JP2003068142A - Conductive fine particle and conductive connection structure - Google Patents

Conductive fine particle and conductive connection structure

Info

Publication number
JP2003068142A
JP2003068142A JP2001253088A JP2001253088A JP2003068142A JP 2003068142 A JP2003068142 A JP 2003068142A JP 2001253088 A JP2001253088 A JP 2001253088A JP 2001253088 A JP2001253088 A JP 2001253088A JP 2003068142 A JP2003068142 A JP 2003068142A
Authority
JP
Japan
Prior art keywords
layer
conductive
fine particles
thickness
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001253088A
Other languages
Japanese (ja)
Inventor
Masami Okuda
正己 奥田
Nobuyuki Okinaga
信幸 沖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001253088A priority Critical patent/JP2003068142A/en
Publication of JP2003068142A publication Critical patent/JP2003068142A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive fine particle and a conductive connection structure capable of securing connection reliability by relaxing force imposed on a circuit such as a board and by keeping the distance between boards constant. SOLUTION: This fine particle is formed by covering the surface of a base material fine particle formed of a resin with a three-layer metal layer. In the conductive fine particle, the metal layer comprises the first layer of a nickel layer, the second layer of a copper layer and the third layer of a solder layer in the order from the innermost layer, the thickness of the nickel layer is 0.1-1 μm, the thickness of the copper layer is 0.1-5% of the particle diameter of the base material fine particle, and the thickness of the solder layer is 0.1-10% of the base material fine particle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路の2つ以
上の電極を接続するのに使用され、回路中にかかる力を
緩和することにより、接続信頼性を向上することができ
る導電性微粒子及びそれを用いてなる導電接続構造体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for connecting two or more electrodes of an electric circuit, and is capable of improving connection reliability by relaxing the force applied in the circuit. And a conductive connection structure using the same.

【0002】[0002]

【従来の技術】従来、電子回路基板において、ICやL
SIを接続するためには、それぞれのピンをプリント基
板上にハンダ付けしていたが、この方法は、生産効率が
悪く、また、高密度化には適さないものであった。これ
らの課題を解決するために、ハンダを球状にした、いわ
ゆるハンダボールで基板と接続するBGA(ボールグリ
ッドアレイ)等の技術が開発されたが、この技術によれ
ば、チップ又は基板上に実装されたハンダボールを高温
で溶融しながら基板とチップとを接続することで、高生
産性と高接続信頼性とを両立した電子回路を構成でき
る。しかしながら、最近基板の多層化が進み、基板自体
の外環境変化による歪みや伸縮が発生し、結果としてこ
れらの力が基板間の接続部にかかることによる断線が発
生することが問題となっていた。また、多層化によっ
て、基板間の距離がほとんどとれなくなり、基板間の距
離を維持するために別途スペーサ等を置かなければなら
ず手間や費用がかかることが問題となっていた。
2. Description of the Related Art Conventionally, in electronic circuit boards, ICs and L
In order to connect SI, each pin was soldered on a printed circuit board, but this method had poor production efficiency and was not suitable for high density. In order to solve these problems, a technique such as BGA (ball grid array) in which solder is made spherical, which is connected to a substrate by a so-called solder ball has been developed. According to this technique, it is mounted on a chip or a substrate. By connecting the substrate and the chip while melting the solder ball produced at a high temperature, it is possible to configure an electronic circuit having both high productivity and high connection reliability. However, the multilayering of substrates has recently progressed, and distortion and expansion and contraction have occurred due to changes in the external environment of the substrates themselves, resulting in disconnection due to the application of these forces to the connecting portions between the substrates. . Further, due to the multi-layer structure, the distance between the substrates can hardly be taken, and a separate spacer or the like must be placed in order to maintain the distance between the substrates, which is troublesome and costly.

【0003】これらを解決する手段として、基板等の回
路に掛かる力の緩和については、基板接続部に樹脂等を
塗布して補強することが行われており、これは接続信頼
性の向上には一定の効果を示したが、手間がかかり、ま
た塗布工程が増えることにより費用が増大するという問
題があった。また、基板間の距離の維持については、銅
の周りにハンダをコーティングしたボールにより、ハン
ダのように溶融しない銅が支えとなり、基板間の距離を
維持することも可能であるが(特開平11−74311
号公報参照)、銅は高価であり、また、重量もあること
から安価・軽量な材料が求められていた。
As a means for solving these problems, in order to reduce the force applied to the circuit of the board or the like, a resin or the like is applied to the board connecting portion to reinforce it. This is to improve the connection reliability. Although a certain effect was exhibited, there was a problem that it took time and labor and the cost increased due to the increase of the coating process. As for maintaining the distance between the substrates, it is also possible to maintain the distance between the substrates by using a ball coated with solder around copper, which is supported by copper that does not melt like solder. -74311
Since the copper is expensive and has a heavy weight, an inexpensive and lightweight material has been demanded.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に鑑
み、基板等の回路にかかる力を緩和して、基板間の距離
を一定に維持することにより、接続信頼性を担保するこ
とができる導電性微粒子及び導電接続構造体を提供する
ことを目的とする。
In view of the above, the present invention can secure connection reliability by relaxing the force applied to a circuit such as a board and maintaining a constant distance between the boards. An object is to provide a conductive fine particle and a conductive connection structure.

【0005】[0005]

【課題を解決するための手段】本発明は、樹脂からなる
基材微粒子の表面が3層の金属層に覆われてなる導電性
微粒子であって、前記金属層は、内層から順に、第1層
がニッケル層であり、第2層が銅層であり、第3層がハ
ンダ層であり、前記ニッケル層の厚みは、0.1〜1μ
mであり、前記銅層の厚みは、前記基材微粒子の粒径の
0.1〜5%であり、前記ハンダ層の厚みは、前記基材
微粒子の粒径の0.1〜10%である導電性微粒子であ
る。以下に本発明を詳述する。
The present invention is a conductive fine particle in which the surface of a base fine particle made of a resin is covered with three metal layers, and the metal layer is a first layer in order from the inner layer. The layer is a nickel layer, the second layer is a copper layer, the third layer is a solder layer, and the thickness of the nickel layer is 0.1 to 1 μm.
m, the thickness of the copper layer is 0.1 to 5% of the particle diameter of the base fine particles, and the thickness of the solder layer is 0.1 to 10% of the particle diameter of the base fine particles. It is a certain conductive fine particle. The present invention is described in detail below.

【0006】本発明の導電性微粒子は、樹脂からなる基
材微粒子の表面が3層の金属層に覆われてなるものであ
る。上記基材微粒子を構成する樹脂としては特に限定さ
れず、例えば、フェノール樹脂、アミノ樹脂、アクリル
樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹脂、ア
ルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ
樹脂等の架橋型又は非架橋型合成樹脂;有機−無機ハイ
ブリッド重合体等が挙げられる。これらは単独で用いら
れてもよく、2種類以上が併用されてもよい。
The conductive fine particles of the present invention are those in which the surface of base fine particles made of resin is covered with three metal layers. The resin constituting the base fine particles is not particularly limited, and examples thereof include phenol resin, amino resin, acrylic resin, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, and epoxy resin. Or a non-crosslinking type synthetic resin; an organic-inorganic hybrid polymer and the like. These may be used alone or in combination of two or more.

【0007】上記基材微粒子の平均粒径は、1μm〜3
mmであることが好ましい。1μm未満であると、基板
の接合に用いた場合、基板同士が直接接触してショート
することがあり、3mmを超えると、微細ピッチの電極
を接合しにくくなることがある。
The average particle diameter of the base fine particles is 1 μm to 3 μm.
It is preferably mm. If it is less than 1 μm, when used for joining the substrates, the substrates may come into direct contact with each other to cause a short circuit. If it exceeds 3 mm, it may be difficult to join the electrodes having a fine pitch.

【0008】本発明の導電性微粒子の金属層は、内層か
ら順に、第1層がニッケル層であり、第2層が銅層であ
り、第3層がハンダ層であり、ニッケル層の厚みは、
0.1μm〜1μmであり、銅層の厚みは、基材微粒子
の粒径の0.1〜5%であり、ハンダ層の厚みは、基材
微粒子の粒径の0.1〜10%である。
In the metal layer of the conductive fine particles of the present invention, the first layer is a nickel layer, the second layer is a copper layer, the third layer is a solder layer, and the thickness of the nickel layer is in order from the inner layer. ,
0.1 μm to 1 μm, the thickness of the copper layer is 0.1 to 5% of the particle diameter of the base fine particles, and the thickness of the solder layer is 0.1 to 10% of the particle diameter of the base fine particles. is there.

