使用する
電気メッキ装置の断面図である。 【符号の説明】 1 LSI半導体チップ 2 セラミック板 3 Cu電極 4 導電性微粒子 5 共晶ハンダ 6 ガラスファイバー強化エポキシ樹脂板 11 カバー 12 電極 12a陽極 13 回転軸 14 蓋 15 容器 16 メッキ液供給管 17 メッキ液排出管 18 開口部 21 底板 22 接触リング(陰極) 23 多孔質リング
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view illustrating an embodiment of a substrate of the present invention. FIG. 2 is a cross-sectional view of an electroplating apparatus used when producing the conductive fine particles of the present invention. [Description of Signs] 1 LSI semiconductor chip 2 Ceramic plate 3 Cu electrode 4 Conductive fine particles 5 Eutectic solder 6 Glass fiber reinforced epoxy resin plate 11 Cover 12 Electrode 12a anode 13 Rotating shaft 14 Cover 15 Container 16 Plating solution supply pipe 17 Plating Liquid discharge pipe 18 Opening 21 Bottom plate 22 Contact ring (cathode) 23 Porous ring

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−242010(JP,A) 特開 平7−50104(JP,A) 特開 平5−36306(JP,A) 特開 平7−157720(JP,A) 特開 昭62−177082(JP,A) 特表2000−507047(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 1/00,5/00 H01L 23/12 H01R 11/01 H05K 3/32 - 3/36 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-242010 (JP, A) JP-A-7-50104 (JP, A) JP-A-5-36306 (JP, A) JP-A-7-104 157720 (JP, A) JP-A-62-177082 (JP, A) JP 2000-507047 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 1/00, 5 / 00 H01L 23/12 H01R 11/01 H05K 3/32-3/36

Claims (1)

(57)【特許請求の範囲】 【請求項1】 素子及び電極基板、又は、2枚以上の電
極基板が、導電接合されてなる基板であって、前記導電
接合は、前記素子及び前記電極基板の接合部分、又は、
前記2枚以上の電極基板の接合部分が、樹脂からなる基
材微粒子の表面に下地メッキ層とハンダ濡れ性を有する
金属メッキ層とを有してなる導電性微粒子であって、前
記金属メッキ層は、融点が300℃以上である高融点ハ
ンダ層である導電性微粒子を介して、前記接合部分に形
成された共晶ハンダにより接合されているものであるこ
とを特徴とする基板。
(57) Claims 1. An element and an electrode substrate, or a substrate formed by conductively bonding two or more electrode substrates, wherein the conductive junction is formed by the element and the electrode substrate. The junction, or
The bonding portion of the two or more electrode substrates is a conductive fine particle having a base plating layer and a metal plating layer having solder wettability on the surface of a base fine particle made of a resin, wherein the metal plating layer Wherein the substrate is joined by eutectic solder formed at the joint portion via conductive fine particles, which are high melting point solder layers having a melting point of 300 ° C. or higher.
JP13760696A 1996-05-07 1996-05-07 Conductive fine particles and substrate Expired - Fee Related JP3505321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13760696A JP3505321B2 (en) 1996-05-07 1996-05-07 Conductive fine particles and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13760696A JP3505321B2 (en) 1996-05-07 1996-05-07 Conductive fine particles and substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003363563A Division JP2004149923A (en) 2003-10-23 2003-10-23 Electrically-conductive particulate and substrate

Publications (2)

Publication Number Publication Date
JPH09306232A JPH09306232A (en) 1997-11-28
JP3505321B2 true JP3505321B2 (en) 2004-03-08

Family

ID=15202625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13760696A Expired - Fee Related JP3505321B2 (en) 1996-05-07 1996-05-07 Conductive fine particles and substrate

Country Status (1)

Country Link
JP (1) JP3505321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329911A4 (en) * 2000-08-04 2006-11-08 Sekisui Chemical Co Ltd Conductive fine particles, method for plating fine particles, and substrate structural body

Also Published As

Publication number Publication date
JPH09306232A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
KR950008410B1 (en) A method for electrically connecting ic chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
US5001542A (en) Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
US5667884A (en) Area bonding conductive adhesive preforms
KR100290993B1 (en) Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
US7879445B2 (en) Adhesive for bonding circuit members, circuit board and process for its production
JP3454509B2 (en) How to use conductive materials
US6059952A (en) Method of fabricating coated powder materials and their use for high conductivity paste applications
CN102482540A (en) Anisotropic conductive adhesive for ultrasonic wave adhesion, and electronic parts connection method using same
US20110095235A1 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
EP1198162A2 (en) Electronic component mounted member and repair method thereof
JP3542874B2 (en) Conductive fine particles
JPH09306231A (en) Conductive particulate and substrate
JP3505321B2 (en) Conductive fine particles and substrate
KR20080070052A (en) Method for connecting printed circuit boards
JP3464826B2 (en) Semiconductor device
CN1900195B (en) Adhesive agent for circuit member connection, circuit board and its producing method
JP3422243B2 (en) Resin film
JP2003068145A (en) Conductive fine particle and conductive connection structure
WATANABE et al. Flip-chip Interconnection to Various Substrates Using Anisotropic Conductive Adhesive Films
JP2004149923A (en) Electrically-conductive particulate and substrate
JP3682156B2 (en) Conductive fine particles and conductive connection structure
KR980013552A (en) A connection sheet for mutually connecting the electrodes facing each other, and an electrode connection structure and a connection method using the connection sheet
JPH0574846A (en) Electrically connecting method
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees