JP2003064500A - Electrically conductive fine particle, and substrate constituting body - Google Patents

Electrically conductive fine particle, and substrate constituting body

Info

Publication number
JP2003064500A
JP2003064500A JP2001253090A JP2001253090A JP2003064500A JP 2003064500 A JP2003064500 A JP 2003064500A JP 2001253090 A JP2001253090 A JP 2001253090A JP 2001253090 A JP2001253090 A JP 2001253090A JP 2003064500 A JP2003064500 A JP 2003064500A
Authority
JP
Japan
Prior art keywords
fine particles
tin
conductive fine
substrates
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001253090A
Other languages
Japanese (ja)
Inventor
Masami Okuda
正己 奥田
Nobuyuki Okinaga
信幸 沖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001253090A priority Critical patent/JP2003064500A/en
Publication of JP2003064500A publication Critical patent/JP2003064500A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PROBLEM TO BE SOLVED: To provide electrotically conductive fine particles which secure connecting reliability by relaxing power applied to circuits of substrates, and retaining a distance between the substrates, and can package electronic parts on the substrates, and to provide substrate constituting bodies. SOLUTION: In the electrically conductive fine particles, the surfaces of base material fine particles consisting of a resin are coated with one or more metallic layers. The metallic layers consist of at least one kind of metal selected from the groups consisting of gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, tin-lead alloys, tin-copper alloys and tin-silver alloys.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路の2つ以
上の電極を接続するのに使用され、回路中にかかる力を
緩和することにより、接続信頼性を向上することができ
る導電性微粒子及びそれを用いてなる基板構成体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for connecting two or more electrodes of an electric circuit, and is capable of improving connection reliability by relaxing the force applied in the circuit. And a substrate structure using the same.

【0002】[0002]

【従来の技術】従来、電子回路基板において、ICやL
SIを接続するためには、それぞれのピンをプリント基
板上にハンダ付けしていたが、この方法は、生産効率が
悪く、また、高密度化には適さないものであった。接続
信頼性を解決するために、ハンダを球状にした、いわゆ
るハンダボールで基板と接続するBGA(ボールグリッ
ドアレイ)等の技術が開発されたが、この技術によれ
ば、チップ又は基板上に実装されたハンダボールを高温
で溶融しながら基板とチップとを接続することで、高生
産性と高接続信頼性とを両立した電子回路を構成でき
る。しかしながら、最近基板の多層化が進み、基板自体
の外環境変化による歪みや伸縮が発生し、結果としてこ
れらの力が基板間の接続部にかかることによる断線が発
生することが問題となっていた。また、多層化によっ
て、基板間の距離がほとんどとれなくなり、基板間に部
品を配置する場合には、別途スペーサ等を置かなければ
ならず手間や費用がかかることが問題となっていた。
2. Description of the Related Art Conventionally, in electronic circuit boards, ICs and L
In order to connect SI, each pin was soldered on a printed circuit board, but this method had poor production efficiency and was not suitable for high density. In order to solve the connection reliability, a technology such as BGA (ball grid array) in which the solder is made spherical, that is, a so-called solder ball is connected to the substrate has been developed. According to this technology, it is mounted on a chip or a substrate. By connecting the substrate and the chip while melting the solder ball produced at a high temperature, it is possible to configure an electronic circuit having both high productivity and high connection reliability. However, the multilayering of substrates has recently progressed, and distortion and expansion and contraction have occurred due to changes in the external environment of the substrates themselves, resulting in disconnection due to the application of these forces to the connecting portions between the substrates. . Further, due to the multi-layer structure, the distance between the substrates can hardly be taken, and when arranging the components between the substrates, it is necessary to separately place a spacer or the like, which is troublesome and costly.

