JP2018129369A - Connection structure, manufacturing method thereof, manufacturing method of electrode with terminal, and conductive particle, kit and transfer mold used therefor - Google Patents

Connection structure, manufacturing method thereof, manufacturing method of electrode with terminal, and conductive particle, kit and transfer mold used therefor Download PDF

Info

Publication number
JP2018129369A
JP2018129369A JP2017020590A JP2017020590A JP2018129369A JP 2018129369 A JP2018129369 A JP 2018129369A JP 2017020590 A JP2017020590 A JP 2017020590A JP 2017020590 A JP2017020590 A JP 2017020590A JP 2018129369 A JP2018129369 A JP 2018129369A
Authority
JP
Japan
Prior art keywords
electrode
conductive particles
metal
manufacturing
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017020590A
Other languages
Japanese (ja)
Other versions
JP7000685B2 (en
Inventor
芳則 江尻
Yoshinori Ejiri
芳則 江尻
敏光 森谷
Toshimitsu Moriya
敏光 森谷
振一郎 須方
Shinichiro Sugata
振一郎 須方
昌之 中川
Masayuki Nakagawa
昌之 中川
将平 山崎
Shohei Yamazaki
将平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017020590A priority Critical patent/JP7000685B2/en
Publication of JP2018129369A publication Critical patent/JP2018129369A/en
Application granted granted Critical
Publication of JP7000685B2 publication Critical patent/JP7000685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a connection structure having both of excellent insulation reliability and conduction reliability even in a case where a connection spot of circuit members that are to be electrically connected with each other, has a very small area.SOLUTION: A manufacturing method of a connection structure includes: preparing multiple conductive particles each having a surface consisting of a first metal; accommodating the conductive particles in multiple openings of a transfer mold; forming a second metal layer consisting of a second metal including tin or tin alloy on a part of surfaces of the conductive particles that are accommodated in the openings, by sputtering; disposing multiple conductive particles in which the second metal layer is formed, on a surface of a first electrode; fusing the conductive particles to the first electrode by heating the conductive particles at a higher temperature than a melting point of the second metal; forming an insulation resin layer between a first circuit member including the first electrode and a second circuit member including a second electrode; and electrically connecting the first and second electrodes to each other and bonding the first and second circuit members together by pressing and heating.SELECTED DRAWING: Figure 4

Description

本発明は、接続構造体及びその製造方法、端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型に関する。   The present invention relates to a connection structure and a method for manufacturing the same, a method for manufacturing an electrode with a terminal, and conductive particles, a kit, and a transfer mold used therefor.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装と、COF(Chip−on−Flex)実装との二種に大別することができる。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう「異方性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting the liquid crystal driving IC on the liquid crystal display glass panel can be roughly divided into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, a liquid crystal driving IC is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The term “anisotropic” as used herein means that conduction is achieved in the pressurizing direction and insulation is maintained in the non-pressurizing direction.

ところで、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金属バンプは狭ピッチ化及び狭面積化しており、そのため、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させるおそれがある。特にCOG実装ではその傾向が顕著である。隣接する回路電極間に導電粒子が流出すると、金属バンプとガラスパネルとの間に捕捉される異方導電性接着剤中の導電粒子数が減少し、対面する回路電極間の接続抵抗が上昇する接続不良を起こすおそれがある。このような傾向は、単位面積あたり2万個/mm未満の導電粒子を投入すると、より顕著である。 By the way, with recent high definition of liquid crystal display, the metal bumps which are circuit electrodes of the liquid crystal driving IC are narrowed in pitch and area, so that the circuit where the conductive particles of the anisotropic conductive adhesive are adjacent to each other. There is a risk of causing a short circuit by flowing out between the electrodes. This tendency is particularly remarkable in COG mounting. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive trapped between the metal bumps and the glass panel decreases, and the connection resistance between the facing circuit electrodes increases. There is a risk of poor connection. Such a tendency is more prominent when conductive particles of less than 20,000 / mm 2 are introduced per unit area.

これらの問題を解決する方法として、導電粒子(母粒子)の表面に複数の絶縁粒子(子粒子)を付着させ、複合粒子を形成させる方法が提案されている。例えば、特許文献1,2では導電粒子の表面に球状の樹脂粒子を付着させる方法が提案されている。更に単位面積あたり7万個/mm以上の導電粒子を投入した場合であっても、絶縁信頼性に優れた絶縁被覆導電粒子が提案されており、特許文献3では、第1の絶縁粒子と、第1の絶縁粒子よりもガラス転移温度が低い第2の絶縁粒子が導電粒子の表面に付着された絶縁被覆導電粒子が提案されている。 As a method for solving these problems, a method has been proposed in which a plurality of insulating particles (child particles) are attached to the surface of conductive particles (mother particles) to form composite particles. For example, Patent Documents 1 and 2 propose a method of attaching spherical resin particles to the surface of conductive particles. Furthermore, even when 70,000 particles / mm 2 or more of conductive particles are charged per unit area, insulating coated conductive particles having excellent insulation reliability have been proposed. In Patent Document 3, the first insulating particles and Insulating coated conductive particles in which second insulating particles having a glass transition temperature lower than that of the first insulating particles are attached to the surface of the conductive particles have been proposed.

特許第4773685号公報Japanese Patent No. 4777385 特許第3869785号公報Japanese Patent No. 3869785 特開2014−17213号公報JP 2014-17213 A

ところで、電気的に互いに接続すべき回路部材の接続箇所が微小(例えばバンプ面積2000μm未満)である場合、安定した導通信頼性を得るために導電粒子を増やすことが好ましい。このような理由から、単位面積あたり10万個/mm以上の導電粒子を投入する場合もでてきている。しかしながら、このように接続箇所が微小である場合、特許文献1〜3に記載の絶縁被覆導電粒子を用いたとしても、導通信頼性と絶縁信頼性のバランスを取ることは難しく、未だ改善の余地があった。 By the way, when the connection location of the circuit members to be electrically connected to each other is very small (for example, a bump area of less than 2000 μm 2 ), it is preferable to increase the conductive particles in order to obtain stable conduction reliability. For these reasons, there are cases where 100,000 particles / mm 2 or more of conductive particles are introduced per unit area. However, when the connection location is very small as described above, even if the insulating coated conductive particles described in Patent Documents 1 to 3 are used, it is difficult to balance conduction reliability and insulation reliability, and there is still room for improvement. was there.

本発明は、上記課題に鑑みてなされたものであり、電気的に互いに接続すべき回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法を提供することを目的とする。また、本発明は、上記接続構造体を製造するのに有用な端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型を提供することを目的とする。   The present invention has been made in view of the above problems, and a connection structure excellent in both insulation reliability and conduction reliability even when connection portions of circuit members to be electrically connected to each other are very small, and the connection structure thereof An object is to provide a manufacturing method. Moreover, an object of this invention is to provide the manufacturing method of the electrode with a terminal useful for manufacturing the said connection structure, and the electroconductive particle used for this, a kit, and a transfer type | mold.

上記課題を解決するため、本発明者らは従来の手法では絶縁抵抗値が低下する理由について検討した。その結果、特許文献1,2に記載の発明では、導電粒子の表面に被覆されている絶縁粒子の被覆性が低く、単位面積あたり2万個/mm程度又はこれ未満の導電粒子の投入量であっても、絶縁抵抗値が低下しやすいことが分かった。 In order to solve the above-mentioned problems, the present inventors have examined the reason why the insulation resistance value is lowered in the conventional method. As a result, in the inventions described in Patent Documents 1 and 2, the coverage of the insulating particles coated on the surface of the conductive particles is low, and the input amount of the conductive particles of about 20,000 / mm 2 or less per unit area Even so, it has been found that the insulation resistance value tends to decrease.

