JP2007220839A - Circuit board and electrode connection structure of circuit - Google Patents

Circuit board and electrode connection structure of circuit Download PDF

Info

Publication number
JP2007220839A
JP2007220839A JP2006038757A JP2006038757A JP2007220839A JP 2007220839 A JP2007220839 A JP 2007220839A JP 2006038757 A JP2006038757 A JP 2006038757A JP 2006038757 A JP2006038757 A JP 2006038757A JP 2007220839 A JP2007220839 A JP 2007220839A
Authority
JP
Japan
Prior art keywords
electrode
conductive
circuit board
circuit
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038757A
Other languages
Japanese (ja)
Inventor
Masahiko Tateno
舘野  晶彦
Takashi Kubota
敬士 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006038757A priority Critical patent/JP2007220839A/en
Publication of JP2007220839A publication Critical patent/JP2007220839A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit board A and an electrode connection structure B of circuit excellent in connection reliability in which a sufficiently low connection resistance is attained and stabilized connection of electrode is ensured, even if the electrode pitch becomes narrow due to minute structure. <P>SOLUTION: In the circuit board A, a conductive bump 20 is provided on the electrode surface of a circuit board 10 on which an electrode 11 is provided wherein the conductive bump 20 uses synthetic resin as a nucleus 21, and its surface is covered with a thin conductive metal layer 22 having a melting point of 250°C or below and structured in a molten metal bonding 30 to the electrode surface. In the electrode connection structure B, the surface of the electrode 11 on the circuit board A and the surface of the electrode 41 on other circuit board 40 are arranged oppositely, the conductive bump 20 using synthetic resin as a nucleus 21 and having a surface covered with a thin conductive metal layer 22 having a melting point of 250°C or below is provided between the opposing electrode surfaces. The conductive bump 20 is processed in the molten metal bonding 30 to the electrode surface under a state pressed slightly flatly, and no conductive fine particle exist in the space between respective electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、集積回路や液晶表示パネルなどの接続端子と、それに対向配置される他の電気部材、FPC(フレキシブルプリント回路基板)、TCP(テープキャリアパッケージ基板)、COF (チップオンフィルム基板)などを電気的に直接接続する所謂フェースダウン実装(フリップチップ実装)に適した回路基板および回路の電極接続構造体に関する。   The present invention relates to a connection terminal such as an integrated circuit or a liquid crystal display panel, and other electric members disposed opposite thereto, FPC (flexible printed circuit board), TCP (tape carrier package substrate), COF (chip on film substrate), etc. The present invention relates to a circuit board suitable for so-called face-down mounting (flip chip mounting) and a circuit electrode connection structure.

集積回路や液晶表示パネルなどの接続端子と、それに対向配置される他の電気部材、FPC(フレキシブルプリント回路基板)やTCP(テープキャリアパッケージ基板)などを電気的に接続する際に、回路の電極(接続端子)が細かいピッチで並んでいる場合の接続方法として、OLB(Outer Lead Bonding)法が広く採用されている。   When electrically connecting a connection terminal such as an integrated circuit or a liquid crystal display panel with another electrical member disposed opposite thereto, such as an FPC (flexible printed circuit board) or TCP (tape carrier package board), an electrode of the circuit An OLB (Outer Lead Bonding) method is widely employed as a connection method when the (connection terminals) are arranged at a fine pitch.

OLB法では、二枚の回路の電極、例えば液晶パネルの電極とドライブ回路基板の電極とを電気的に接続する際に、相対向する電極の間に導電性微粒子が分散された異方導電性接着シートを挟み、これを加熱加圧して上記接着シートを熱溶融後に熱硬化させ、それにより液晶パネルとドライブ回路基板とが厚み方向にのみ電気的に導通するように接続される。このOLB法によれば、多数の電極同士を一括で接続することができる。   In the OLB method, when electrically connecting two circuit electrodes, for example, an electrode of a liquid crystal panel and an electrode of a drive circuit board, an anisotropic conductive material in which conductive fine particles are dispersed between opposing electrodes. The adhesive sheet is sandwiched and heated and pressed to heat and melt the adhesive sheet, so that the liquid crystal panel and the drive circuit board are electrically connected only in the thickness direction. According to this OLB method, a large number of electrodes can be connected together.

近年、このような電子回路は、多ピン化、細密化(ファインピッチ化)が進んでおり、50本/1mm以上の回路接続も多く実施されている。この場合、裸のICチップの電極と液晶パネルの電極とを導電性微粒子が分散された異方導電性接着シートにより直接接続するCOG(Chip on Glass)法が主に採用される。   In recent years, such electronic circuits have been increased in pin count and fineness (fine pitch), and circuit connections of 50 lines / 1 mm or more are often implemented. In this case, a COG (Chip on Glass) method in which the bare IC chip electrode and the liquid crystal panel electrode are directly connected by an anisotropic conductive adhesive sheet in which conductive fine particles are dispersed is mainly employed.

ところが、高細密になり電極ピッチが狭くなると、相対向する電極で挟まれる部分以外の空間にも導電性微粒子が連なり、これ等の連なった導電性微粒子により隣接する電極同士や上下の異なる電極同士が導通されることになり、ショートが起こる危険があり、通電不良などの接続信頼性の問題が生じる。   However, if the electrode pitch becomes narrower and the electrode pitch becomes narrower, the conductive fine particles are connected to a space other than the portion sandwiched between the electrodes facing each other, and the adjacent conductive particles or upper and lower electrodes are separated by these continuous conductive fine particles. Will be conducted, and there is a danger of short-circuiting, resulting in connection reliability problems such as energization failure.

上記の問題を解決するために、例えば下記特許文献1には、入出力端子として接続パッドを有する半導体素子(例えば、ドライバーICの裸チップ電子回路)の電極(バンブのような突起電極を含む)の上に、導電性微粒子を分散した熱可塑性樹脂液を塗布することにより、あらかじめ複数個の導電性微粒子を上記樹脂により固定する方法が提案されている。また、下記特許文献2には、突起電極あるいは入出力端子を備えた半導体素子を導電性微粒子を分散しためっき液に浸漬し金めっきのような金属めっきを行うことにより、突起電極あるいは入出力端子の上に、あらかじめ複数個の導電性微粒子をめっき金属により固定する方法が提案されている。   In order to solve the above problem, for example, in Patent Document 1 below, an electrode (including a protruding electrode such as a bump) of a semiconductor element having a connection pad as an input / output terminal (for example, a bare chip electronic circuit of a driver IC) is disclosed. On top of this, a method has been proposed in which a plurality of conductive fine particles are fixed in advance with the resin by applying a thermoplastic resin liquid in which conductive fine particles are dispersed. Further, in Patent Document 2 below, a protruding electrode or an input / output terminal is obtained by immersing a semiconductor element having a protruding electrode or an input / output terminal in a plating solution in which conductive fine particles are dispersed and performing metal plating such as gold plating. On top of this, a method of fixing a plurality of conductive fine particles in advance with a plating metal has been proposed.

上記各提案の方法によれば、回路の電極の上にあらかじめ複数個の導電性微粒子が固定されるので、導電性微粒子が分散された異方導電性接着シートを使用する必要がなく、電気的導通に必要な複数個の導電性微粒子を回路の電極上にのみ配設することが可能となり、こうして得られる回路の電極接続構造体にあっては、半導体素子とそれに対向配置される他の電気部材との接着固定は、導電性微粒子を含まない電気絶縁性の熱硬化樹脂により行われるので、通電不良などの信頼性の問題が生じない。   According to each of the proposed methods, a plurality of conductive fine particles are fixed on the circuit electrode in advance, so there is no need to use an anisotropic conductive adhesive sheet in which conductive fine particles are dispersed. It is possible to dispose a plurality of conductive fine particles necessary for conduction only on the circuit electrode. In the electrode connection structure of the circuit thus obtained, the semiconductor element and other electrical elements disposed opposite to the semiconductor element are provided. Adhesion and fixation with the member is performed by an electrically insulating thermosetting resin that does not contain conductive fine particles, so that there is no problem of reliability such as poor conduction.

ところが、熱可塑性樹脂液を用いる塗布法やめっき法により、回路の電極上に複数個の導電性微粒子を接着固定する方法は、所望の数だけ正確に導電性微粒子を電極上に載せることが難しい。また、上記塗布法では、両方の電極と導電性微粒子との接点は単に接触しているに過ぎないので、電極との電気接続が不安定となることがある。   However, the method of bonding and fixing a plurality of conductive fine particles on a circuit electrode by a coating method or a plating method using a thermoplastic resin liquid is difficult to accurately place the conductive fine particles on the electrode in a desired number. . Moreover, in the said coating method, since the contact of both electrodes and electroconductive fine particles is only contacting, the electrical connection with an electrode may become unstable.

また、上記めっき法では、一方の電極と導電性微粒子との接点はめっき金属により固定されているが、他方の電極と導電性微粒子との接点は単に接触しているに過ぎないので、電極との電気接続が不安定となることがある。さらに、上記めっき法では、電極との接触面積が非常に小さいため、実装の際に固定された導電性微粒子が剥がれるという欠点がある。このように、上記従来技術では電極との接続信頼性の点で未だ改善すべき問題がある。   In the above plating method, the contact point between one electrode and the conductive fine particles is fixed by the plating metal, but the contact point between the other electrode and the conductive fine particles is merely in contact with each other. The electrical connection may become unstable. Furthermore, since the contact area with the electrode is very small, the plating method has a drawback that the conductive fine particles fixed at the time of mounting are peeled off. As described above, the conventional technique still has a problem to be improved in terms of connection reliability with the electrode.

なお、下記特許文献3には、前記従来のOLB法において、高分子重合体からなる核材の表面に第1の金属薄層とその上に第2の金属薄層を形成してなる導電性微粒子が分散された異方導電性接着シートまたは異方導電性接着剤を用いる方法が提案されている。   In Patent Document 3 below, in the conventional OLB method, the first metal thin layer is formed on the surface of the core material made of the polymer, and the second metal thin layer is formed thereon. A method using an anisotropic conductive adhesive sheet or an anisotropic conductive adhesive in which fine particles are dispersed has been proposed.

この場合、加熱加圧により第1の金属薄層と第2の金属薄層とが拡散混合により融点250℃以下に合金化され、それにより相対向する電極と導電性微粒子とが溶融金属結合されるが、従来のOLB法と同様に、隣接する電極間の空間には導電性微粒子が存在しておりショートが起こる危険がある。しかも、加熱加圧条件の最適設定が難しく加熱加圧条件によっては合金化された金属薄層が溶融して周辺へ押しやられ、導電性微粒子の核材が露出したり金属薄層が非常に薄くなったり、或いは電極と導電性微粒子との接点に接着樹脂の薄層が挟まれたりして、通電不良など接続信頼性の問題が生じることがあった。
特開2004−214375号公報 特開2003−59959号公報 特開昭63−231889号公報
In this case, the first metal thin layer and the second metal thin layer are alloyed to a melting point of 250 ° C. or less by diffusion mixing by heating and pressurization, whereby the opposing electrodes and the conductive fine particles are molten metal-bonded. However, as in the conventional OLB method, conductive fine particles exist in the space between adjacent electrodes, and there is a risk of short circuit. Moreover, it is difficult to optimally set the heating and pressing conditions, and depending on the heating and pressing conditions, the alloyed metal thin layer is melted and pushed to the periphery, exposing the core material of conductive fine particles or the metal thin layer being very thin. In some cases, a thin layer of adhesive resin is sandwiched between the contacts between the electrode and the conductive fine particles, which may cause connection reliability problems such as poor conduction.
JP 2004-214375 A JP 2003-59959 A JP-A-63-231889

本発明は、上記の問題を解決するものであり、その目的とするところは、集積回路や液晶表示パネルなどの接続端子と、それに対向配置される他の電気部材、FPC(フレキシブルプリント回路基板)やTCP(テープキャリアパッケージ基板)などを電気的に接続するに適した回路基板および回路の電極接続構造体であって、高細密になり電極ピッチが狭くなっても、異なる電極同士が導通されてショートすることがなく、十分に低い接続抵抗が得られ電極との安定した接続ができ、接続信頼性に優れた回路基板および回路の電極接続構造体を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to connect terminals such as an integrated circuit and a liquid crystal display panel, and other electric members disposed opposite thereto, FPC (flexible printed circuit board). Circuit board and circuit electrode connection structure suitable for electrically connecting TCP and tape (tape carrier package substrate), etc., even when the electrode pitch is narrowed with high density, different electrodes are electrically connected to each other. An object of the present invention is to provide a circuit board and a circuit electrode connection structure having excellent connection reliability, in which a sufficiently low connection resistance is obtained without short-circuiting and stable connection with an electrode can be obtained.

請求項1記載の発明に係る回路基板は、間隔を開けて電極が複数個設けられた回路基板の電極面に複数個の導電性突起が設けられ、該複数個の導電性突起は合成樹脂を核としその表面が融点250℃以下の導電性金属薄層で覆われてなり且つ上記電極面に溶融金属結合されていることを特徴とするものである。   The circuit board according to claim 1 is provided with a plurality of conductive protrusions on an electrode surface of a circuit board in which a plurality of electrodes are provided at intervals, and the plurality of conductive protrusions are made of synthetic resin. The core is covered with a thin conductive metal layer having a melting point of 250 ° C. or lower and is melt-bonded to the electrode surface.

請求項2記載の発明に係る回路基板は、請求項1に記載の発明において、導電性突起の導電性金属薄層が、内層から順にニッケル、銅、錫の3層構造、内層から順にニッケル、銅、錫、ビスマスの4層構造、内層から順にニッケル、銅、錫、ビスマス、銀の5層構造のいずれかからなることを特徴とするものである。   A circuit board according to a second aspect of the present invention is the circuit board according to the first aspect, wherein the conductive metal thin layer of the conductive protrusion has a three-layer structure of nickel, copper and tin in order from the inner layer, nickel in order from the inner layer, It consists of a four-layer structure of copper, tin, and bismuth, and a five-layer structure of nickel, copper, tin, bismuth, and silver in order from the inner layer.

請求項3記載の発明に係る回路基板は、請求項1または2に記載の発明において、導電性突起が、ほぼ真球状であって直径が1〜10μmであることを特徴とするものである。   A circuit board according to a third aspect of the present invention is the circuit board according to the first or second aspect, characterized in that the conductive protrusions are substantially spherical and have a diameter of 1 to 10 μm.

また、請求項4記載の発明に係る回路の電極接続構造体は、間隔を開けて電極が複数個設けられた回路基板同士が各電極面を対向して配設され、各対向した電極面の間に合成樹脂を核としその表面が融点250℃以下の導電性金属薄層で覆われてなる導電性突起が複数個設けられ、該導電性突起はやや扁平に押圧変形された状態で上記電極面に溶融金属結合されており、隣接する電極間の空間には導電性微粒子が存在していないことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided an electrode connection structure for a circuit, wherein circuit boards each having a plurality of electrodes spaced apart from each other are disposed so that the electrode surfaces face each other. There are provided a plurality of conductive protrusions having a synthetic resin as a core and a surface covered with a thin conductive metal layer having a melting point of 250 ° C. or less, and the conductive protrusions are pressed and deformed slightly flatly. The surface is melt-bonded to the surface, and no conductive fine particles are present in the space between adjacent electrodes.

請求項5記載の発明に係る回路の電極接続構造体は、請求項4に記載の発明において、導電性突起の導電性金属薄層が、内層から順にニッケル、銅、錫の3層構造、内層から順にニッケル、銅、錫、ビスマスの4層構造、内層から順にニッケル、銅、錫、ビスマス、銀の5層構造のいずれかからなることを特徴とするものである。   The electrode connection structure of the circuit according to the invention described in claim 5 is the electrode connection structure according to claim 4, wherein the conductive metal thin layer of the conductive protrusion is a three-layer structure of nickel, copper and tin in order from the inner layer, and the inner layer It is characterized by consisting of a four-layer structure of nickel, copper, tin, and bismuth in order, and a five-layer structure of nickel, copper, tin, bismuth, and silver in order from the inner layer.

請求項6記載の発明に係る回路の電極接続構造体は、請求項4または5に記載の発明において、導電性突起が、ほぼ真球状であって直径が1〜10μmであることを特徴とするものである。   A circuit electrode connection structure according to a sixth aspect of the invention is characterized in that, in the invention according to the fourth or fifth aspect, the conductive protrusions are substantially spherical and have a diameter of 1 to 10 μm. Is.

以下、本発明を図面を参照しながら詳細に説明する。
まず、本発明の回路基板について説明する。図1は、本発明の回路基板の一例を示す断面模式図である。図1において、10は例えばドライブ回路基板のような回路基板であり、この回路基板10にはその一面に一定ピッチで一定の間隔を開けて一定の幅を有する電極11が複数個設けられている。図には便宜上2個の電極11を示している。なお、電極11はバンブのような突起電極であってもよい。
Hereinafter, the present invention will be described in detail with reference to the drawings.
First, the circuit board of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing an example of a circuit board of the present invention. In FIG. 1, reference numeral 10 denotes a circuit board such as a drive circuit board, and the circuit board 10 is provided with a plurality of electrodes 11 having a constant width and a constant interval on a surface thereof. . In the figure, two electrodes 11 are shown for convenience. The electrode 11 may be a protruding electrode such as a bump.

回路基板10は、例えばポリエステルフィルム、ポリイミドフィルムなどの透明性、耐熱性、耐湿性等の耐久性に優れたフィルム基板と電極11とから構成されている。電極11は、例えば金、銀、銅、ニッケル、ITO等の精密配線パターンで形成されている。この精密配線パターンで形成された電極11は、例えばPEP(Photo Engraving Process)法により形成される。   The circuit board 10 includes a film substrate having excellent durability such as transparency, heat resistance, and moisture resistance such as a polyester film and a polyimide film, and an electrode 11. The electrode 11 is formed of a precision wiring pattern such as gold, silver, copper, nickel, ITO or the like. The electrode 11 formed with this precision wiring pattern is formed by, for example, a PEP (Photo Engraving Process) method.

そして、上記回路基板10の各電極11の上に、複数個の導電性突起20が設けられている。図には便宜上3個の導電性突起20を示している。この導電性突起20は、合成樹脂を核21としその表面が融点250℃以下の導電性金属薄層22により覆われてなり、上記電極11に溶融金属結合されている。30はその溶融金属結合部である。ここで、導電性突起20を電極11の一面に溶融金属結合させる方法としては、導電性突起20を形成する導電性微粒子20(導電性突起20と同じ構成)を各電極11の上に散布した後、加熱して導電性微粒子20の導電性金属薄層22を溶融する方法が採用される。   A plurality of conductive protrusions 20 are provided on each electrode 11 of the circuit board 10. In the figure, three conductive protrusions 20 are shown for convenience. The conductive protrusion 20 has a synthetic resin core 21 and a surface covered with a thin conductive metal layer 22 having a melting point of 250 ° C. or lower and is bonded to the electrode 11 by molten metal. 30 is the molten metal joint. Here, as a method of melt-bonding the conductive protrusions 20 to one surface of the electrodes 11, conductive fine particles 20 (the same configuration as the conductive protrusions 20) that form the conductive protrusions 20 are dispersed on each electrode 11. Thereafter, a method of heating and melting the conductive metal thin layer 22 of the conductive fine particles 20 is employed.

具体的には、回路基板10の電極11を含む全面に感光性のドライフィルムレジストをラミネートし、写真フィルムを利用してUV照射により電極端子として露出する電極パターン以外の部分にレジストを残し、その全面に導電性微粒子20を散布し、これを加熱することによって導電性微粒子20の導電性金属薄層22を溶融させ、電極11上のみに導電性微粒子20を溶融金属結合させる。なお、回路基板10の電極11以外の部分に付着した導電性微粒子はレジストを剥離する際に除去される。このような方法により、導電性微粒子20を所望の数だけ電極11上に載せることができる。   Specifically, a photosensitive dry film resist is laminated on the entire surface including the electrode 11 of the circuit board 10, and the resist is left in a portion other than the electrode pattern exposed as an electrode terminal by UV irradiation using a photographic film. The conductive fine particles 20 are sprayed on the entire surface and heated to melt the conductive metal thin layer 22 of the conductive fine particles 20, and the conductive fine particles 20 are melted and bonded only on the electrodes 11. The conductive fine particles adhering to portions other than the electrodes 11 of the circuit board 10 are removed when the resist is removed. By such a method, a desired number of conductive fine particles 20 can be placed on the electrode 11.

さらに、導電性微粒子20の導電性金属薄層22を溶融させ、電極11上のみに導電性微粒子20を溶融金属結合させた後、回路基板10の電極11以外の部分に付着した導電性微粒子を、洗浄したり、圧縮エアで吹き飛ばしたり、刷毛で掃くなどによってレジストを剥離除去することなく取り除いてもよい。このような方法であれば導電パターンは電極端子となる部分以外は残留するレジストにより被覆され保護されるため好ましい。   Further, after the conductive metal thin layer 22 of the conductive fine particles 20 is melted and the conductive fine particles 20 are melted and bonded only on the electrodes 11, the conductive fine particles attached to portions other than the electrodes 11 of the circuit board 10 are removed. The resist may be removed without being removed by washing, blowing with compressed air, or sweeping with a brush. If it is such a method, since a conductive pattern is coat | covered and protected by the remaining resist except the part used as an electrode terminal, it is preferable.

上記導電性突起20の核21となる合成樹脂は、後述のフェースダウン実装における加熱加圧の際にやや扁平に圧縮可能で且つ残存弾性(弾性回復)を有する必要がある。このような合成樹脂としては、ジビニルベンゼン重合体、ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体、スチレン−アクリル系共重合体、アクリル系樹脂、メラミン樹脂、ベンゾグアナミン重合体などが好適に用いられる。導電性突起20(導電性微粒子20)の圧縮変形後の回復率は20℃において5〜95%が好ましい。   The synthetic resin serving as the core 21 of the conductive protrusion 20 needs to be able to be compressed slightly flat and to have residual elasticity (elastic recovery) when heated and pressed in face-down mounting described later. Such synthetic resins include divinylbenzene polymer, divinylbenzene-styrene copolymer, divinylbenzene-styrene copolymer, divinylbenzene-acrylate copolymer, styrene-acrylic copolymer, acrylic resin. A melamine resin, a benzoguanamine polymer, or the like is preferably used. The recovery rate after compression deformation of the conductive protrusions 20 (conductive fine particles 20) is preferably 5 to 95% at 20 ° C.

導電性突起20の導電性金属薄層22は、250℃以下の温度、好ましくは250〜100℃の温度で溶融する低融点の導電性金属薄層である。融点が100℃よりも低くなると高温時における回路の接続信頼性が低下し、逆に融点が250℃よりも高くなると回路の接続時に高温を必要とするため回路に接続した部品に悪影響を生じる。   The conductive metal thin layer 22 of the conductive protrusion 20 is a low melting point conductive metal thin layer that melts at a temperature of 250 ° C. or lower, preferably 250 to 100 ° C. When the melting point is lower than 100 ° C., the connection reliability of the circuit at a high temperature is lowered, and conversely, when the melting point is higher than 250 ° C., a high temperature is required at the time of circuit connection, thereby adversely affecting the components connected to the circuit.

この場合、導電性金属薄層22が250℃以下の温度、好ましくは250〜100℃の温度で溶融する低融点の導電性金属薄層のみから構成されると、フェースダウン実装の際の加熱加圧により、この低融点の導電性金属薄層22が溶融して周辺へ押しやられ、電極11との接触部では合成樹脂製の核21が露出することとなり、接続回路の導通不良が生じやすくなる。   In this case, if the conductive metal thin layer 22 is composed only of a low melting point conductive metal thin layer that melts at a temperature of 250 ° C. or lower, preferably 250 to 100 ° C., it is heated during face-down mounting. Due to the pressure, the conductive metal thin layer 22 having a low melting point is melted and pushed to the periphery, and the core 21 made of the synthetic resin is exposed at the contact portion with the electrode 11, so that the conduction failure of the connection circuit is likely to occur. .