【0003】これらを解決する手段として、基板等の回
路に掛かる力の緩和については、基板接続部に樹脂等を
塗布して補強することが行われており、これは接続信頼
性の向上には一定の効果を示したが、手間がかかり、ま
た塗布工程が増えることにより費用が増大するという問
題があった。また、基板間の距離の維持については、銅
の周りにハンダをコーティングしたボールにより、ハン
ダのように溶融しない銅が支えとなり、基板間の距離を
維持する方法(特開平11−74311号公報)もある
が、銅は高価であり、また、重量もあることから安価・
軽量な材料が求められていた。
As a means for solving these problems, in order to reduce the force applied to the circuit of the board or the like, a resin or the like is applied to the board connecting portion to reinforce it. This is to improve the connection reliability. Although a certain effect was exhibited, there was a problem that it took time and labor and the cost increased due to the increase of the coating process. Further, regarding the maintenance of the distance between the substrates, a method of maintaining the distance between the substrates by using a ball coated with solder around copper, which does not melt like the solder, serves as a support (JP-A-11-74311). However, copper is expensive, and since it is heavy, it is cheap.
A lightweight material was required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に鑑
み、基板等の回路にかかる力を緩和して、基板間の距離
を一定に維持することにより、接続信頼性を担保し、か
つ、基板上に電気部品を実装することができる導電性微
粒子及び基板構成体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention assures connection reliability by relaxing the force applied to a circuit such as a substrate and maintaining a constant distance between the substrates, and An object of the present invention is to provide a conductive fine particle and a substrate structure capable of mounting an electric component on the substrate.

【0005】[0005]

【課題を解決するための手段】本発明は、樹脂からなる
基材微粒子の表面が1層以上の金属層に覆われてなる導
電性微粒子であって、前記金属層は、金、銀、銅、白
金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、イン
ジウム、ニッケル、クロム、チタン、アンチモン、ビス
マス、ゲルマニウム、カドミウム、珪素、錫−鉛合金、
錫−銅合金、及び、錫−銀合金からなる群より選ばれる
少なくとも1種の金属からなる導電性微粒子である。以
下に本発明を詳述する。
The present invention provides conductive fine particles in which the surface of base fine particles made of a resin is covered with one or more metal layers, and the metal layer is gold, silver or copper. , Platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, tin-lead alloy,
The conductive fine particles are made of at least one metal selected from the group consisting of tin-copper alloys and tin-silver alloys. The present invention is described in detail below.

【0006】本発明の導電性微粒子は、樹脂からなる基
材微粒子の表面が1層以上の金属層に覆われてなるもの
である。上記樹脂としては特に限定されず、例えば、フ
ェノール樹脂、アミノ樹脂、アクリル樹脂、ポリエステ
ル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリ
イミド樹脂、ウレタン樹脂、エポキシ樹脂等の架橋型又
は非架橋型合成樹脂;有機−無機ハイブリッド重合体等
が挙げられる。これらは単独で用いられてもよく、2種
以上が併用されてもよい。
The conductive fine particles of the present invention are those in which the surface of base fine particles made of resin is covered with one or more metal layers. The resin is not particularly limited, and examples thereof include cross-linked or non-cross-linked synthetic resins such as phenol resin, amino resin, acrylic resin, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, and epoxy resin. An organic-inorganic hybrid polymer and the like can be mentioned. These may be used alone or in combination of two or more.

【0007】上記基材微粒子の平均粒径は、1μm〜3
mmであることが好ましい。1μm未満であると、基板
の接合に用いた場合、基板同士が直接接触してショート
することがあり、3mmを超えると、微細ピッチの電極
を接合しにくくなることがある。
The average particle diameter of the base fine particles is 1 μm to 3 μm.
It is preferably mm. If it is less than 1 μm, when used for joining the substrates, the substrates may come into direct contact with each other to cause a short circuit. If it exceeds 3 mm, it may be difficult to join the electrodes having a fine pitch.