特許文献3に記載の発明においては、特許文献1,2に記載の発明の欠点を補うため、第1の絶縁粒子と、第1の絶縁粒子よりもガラス転移温度が低い第2の絶縁粒子を導電粒子の表面に付着させている。これにより、導電粒子の投入量が単位面積あたり7万個/mm程度であれば絶縁抵抗値が十分に高い状態を維持できる。しかし、導電粒子の投入量が単位面積あたり10万個/mm以上ともなると絶縁抵抗値が不十分となる可能性があることが分かった。 In the invention described in Patent Document 3, in order to compensate for the disadvantages of the invention described in Patent Documents 1 and 2, the first insulating particles and the second insulating particles having a glass transition temperature lower than that of the first insulating particles are used. It adheres to the surface of the conductive particles. Thereby, if the input amount of the conductive particles is about 70,000 particles / mm 2 per unit area, the insulation resistance value can be kept sufficiently high. However, it has been found that the insulation resistance value may be insufficient when the amount of conductive particles charged is 100,000 / mm 2 or more per unit area.

本発明は本発明者らの上記知見に基づいてなされたものである。本発明は接続構造体の製造方法を提供する。すなわち、本発明に係る接続構造体の製造方法は以下の工程を含む。
・第一の基板と、第一の基板に設けられた第一の電極とを有する第一の回路部材を準備すること。
・第一の電極と電気的に接続される第二の電極を有する第二の回路部材を準備すること。
・第一の金属からなる表面を有する複数の導電粒子を準備すること。
・複数の開口部を有する転写型の開口部に導電粒子を収容すること;
・転写型の開口部に収容された導電粒子の表面の少なくとも一部に、スズ又はスズ合金を含む第二の金属からなる第二金属層をスパッタリングによって形成すること;
第二金属層が形成された複数の導電粒子を第一の電極の表面に配置すること;
・第一の電極の表面に配置された上記複数の導電粒子を上記第二の金属の融点よりも高い温度に加熱することによって第一の電極に導電粒子を融着させること。
・第一の回路部材の一方の面であって上記導電粒子が融着した第一の電極を有する面と、第二の回路部材の一方の面であって第二の回路を有する面との間に絶縁樹脂層を形成すること。
・第一の回路部材と絶縁樹脂層と第二の回路部材と含む積層体を当該積層体の厚さ方向に押圧した状態で加熱することによって第一の電極と第二の電極とを導電粒子を介して電気的に接続し且つ第一の回路部材と第二の回路部材と接着すること。
The present invention has been made based on the above findings of the present inventors. The present invention provides a method for manufacturing a connection structure. That is, the manufacturing method of the connection structure according to the present invention includes the following steps.
Preparing a first circuit member having a first substrate and a first electrode provided on the first substrate;
Providing a second circuit member having a second electrode electrically connected to the first electrode;
Prepare a plurality of conductive particles having a surface made of the first metal.
Housing the conductive particles in a transfer-type opening having a plurality of openings;
Forming a second metal layer made of a second metal containing tin or a tin alloy by sputtering on at least a part of the surface of the conductive particles accommodated in the opening of the transfer mold;
Disposing a plurality of conductive particles on which the second metal layer is formed on the surface of the first electrode;
The conductive particles are fused to the first electrode by heating the plurality of conductive particles arranged on the surface of the first electrode to a temperature higher than the melting point of the second metal.
A surface of the first circuit member having the first electrode fused with the conductive particles and a surface of the second circuit member having the second circuit. Form an insulating resin layer between them.
Conductive particles between the first electrode and the second electrode by heating the laminate including the first circuit member, the insulating resin layer, and the second circuit member while pressing the laminate in the thickness direction of the laminate. And electrically connecting the first circuit member and the second circuit member.

上記接続構造体の製造方法によれば、第一の電極の表面に複数の導電粒子を融着させることで、電気的に互いに接続すべき第一の電極と第二の電極との間のみに導電粒子を配置することができる。これにより、第一の電極と第二の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を十分に効率的且つ安定的に製造することができる。すなわち、第一の電極の表面に融着された導電粒子がバンプ(接続用突起)の役割を果たすことで、従来技術のように異方性導電材料に含まれる無数の導電粒子が絶縁性を確保すべき隣接する電極間に流出することによって当該電極間でショートが発生することを高度に抑制できる。   According to the manufacturing method of the connection structure, a plurality of conductive particles are fused to the surface of the first electrode, so that only between the first electrode and the second electrode to be electrically connected to each other. Conductive particles can be placed. Thereby, even if the connection location of the 1st electrode and the 2nd electrode is minute, the connection structure excellent in both insulation reliability and conduction reliability can be manufactured sufficiently efficiently and stably. . That is, the conductive particles fused to the surface of the first electrode serve as bumps (connection protrusions), so that innumerable conductive particles contained in the anisotropic conductive material have insulating properties as in the prior art. By flowing out between adjacent electrodes to be secured, it is possible to highly suppress the occurrence of a short circuit between the electrodes.

本発明は端子付き電極の製造方法を提供する。すなわち、本発明に係る端子付き電極の製造方法は以下の工程を含むものである。
・基板と、基板に設けられた電極とを有する回路部材を準備すること。
・第一の金属からなる表面を有する複数の導電粒子を準備すること。
・複数の開口部を有する転写型の開口部に導電粒子を収容すること;
・転写型の開口部に収容された導電粒子の表面の少なくとも一部に、スズ又はスズ合金を含む第二の金属からなる第二金属層をスパッタリングによって形成すること;
・第二金属層が形成された複数の導電粒子を電極の表面に配置すること;
・電極の表面に配置された上記複数の導電粒子を上記第二の金属の融点よりも高い温度に加熱することによって電極に導電粒子を融着させること。
The present invention provides a method of manufacturing an electrode with a terminal. That is, the manufacturing method of the electrode with a terminal which concerns on this invention includes the following processes.
Prepare a circuit member having a substrate and electrodes provided on the substrate.
Prepare a plurality of conductive particles having a surface made of the first metal.
Housing the conductive particles in a transfer-type opening having a plurality of openings;
Forming a second metal layer made of a second metal containing tin or a tin alloy by sputtering on at least a part of the surface of the conductive particles accommodated in the opening of the transfer mold;
Arranging a plurality of conductive particles on which the second metal layer is formed on the surface of the electrode;
-The conductive particles are fused to the electrode by heating the plurality of conductive particles arranged on the surface of the electrode to a temperature higher than the melting point of the second metal.

上記端子付き電極の製造方法によれば、電極の表面に複数の導電粒子を融着させることでこれらの導電粒子がバンプ(接続用突起)の役割を果たすことができる。これにより、この電極と、この回路部材と電気的に接続すべき他の回路部材の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体を十分に効率的且つ安定的に製造するのに有用である。   According to the method for manufacturing an electrode with a terminal, the conductive particles can serve as bumps (connection protrusions) by fusing a plurality of conductive particles to the surface of the electrode. As a result, a connection structure having both excellent insulation reliability and conduction reliability can be obtained even if the connection location between the electrode and the electrode of another circuit member to be electrically connected to the circuit member is very small. Useful for efficient and stable production.