上記の問題を改善するには、導電性金属薄層22は、内側に溶融拡散しない高融点の導電金属薄層を形成し、その外側に上記のような低融点の導電金属膜を形成した複層構成のものが好ましい。このように、導電性金属薄層22を複層構成にすると、外層の低融点の導電金属薄層が溶融して周辺へ押しやられても、内層の溶融拡散しない高融点の導電金属薄層は溶融しないので、合成樹脂製の核21が露出することが防止され、接続回路の導通不良は生じない。   In order to improve the above problem, the conductive metal thin layer 22 is formed by forming a high-melting-point conductive metal thin layer that does not melt and diffuse on the inside, and forming a low-melting-point conductive metal film on the outside thereof. A layer structure is preferred. As described above, when the conductive metal thin layer 22 has a multilayer structure, even if the low-melting-point conductive metal thin layer of the outer layer is melted and pushed to the periphery, the high-melting-point conductive metal thin layer that does not melt and diffuse in the inner layer is Since it does not melt, the core 21 made of synthetic resin is prevented from being exposed, and no connection circuit conduction failure occurs.

本発明では、特に、合成樹脂からなる核21の表面に被覆される融点250℃以下の導電性金属薄層22としては、内側から順にニッケル、銅、錫の3層構造、内側から順にニッケル、銅、錫、ビスマスの4層構造、内側から順にニッケル、銅、錫、ビスマス、銀の5層構造のいずれかからなるものが好適に用いられる。   In the present invention, in particular, as the conductive metal thin layer 22 having a melting point of 250 ° C. or less that is coated on the surface of the core 21 made of synthetic resin, a three-layer structure of nickel, copper, and tin in order from the inside, nickel in order from the inside, A four-layer structure of copper, tin and bismuth, and a five-layer structure of nickel, copper, tin, bismuth and silver in order from the inside is preferably used.

すなわち、溶融拡散しない高融点の導電金属であるニッケル層(融点:1455℃)を内層とし、銅層(融点:1085℃)を密着性を維持させる層として介在させ、低融点の導電金属である錫層(融点:232℃)、ビスマス層(融点:270℃)、銀層(融点:962℃)を形成させることが好ましい。このような積層構造であれば、低融点の金属薄層が高融点で溶融拡散しない高融点の金属薄層から剥がれることない。また、低融点の金属層を形成する金属同士が加熱加圧により溶融して拡散混合されて融点が100〜250℃の低融点の合金となる。   That is, a nickel layer (melting point: 1455 ° C.) that is a high melting point conductive metal that does not melt and diffuse is used as an inner layer, and a copper layer (melting point: 1085 ° C.) is interposed as a layer that maintains adhesion, and is a low melting point conductive metal. It is preferable to form a tin layer (melting point: 232 ° C.), a bismuth layer (melting point: 270 ° C.), and a silver layer (melting point: 962 ° C.). With such a laminated structure, the thin metal layer with a low melting point is not peeled off from the thin metal layer with a high melting point that does not melt and diffuse. Further, the metals forming the low melting point metal layer are melted by heat and pressure and mixed by diffusion to form a low melting point alloy having a melting point of 100 to 250 ° C.

合成樹脂からなる核21の表面に上記導電性金属薄層22を被覆する方法としては、従来公知の方法が採用される。例えば、合成樹脂からなる核21の表面に導電性金属層22を析出させるための触媒の働きをするパラジウムを担持させた後、これを各種公知のめっき液に投入して無電解めっき処理することにより、合成樹脂からなる核21の表面に導電性金属薄層22が被覆される。   As a method of covering the surface of the core 21 made of synthetic resin with the conductive metal thin layer 22, a conventionally known method is employed. For example, after supporting palladium acting as a catalyst for depositing the conductive metal layer 22 on the surface of the core 21 made of synthetic resin, this is put into various known plating solutions and subjected to electroless plating treatment. Thus, the conductive metal thin layer 22 is coated on the surface of the core 21 made of synthetic resin.

なお、上記合成樹脂からなる核21は、触媒となるパラジウムイオンの付着性を向上させるために、その表面がパラジウムイオンの捕捉能を有するか、或いはパラジウムイオンの捕捉能を有するように表面改質されることが好ましい。ここで、パラジウムイオンの捕捉能を有するとは、パラジウムイオンをキレートまたは塩として捕捉し得ることをいう。合成樹脂からなる核の表面に、アミノ基、イミノ基、アミド基、イミド基、シアノ基、水酸基、ニトリル基、カルボキシル基が存在する場合は貴金属イオンの捕捉能を有するので、このような基を有する化合物で処理するのが好ましい。   Note that the core 21 made of the synthetic resin has a surface modified so that the surface thereof has the ability to capture palladium ions or has the ability to capture palladium ions in order to improve the adhesion of palladium ions serving as a catalyst. It is preferred that Here, having the ability to capture palladium ions means that the palladium ions can be captured as a chelate or salt. If there is an amino group, imino group, amide group, imide group, cyano group, hydroxyl group, nitrile group or carboxyl group on the surface of the synthetic resin core, it has the ability to trap noble metal ions. It is preferable to treat with the compound which has.

無電解めっき液としては、例えば、金属塩(ニッケル塩、銅塩、錫塩、ビスマス塩、銀塩など)、還元剤(次亜燐酸ナトリウム、水素化ほう素ナトリウム、アミノボラン、ホルマリンなど)、錯化剤(ギ酸、酢酸、コハク酸、クエン酸、酒石酸、グリシン、エチレンジアミン、EDTA、トリエタノールアミンなど)、PH緩衝剤(硫酸、苛性ソーダなど)などを含む従来公知の無電解めっき液が使用される。   Electroless plating solutions include, for example, metal salts (nickel salts, copper salts, tin salts, bismuth salts, silver salts, etc.), reducing agents (sodium hypophosphite, sodium borohydride, aminoborane, formalin, etc.), complex Conventionally known electroless plating solutions containing agents (formic acid, acetic acid, succinic acid, citric acid, tartaric acid, glycine, ethylenediamine, EDTA, triethanolamine, etc.), pH buffering agents (sulfuric acid, caustic soda, etc.) are used. .

上記導電性突起20は、ほぼ真球状のものが好ましいが楕円状その他表面に突起や凹凸のあるものでもよい。導電性突起20がほぼ真球状である場合は、直径が1〜10μmのものが好ましく、直径が3〜5μm程度のものがさらに好ましい。また、導電性金属薄層22の厚さは全厚で0.02〜5μm、好ましく0.2〜1μmである。   The conductive protrusions 20 are preferably substantially spherical, but may be elliptical or other protrusions or irregularities on the surface. When the conductive protrusion 20 is substantially spherical, a diameter of 1 to 10 μm is preferable, and a diameter of about 3 to 5 μm is more preferable. Moreover, the thickness of the conductive metal thin layer 22 is 0.02 to 5 μm in total thickness, and preferably 0.2 to 1 μm.

なお、回路基板10の電極11面に複数個の導電性突起20を設けた後、その上に導電性金属めっきを施してもよい。この導電金属めっきとしては硬い金属、例えば、錫、ビスマスそれらの合金などの導電性金属めっきが採用される。導電性金属めっきの厚さは0.1〜1μmが好ましい。このような、導電性金属めっきを施すことにより、対向電極との溶融金属結合がさらに強固となる。こうして、本発明の回路基板Aが得られる。   In addition, after providing the some electroconductive protrusion 20 in the electrode 11 surface of the circuit board 10, you may give electroconductive metal plating on it. As this conductive metal plating, a hard metal, for example, conductive metal plating such as tin, bismuth or an alloy thereof is employed. The thickness of the conductive metal plating is preferably 0.1 to 1 μm. By performing such conductive metal plating, the molten metal bond with the counter electrode is further strengthened. Thus, the circuit board A of the present invention is obtained.

つぎに、本発明の回路の電極接続構造体について説明する。図2は、本発明の回路の電極接続構造体の一例を示す断面模式図である。この回路の電極接続構造体は、図1に示すドライブ回路基板のような回路基板Aを用い、この回路基板Aを、例えば液晶表示パネルの駆動回路となる配線パターンが施された回路基板40にフェースダウン実装することにより得られる。なお、上記配線パターンは、液晶表示パネルの一方(下側)ガラス基板の外側張出し部に施されている。   Next, the electrode connection structure of the circuit of the present invention will be described. FIG. 2 is a schematic cross-sectional view showing an example of the electrode connection structure of the circuit of the present invention. As the electrode connection structure of this circuit, a circuit board A such as a drive circuit board shown in FIG. 1 is used, and this circuit board A is applied to a circuit board 40 provided with a wiring pattern to be a driving circuit of a liquid crystal display panel, for example. Obtained by mounting face down. The wiring pattern is provided on the outer overhanging portion of one (lower) glass substrate of the liquid crystal display panel.