【0008】上記金属層を構成する金属としては、例え
ば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウ
ム、コバルト、インジウム、ニッケル、クロム、チタ
ン、アンチモン、ビスマス、ゲルマニウム、カドミウ
ム、珪素、錫−鉛合金、錫−銅合金、錫−銀合金等が挙
げられる。なかでも、ニッケル、銅、金、錫−鉛合金、
錫−銅合金、錫−銀合金が好ましい。上記金属層は、一
層からなるものであっても、多層からなるものであって
もよく、これらの金属は、単独で用いられてもよく、2
種以上が併用されてもよい。これらの金属が2種以上併
用される場合は、複数の層状構造を形成するように用い
られてもよく、合金として用いられてもよい。
Examples of the metal forming the metal layer include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium. , Silicon, tin-lead alloy, tin-copper alloy, tin-silver alloy, and the like. Among them, nickel, copper, gold, tin-lead alloy,
A tin-copper alloy and a tin-silver alloy are preferred. The metal layer may be composed of one layer or multiple layers, and these metals may be used alone or 2
One or more species may be used in combination. When two or more of these metals are used in combination, they may be used so as to form a plurality of layered structures or may be used as an alloy.

【0009】本発明の導電性微粒子の表面に金属層を形
成する方法としては特に限定されず、例えば、無電解メ
ッキによる方法、金属微粉を単独又はバインダーに混ぜ
合わせて得られるペーストを基材微粒子にコーティング
する方法;真空蒸着、イオンプレーティング、イオンス
パッタリング等の物理的蒸着方法等が挙げられる。
The method of forming the metal layer on the surface of the conductive fine particles of the present invention is not particularly limited, and examples thereof include a method by electroless plating, and a paste obtained by mixing fine metal powder alone or with a binder as base fine particles. A physical vapor deposition method such as vacuum vapor deposition, ion plating, or ion sputtering.

【0010】上記無電解メッキ法による金属層の形成方
法を、金置換メッキの場合を例に挙げて、以下に説明す
る。金置換メッキは、エッチング工程、アクチベーショ
ン工程、化学ニッケルメッキ工程及び金置換メッキ工程
に分けられる。上記エッチング工程は、基材微粒子の表
面に凹凸を形成させることによりメッキ層の基材微粒子
に対する密着性を向上させるための前処理工程であり、
エッチング液としては、例えば、カセイソーダ水溶液、
濃塩酸、濃硫酸又は無水クロム酸等が挙げられる。
The method of forming a metal layer by the above electroless plating method will be described below by taking the case of gold displacement plating as an example. Gold displacement plating is divided into an etching process, an activation process, a chemical nickel plating process, and a gold displacement plating process. The etching step is a pretreatment step for improving the adhesion to the base particle of the plating layer by forming irregularities on the surface of the base particle,
Examples of the etching liquid include caustic soda aqueous solution,
Examples thereof include concentrated hydrochloric acid, concentrated sulfuric acid, chromic anhydride, and the like.

【0011】上記アクチベーション工程は、エッチング
された基材微粒子の表面に触媒層を形成させると共に、
この触媒層を活性化させるための工程である。触媒層の
活性化により後述の化学ニッケルメッキ工程における金
属ニッケルの析出が促進される。基材微粒子を触媒液に
分散させることにより基材微粒子表面に形成されたPd
2+及びSn2+を含む触媒層は、次いで、濃硫酸又は濃塩
酸で処理され、これによりPd2+が金属化され基材微粒
子表面に析出する。金属化されたパラジウムは、カセイ
ソーダ濃厚溶液等のパラジウム活性剤により活性化され
て増感される。
The activation step is an etching process.
While forming a catalyst layer on the surface of the base material fine particles,
This is a step for activating the catalyst layer. Of catalyst layer
Gold in the chemical nickel plating process described below due to activation
Precipitation of metal nickel is promoted. Base material fine particles as catalyst liquid
Pd formed on the surface of the base fine particles by dispersion
2+And Sn2+The catalyst layer containing is then concentrated sulfuric acid or concentrated salt.
Treated with acid, which results in Pd2+Is a metallized base material
Precipitates on the surface of the child. Metallized palladium is
Activated by a palladium activator such as concentrated soda solution
Will be sensitized.