本発明において、電極(第一の電極)に複数の導電粒子を配置するとともに、これらをその位置に融着させるために、転写型を使用してもよい。すなわち、本発明に係る接続構造体の製造方法又は端子付き電極の製造方法は、電極(第一の電極)における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型を準備すること;複数の開口部に導電粒子を収容することを更に含み、回路部材(第一の回路部材)と転写型とを重ね合せることにより、電極(第一の電極)の表面に転写型の開口部にそれぞれ収容されている導電粒子を配置し、回路部材(第一の回路部材)と転写型とを重ね合せた状態で複数の導電粒子を上記金属の融点よりも高い温度に加熱することによって電極(第一の電極)に導電粒子を融着させてもよい。   In the present invention, a plurality of conductive particles may be disposed on the electrode (first electrode), and a transfer mold may be used to fuse these particles at the position. That is, the method for manufacturing a connection structure or the method for manufacturing an electrode with a terminal according to the present invention includes a transfer having a plurality of openings at positions corresponding to positions where a plurality of conductive particles are arranged in an electrode (first electrode). Providing a mold; further comprising containing conductive particles in a plurality of openings, and by superimposing a circuit member (first circuit member) and a transfer mold on the surface of the electrode (first electrode); The conductive particles respectively accommodated in the openings of the transfer mold are arranged, and the plurality of conductive particles are brought to a temperature higher than the melting point of the metal in a state where the circuit member (first circuit member) and the transfer mold are overlapped. The conductive particles may be fused to the electrode (first electrode) by heating.

本発明は上記転写型を提供する。すなわち、本発明に係る転写型は上記接続構造体の製造方法又は上記端子付き電極の製造方法において使用されるものであって、電極表面における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する。この転写型によれば、電極表面の所定の位置に微細な複数の導電粒子(例えば粒径2.3〜25μm)を効率的に配置し且つ融着できる。   The present invention provides the above transfer mold. That is, the transfer mold according to the present invention is used in the method for manufacturing the connection structure or the method for manufacturing the electrode with terminal, and is located at a position corresponding to the position where a plurality of conductive particles are arranged on the electrode surface. It has a plurality of openings. According to this transfer type, a plurality of fine conductive particles (for example, a particle size of 2.3 to 25 μm) can be efficiently arranged and fused at predetermined positions on the electrode surface.

転写型の開口部は、当該開口部の奥側から転写型の表面側に向けて開口面積が拡大するテーパ状に形成されていることが好ましい。また転写型は可撓性を有する樹脂材料からなることが好ましい。これらの構成を採用することで、導電粒子の粒度分布にある程度の幅があっても、これよりも粒度分布の幅が狭い複数の導電粒子を容易に選択し、これらを電極表面に配置することができる。すなわち、転写型の開口部のサイズよりも小さい導電粒子は開口部に一旦収容されたとしても例えば開口部が形成されている面を下に向ければ落下し、一方、開口部のサイズよりも大きい導電粒子は開口部に収容されない。開口部のサイズに合う導電粒子が開口部に嵌り込み、この状態を維持したまま、転写型の開口部が形成されている面を電極表面に当接させることで電極表面に複数の導電粒子を開口部の形成パターンに則して配置することができる。   The opening of the transfer mold is preferably formed in a tapered shape in which the opening area increases from the back side of the opening toward the surface of the transfer mold. The transfer mold is preferably made of a flexible resin material. By adopting these configurations, even if there is a certain width in the particle size distribution of the conductive particles, a plurality of conductive particles having a narrower particle size distribution width can be easily selected and placed on the electrode surface. Can do. That is, even if the conductive particles that are smaller than the size of the transfer-type opening are once accommodated in the opening, for example, if the surface on which the opening is formed faces downward, the conductive particle falls, whereas the conductive particle is larger than the size of the opening The conductive particles are not accommodated in the opening. Conductive particles that fit the size of the opening fit into the opening, and with this state maintained, the surface on which the transfer-type opening is formed is brought into contact with the electrode surface, so that a plurality of conductive particles are applied to the electrode surface. It can arrange | position according to the formation pattern of an opening part.

本発明は、上記接続構造体の製造方法又は上記端子付き電極の製造方法において使用される導電粒子を提供する。すなわち、本発明に係る導電粒子は第一の金属からなる表面を有するとともに表面の少なくとも一部を覆うように形成されたスズ又はスズ合金を含む第二の金属からなる第二金属層を有する。第二の金属の融点は例えば120〜250℃である。複数の導電粒子を電極表面に配置した状態において、導電粒子の表面を構成する第一の金属の融点よりも高い温度に加熱することで、複数の導電粒子は電極表面の所定の位置にそれぞれ融着される。本発明の導電粒子の平均粒径は例えば2.3〜25μmである。   This invention provides the electrically-conductive particle used in the manufacturing method of the said connection structure, or the manufacturing method of the said electrode with a terminal. That is, the conductive particles according to the present invention have a surface made of the first metal and a second metal layer made of the second metal containing tin or a tin alloy formed so as to cover at least a part of the surface. The melting point of the second metal is, for example, 120 to 250 ° C. In a state where the plurality of conductive particles are arranged on the electrode surface, the plurality of conductive particles are respectively melted at predetermined positions on the electrode surface by heating to a temperature higher than the melting point of the first metal constituting the surface of the conductive particles. Worn. The average particle diameter of the conductive particles of the present invention is, for example, 2.3 to 25 μm.

本発明は接続構造体を提供する。すなわち、本発明に係る接続構造体は、第一の基板と、第一の基板に設けられた第一の電極とを有する第一の回路部材と;第一の電極と電気的に接続されている第二の電極を有する第二の回路部材と、第一の電極と第二の電極との間に介在し且つ少なくとも第一の電極に融着している上記導電粒子と、第一の回路部材と第二の回路部材との間に設けられ、第一の回路部材と第二の回路部材と接着している絶縁樹脂層とを備える。この接続構造体によれば、第一の電極の表面に融着している導電粒子がバンプ(接続用突起)の役割を果たしているため、第一の電極と第二の電極の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方を十分高水準に達成できる。   The present invention provides a connection structure. That is, the connection structure according to the present invention includes a first circuit member having a first substrate and a first electrode provided on the first substrate; and electrically connected to the first electrode. A second circuit member having a second electrode, the conductive particles interposed between the first electrode and the second electrode and fused to at least the first electrode, and the first circuit An insulating resin layer is provided between the member and the second circuit member, and is bonded to the first circuit member and the second circuit member. According to this connection structure, since the conductive particles fused to the surface of the first electrode serve as bumps (connection protrusions), the connection location between the first electrode and the second electrode is very small. Even so, both insulation reliability and conduction reliability can be achieved to a sufficiently high level.

本発明は端子付き電極を製造するためのキットを提供する。すなわち、本発明に係るキットは、上記導電粒子と、電極表面における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型とを備える。このキットによれば、電極表面の所定の位置に微細な複数の導電粒子(例えば粒径2.3〜25μm)を効率的に配置できる。   The present invention provides a kit for manufacturing an electrode with a terminal. That is, the kit according to the present invention includes the conductive particles and a transfer mold having a plurality of openings at positions corresponding to positions where the plurality of conductive particles on the electrode surface are arranged. According to this kit, a plurality of fine conductive particles (for example, a particle size of 2.3 to 25 μm) can be efficiently arranged at a predetermined position on the electrode surface.