図2において、回路基板10の電極11の下方には、相対向する位置に液晶表示パネルの回路基板40の電極41が配設されている。そして、各対向した電極11面と電極41面の間には、上述したような合成樹脂を核21としその表面が融点250℃以下の導電性金属薄層22で覆われてなる導電性突起20(導電性微粒子20)が複数個設けられている。   In FIG. 2, below the electrode 11 of the circuit board 10, the electrode 41 of the circuit board 40 of a liquid crystal display panel is arrange | positioned in the position which opposes. Then, between the opposing electrode 11 surface and the electrode 41 surface, the conductive protrusion 20 is formed by using the synthetic resin as a nucleus 21 and the surface thereof covered with a thin conductive metal layer 22 having a melting point of 250 ° C. or less. A plurality of (conductive fine particles 20) are provided.

ここで、上記導電性突起20はやや扁平に押圧変形された状態で上記各電極11面と電極41面に溶融金属結合されている。30はその溶融金属結合部である。さらに、各電極間の空間には電気絶縁性の熱硬化樹脂50が充填されている。この熱硬化樹脂50と溶融金属結合部30とにより、導電性突起20が両方の電極11面と電極面41面に接着固定されている。また、隣接する電極11と電極41の間の空間には導電性微粒子は存在していない。また、電極11と導電性突起20との接触面および電極41と導電性突起20との接触面に接着樹脂の薄層が挟み込まれていない。   Here, the conductive protrusion 20 is molten metal bonded to the surface of each electrode 11 and the surface of the electrode 41 in a state of being pressed and deformed slightly flat. 30 is the molten metal joint. Further, the space between the electrodes is filled with an electrically insulating thermosetting resin 50. By the thermosetting resin 50 and the molten metal bonding portion 30, the conductive protrusion 20 is bonded and fixed to both the electrode 11 surface and the electrode surface 41 surface. Further, no conductive fine particles exist in the space between the adjacent electrode 11 and electrode 41. Further, a thin layer of adhesive resin is not sandwiched between the contact surface between the electrode 11 and the conductive protrusion 20 and the contact surface between the electrode 41 and the conductive protrusion 20.

本発明の回路の電極接続構造体は上述のように構成されており、このような回路の電極接続構造体は具体的には次の方法により得られる。まず、図1に示すドライブ回路基板のような回路基板Aを用い、この回路基板Aと液晶表示パネルの回路基板40とを、両方の回路の電極11と電極41とが、相対向するように顕微鏡下で位置合わせする。ドライブ回路基板と液晶表示パネルのガラス基板とは透明であるので、両方の回路基板の位置合わせは容易である。   The electrode connection structure of the circuit of the present invention is configured as described above, and the electrode connection structure of such a circuit is specifically obtained by the following method. First, the circuit board A such as the drive circuit board shown in FIG. 1 is used, and the circuit board A and the circuit board 40 of the liquid crystal display panel are arranged so that the electrodes 11 and the electrodes 41 of both circuits face each other. Align under the microscope. Since the drive circuit board and the glass substrate of the liquid crystal display panel are transparent, alignment of both circuit boards is easy.

その後、両方の回路基板の電極11と電極41との間に形成される空間にエポキシ樹脂等の熱硬化性樹脂液を注入し、回路基板Aと液晶表示パネルの回路基板40とを上からプレスにより加熱加圧して、上記熱硬化性樹脂液を加熱硬化させことにより、両方の回路基板の電極11と電極41とを電気絶縁性の熱硬化樹脂50により固定する。なお、上記熱硬化性樹脂液の注入を省略し空間とすることもできる。   Thereafter, a thermosetting resin liquid such as epoxy resin is injected into the space formed between the electrodes 11 and 41 of both circuit boards, and the circuit board A and the circuit board 40 of the liquid crystal display panel are pressed from above. The electrode 11 and the electrode 41 of both circuit boards are fixed by the electrically insulative thermosetting resin 50 by heating and pressing the thermosetting resin liquid. In addition, injection | pouring of the said thermosetting resin liquid is abbreviate | omitted and it can also be set as a space.

この場合、導電性突起20は加熱加圧によりやや扁平に押圧変形された状態で上記電極11面および電極41面に溶融金属結合され、しかも各電極11と各電極41との間の空間には、熱硬化樹脂50が存在するだけで、導電性微粒子が存在することはない。また、電極11と導電性突起20との接触面および電極41と導電性突起20との接触面に接着樹脂の薄層が挟み込まれることもない。   In this case, the conductive protrusion 20 is melt-bonded to the surface of the electrode 11 and the surface of the electrode 41 in a state where the conductive protrusion 20 is pressed and deformed slightly flat by heating and pressurization, and in addition, in the space between each electrode 11 and each electrode 41 Only the thermosetting resin 50 is present, and no conductive fine particles are present. Further, a thin layer of adhesive resin is not sandwiched between the contact surface between the electrode 11 and the conductive protrusion 20 and the contact surface between the electrode 41 and the conductive protrusion 20.

なお、電極の間に導電性微粒子を含有しない熱硬化性接着シートを仮着して挟むか或いは電極面に導電性微粒子を含有しない熱硬化性接着剤を塗布し、これをプレスにより加熱加圧して上記接着シート或いは接着剤を加熱硬化させてもよい。
また、上記両方の回路基板の電極11と電極41との間に形成される空間にエポキシ樹脂等の熱硬化性樹脂液を注入、この熱硬化性樹脂液を加熱硬化させてもよい。熱硬化性樹脂液を注入する方法は、電極41と導電性突起20との接触面に接着樹脂の薄層が挟み込まれる恐れがないのでより好ましい。
A thermosetting adhesive sheet that does not contain conductive fine particles is temporarily attached between the electrodes, or a thermosetting adhesive that does not contain conductive fine particles is applied to the electrode surface, and this is heated and pressed by a press. The adhesive sheet or adhesive may be heat cured.
Alternatively, a thermosetting resin liquid such as an epoxy resin may be injected into a space formed between the electrode 11 and the electrode 41 of both the circuit boards, and the thermosetting resin liquid may be cured by heating. The method of injecting the thermosetting resin liquid is more preferable because there is no fear that a thin layer of the adhesive resin is sandwiched between the contact surfaces of the electrode 41 and the conductive protrusion 20.

上記加熱加圧の条件としては、導電性突起20がやや扁平に圧縮される程度の条件が採用され、通常、圧力は50〜100MPa、温度は160〜250℃である。加熱加圧方法としてはプレスによる加熱加圧が好ましい。加熱加圧後、熱硬化性樹脂液50が硬化するまで加圧を続けておく。こうして、本発明の回路の電極接続構造体Bが得られる。   As the heating and pressurizing conditions, conditions such that the conductive protrusions 20 are slightly flattened are adopted, and the pressure is usually 50 to 100 MPa and the temperature is 160 to 250 ° C. As a heating and pressing method, heating and pressing by a press is preferable. After heating and pressing, pressurization is continued until the thermosetting resin liquid 50 is cured. Thus, the electrode connection structure B of the circuit of the present invention is obtained.

本発明の回路基板は、基板の電極上にあらかじめ複数個の導電性微粒子のような導電性突起が溶融金属結合により固定されるので、電気的導通に必要な複数個の導電性突起を回路の電極上にのみ配設することが可能となり、このような回路基板を用いて得られる本発明の回路の電極接続構造体にあっては、隣り合う電極間の空間には熱硬化樹脂が存在するだけで、導電性微粒子が存在することはない。また、各電極と導電性突起との接触面に接着樹脂の薄層が挟み込まれることもない。それゆえ、電極のショートや通電不良が起こる危険が全くなく、電極との安定した接続ができ、電極との接続信頼性に優れる。   In the circuit board of the present invention, a plurality of conductive protrusions such as conductive fine particles are fixed in advance on the electrodes of the substrate by molten metal bonding, so that the plurality of conductive protrusions necessary for electrical conduction are connected to the circuit. In the electrode connection structure of the circuit of the present invention obtained by using such a circuit board, a thermosetting resin exists in the space between adjacent electrodes. Only the conductive fine particles are not present. Further, a thin layer of adhesive resin is not sandwiched between the contact surfaces of the electrodes and the conductive protrusions. Therefore, there is no danger of short-circuiting of electrodes or poor energization, stable connection with the electrode, and excellent connection reliability with the electrode.