【0012】上記化学ニッケルメッキ工程は、触媒層が
形成された基材微粒子の表面に、更に金属ニッケル層を
形成させる工程であり、例えば、塩化ニッケルを次亜リ
ン酸ナトリウムによって還元し、ニッケルを基材微粒子
の表面に析出させる。
The chemical nickel plating step is a step of further forming a metallic nickel layer on the surface of the base fine particles on which the catalyst layer has been formed. For example, nickel chloride is reduced by sodium hypophosphite to form nickel. It is deposited on the surface of the base fine particles.

【0013】上記金置換メッキ工程では、以上のように
してニッケルで被覆された基材微粒子を金シアン化カリ
ウム溶液に入れ、昇温させながらニッケルを溶出させ、
金を基材微粒子表面に析出させる。
In the gold displacement plating step, the base fine particles coated with nickel as described above are placed in a gold potassium cyanide solution, and nickel is eluted while the temperature is raised,
Gold is deposited on the surface of the base fine particles.

【0014】上記ニッケル及び金からなる金属層の厚み
は、0.01〜500μmであることが好ましい。0.
01μm未満であると、導電接合に使用された場合、加
熱により表面から金属層が剥離することがあり、更に、
金属層の厚みが薄いために好ましい導電性が得られない
ことがある。一方、500μmを超えると、金属層の厚
みが厚くなりすぎて、基材微粒子の機械的特性が失われ
ることがある。
The thickness of the metal layer made of nickel and gold is preferably 0.01 to 500 μm. 0.
When the thickness is less than 01 μm, the metal layer may be peeled from the surface by heating when used for conductive bonding, and further,
A preferable conductivity may not be obtained because the metal layer is thin. On the other hand, when it exceeds 500 μm, the thickness of the metal layer becomes too thick and the mechanical properties of the base fine particles may be lost.

【0015】本発明の導電性微粒子は、必要に応じて、
上記金属層の下地メッキ層が形成されていてもよい。上
記下地メッキ層を形成する金属としては特に限定され
ず、例えば、ニッケル等が挙げられる。
The conductive fine particles of the present invention are, if necessary,
A base plating layer of the metal layer may be formed. The metal forming the base plating layer is not particularly limited, and examples thereof include nickel.

【0016】本発明の導電性微粒子は、基材微粒子とし
て樹脂からなる粒子を用いるので、弾力性に優れ、導電
接合に使用された場合に接合部分に応力が掛かりにくい
うえ、対向する基板等の間隔を一定に保持することがで
きる。また、温度変化による基板、素子等の熱膨張及び
収縮による電極間の相対位置のズレによる剪断応力を緩
和することができる。
Since the conductive fine particles of the present invention use resin particles as the base fine particles, the conductive fine particles have excellent elasticity, and when used for conductive bonding, stress is not easily applied to the bonding portion, and the conductive fine particles of the opposing substrate or the like are used. The spacing can be kept constant. Further, it is possible to relieve the shear stress due to the displacement of the relative position between the electrodes due to the thermal expansion and contraction of the substrate, the element and the like due to the temperature change.

【0017】本発明の導電性微粒子は、そのまま、又
は、マイクロ素子実装用の導電接着剤、異方性導電接着
剤、異方性導電シート等の導電材料として、基板・部品
間の接続に用いられる。
The conductive fine particles of the present invention are used as they are or as a conductive material for mounting micro devices, such as conductive adhesives, anisotropic conductive adhesives, anisotropic conductive sheets, etc., for connection between substrates and parts. To be