本発明は上記接続構造体の製造方法又は上記端子付き電極の製造方法において使用される転写型を提供する。すなわち、本発明に係る転写型は電極表面における複数の導電粒子が配置される位置に対応する位置に複数の開口部を有する。   The present invention provides a transfer mold used in the method for manufacturing the connection structure or the method for manufacturing the electrode with terminal. That is, the transfer mold according to the present invention has a plurality of openings at positions corresponding to positions where a plurality of conductive particles are arranged on the electrode surface.

本発明において、導電粒子は、基材粒子と、基材粒子の表面を覆う第一の金属からなる第一金属層とを備えることが好ましい。この場合、第一金属層の融点が第二金属層の融点よりも高いことが好ましい。第二金属層が形成された複数の導電粒子を電極表面に配置した状態において、第一金属層の融点よりも低く且つ第二金属層の融点よりも高い温度に加熱することで、第一金属層が基材粒子を覆っている状態が十分に維持され、これにより優れた接続信頼性が得られるとともに、電極表面の所定の位置に融解した第二金属層によって複数の導電粒子を融着させることができる。   In the present invention, the conductive particles preferably include base particles and a first metal layer made of a first metal that covers the surface of the base particles. In this case, it is preferable that the melting point of the first metal layer is higher than the melting point of the second metal layer. In a state where the plurality of conductive particles on which the second metal layer is formed are arranged on the electrode surface, the first metal is heated to a temperature lower than the melting point of the first metal layer and higher than the melting point of the second metal layer. The state in which the layer covers the base particles is sufficiently maintained, whereby excellent connection reliability is obtained, and a plurality of conductive particles are fused by the second metal layer melted at a predetermined position on the electrode surface. be able to.

上記基材粒子の粒径は、例えば、2〜10μmであればよい。上記基材粒子は樹脂からなることが好ましい。樹脂からなる基材粒子は、回路接続体の接続部分に衝撃が加わった場合にその衝撃を吸収しやすく、回路接続体の接続信頼性の向上に寄与する。   The particle size of the substrate particles may be, for example, 2 to 10 μm. The substrate particles are preferably made of a resin. The base particles made of resin easily absorb the impact when an impact is applied to the connection portion of the circuit connection body, and contribute to the improvement of the connection reliability of the circuit connection body.

導電粒子が第一金属層を有する場合、高い融点及び導電性の観点から、第一金属層はニッケル又はニッケル合金を含む層であることが好ましい。ニッケル又はニッケル合金を含む第一金属層を安定的に残存させて十分に優れた接続信頼性を得る観点から、第一金属層のニッケル含有率は85〜98質量%であることが好ましい。   When the conductive particles have the first metal layer, the first metal layer is preferably a layer containing nickel or a nickel alloy from the viewpoint of high melting point and conductivity. From the viewpoint of stably remaining the first metal layer containing nickel or a nickel alloy and obtaining sufficiently excellent connection reliability, the nickel content of the first metal layer is preferably 85 to 98% by mass.

スズ又はスズ合金を含む第二の金属からなる第二金属層は、低い融点の観点から、スズ含有率が30〜100質量%であることが好ましい。第二金属層を構成する金属として、In−Sn、In−Sn−Ag、Sn−Bi、Sn−Bi−Ag、Sn−Ag−Cu、Sn−Cu等のスズ合金を採用してもよい。第二金属層はスパッタリングによって形成されるものである。スパッタリングによって第一金属層の一部に第二金属層を形成することで以下のような効果が奏される。すなわち、複数の導電粒子を電極上に配置した状態において第二金属層を融解させることで複数の導電粒子を電極の所定の位置に融着させることができ、これにより導電粒子と電極とを電気的及び物理的に接続された状態とすることができる。また、第一金属層及びこれと異なる金属種を含む第二の金属層は両者の接した状態における高温放置等により両者の間に金属間化合物と呼ばれる脆弱層が形成される場合がある。脆弱層は接続信頼性低下の要因となり得るものであるが、第一金属層の表面のうち、第二金属層が形成されていない領域を残存させることで、高温放置等を経ても第一金属層が安定に存在し、接続信頼性をより一層良好に保つことができる。   The second metal layer made of the second metal containing tin or tin alloy preferably has a tin content of 30 to 100% by mass from the viewpoint of a low melting point. As a metal constituting the second metal layer, a tin alloy such as In—Sn, In—Sn—Ag, Sn—Bi, Sn—Bi—Ag, Sn—Ag—Cu, or Sn—Cu may be employed. The second metal layer is formed by sputtering. The following effects are produced by forming the second metal layer on a part of the first metal layer by sputtering. That is, by melting the second metal layer in a state where the plurality of conductive particles are arranged on the electrode, the plurality of conductive particles can be fused to a predetermined position of the electrode, thereby electrically connecting the conductive particle and the electrode. And can be physically and physically connected. In addition, a brittle layer called an intermetallic compound may be formed between the first metal layer and the second metal layer containing a metal species different from the first metal layer when left in contact with each other at a high temperature. Although the fragile layer can be a factor in reducing the connection reliability, the first metal layer is left on the surface of the first metal layer where the second metal layer is not formed. A layer exists stably and connection reliability can be kept still better.

導電粒子は、第一金属層と第二金属層との間にパラジウム又はパラジウム合金を含む第三金属層を含むものであってもよい。この場合、第三金属層のパラジウム含有率は90質量%以上であることが好ましい。例えば、第一金属層としてニッケル又はニッケル合金を含む層を採用した場合、第一金属層と第二金属層の間に第三金属層(パラジウム又はパラジウム合金を含む層)を設けることで、第一金属層に含まれるニッケルと第二金属層に含まれるスズとが反応してSn−Ni系化合物がこれらの層間に形成されることを十分に抑制できる。より具体的には、導電粒子が上記第三金属層を有することで、第三金属層に含まれるパラジウムが第二金属層中に拡散し、更にSn−Ni系化合物中に一部取り込まれ、Sn−Ni−Pd系化合物となる。これにより、第一金属層と第二金属層との間にSn−Ni系化合物からなる層が厚く形成されることを抑制でき、導電粒子の信頼性を良好に保つことができる。なお、Sn−Ni系化合物は、ニッケルとスズが近接した位置にある場合(第三金属層が存在しない場合)であって100℃の環境下に曝される生じ得るものであり、導電粒子の信頼性低下を招来する。   The conductive particles may include a third metal layer containing palladium or a palladium alloy between the first metal layer and the second metal layer. In this case, the palladium content of the third metal layer is preferably 90% by mass or more. For example, when a layer containing nickel or a nickel alloy is employed as the first metal layer, by providing a third metal layer (a layer containing palladium or a palladium alloy) between the first metal layer and the second metal layer, It can fully suppress that the nickel contained in one metal layer reacts with the tin contained in the second metal layer to form a Sn—Ni-based compound between these layers. More specifically, when the conductive particles have the third metal layer, palladium contained in the third metal layer diffuses into the second metal layer, and is further partially taken into the Sn-Ni compound. It becomes a Sn-Ni-Pd-based compound. Thereby, it can suppress that the layer which consists of a Sn-Ni-type compound between the 1st metal layer and the 2nd metal layer is formed thick, and can maintain the reliability of electroconductive particle favorably. The Sn—Ni-based compound is a case where nickel and tin are close to each other (when the third metal layer is not present) and can be exposed to an environment of 100 ° C. The reliability will be reduced.