【0009】樹脂からなる基材微粒子の表面に形成する
ニッケル層は、その外側に形成する銅層の下地となるも
ので、膜厚は0.1〜1μmである。第2層の銅層は、
導電性及び第3層のハンダ層の濡れ性を確保するための
ものであり、膜厚は基材微粒子の粒径の0.1〜5%で
ある。5%を超えると、導電性微粒子の柔軟性が失わ
れ、基板にかかる力を緩和する能力が悪化する。第3層
のハンダ層は、リフローにより基板との接合を行うため
のもので、膜厚は、基材微粒子の粒径の0.1〜10%
である。0.1%未満であると、基板接合が不完全とな
り、10%を超えると、他の端子とショートする恐れが
ある。
The nickel layer formed on the surface of the base fine particles made of a resin serves as a base of the copper layer formed on the outside thereof and has a film thickness of 0.1 to 1 μm. The second copper layer is
It is for ensuring conductivity and wettability of the third solder layer, and the film thickness is 0.1 to 5% of the particle diameter of the base fine particles. When it exceeds 5%, the flexibility of the conductive fine particles is lost, and the ability to relax the force applied to the substrate deteriorates. The third solder layer is for bonding to the substrate by reflow, and the film thickness is 0.1 to 10% of the particle diameter of the base fine particles.
Is. If it is less than 0.1%, the substrate bonding is incomplete, and if it exceeds 10%, it may cause a short circuit with another terminal.

【0010】本発明の導電性微粒子の表面に金属層を形
成する方法としては特に限定されず、例えば、無電解メ
ッキによる方法、金属微粉を単独又はバインダーに混ぜ
合わせて得られるペーストを基材微粒子にコーティング
する方法;真空蒸着、イオンプレーティング、イオンス
パッタリング等の物理的蒸着方法等が挙げられる。
The method for forming the metal layer on the surface of the conductive fine particles of the present invention is not particularly limited. For example, a method by electroless plating, a paste obtained by mixing fine metal powder alone or with a binder is used as base fine particles. A physical vapor deposition method such as vacuum vapor deposition, ion plating, or ion sputtering.

【0011】本発明の導電性微粒子の粒径としては特に
限定されないが、1〜1000μmであることが好まし
い。1μm未満であると、金属層を形成する際に凝集し
やすく、単粒子としにくくなることがあり、1000μ
mを超えると、金属層がひび割れを起こして、基材微粒
子から剥離し易くなることがある。
The particle size of the conductive fine particles of the present invention is not particularly limited, but is preferably 1 to 1000 μm. If it is less than 1 μm, it may easily aggregate when forming the metal layer, and it may be difficult to form a single particle.
When it exceeds m, the metal layer may be cracked and may be easily separated from the base fine particles.

【0012】本発明の導電性微粒子は、基材微粒子とし
て樹脂粒子を用い、金属層を特定の構成とすることによ
り、弾力性に優れ、導電接合に使用された場合に接合部
分に応力が掛かりにくいうえ、対向する基板等の間隔を
一定に保持することができる。また、温度変化による基
板、素子等の熱膨張及び収縮による電極間の相対位置の
ズレによる剪断応力を緩和することができる。
The conductive fine particles of the present invention are excellent in elasticity by using resin particles as the base fine particles and having a specific structure of the metal layer, and stress is applied to the bonding portion when used for conductive bonding. In addition to being difficult, it is possible to keep the distance between the opposing substrates constant. Further, it is possible to relieve the shear stress due to the displacement of the relative position between the electrodes due to the thermal expansion and contraction of the substrate, the element and the like due to the temperature change.