【0018】上記基板・部品を接合し、基板・部品間を
電気的に接続する方法としては、本発明の導電性微粒子
を用いて接合する方法であれば特に限定されず、例え
ば、以下のような方法等が挙げられる。 (1)基板上に形成された電極の上に本発明の導電性微
粒子を置き、加熱溶融することで電極上に固定する。そ
の後、もう一方の基板を電極が対向するように置き加熱
溶融することで両基板を接合する方法。 (2)表面に電極が形成された基板又は部品の上に、異
方性導電シートを載せた後、もう一方の基板又は部品を
電極面が対向するように置き、加熱、加圧して接合する
方法。 (3)異方性導電シートを用いる代わりに、スクリーン
印刷やディスペンサー等の手段で異方性導電接着剤を供
給し接合する方法。 (4)導電性微粒子を介して張り合わせた二つの電極部
の間隙に液状のバインダーを供給した後で硬化させて接
合する方法。
The method of joining the above-mentioned substrate / component and electrically connecting the substrate / component is not particularly limited as long as it is a method of joining using the conductive fine particles of the present invention. There are various methods. (1) The conductive fine particles of the present invention are placed on an electrode formed on a substrate and heated and melted to be fixed on the electrode. Then, the other substrate is placed so that the electrodes face each other, and the two substrates are joined by heating and melting. (2) After placing the anisotropic conductive sheet on the substrate or component having the electrodes formed on the surface, place the other substrate or component so that the electrode surfaces face each other, and heat and pressurize to join. Method. (3) Instead of using the anisotropic conductive sheet, a method such as screen printing or a dispenser is used to supply and bond the anisotropic conductive adhesive. (4) A method in which a liquid binder is supplied to a gap between two electrode portions bonded together via conductive fine particles, and then the liquid binder is cured to be bonded.

【0019】基板間に本発明の導電性微粒子及び電気部
品が配置されてなる基板構成体もまた、本発明の1つで
ある。本発明の基板構成体は、本発明の導電性微粒子を
用いた基板により、基板間の接続を図り、かつ、基板間
隔を一定に保持することでその間に電気部品を配置でき
るように構成したものである。
A substrate structure in which the conductive fine particles and the electric component of the present invention are arranged between the substrates is also one aspect of the present invention. The substrate structure of the present invention is configured so that the substrates using the conductive fine particles of the present invention can be used to connect the substrates and to maintain a constant space between the substrates so that electrical components can be arranged between them. Is.

【0020】上記基板は、フレキシブル基板とリジッド
基板とに大別される。上記フレキシブル基板としては、
例えば、50〜500μmの厚さの樹脂シートが挙げら
れる。上記樹脂シートの材質としては、例えば、ポリイ
ミド、ポリアミド、ポリエステル、ポリスルホン等が挙
げられる。
The above-mentioned substrate is roughly classified into a flexible substrate and a rigid substrate. As the flexible substrate,
For example, a resin sheet having a thickness of 50 to 500 μm can be used. Examples of the material of the resin sheet include polyimide, polyamide, polyester, polysulfone and the like.

【0021】上記リジッド基板は、樹脂製のものとセラ
ミック製のものとに大別される。上記樹脂としては、例
えば、ガラス繊維強化エポキシ樹脂、フェノール樹脂、
セルロース繊維強化フェノール樹脂等が挙げられる。上
記セラミックとしては、例えば、二酸化ケイ素、アルミ
ナ等が挙げられる。
The rigid board is roughly classified into a resin board and a ceramic board. Examples of the resin include glass fiber reinforced epoxy resin, phenol resin,
Cellulose fiber reinforced phenol resin and the like can be mentioned. Examples of the ceramic include silicon dioxide and alumina.

【0022】上記基板の構造としては、単層構造であっ
てもよく、また、単位面積当たりの電極数を増やすため
に、例えば、スルーホール形成等の手段により、複数の
層を形成し、相互に電気的接続を行わせる多層構造の基
板が使用されてもよい。
The structure of the substrate may be a single layer structure, and in order to increase the number of electrodes per unit area, a plurality of layers are formed by means of, for example, through hole formation, Substrates with a multi-layer structure may be used that allow electrical connection to the substrate.