第一金属層としてニッケル又はニッケル合金を含む層を採用した場合、第一金属層はリン及びホウ素の少なくとも一方を含んでもよい。第一金属層に含まれるリン及び/又はホウ素は、第二金属層からのスズが第一金属層に拡散することを抑制する。これにより、第一金属層が薄くなることを抑制できるとともに、第一金属層と第二金属層との間にSn−Ni系化合物が生じることを抑制できる。これらの事項は導電粒子の信頼性を良好に保つことに寄与する。   When a layer containing nickel or a nickel alloy is employed as the first metal layer, the first metal layer may contain at least one of phosphorus and boron. Phosphorus and / or boron contained in the first metal layer suppresses diffusion of tin from the second metal layer into the first metal layer. Thereby, while being able to suppress that a 1st metal layer becomes thin, it can suppress that a Sn-Ni type compound arises between a 1st metal layer and a 2nd metal layer. These matters contribute to keeping the reliability of the conductive particles good.

第一の回路部材の第一の電極を構成する材料として、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物が挙げられる。   Examples of the material constituting the first electrode of the first circuit member include copper, nickel, palladium, gold, silver, and alloys thereof, and indium tin oxide.

本発明によれば、電気的に互いに接続すべき回路部材の接続箇所が微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法が提供される。また、本発明によれば、上記接続構造体を製造するのに有用な端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if the connection location of the circuit members which should be electrically connected mutually is minute, the connection structure which is excellent in both insulation reliability and conduction | electrical_connection reliability, and its manufacturing method are provided. Moreover, according to this invention, the manufacturing method of the electrode with a terminal useful for manufacturing the said connection structure, the electrically-conductive particle used for this, a kit, and a transfer type | mold are provided.

図1は本発明に係る導電粒子の一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an embodiment of conductive particles according to the present invention. 図2は本発明に係る導電粒子の他の実施形態を模式的に示す断面図である。FIG. 2 is a sectional view schematically showing another embodiment of the conductive particles according to the present invention. 図3は本発明に係る導電粒子が電極表面に融着した状態を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a state where the conductive particles according to the present invention are fused to the electrode surface. 図4は本発明に係る接続構造体の一部を拡大して示す図であって、導電粒子によって第一の電極と第二の電極が電気的に接続された状態の一例を模式的に示す断面図である。FIG. 4 is an enlarged view showing a part of the connection structure according to the present invention, and schematically shows an example of a state in which the first electrode and the second electrode are electrically connected by the conductive particles. It is sectional drawing. 図5は本発明に係る接続構造体の一実施形態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an embodiment of a connection structure according to the present invention. 図6(a)及び図6(b)は転写型の開口部に収容された導電粒子の表面の一部にスパッタリングによって第二金属層を形成する過程の一例を模式的に示す断面図である。FIGS. 6A and 6B are cross-sectional views schematically showing an example of a process of forming the second metal layer by sputtering on a part of the surface of the conductive particle accommodated in the opening of the transfer mold. . 図7(a)〜図7(c)は第一の回路部材に端子付き電極を形成する過程の一例を模式的に示す断面図である。FIG. 7A to FIG. 7C are cross-sectional views schematically showing an example of the process of forming the electrode with a terminal on the first circuit member. 図8(a)は本発明に係る転写型の一実施形態を模式的に示す平面図であり、図8(b)は図8(a)に示すb−b線における断面図である。FIG. 8A is a plan view schematically showing one embodiment of a transfer mold according to the present invention, and FIG. 8B is a cross-sectional view taken along the line bb shown in FIG. 図9は転写型の凹部(開口部)に第二金属層形成前の導電粒子が捕捉された状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state in which conductive particles before forming the second metal layer are captured in the transfer-type recess (opening). 図10(a)〜図10(d)は図7(c)に示す端子付き電極が形成された第一の回路部材と、第二の回路部材とを備える接続構造体を形成する過程の一例を模式的に示す断面図である。10 (a) to 10 (d) show an example of a process of forming a connection structure including the first circuit member on which the electrode with terminal shown in FIG. 7 (c) is formed and the second circuit member. It is sectional drawing which shows this typically. 図11(a)及び図11(b)は図7(c)に示す端子付き電極が形成された第一の回路部材と、第二の回路部材とを備える接続構造体を形成する過程の他の例を模式的に示す断面図である。11 (a) and 11 (b) are other processes of forming a connection structure including the first circuit member on which the electrode with terminal shown in FIG. 7 (c) is formed and the second circuit member. FIG. 図12は各電極に計八個の導電粒子が融着した回路部材を模式的に示す平面図である。FIG. 12 is a plan view schematically showing a circuit member in which a total of eight conductive particles are fused to each electrode. 図13は各電極に計四個の導電粒子が融着した回路部材を模式的に示す平面図である。FIG. 13 is a plan view schematically showing a circuit member in which a total of four conductive particles are fused to each electrode.

以下、本発明に実施形態について説明する。本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. The materials exemplified below may be used alone or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.

<導電粒子>
図1に示す導電粒子10Aは、基材粒子1と、基材粒子1の表面に形成された二層構造の金属層3とを備えた球状の粒子である。導電粒子10Aは、回路接続に先立って電極表面に融着されて使用されるものである。したがって、特許文献1〜3に記載の従来の異方導電性接着剤に配合される導電粒子と異なり、粒子表面に絶縁粒子が付着していないものである。なお、本明細書でいう球状とは、真球だけでなく、楕円体、任意の回転体等も含み、例えば、アスペクト比としては、0.5以上であってもよく、0.8以上であってもよい。
<Conductive particles>
A conductive particle 10 </ b> A shown in FIG. 1 is a spherical particle including a base particle 1 and a metal layer 3 having a two-layer structure formed on the surface of the base particle 1. The conductive particles 10A are used by being fused to the electrode surface prior to circuit connection. Therefore, unlike the conductive particles blended in the conventional anisotropic conductive adhesives described in Patent Documents 1 to 3, the insulating particles are not attached to the particle surfaces. The term “spherical” as used herein includes not only a true sphere but also an ellipsoid, an arbitrary rotating body, and the like. For example, the aspect ratio may be 0.5 or more, and 0.8 or more. There may be.

導電粒子10Aの粒径は、例えば2.3〜25μmであり、3〜20μm又は3.5〜10μmであってもよい。導電粒子10Aの粒径が2.3μm以上であれば、導電粒子に衝撃が加わっても導電粒子がその衝撃を十分に吸収できる傾向にあり、他方、粒径が25μm以下であれば、導電粒子の粒径のばらつきを十分に小さくでき、これにより導通信頼性及び絶縁信頼性を両立させやすい。導電粒子10Aの粒径は、走査電子顕微鏡(以下、SEM)を用いた観察により測定することができる。すなわち、導電粒子の平均粒径は、任意の導電粒子300個についてSEMを用いた観察により粒径の測定を行い、それらの平均値をとることにより得られる。   The particle size of the conductive particles 10A is, for example, 2.3 to 25 μm, and may be 3 to 20 μm or 3.5 to 10 μm. If the particle size of the conductive particles 10A is 2.3 μm or more, the conductive particles tend to absorb the impact sufficiently even if an impact is applied to the conductive particles. On the other hand, if the particle size is 25 μm or less, the conductive particles The variation in the particle size can be made sufficiently small, which makes it easy to achieve both conduction reliability and insulation reliability. The particle diameter of the conductive particles 10A can be measured by observation using a scanning electron microscope (hereinafter referred to as SEM). That is, the average particle diameter of the conductive particles can be obtained by measuring the particle diameter by observation using 300 SEMs for arbitrary 300 conductive particles and taking the average value thereof.