【0013】本発明の導電性微粒子は、そのまま、又
は、マイクロ素子実装用の導電接着剤、異方性導電接着
剤、異方性導電シート等の導電材料として、基板・部品
間の接続に用いられる。
The conductive fine particles of the present invention are used as they are or as a conductive material for mounting a micro device, such as a conductive adhesive, an anisotropic conductive adhesive, an anisotropic conductive sheet, etc., for connection between substrates and parts. To be

【0014】上記基板や部品を接合し、基板・部品間を
電気的に接続する方法としては、本発明の導電性微粒子
を用いて接合する方法であれば特に限定されず、例え
ば、以下のような方法等が挙げられる。 (1)基板上に形成された電極の上に本発明の導電性微
粒子を置き、加熱溶融することで電極上に固定する。そ
の後、もう一方の基板を電極が対向するように置き加熱
溶融することで両基板を接合する方法。 (2)表面に電極が形成された基板又は部品の上に、異
方性導電シートを載せた後、もう一方の基板又は部品を
電極面が対向するように置き、加熱、加圧して接合する
方法。 (3)異方性導電シートを用いる代わりに、スクリーン
印刷やディスペンサー等の手段で異方性導電接着剤を供
給し接合する方法。 (4)導電性微粒子を介して張り合わせた二つの電極部
の間隙に液状のバインダーを供給した後で硬化させて接
合する方法。
The method for joining the above-mentioned substrates and components and electrically connecting the substrates and components is not particularly limited as long as it is a method for joining using the conductive fine particles of the present invention. There are various methods. (1) The conductive fine particles of the present invention are placed on an electrode formed on a substrate and heated and melted to be fixed on the electrode. Then, the other substrate is placed so that the electrodes face each other, and the two substrates are joined by heating and melting. (2) After placing the anisotropic conductive sheet on the substrate or component having the electrodes formed on the surface, place the other substrate or component so that the electrode surfaces face each other, and heat and pressurize to join. Method. (3) Instead of using the anisotropic conductive sheet, a method such as screen printing or a dispenser is used to supply and bond the anisotropic conductive adhesive. (4) A method in which a liquid binder is supplied to a gap between two electrode portions bonded together via conductive fine particles, and then the liquid binder is cured to be bonded.

【0015】上記のようにして基板又は部品の接合体、
即ち、導電接続構造体を得ることができる。本発明の導
電性微粒子により接続されてなる導電接続構造体もま
た、本発明の1つである。
As described above, a joined body of substrates or parts,
That is, a conductive connection structure can be obtained. A conductive connection structure formed by connecting the conductive fine particles of the present invention is also one aspect of the present invention.

【0016】[0016]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0017】(実施例)スチレンとジビニルベンゼンと
を共重合させて基材微粒子を作製した。この基材微粒子
100個を測定した結果、平均粒径は701.5μmで
あった。この基材微粒子に導電下地層としてニッケルめ
っき層を形成した。得られたニッケルめっき微粒子30
gをとり、バレルめっき装置を用いてその表面に銅めっ
きを施し、更にその上に共晶ハンダめっきを行った。め
っきバレルとしては、径50mm、高さ50mmの正五
角柱状で、側面の1面のみに孔径20μmのメッシュの
フィルタが取り付けられているものを用いた。
(Example) Styrene and divinylbenzene were copolymerized to prepare base fine particles. As a result of measuring 100 of the base fine particles, the average particle diameter was 701.5 μm. A nickel plating layer was formed as a conductive underlayer on the base fine particles. Obtained nickel plating fine particles 30
g was taken, copper plating was applied to the surface thereof using a barrel plating device, and eutectic solder plating was applied onto the copper plating. The plating barrel used was a regular pentagonal prism having a diameter of 50 mm and a height of 50 mm, and a mesh filter having a pore diameter of 20 μm was attached to only one side surface.

【0018】この装置を用いて銅めっき液中で1時間通
電し、めっきバレルを正五角形の中心同士を通る軸を中
心に50rpmで回転し、銅めっきを行い、洗浄を行っ
た。その後に共晶ハンダめっき液中で3時間通電しなが
ら、同様にめっきバレルを回転し、共晶ハンダめっきを
行った。
Using this apparatus, electricity was applied for 1 hour in a copper plating solution, and the plating barrel was rotated at 50 rpm about an axis passing through the centers of regular pentagons to perform copper plating and washing. After that, the eutectic solder plating was performed by rotating the plating barrel in the same manner while energizing the eutectic solder plating solution for 3 hours.