【0023】上記電気部品としては特に限定されず、例
えば、液晶ディスプレー、パーソナルコンピュータ、携
帯通信機器等に用いられる小型部品;チップ、基板等が
挙げられる。
The above-mentioned electric parts are not particularly limited, and examples thereof include small parts used in liquid crystal displays, personal computers, portable communication devices and the like; chips, substrates and the like.

【0024】本発明の基板構成体は、上述のような導電
性微粒子を用いることにより、基板間に掛かる力を緩和
することができ、基板間隔を一定に保つことができるの
で、長期に渡り高い接続安定性を維持することができる
とともに、別途スペーサ等を使用しなくとも基板上にそ
のまま電気部品を実装することができるものである。
In the substrate structure of the present invention, by using the above-mentioned conductive fine particles, the force applied between the substrates can be relaxed and the substrate interval can be kept constant, so that the substrate structure is high for a long period of time. The connection stability can be maintained, and the electric components can be directly mounted on the substrate without using a spacer or the like.

【0025】[0025]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0026】スチレンとジビニルベンゼンとを共重合さ
せて得られた基材微粒子に導電下地層としてニッケルめ
っき層を形成し、平均粒径988.5μmのニッケルめ
っき微粒子を得た。得られたニッケルめっき微粒子30
gをとり、バレルめっき装置を用いてその表面に銅めっ
きを施し、更にその上に共晶ハンダめっきを行った。め
っきバレルとしては、径50mm、高さ50mmの正五
角形状で、側面のうち1面のみに孔径20μmのメッシ
ュのフィルタが取り付けられているものを用いた。この
装置で銅めっき液中で1時間通電し、めっきバレルを正
五角形の中心同士を通る軸を中心に50rpmで回転
し、銅めっきを行ない、洗浄を行った。その後に共晶ハ
ンダめっき液中で3時間通電しながら、同様にめっきバ
レルを回転し、共晶ハンダめっきを行った。
A nickel plating layer was formed as a conductive underlayer on the base fine particles obtained by copolymerizing styrene and divinylbenzene to obtain nickel plating fine particles having an average particle size of 988.5 μm. Obtained nickel plating fine particles 30
g was taken, copper plating was applied to the surface thereof using a barrel plating device, and eutectic solder plating was applied onto the copper plating. As the plating barrel, one having a regular pentagonal shape with a diameter of 50 mm and a height of 50 mm and having a mesh filter with a pore diameter of 20 μm attached to only one side surface was used. This apparatus was energized for 1 hour in a copper plating solution, and the plating barrel was rotated at 50 rpm around an axis passing through the centers of regular pentagons to perform copper plating and washing. After that, the eutectic solder plating was performed by rotating the plating barrel in the same manner while energizing the eutectic solder plating solution for 3 hours.

【0027】このようにして得られた最外殻が共晶ハン
ダめっき層である導電性微粒子を顕微鏡で観察したとこ
ろ、全く凝集がなく、すべての粒子が単粒子として存在
していることが確認された。また、この導電性微粒子1
00個を測定した結果、平均粒径は1040.1μmで
あった。また、得られた導電性微粒子の粒子切断面を測
定したところ、ニッケルめっき膜厚は0.3μm、銅め
っき膜厚は6.0μm、共晶ハンダめっき膜厚は21.
8μmであった。
Observation of the conductive fine particles having the eutectic solder-plated layer as the outermost shell thus obtained showed no aggregation and confirmed that all the particles were present as single particles. Was done. In addition, the conductive fine particles 1
As a result of measuring 00 pieces, the average particle diameter was 1040.1 μm. Further, when the particle cut surface of the obtained conductive fine particles was measured, the nickel plating film thickness was 0.3 μm, the copper plating film thickness was 6.0 μm, and the eutectic solder plating film thickness was 21.
It was 8 μm.