[基材粒子]
基材粒子1は、球状であり且つ非導電性の材料からなる。基材粒子1の粒径は例えば1.5〜10μmであり、2〜10μmであってもよい。粒径が1.5μm以上であれば、導電粒子に衝撃が加わっても基材粒子1がその衝撃を十分に吸収できる傾向にあり、他方、粒径が10μm以下であれば、基材粒子1の粒径のばらつきを十分に小さくできる傾向にある。基材粒子1の粒径は、SEMを用いた観察により測定することができる。基材粒子1の平均粒径は、任意の基材粒子300個についてSEMを用いた観察により粒径の測定を行い、それらの平均値をとることにより得られる。
[Base material particles]
The base particle 1 is made of a spherical and non-conductive material. The particle diameter of the base particle 1 is, for example, 1.5 to 10 μm, and may be 2 to 10 μm. If the particle size is 1.5 μm or more, the base particles 1 tend to absorb the impact sufficiently even if an impact is applied to the conductive particles. On the other hand, if the particle size is 10 μm or less, the base particles 1 It tends to be possible to sufficiently reduce the variation in particle size of the particles. The particle diameter of the base particle 1 can be measured by observation using an SEM. The average particle diameter of the base particle 1 is obtained by measuring the particle diameter by observation using an SEM for 300 arbitrary base particles and taking the average value thereof.

基材粒子1の材質としては、特に限定されないが、樹脂又はシリカを採用できる。これらの具体例としては、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ガラス;シリカなどが挙げられる。基材粒子1として樹脂粒子を採用する場合、例えば、架橋アクリル粒子、架橋ポリスチレン粒子等を使用可能である。はんだによるリフロー接続を行うことを想定すると、基材粒子1のガラス転移点(Tg)は、はんだの融点よりも高いことが好ましい。一般的に普及しているSn−3質量%Ag−0.5質量%Cuを例にとると、その融点は217〜219℃であることから、基材粒子1としてはTgが例えば220℃以上の材料を採用すればよい。かかる材料を採用することで、リフロー接続のためにはんだを溶融させても、その温度が基材粒子1のTg未満であれば、基材粒子1の変形が十分に抑制されるため、基材粒子1が優れた寸法安定性を示し、これにより良好な接続信頼性と絶縁信頼性を得られる傾向にある。   Although it does not specifically limit as a material of the base particle 1, Resin or a silica can be employ | adopted. Specific examples thereof include acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polyolefin resins such as polyethylene, polypropylene, polyisobutylene and polybutadiene; glass; silica and the like. When resin particles are employed as the substrate particles 1, for example, crosslinked acrylic particles, crosslinked polystyrene particles, and the like can be used. Assuming that reflow connection with solder is performed, the glass transition point (Tg) of the base particle 1 is preferably higher than the melting point of the solder. Taking Sn-3 mass% Ag-0.5 mass% Cu, which is widely used as an example, the melting point is 217 to 219 ° C., so that the base particle 1 has a Tg of, for example, 220 ° C. or higher. Any material may be used. By adopting such a material, even if the solder is melted for reflow connection, if the temperature is lower than the Tg of the base particle 1, deformation of the base particle 1 is sufficiently suppressed. The particles 1 exhibit excellent dimensional stability, and this tends to provide good connection reliability and insulation reliability.

[金属層]
図1に示すように金属層5は二層構造であり基材粒子1を被覆している。金属層3Aは、基材粒子1側から順に、ニッケル又はニッケル合金を含む第一金属層3aと、スズ又はスズ合金を含む第二金属層3bとを有する。
[Metal layer]
As shown in FIG. 1, the metal layer 5 has a two-layer structure and covers the base particle 1. 3 A of metal layers have the 1st metal layer 3a containing nickel or a nickel alloy, and the 2nd metal layer 3b containing tin or a tin alloy in an order from the base particle 1 side.

(第一金属層)
第一金属層3aは、第一の金属としてのニッケル又はニッケル合金を含む層であり、基材粒子1の表面を被覆している。第一金属層3aのニッケル含有量は、例えば85〜98質量%であり、87〜96質量%又は90〜95質量%であってもよい。ニッケル含有量が85〜98質量%であれば、後述の第二金属層3b(スズ又はスズ合金を含む層)が電極と接合した後(図4参照)、第一金属層3aが安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。なお、第一金属層3aは基材粒子1の表面全体を必ずしも被覆していなくてもよく、基材粒子1の表面の好ましくは80%以上、より好ましくは90%以上を被覆していればよい。
(First metal layer)
The first metal layer 3 a is a layer containing nickel or a nickel alloy as the first metal, and covers the surface of the base particle 1. The nickel content of the first metal layer 3a is, for example, 85 to 98 mass%, and may be 87 to 96 mass% or 90 to 95 mass%. If nickel content is 85-98 mass%, after the below-mentioned 2nd metal layer 3b (layer containing tin or a tin alloy) joined to an electrode (refer FIG. 4), the 1st metal layer 3a will be stabilized. It remains, and this tends to maintain high connection reliability. The first metal layer 3a does not necessarily have to cover the entire surface of the substrate particle 1, and preferably covers 80% or more, more preferably 90% or more of the surface of the substrate particle 1. Good.

第一金属層3aの厚さは例えば0.05〜5μmの範囲であり、0.1〜3μm又は0.2〜2μmの範囲であってもよい。第一金属層3aの厚さが0.05μm以上であれば、後述の第二金属層3b(スズ又はスズ合金を含む層)が電極と接合した後(図4参照)、第一金属層3aが安定的に残存し、これにより高い接続信頼性を維持できる傾向にある。なお、第一金属層3aの厚さが0.05μm未満であると、第二金属層3bが電極と接合した後に、第一金属層3aに含まれるニッケルが第二金属層3bに含まれるスズ又はスズ合金中に拡散し、これにより不連続膜が形成され、その結果、接続信頼性が低下する傾向にある。   The thickness of the first metal layer 3a is, for example, in the range of 0.05 to 5 μm, and may be in the range of 0.1 to 3 μm or 0.2 to 2 μm. If the thickness of the 1st metal layer 3a is 0.05 micrometer or more, after the below-mentioned 2nd metal layer 3b (layer containing tin or a tin alloy) joined to an electrode (refer FIG. 4), the 1st metal layer 3a Tends to remain stable, thereby maintaining high connection reliability. When the thickness of the first metal layer 3a is less than 0.05 μm, the nickel contained in the first metal layer 3a is tin contained in the second metal layer 3b after the second metal layer 3b is joined to the electrode. Alternatively, it diffuses into the tin alloy, thereby forming a discontinuous film, and as a result, the connection reliability tends to decrease.

第一金属層3aは、リン及びホウ素の少なくとも一方を含んでいてもよく、特にリンを含んでいてもよい。これにより、第二金属層3bが電極と接合した後、第一金属層3aに含まれるニッケルが第二金属層3bに含まれるスズ又はスズ合金中に拡散することを抑制することができ、その結果、第一金属層3aの厚さが減少することを十分に抑制できる。   The first metal layer 3a may contain at least one of phosphorus and boron, and may particularly contain phosphorus. Thereby, after the 2nd metal layer 3b joined to an electrode, it can control that nickel contained in the 1st metal layer 3a diffuses into tin or a tin alloy contained in the 2nd metal layer 3b, As a result, it can fully suppress that the thickness of the 1st metal layer 3a reduces.