しかも、導電性突起はやや扁平に押圧変形された状態で相対する電極面に溶融金属結合されているので、接触面積が相当に確保され十分に低い接触抵抗が得られ、また導電性突起が電極面から剥がれることもなく、良好な導電性が得られる。   Moreover, since the conductive protrusions are melted and bonded to the opposing electrode surfaces in a state of being slightly flattened and deformed, a sufficiently low contact resistance is obtained with a sufficiently large contact area, and the conductive protrusions are electrodes. Good conductivity can be obtained without peeling from the surface.

以下、本発明の具体的な実施例を挙げる。なお、本発明はこれ等の実施例に限定されるものではない。   Specific examples of the present invention will be given below. The present invention is not limited to these examples.

(ニッケルめっき前処理)
平均粒径4μmのジビニルベンゼン樹脂からなる合成樹脂微粒子を、塩化パラジウムの酸性水溶液に分散させ還元剤で処理することにより、パラジウム金属を付着させた。なお、塩化パラジウムのかわりに塩化パラジウム−塩化第1錫または硫酸パラジウムを用いてもよい。
(Nickel plating pretreatment)
Synthetic resin fine particles made of divinylbenzene resin having an average particle diameter of 4 μm were dispersed in an acidic aqueous solution of palladium chloride and treated with a reducing agent, thereby attaching palladium metal. Note that palladium chloride-stannic chloride or palladium sulfate may be used instead of palladium chloride.

(ニッケルめっき薄層の形成)
上記パラジウム金属を付着させた合成樹脂微粒子を、所定の反応層に分散させ、これにニッケル塩、還元剤(次亜燐酸塩)、錯化剤、安定剤、PH調整剤、緩衝剤が入っためっき液を滴下し、反応させることによって0.1μmのニッケル金属薄層を被覆した。
(Formation of nickel-plated thin layer)
Synthetic resin fine particles to which the palladium metal is attached are dispersed in a predetermined reaction layer, and a nickel salt, a reducing agent (hypophosphite), a complexing agent, a stabilizer, a pH adjusting agent, and a buffering agent are contained therein. A nickel metal thin layer of 0.1 μm was coated by dropping a plating solution and reacting it.

(銅めっき前処理)
得られたニッケルめっき微粒子に、塩化パラジウムの酸性水溶液に分散させ還元剤で処理することにより、パラジウム金属を付着させた。なお、塩化パラジウムのかわりに塩化パラジウム−塩化第1錫または硫酸パラジウムを用いてもよい。
(Pretreatment of copper plating)
The resulting nickel-plated fine particles were dispersed in an acidic aqueous solution of palladium chloride and treated with a reducing agent, thereby depositing palladium metal. Note that palladium chloride-stannic chloride or palladium sulfate may be used instead of palladium chloride.

(銅めっき薄層の形成)
上記ニッケルめっき薄層を形成した合成樹脂微粒子を、所定の反応層に分散させ、これに銅塩、還元剤(ホルマリン)、錯化剤、安定剤、PH調整剤、緩衝剤が入っためっき液を滴下し、反応させることによって0.1μmの銅めっき薄層を被覆した。
(Copper plating thin layer formation)
Synthetic resin fine particles on which the nickel plating thin layer is formed are dispersed in a predetermined reaction layer, and a plating solution containing a copper salt, a reducing agent (formalin), a complexing agent, a stabilizer, a pH adjusting agent, and a buffering agent. Was dropped and reacted to coat a 0.1 μm-thick copper plating thin layer.

(錫めっき薄層の形成)
還元錫めっき反応を進行させるために、極薄層として置換錫めっきを被覆させ触媒化を行った。触媒化の方法として錫塩と還元剤(チオ尿素)、錯化剤、PH調整剤、結晶調整剤を含有した溶液中に、上記銅めっき薄層を形成した合成樹脂微粒子を分散させることによって0.02μmの錫めっき薄層を形成させた。その後、錫塩、塩化チタン、錯化剤、安定剤、結晶調整剤からなるめっき液を添加することによってさらに0.2μmの錫めっき薄層を被覆した。
(Formation of tin-plated thin layer)
In order to advance the reduction tin plating reaction, the substitution tin plating was coated as an ultra-thin layer and catalyzed. As a method of catalyzing, the synthetic resin fine particles forming the copper plating thin layer are dispersed in a solution containing a tin salt, a reducing agent (thiourea), a complexing agent, a PH adjusting agent, and a crystal adjusting agent. A 0.02 μm tin-plated thin layer was formed. Thereafter, a tin plating thin layer of 0.2 μm was further coated by adding a plating solution comprising a tin salt, titanium chloride, a complexing agent, a stabilizer, and a crystal modifier.

(ビスマスめっき薄層の形成)
上記錫めっき薄層を形成した合成樹脂微粒子を、所定の反応層に分散させ、これにビスマス塩、還元剤(塩化錫)、錯化剤、結晶調整剤、PH調整剤、安定剤を含んだめっき液を滴下し、反応させることによって0.12μmのビスマスめっき薄層を被覆した。
(Formation of thin bismuth plating layer)
Synthetic resin fine particles on which the tin plating thin layer is formed are dispersed in a predetermined reaction layer, and this contains a bismuth salt, a reducing agent (tin chloride), a complexing agent, a crystal adjusting agent, a PH adjusting agent, and a stabilizer. A thin bismuth plating layer of 0.12 μm was coated by dropping the plating solution and reacting it.

(銀めっき薄層の形成)
上記ビスマスめっき薄層を形成した合成樹脂微粒子を、所定の反応層に分散させ、これに銀塩、還元剤(グリオキシル酸、イミダゾール)、錯化剤、結晶調整剤を含んだめっき液中に分散させることによって0.02μmの銀めっき薄層を被覆した。
(Formation of silver-plated thin layer)
Synthetic resin fine particles forming the bismuth plating thin layer are dispersed in a predetermined reaction layer and dispersed in a plating solution containing a silver salt, a reducing agent (glyoxylic acid, imidazole), a complexing agent, and a crystal modifier. A 0.02 μm silver plating thin layer was coated.

(導電性微粒子の調製)
こうして得られた5層の導電性金属薄層を有する導電性微粒子を、200℃で2分間加熱することによって金属拡散をさせて約150℃で溶融する低融点合金層を形成させた。こうして、合成樹脂を核としその表面が融点250℃以下の導電性金属薄層で覆われてなる導電性微粒子を得た。得られた導電性微粒子の10%圧縮弾性率(20℃)は490N/mmであった。
(Preparation of conductive fine particles)
The conductive fine particles having the five conductive metal thin layers thus obtained were heated at 200 ° C. for 2 minutes to diffuse the metal and form a low melting point alloy layer that melted at about 150 ° C. Thus, conductive fine particles having a synthetic resin as a core and a surface covered with a thin conductive metal layer having a melting point of 250 ° C. or less were obtained. The obtained conductive fine particles had a 10% compression modulus (20 ° C.) of 490 N / mm 2 .

(回路基板の作成)
得られた導電性微粒子を使用し、5μm間隔で電極パターンが形成された10μmのラインアンドスペースを有するフレキシブルプリント配線板(FPC)に、感光性のドライフィルムレジストをラミネートし、写真フィルムを利用してUV露光により導電性微粒子の配置を回避したい部位を硬化させた後、炭酸ナトリウ溶液を用いてレジストを剥離することによって導電性微粒子を配置したい部位のみ露呈させた。その後、露呈部に上記導電性微粒子を散布により付着させ、これを加熱することによって電極上に導電性微粒子を溶融金属結合させた。その後、硬化した部位のレジストも剥離させ本発明の回路基板を得た。
(Circuit board creation)
Using the obtained conductive fine particles, a photosensitive dry film resist is laminated on a flexible printed wiring board (FPC) having a 10 μm line and space in which electrode patterns are formed at intervals of 5 μm, and a photographic film is used. Then, the portion where the conductive fine particles are to be avoided is cured by UV exposure, and then the resist is peeled off using a sodium carbonate solution to expose only the portion where the conductive fine particles are desired to be disposed. Thereafter, the conductive fine particles were adhered to the exposed part by spraying, and the conductive fine particles were fused and bonded to the electrodes by heating. Thereafter, the resist at the cured portion was also peeled off to obtain the circuit board of the present invention.