【0028】このようにして得られた導電性微粒子を用
い図1に示すような試験用基板を作製した。試験用基板
1は、基板周辺部に導電性微粒子2を計20個配置し、
導電性微粒子2に囲まれた部分には、表面実装部品3を
配置した。これを赤外線リフロー装置を用いて図2に示
すようにプリント基板上に接合した。このようにして試
験用基板と接合したプリント基板を10枚用意した。こ
れを−40〜+125℃(各30分サイクル)でプログ
ラム運転する恒温槽に入れ、100サイクルごとに導電
性微粒子の導通を調べ700サイクルまで試験を行った
が、導通不良は発生しなかった。
Using the conductive fine particles thus obtained, a test substrate as shown in FIG. 1 was produced. The test substrate 1 has a total of 20 conductive fine particles 2 arranged on the periphery of the substrate,
The surface mount component 3 was arranged in a portion surrounded by the conductive fine particles 2. This was bonded on a printed board as shown in FIG. 2 using an infrared reflow device. In this way, ten printed boards joined to the test board were prepared. This was placed in a constant temperature bath operated at −40 to + 125 ° C. (30 minutes cycle for each program), and the conduction of the conductive fine particles was checked every 100 cycles and tested up to 700 cycles, but no conduction failure occurred.

【0029】[0029]

【発明の効果】本発明は、上述の構成よりなるので、基
板等の回路にかかる力を緩和して、基板間の距離を一定
に維持することにより、接続信頼性を担保し、かつ、基
板上に電気部品を実装することができる導電性微粒子及
び基板構成体を提供することができる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned structure, the connection reliability is ensured by relaxing the force applied to the circuit such as the substrate and maintaining the distance between the substrates constant, and It is possible to provide conductive fine particles and a substrate structure on which electric parts can be mounted.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した試験用基板を示す模式図であ
る。
FIG. 1 is a schematic view showing a test substrate manufactured in an example.

【図2】実施例で作製した試験用基板と接合したプリン
ト基板の断面を示す模式図である。
FIG. 2 is a schematic diagram showing a cross section of a printed circuit board joined to a test substrate manufactured in an example.

【符号の説明】[Explanation of symbols]

1 試験用基板 2 導電性微粒子 3 表面実装部品 4 プリント基板 1 Test board 2 Conductive fine particles 3 Surface mount components 4 printed circuit boards

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 5/56 C25D 5/56 A H01B 1/00 H01B 1/00 C 1/22 1/22 D H01L 21/60 311 H01L 21/60 311Q 311S Fターム(参考) 4K022 AA13 AA35 AA42 BA14 CA06 CA07 DA01 4K024 AA03 AA09 AA21 AB02 AB17 BA12 BB09 BB10 GA16 5F044 LL07 LL09 LL13 LL15 5G301 DA03 DA04 DA05 DA06 DA07 DA10 DA12 DA13 DA15 DA60 DD03 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C25D 5/56 C25D 5/56 A H01B 1/00 H01B 1/00 C 1/22 1/22 D H01L 21 / 60 311 H01L 21/60 311Q 311S F Term (reference) 4K022 AA13 AA35 AA42 BA14 CA06 CA07 DA01 4K024 AA03 AA09 AA21 AB02 AB17 BA12 BB09 BB10 GA16 5F044 LL07 LL09 LL13 LL15 5G301 DA03 DA07 DA05 DA05 DA04 DA05 DA03 DA04 DA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 樹脂からなる基材微粒子の表面が1層以
上の金属層に覆われてなる導電性微粒子であって、前記
金属層は、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アル
ミニウム、コバルト、インジウム、ニッケル、クロム、
チタン、アンチモン、ビスマス、ゲルマニウム、カドミ
ウム、珪素、錫−鉛合金、錫−銅合金、及び、錫−銀合
金からなる群より選ばれる少なくとも1種の金属からな
ることを特徴とする導電性微粒子。
1. A conductive fine particle in which the surface of a base fine particle made of a resin is covered with one or more metal layers, wherein the metal layer is gold, silver, copper, platinum, zinc, iron or lead. , Tin, aluminum, cobalt, indium, nickel, chromium,
Conductive fine particles comprising at least one metal selected from the group consisting of titanium, antimony, bismuth, germanium, cadmium, silicon, tin-lead alloys, tin-copper alloys, and tin-silver alloys.
【請求項2】 基板間に請求項1記載の導電性微粒子及
び電気部品が配置されてなることを特徴とする基板構成
体。
2. A substrate structure comprising the conductive fine particles according to claim 1 and an electric component arranged between the substrates.
JP2001253090A 2001-08-23 2001-08-23 Electrically conductive fine particle, and substrate constituting body Pending JP2003064500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253090A JP2003064500A (en) 2001-08-23 2001-08-23 Electrically conductive fine particle, and substrate constituting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253090A JP2003064500A (en) 2001-08-23 2001-08-23 Electrically conductive fine particle, and substrate constituting body