第一金属層3aは無電解ニッケルめっきにより形成することができる。無電解ニッケルめっきによる第一金属層3aの形成は、公知の方法で実施すればよく、例えば基材粒子1の表面をパラジウム触媒化処理した後、無電解ニッケルめっきを実施すればよい。より好適には、無電解ニッケルめっきのための還元剤として次亜リン酸ナトリウム等のリン含有化合物を用いることで、リンを共析させることができ、ニッケル及びリンを含む合金(ニッケル−リン合金)が含まれる第一金属層3aを形成することができる。あるいは、還元剤として、例えば、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム等のホウ素含有化合物を用いることで、ホウ素を共析させることができ、ニッケル及びホウ素を含む合金(ニッケル−ホウ素合金)が含まれる第一金属層3aを形成することができる。   The first metal layer 3a can be formed by electroless nickel plating. The formation of the first metal layer 3a by electroless nickel plating may be performed by a known method. For example, after the surface of the base particle 1 is treated with a palladium catalyst, electroless nickel plating may be performed. More preferably, phosphorus can be codeposited by using a phosphorus-containing compound such as sodium hypophosphite as a reducing agent for electroless nickel plating, and an alloy containing nickel and phosphorus (nickel-phosphorus alloy) ) Containing the first metal layer 3a. Alternatively, as a reducing agent, for example, boron can be co-deposited by using a boron-containing compound such as dimethylamine borane, sodium borohydride, potassium borohydride, etc., and an alloy containing nickel and boron (nickel-boron) The first metal layer 3a containing the alloy can be formed.

(第二金属層)
第二金属層3bは、第二の金属としてのスズ又はスズ合金を含む層であり、第一金属層3aの表面を部分的に被覆しており、はんだの役割を果たす層である。第二金属層3bを構成するスズ合金として、例えば、In−Sn、In−Sn−Ag、Sn−Bi、Sn−Bi−Ag、Sn−Ag−Cu、Sn−Cu等を採用することができ、以下に具体例を挙げる。
・In−Sn(In52質量%、Bi48質量% 融点118℃)
・In−Sn−Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn−Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn−Bi−Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)
・Sn−Ag−Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn−Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
(Second metal layer)
The second metal layer 3b is a layer containing tin or a tin alloy as the second metal, partially covering the surface of the first metal layer 3a, and serving as a solder. As the tin alloy constituting the second metal layer 3b, for example, In-Sn, In-Sn-Ag, Sn-Bi, Sn-Bi-Ag, Sn-Ag-Cu, Sn-Cu, etc. can be adopted. Specific examples are given below.
In-Sn (In 52 mass%, Bi48 mass% melting point 118 ° C)
In-Sn-Ag (In 20% by mass, Sn 77.2% by mass, Ag 2.8% by mass, melting point 175 ° C.)
・ Sn-Bi (Sn43% by mass, Bi57% by mass, melting point 138 ° C.)
・ Sn-Bi-Ag (Sn 42 mass%, Bi 57 mass%, Ag 1 mass% melting point 139 ° C.)
Sn-Ag-Cu (Sn 96.5% by mass, Ag 3% by mass, Cu 0.5% by mass, melting point 217 ° C.)
Sn-Cu (Sn 99.3 mass%, Cu 0.7 mass% melting point 227 ° C)

第二金属層3bを構成する金属(第二の金属)は、接続する温度に応じて上記スズ合金を選択すればよい。例えば、低温で接続したい場合は、In−Sn合金、Sn−Bi合金を採用することにより150℃以下で接続することができる。他方、Sn−Ag−Cu又はSn−Cuなどの融点の高い材料を採用した場合、この第二金属層3bが電極と接合した状態において、高温放置後においても、高い信頼性を達成できる傾向にある。第二金属層3bはスズ又はスズ合金の他に、必要に応じてNi、Mn、Sb、Al、Zn等の金属を微量含むこともできる。   The tin alloy may be selected as the metal (second metal) constituting the second metal layer 3b according to the temperature to be connected. For example, when connection is desired at a low temperature, the connection can be made at 150 ° C. or lower by employing an In—Sn alloy or a Sn—Bi alloy. On the other hand, when a material having a high melting point, such as Sn-Ag-Cu or Sn-Cu, is employed, the second metal layer 3b tends to be able to achieve high reliability even after being left at a high temperature in a state where it is bonded to the electrode. is there. The second metal layer 3b can contain a trace amount of metals such as Ni, Mn, Sb, Al, Zn, etc., if necessary, in addition to tin or tin alloy.

第二金属層3bは第一金属層3aの表面全体を必ずしも被覆していなくてもよく、第一金属層3aの表面の好ましくは20〜60%、より好ましくは30〜50%を被覆していればよい。第二金属層3bが導電粒子10Aの最外層の一部を構成しており、電極と接合する(図3,4参照)。   The second metal layer 3b may not necessarily cover the entire surface of the first metal layer 3a, and preferably covers 20 to 60%, more preferably 30 to 50% of the surface of the first metal layer 3a. Just do it. The second metal layer 3b constitutes a part of the outermost layer of the conductive particles 10A and is joined to the electrode (see FIGS. 3 and 4).

第二金属層3bの厚さ(最も厚い部分)は例えば0.03〜3μmの範囲であり、0.05〜2μm又は0.1〜1μmの範囲であってもよい。第二金属層3bの厚さが0.03μm以上であれば、この第二金属層3bが電極と接合した状態において高い信頼性を達成できる傾向にある。導電粒子10Aと転写型が、スパッタリングにより形成された第二金属層3bにより接続されないようにする観点から(図6(b)参照)、第二金属層3bの厚さの上限値は上記のとおり3μm程度とすればよい。   The thickness (thickest part) of the second metal layer 3b is, for example, in the range of 0.03 to 3 μm, and may be in the range of 0.05 to 2 μm or 0.1 to 1 μm. If the thickness of the second metal layer 3b is 0.03 μm or more, high reliability tends to be achieved in a state where the second metal layer 3b is bonded to the electrode. From the viewpoint of preventing the conductive particles 10A and the transfer mold from being connected by the second metal layer 3b formed by sputtering (see FIG. 6B), the upper limit value of the thickness of the second metal layer 3b is as described above. What is necessary is just to be about 3 micrometers.

第二金属層3bは、Ag、Cu、Ni、Bi、Zn、Pd、Pb、Au、P、B又はこれらから選べる二種以上の合金を含んでもよく、これらのうち以下の観点からAg又はCuを含んでもよい。すなわち、第二金属層3bがAg又はCuを含むことで、第二金属層3bの融点を220℃程度まで低下させることができる、電極との接合強度が向上することによって良好な接続信頼性を得られるという効果が奏される。   The second metal layer 3b may include Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P, B, or two or more alloys selected from these, and among these, Ag or Cu from the following viewpoints: May be included. That is, since the second metal layer 3b contains Ag or Cu, the melting point of the second metal layer 3b can be lowered to about 220 ° C., and the connection strength with the electrode is improved, thereby improving the connection reliability. The effect is obtained.