【0019】このようにして得られた最外殻が共晶ハン
ダめっき層である導電性微粒子を顕微鏡で観察したとこ
ろ、全く凝集がなく、すべての粒子が単粒子として存在
していることが確認された。また、この導電性微粒子1
00個を測定した結果、平均粒径は755.3μmであ
った。
Observation of the conductive fine particles having the eutectic solder-plated layer as the outermost shell obtained in this manner under a microscope confirmed that there was no aggregation at all and all the particles were present as single particles. Was done. In addition, the conductive fine particles 1
As a result of measuring 00 pieces, the average particle diameter was 755.3 μm.

【0020】また、得られた導電性微粒子の粒子切断面
を測定したところ、ニッケルめっき層の厚みは0.3μ
m、銅めっき層の厚みは6.3μm、共晶ハンダめっき
層の厚みは19.8μmであった。銅めっき層の厚み、
共晶ハンダめっき層の厚みは、基材微粒子の平均粒径に
対してそれぞれ、0.9%、2.8%であった。このよ
うにして得られた導電性微粒子をダミーチップ上に計2
4個置き、これを赤外線リフロー装置を用いてプリント
基板に接合した。
When the particle cut surface of the obtained conductive fine particles was measured, the thickness of the nickel plating layer was 0.3 μm.
m, the thickness of the copper plating layer was 6.3 μm, and the thickness of the eutectic solder plating layer was 19.8 μm. The thickness of the copper plating layer,
The thickness of the eutectic solder plating layer was 0.9% and 2.8% with respect to the average particle diameter of the base fine particles, respectively. A total of 2 conductive particles obtained in this way were placed on the dummy chip.
Four pieces were placed and bonded to a printed board using an infrared reflow device.

【0021】(比較例)銅めっき層の厚みを50μmと
した他は、実施例と同じ基材微粒子に同様のめっきを行
った。めっき後の導電性微粒子100個を測定した結
果、平均粒径は833.0μmであった。また、粒子切
断面の測定から、ニッケルめっき層の厚みは、0.3μ
m、銅めっき層の厚みは、49.0μm、共晶ハンダめ
っき層の厚みは、17.5μmであった。銅めっき層の
厚み、共晶ハンダめっき層の厚みは、基材微粒子の平均
粒径に対してそれぞれ、7.0%、2.5%であった。
このようにして得られた導電性微粒子をダミーチップ上
に計24個置き、これを赤外線リフロー装置を用いてプ
リント基板に接合した。
(Comparative Example) The same substrate fine particles as in Example were plated in the same manner except that the thickness of the copper plating layer was 50 μm. As a result of measuring 100 conductive fine particles after plating, the average particle diameter was 833.0 μm. Also, from the measurement of the cut surface of the particles, the thickness of the nickel plating layer was 0.3 μm.
m, the thickness of the copper plating layer was 49.0 μm, and the thickness of the eutectic solder plating layer was 17.5 μm. The thickness of the copper plating layer and the thickness of the eutectic solder plating layer were 7.0% and 2.5%, respectively, with respect to the average particle diameter of the base fine particles.
A total of 24 conductive fine particles thus obtained were placed on a dummy chip and bonded to a printed board by using an infrared reflow device.

【0022】[性能評価]実施例、比較例で作製したダ
ミーチップを接合したプリント基板を各10枚ずつ用意
した。これを−40〜+125℃(各30分サイクル)
でプログラム運転する恒温槽に入れ、100サイクルご
とに導電性微粒子の導通を調べた。表1にサイクル数と
導通不良基板の枚数を示した。
[Performance Evaluation] Ten printed boards to which the dummy chips produced in Examples and Comparative Examples were joined were prepared. This is -40 to +125 ℃ (30 minutes each cycle)
The sample was placed in a constant temperature bath operated in a program at 1, and the conduction of the conductive fine particles was examined every 100 cycles. Table 1 shows the number of cycles and the number of poorly conductive substrates.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例の基板では、試験したサイクル数で
の導通不良は見られなかったが、比較例の基板では、3
00サイクルから導通不良が発生した。
In the substrate of the example, no conduction failure was observed in the tested number of cycles, but in the substrate of the comparative example, 3
Continuity failure occurred from 00 cycle.