(回路の電極接続構造体の作製)
上記フレキシブルプリント配線板(FPC)からなる回路基板と、この回路基板の電極と同一の配線パターンの電極を有する透明導電ガラス(酸化インジウム回路、ガラス厚み1mm)とを用い、顕微鏡下で両方の回路の位置合わせをした。その後、両方の回路基板の電極と電極との間に形成される空間にエポキシ樹脂と硬化剤とからなる熱硬化性樹脂液を注入し、180℃、100MPaで30秒間加熱加圧して熱硬化性樹脂液を硬化させることにより回路を接続し、本発明の回路の電極接続構造体を得た。
(Production of circuit electrode connection structure)
Using a circuit board made of the flexible printed wiring board (FPC) and a transparent conductive glass (indium oxide circuit, glass thickness 1 mm) having electrodes of the same wiring pattern as the electrodes of the circuit board, both circuits under a microscope Was aligned. Thereafter, a thermosetting resin liquid composed of an epoxy resin and a curing agent is injected into the space formed between the electrodes of both circuit boards, and thermosetting is performed by heating and pressing at 180 ° C. and 100 MPa for 30 seconds. The circuit was connected by curing the resin liquid to obtain the electrode connection structure of the circuit of the present invention.

この場合、導電性微粒子はやや扁平に押圧変形された状態で上記電極面に溶融金属結合されており、隣接する電極間の空間には、熱硬化樹脂が存在するだけで、導電性微粒子が存在していなかった。また、各電極と導電性微粒子との接触面に接着樹脂の薄層が挟み込まれていなかった。   In this case, the conductive fine particles are melt-bonded to the electrode surface in a state where they are pressed and deformed slightly flat, and the conductive fine particles are present only in the space between the adjacent electrodes. I did not. Moreover, the thin layer of adhesive resin was not pinched | interposed into the contact surface of each electrode and electroconductive fine particles.

(比較例1)
ゴム変性可撓性エポキシ樹脂、マイクロカプセル型潜在性硬化剤(活性化温度120℃)およびトルエン溶剤を主成分(不揮発分50%)とする接着剤(不揮発分50%)に、前記実施例1で得られた導電性微粒子を20体積%添加してなる接着剤を、セパレータ(テトラフルオロエチレンフイルム)の上に塗布し乾燥させることにより薄いシート状に成形した。この薄いシートを150℃に加熱することにより、導電性微粒子が分散された異方導電性接着シート(セパレータ付き)を作製した。
(Comparative Example 1)
Example 1 was applied to a rubber-modified flexible epoxy resin, a microcapsule-type latent curing agent (activation temperature: 120 ° C.), and an adhesive (nonvolatile content: 50%) mainly composed of toluene solvent (nonvolatile content: 50%). The adhesive formed by adding 20% by volume of the conductive fine particles obtained in the above was applied onto a separator (tetrafluoroethylene film) and dried to form a thin sheet. This thin sheet was heated to 150 ° C. to prepare an anisotropic conductive adhesive sheet (with a separator) in which conductive fine particles were dispersed.

つぎに、実施例1と同様に5μm間隔で電極パターンが形成された10μmのラインアンドスペースを有するフレキシブルプリント配線板(FPC)の電極面に上記異方導電性接着シート(セパレータ付き)を130℃、10秒で仮圧着させたあとセパレータを剥がし、これに透明導電ガラスの電極面を重ね対向電極との位置合わせを行い、これを180℃、100MPaで30秒間加熱加圧して異方導電性接着シートを硬化させた。こうして、フレキシブルプリント配線板(FPC)と透明導電ガラスとが電気的に導通するように接続された回路の電極接続構造体を得た。   Next, the anisotropic conductive adhesive sheet (with a separator) is placed at 130 ° C. on the electrode surface of a flexible printed wiring board (FPC) having a 10 μm line and space in which electrode patterns are formed at intervals of 5 μm as in Example 1. After temporarily pressing in 10 seconds, the separator is peeled off, and the electrode surface of transparent conductive glass is overlapped with this to align with the counter electrode, and this is heated and pressurized at 180 ° C. and 100 MPa for 30 seconds to anisotropically conductive bond The sheet was cured. Thus, an electrode connection structure of a circuit was obtained in which the flexible printed wiring board (FPC) and the transparent conductive glass were connected so as to be electrically conductive.

(比較例2)
特許文献1、特許文献2(特開2003−59959号公報、特開2004−214375号公報)に記載のめっき法にもとづき、電極を形成させたフレキシブルプリント配線板を粒子分散中のめっき液に浸漬し、電極上にめっきするのと同時に粒子も電極に析出させ電極上のみ粒子を配置させた後、熱硬化性の樹脂をペーストし、上下電極と位置合わせを行った。これを180℃、100MPaで30秒間加熱加圧して異方導電性接着シートを降下させた。こうして、フレキシブルプリント配線板(FPC)と透明導電ガラスとが電気的に導通するように接続された回路の電極接続構造体を得た。
(Comparative Example 2)
Based on the plating method described in Patent Document 1 and Patent Document 2 (Japanese Patent Laid-Open Nos. 2003-59959 and 2004-214375), a flexible printed wiring board on which electrodes are formed is immersed in a plating solution in which particles are dispersed. At the same time as plating on the electrode, the particles were deposited on the electrode and the particles were placed only on the electrode, and then a thermosetting resin was pasted to align the upper and lower electrodes. This was heated and pressurized at 180 ° C. and 100 MPa for 30 seconds to lower the anisotropic conductive adhesive sheet. Thus, an electrode connection structure of a circuit was obtained in which the flexible printed wiring board (FPC) and the transparent conductive glass were connected so as to be electrically conductive.

(評価)
上記実施例1および比較例1、2で得られた回路の電極接続構造体について、180℃、85%の高温高湿内に1000時間放置及び一定間隔で−40℃と+120℃に交互に浸漬を行い、この信頼性試験前後での接続抵抗値および絶縁抵抗値を測定したところ、対向電極同士の抵抗値の上昇は無く、隣接電極間の絶縁抵抗値の劣化も見られなかった。この結果より、実施例1では、異なる電極同士が導通されてショートすることがなく、十分に低い接続抵抗が得られ電極との安定した接続ができ、接続信頼性は極めて優れていることがわかった。
(Evaluation)
The electrode connection structure of the circuit obtained in Example 1 and Comparative Examples 1 and 2 was left in a high temperature and high humidity of 180 ° C. and 85% for 1000 hours and alternately immersed in −40 ° C. and + 120 ° C. at regular intervals. When the connection resistance value and the insulation resistance value before and after this reliability test were measured, there was no increase in the resistance value between the opposing electrodes, and no deterioration in the insulation resistance value between adjacent electrodes was observed. From this result, in Example 1, it can be seen that different electrodes are not connected to each other and short-circuited, a sufficiently low connection resistance is obtained, a stable connection with the electrode can be obtained, and the connection reliability is extremely excellent. It was.

これに対して、比較例1では隣接する電極間でリーク電流によるショートが見られた。また比較例2では上下電極共に金属結合しているのではなく片側のみの金属結合であるため、いずれも実施例1に比べて接続信頼性は劣るものであった。   On the other hand, in Comparative Example 1, a short circuit due to a leakage current was observed between adjacent electrodes. In Comparative Example 2, both the upper and lower electrodes are not metal-bonded, but are metal-bonded only on one side, so that the connection reliability is inferior to that of Example 1 in all cases.

本発明の回路基板の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the circuit board of this invention. 本発明の回路の電極接続構造体の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the electrode connection structure of the circuit of this invention.