Publications (1)

Publication Number Publication Date
JP2003064500A true JP2003064500A (en) 2003-03-05

Family

ID=19081468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253090A Pending JP2003064500A (en) 2001-08-23 2001-08-23 Electrically conductive fine particle, and substrate constituting body

Country Status (1)

Country Link
JP (1) JP2003064500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720895B1 (en) 2005-07-05 2007-05-22 제일모직주식회사 Conductive particle having a density-gradient in the complex plating layer and Preparation of the same and Conductive adhesives using the same
EP2120525A1 (en) * 2007-03-05 2009-11-18 Bridgestone Corporation Light-transmitting electromagnetic shielding material, method for producing the same, and fine particle having ultrathin film of noble metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720895B1 (en) 2005-07-05 2007-05-22 제일모직주식회사 Conductive particle having a density-gradient in the complex plating layer and Preparation of the same and Conductive adhesives using the same
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles
EP2120525A1 (en) * 2007-03-05 2009-11-18 Bridgestone Corporation Light-transmitting electromagnetic shielding material, method for producing the same, and fine particle having ultrathin film of noble metal
EP2120525A4 (en) * 2007-03-05 2011-05-25 Bridgestone Corp Light-transmitting electromagnetic shielding material, method for producing the same, and fine particle having ultrathin film of noble metal

Similar Documents

Publication Publication Date Title
JP5506925B2 (en) Anisotropic conductive adhesive for ultrasonic bonding and connection method between electronic components using the same
JP4123998B2 (en) Electronic circuit device and manufacturing method thereof
JPH0536306A (en) Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH07161400A (en) Anisotropic conductive film, its manufacture and connector using it
WO2008095405A1 (en) Microelectronic element and method of manufacturing the same
US20030150109A1 (en) Method of manufacturing a circuit board
JP2003064500A (en) Electrically conductive fine particle, and substrate constituting body
JPH09198916A (en) Conductive fine grain
JP2003068144A (en) Conductive fine particle and conductive connection structure
JP2003068145A (en) Conductive fine particle and conductive connection structure
JPH09306231A (en) Conductive particulate and substrate
JP2003068143A (en) Conductive fine particle and conductive connection structure
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH11121892A (en) Flexible circuit board
JP2003068142A (en) Conductive fine particle and conductive connection structure
JP2003253465A (en) Conductive fine particle and conductive connecting structure
JP2512709B2 (en) Connection sheet
KR100624155B1 (en) Conductive silicon powder and Method for making the same and Anisotropic conductive film and Conductive paste using the same
KR100807352B1 (en) Electrode having projections on electrode pad, electronic apparatus including device mounting structure having the same and method of mounting device of electronic apparatus
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
JPH0621601A (en) Printed circuit board, and fabrication and connection thereof
JP3653244B2 (en) Electrode connection structure and manufacturing method thereof
JP6897038B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
KR20130100441A (en) Manufacturing method for flip chip packages using bumps of complex structure and flip chip packages produced using the same method
JP2007220839A (en) Circuit board and electrode connection structure of circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050413