【0025】[0025]

【発明の効果】本発明は、上述の構成よりなるので、基
板等の回路にかかる力を緩和して、基板間の距離を一定
に維持することにより、接続信頼性を担保することがで
きる導電性微粒子及び導電接続構造体を提供することが
できる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned structure, the connection reliability can be ensured by alleviating the force applied to the circuit such as the substrate and keeping the distance between the substrates constant. Microparticles and a conductive connection structure can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 樹脂からなる基材微粒子の表面が3層の
金属層に覆われてなる導電性微粒子であって、前記金属
層は、内層から順に、第1層がニッケル層であり、第2
層が銅層であり、第3層がハンダ層であり、前記ニッケ
ル層の厚みは、0.1〜1μmであり、前記銅層の厚み
は、前記基材微粒子の粒径の0.1〜5%であり、前記
ハンダ層の厚みは、前記基材微粒子の粒径の0.1〜1
0%であることを特徴とする導電性微粒子。
1. A conductive fine particle in which the surface of a base fine particle made of a resin is covered with three metal layers, wherein the metal layer has a first layer which is a nickel layer in order from an inner layer. Two
The layer is a copper layer, the third layer is a solder layer, the nickel layer has a thickness of 0.1 to 1 μm, and the copper layer has a thickness of 0.1 to the particle diameter of the base fine particles. 5%, and the thickness of the solder layer is 0.1 to 1 of the particle diameter of the base fine particles.
The conductive fine particles are 0%.
【請求項2】 請求項1記載の導電性微粒子により接続
されてなることを特徴とする導電接続構造体。
2. A conductive connection structure, which is connected by the conductive fine particles according to claim 1.
JP2001253088A 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure Withdrawn JP2003068142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253088A JP2003068142A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253088A JP2003068142A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Publications (1)

Publication Number Publication Date
JP2003068142A true JP2003068142A (en) 2003-03-07

Family

ID=19081466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253088A Withdrawn JP2003068142A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Country Status (1)

Country Link
JP (1) JP2003068142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220839A (en) * 2006-02-16 2007-08-30 Sekisui Chem Co Ltd Circuit board and electrode connection structure of circuit
JP2013054851A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
JP2013054852A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220839A (en) * 2006-02-16 2007-08-30 Sekisui Chem Co Ltd Circuit board and electrode connection structure of circuit
JP2013054851A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
JP2013054852A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure

Similar Documents

Publication Publication Date Title
KR100709640B1 (en) Anisotropic conductive adhesive sheet and connecting structure
KR101402508B1 (en) Electrically conductive particle, anisotropic conductive connection material, and method for production of electrically conductive particle
TW200303588A (en) Semiconductor device and its manufacturing method
JPH0680703B2 (en) Direct attachment of semiconductor chip to substrate
CN102208388A (en) Semiconductor device and semiconductor device manufacturing method
JP2004288959A (en) Electronic circuit device and manufacturing method thereof
TWI264735B (en) Anisotropic electrical conductive film and its manufacturing method thereof
JP3197540B2 (en) Substrate piece and flexible substrate
JPH03502511A (en) Use of single axial electrically conductive components
JP2003068142A (en) Conductive fine particle and conductive connection structure
JP2003068145A (en) Conductive fine particle and conductive connection structure
KR20080070052A (en) Method for connecting printed circuit boards
JPH09198916A (en) Conductive fine grain
JPH09306231A (en) Conductive particulate and substrate
JP5210236B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2001004700A (en) Interposer board
JP2003068144A (en) Conductive fine particle and conductive connection structure
JP2003068143A (en) Conductive fine particle and conductive connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2003253465A (en) Conductive fine particle and conductive connecting structure
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
JP4378788B2 (en) IC chip connection method
JP3505321B2 (en) Conductive fine particles and substrate
JP2512709B2 (en) Connection sheet
JP2003064500A (en) Electrically conductive fine particle, and substrate constituting body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Effective date: 20060118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20060202

Free format text: JAPANESE INTERMEDIATE CODE: A761