符号の説明Explanation of symbols

A 本発明の回路基板
B 本発明の回路の電極接続構造体
10 ドライブ回路基板
11 ドライブ回路基板の電極
20 導電性突起(導電性微粒子)
21 合成樹脂からなる核
22 導電性金属薄層
30 溶融金属結合部
40 液晶表示パネルの回路基板
41 液晶表示パネルの回路基板の電極
50 電気絶縁性の熱硬化樹脂
A Circuit board of the present invention B Electrode connection structure of circuit of the present invention 10 Drive circuit board 11 Electrode of drive circuit board 20 Conductive protrusion (conductive fine particles)
21 Core made of synthetic resin 22 Conductive metal thin layer 30 Molten metal bonding part 40 Circuit board of liquid crystal display panel 41 Electrode of circuit board of liquid crystal display panel 50 Electrical insulating thermosetting resin

Claims (6)

間隔を開けて電極が複数個設けられた回路基板の電極面に複数個の導電性突起が設けられ、該複数個の導電性突起は合成樹脂を核としその表面が融点250℃以下の導電性金属薄層で覆われてなり且つ上記電極面に溶融金属結合されていることを特徴とする回路基板。   A plurality of conductive protrusions are provided on the electrode surface of the circuit board on which a plurality of electrodes are provided at intervals, and the plurality of conductive protrusions have a synthetic resin as a core and the surface has a melting point of 250 ° C. or lower. A circuit board which is covered with a thin metal layer and is bonded to a molten metal on the electrode surface. 導電性突起の導電性金属薄層が、内層から順にニッケル、銅、錫の3層構造、内層から順にニッケル、銅、錫、ビスマスの4層構造、内層から順にニッケル、銅、錫、ビスマス、銀の5層構造のいずれかからなることを特徴とする請求項1に記載の回路基板。   The conductive metal thin layer of the conductive protrusion has a three-layer structure of nickel, copper and tin in order from the inner layer, a four-layer structure of nickel, copper, tin and bismuth in order from the inner layer, nickel, copper, tin, bismuth in order from the inner layer, The circuit board according to claim 1, wherein the circuit board is made of any one of five layers of silver. 導電性突起が、ほぼ真球状であって直径が1〜10μmであることを特徴とする請求項1または2に記載の回路基板。   The circuit board according to claim 1, wherein the conductive protrusion has a substantially spherical shape and a diameter of 1 to 10 μm. 間隔を開けて電極が複数個設けられた回路基板同士が各電極面を対向して配設され、各対向した電極面の間に合成樹脂を核としその表面が融点250℃以下の導電性金属薄層で覆われてなる導電性突起が複数個設けられ、該導電性突起はやや扁平に押圧変形された状態で上記電極面に溶融金属結合されており、隣接する電極間の空間には導電性微粒子が存在していないことを特徴とする回路の電極接続構造体。   Circuit boards provided with a plurality of electrodes spaced apart are arranged with the electrode surfaces facing each other, and a conductive metal having a synthetic resin as a core between the facing electrode surfaces and a melting point of 250 ° C. or lower. A plurality of conductive protrusions covered with a thin layer are provided, and the conductive protrusions are melt-bonded to the electrode surface in a state where they are pressed and deformed slightly flatly. Circuit electrode connection structure, characterized in that no conductive fine particles are present. 導電性突起の導電性金属薄層が、内層側から順にニッケル、銅、錫の3層構造、内層から順にニッケル、銅、錫、ビスマスの4層構造、内層から順にニッケル、銅、錫、ビスマス、銀の5層構造のいずれかからなることを特徴とする請求項4に記載の回路の電極接続構造体。   The conductive metal thin layer of the conductive protrusion has a three-layer structure of nickel, copper and tin in order from the inner layer side, a four-layer structure of nickel, copper, tin and bismuth in order from the inner layer, and nickel, copper, tin and bismuth in order from the inner layer. 5. The electrode connection structure for a circuit according to claim 4, wherein the electrode connection structure is made of any one of five layers of silver. 導電性突起が、ほぼ真球状であって直径が1〜10μmであることを特徴とする請求項4または5に記載の回路の電極接続構造体。
6. The electrode connection structure for a circuit according to claim 4, wherein the conductive protrusion is substantially spherical and has a diameter of 1 to 10 [mu] m.
JP2006038757A 2006-02-16 2006-02-16 Circuit board and electrode connection structure of circuit Pending JP2007220839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038757A JP2007220839A (en) 2006-02-16 2006-02-16 Circuit board and electrode connection structure of circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038757A JP2007220839A (en) 2006-02-16 2006-02-16 Circuit board and electrode connection structure of circuit

Publications (1)

Publication Number Publication Date
JP2007220839A true JP2007220839A (en) 2007-08-30

Family

ID=38497797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038757A Pending JP2007220839A (en) 2006-02-16 2006-02-16 Circuit board and electrode connection structure of circuit

Country Status (1)

Country Link
JP (1) JP2007220839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129369A (en) * 2017-02-07 2018-08-16 日立化成株式会社 Connection structure, manufacturing method thereof, manufacturing method of electrode with terminal, and conductive particle, kit and transfer mold used therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH08288291A (en) * 1995-04-18 1996-11-01 Citizen Watch Co Ltd Semiconductor device
JP2000195888A (en) * 1998-12-28 2000-07-14 Sony Corp Semiconductor device
JP2001093329A (en) * 1999-09-20 2001-04-06 Sekisui Chem Co Ltd Solder plating polymeric micro-sphere and connecting structure
JP2002151532A (en) * 2000-11-08 2002-05-24 Sharp Corp Electronic component, method and structure for mounting semiconductor device
JP2003068142A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP2005005630A (en) * 2003-06-16 2005-01-06 Sharp Corp Conductive ball and external electrode forming method of electronic component using it
JP2005150465A (en) * 2003-11-17 2005-06-09 Kyocera Corp Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH08288291A (en) * 1995-04-18 1996-11-01 Citizen Watch Co Ltd Semiconductor device
JP2000195888A (en) * 1998-12-28 2000-07-14 Sony Corp Semiconductor device
JP2001093329A (en) * 1999-09-20 2001-04-06 Sekisui Chem Co Ltd Solder plating polymeric micro-sphere and connecting structure
JP2002151532A (en) * 2000-11-08 2002-05-24 Sharp Corp Electronic component, method and structure for mounting semiconductor device
JP2003068142A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP2005005630A (en) * 2003-06-16 2005-01-06 Sharp Corp Conductive ball and external electrode forming method of electronic component using it
JP2005150465A (en) * 2003-11-17 2005-06-09 Kyocera Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129369A (en) * 2017-02-07 2018-08-16 日立化成株式会社 Connection structure, manufacturing method thereof, manufacturing method of electrode with terminal, and conductive particle, kit and transfer mold used therefor
JP7000685B2 (en) 2017-02-07 2022-01-20 昭和電工マテリアルズ株式会社 A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method.

Similar Documents

Publication Publication Date Title
JPH07161400A (en) Anisotropic conductive film, its manufacture and connector using it
JP3494940B2 (en) Tape carrier type semiconductor device, manufacturing method thereof, and liquid crystal module using the same
KR100563890B1 (en) Electrical connecting device and electrical connecting method
JP2004288959A (en) Electronic circuit device and manufacturing method thereof
KR20130063984A (en) Wiring board and method of manufacturing the same
JP2005209491A (en) Conductive particle and anisotropic conductive adhesive using this
JP3436170B2 (en) Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same
JP2000286299A (en) Method for connecting semiconductor device
JP3219140B2 (en) Electrical and electronic equipment
JP2007220839A (en) Circuit board and electrode connection structure of circuit
JP3925752B2 (en) Bumped wiring board and manufacturing method of semiconductor package
JP2004342766A (en) Circuit board and electronic component mounted body
JPH09306231A (en) Conductive particulate and substrate
JP3455602B2 (en) Manufacturing method of semiconductor device mounting substrate
KR100807352B1 (en) Electrode having projections on electrode pad, electronic apparatus including device mounting structure having the same and method of mounting device of electronic apparatus
JPH09147928A (en) Connecting member
JPH0621601A (en) Printed circuit board, and fabrication and connection thereof
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
JP2002217239A (en) Anisotropic conductive film
JPH08186358A (en) Connecting structure and method of electronic part
TWI328988B (en) Circuit board and apparatus employing the same
JP4099475B2 (en) Conductive silicon powder, manufacturing method thereof, anisotropic conductive film and conductive paste using the same
JP2000133330A (en) Anisotropic electroconductive film, semiconductor mounting board using it, liquid crystal device, and electronic appliance
KR20050026327A (en) Conductive silicon powder and method for making the same and anisotropic conductive film and conductive paste using the same
JP2003100367A (en) Conductive bond, and connection method and connection structure between circuit boards using bond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110126