第二金属層3bのCu含有率は例えば0.05〜10質量%であり、0.1〜5質量%又は0.2〜3質量%であってもよい。Cu含有率が0.05質量%以上であれば、良好なはんだ接続信頼性を得られやすく、他方、10質量%以下であれば融点が低くなり、はんだの濡れ性が向上し、結果として接合部の接続信頼性が良好となりやすい。   The Cu content of the second metal layer 3b is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. If the Cu content is 0.05% by mass or more, good solder connection reliability can be easily obtained. On the other hand, if the Cu content is 10% by mass or less, the melting point is lowered and the solder wettability is improved. The connection reliability of the part tends to be good.

第二金属層3bのAg含有率は例えば0.05〜10質量%であり、0.1〜5質量%又は0.2〜3質量%であってもよい。Ag含有率が0.05質量%以上であれば、良好なはんだ接続信頼性を得られやすく、他方、10質量%以下であれば融点が低くなり、はんだの濡れ性が向上し、結果として接合部の接続信頼性が良好となりやすい。第二金属層3bがAgを含有することで、第二金属層3b内においてAgSnが形成され、これがはんだ中に分散することではんだの衝撃に対する強度が向上する。 Ag content rate of the 2nd metal layer 3b is 0.05-10 mass%, for example, and 0.1-5 mass% or 0.2-3 mass% may be sufficient. If the Ag content is 0.05% by mass or more, good solder connection reliability can be easily obtained. On the other hand, if the Ag content is 10% by mass or less, the melting point is lowered and the solder wettability is improved. The connection reliability of the part tends to be good. By containing Ag in the second metal layer 3b, Ag 3 Sn is formed in the second metal layer 3b, and this is dispersed in the solder, whereby the strength against the impact of the solder is improved.

第二金属層3bは、スパッタリングによって形成することができる。スパッタリングによる第二金属層3bの形成は、市販のスパッタリング装置を使用することが可能で特に限定しないが、バレル方式によるスパッタリング装置であれば特に限定するものではない。円筒状、斜め状、多角形状等のバレルスパッタリング装置が粒子同士の凝集を抑制できる傾向にある。   The second metal layer 3b can be formed by sputtering. The formation of the second metal layer 3b by sputtering is not particularly limited as long as it is possible to use a commercially available sputtering apparatus and is not particularly limited as long as it is a barrel type sputtering apparatus. A barrel sputtering device having a cylindrical shape, an oblique shape, or a polygonal shape tends to be able to suppress aggregation of particles.

(第三金属層)
図2に示す導電粒子10Bは、基材粒子1と、基材粒子1の表面に形成された金属層3Bとを備えた球状の粒子である。図2に示すとおり、導電粒子10Bの金属層3Bが三層構造である点、すなわち、第一金属層3aと第二金属層3bとの間に第三金属層3cを更に有する点において、二層構造の金属層3Aを備える導電粒子10Aと相違する。以下、主にこの相違点に係る構成について説明する。
(Third metal layer)
A conductive particle 10B shown in FIG. 2 is a spherical particle including a base particle 1 and a metal layer 3B formed on the surface of the base particle 1. As shown in FIG. 2, in the point that the metal layer 3B of the conductive particle 10B has a three-layer structure, that is, the third metal layer 3c is further provided between the first metal layer 3a and the second metal layer 3b. This is different from the conductive particles 10A including the metal layer 3A having a layer structure. Hereinafter, a configuration mainly related to this difference will be described.

図2に示す導電粒子10Bの粒径は、導電粒子10Aと同様、例えば2.3〜25μmであり、3〜20μm又は3.5〜10μmであってもよい。導電粒子10Bの粒径が2.3μm以上であれば、導電粒子10Bに衝撃が加わっても導電粒子10Bがその衝撃を十分に吸収できる傾向にあり、他方、粒径が25μm以下であれば、導電粒子10Bの粒径のばらつきを十分に小さくでき、これにより導通信頼性及び絶縁信頼性を両立させやすい。導電粒子10Bの粒径は導電粒子10Aと同様、SEMを用いた観察により測定することができる。   The particle diameter of the conductive particles 10B shown in FIG. 2 is, for example, 2.3 to 25 μm, and may be 3 to 20 μm or 3.5 to 10 μm, like the conductive particles 10A. If the particle size of the conductive particles 10B is 2.3 μm or more, even if an impact is applied to the conductive particles 10B, the conductive particles 10B tend to be able to sufficiently absorb the impact, while if the particle size is 25 μm or less, Variations in the particle size of the conductive particles 10B can be made sufficiently small, thereby making it easy to achieve both conduction reliability and insulation reliability. The particle diameter of the conductive particles 10B can be measured by observation using an SEM, similarly to the conductive particles 10A.

第三金属層3cはパラジウム又はパラジウム合金を含む層である。第三金属層3cは、例えばパラジウムめっき工程を経て形成することができ、無電解めっき型のパラジウム層であることが好ましい。無電解パラジウムめっきは、置換型(還元剤の入っていないタイプ)、還元型(還元剤の入ったタイプ)のいずれを用いて行ってもよい。無電解パラジウムめっきの例としては、還元型ではAPP(石原薬品工業、商品名)等があり、置換型ではMCA(株式会社ワールドメタル製、商品名)等がある。置換型と還元型を比較した場合、還元型はボイドが少なくなりやすいため特に好ましい。内側の金属を溶解させながら析出する置換型と比較して、還元型は被覆面積が上がりやすいため好ましい。   The third metal layer 3c is a layer containing palladium or a palladium alloy. The third metal layer 3c can be formed, for example, through a palladium plating process, and is preferably an electroless plating type palladium layer. Electroless palladium plating may be performed using either a substitution type (a type that does not contain a reducing agent) or a reduction type (a type that contains a reducing agent). Examples of electroless palladium plating include APP (Ishihara Pharmaceutical Co., Ltd., trade name) for the reduction type, and MCA (trade name, manufactured by World Metal Co., Ltd.) for the replacement type. When the substitution type and the reduction type are compared, the reduction type is particularly preferable because voids tend to decrease. Compared to the substitution type that precipitates while dissolving the inner metal, the reduction type is preferable because the covering area is easily increased.

第三金属層3cが多層構造を有していてもよい。すなわち、第三金属層3cは、第一金属層3aの外側に設けられた第一パラジウムめっき被膜と、この被膜の外側に設けられた第二パラジウムめっき被膜とを有してもよい。第一パラジウムめっき被膜は純度99質量%以上の置換又は無電解パラジウムめっき被膜であり且つ第二パラジウムめっき被膜は純度90質量%以上99質量%未満の無電解パラジウムめっき被膜であることが好ましい。この理由は以下のとおりである。   The third metal layer 3c may have a multilayer structure. That is, the third metal layer 3c may have a first palladium plating film provided outside the first metal layer 3a and a second palladium plating film provided outside the film. The first palladium plating film is preferably a substituted or electroless palladium plating film having a purity of 99% by mass or more, and the second palladium plating film is preferably an electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass. The reason for this is as follows.

すなわち、第三金属層3cとして、純度99質量%以上の置換型又は還元型の無電解パラジウムめっき被膜を単独で形成した場合、Sn−Cu−Ni系化合物又はSn−Ni系化合物にPdが含まれることによって、これらの化合物の成長を抑制する効果が得られるものの、純度90質量%以上99質量%未満の還元型の無電解パラジウムめっき被膜の方がこれらの化合物の成長を抑制する効果が高い。一方、第三金属層3cとして、純度90質量%以上99質量%未満の還元型の無電解パラジウムめっき被膜を単独で形成した場合、無電解パラジウムめっき被膜におけるリン含有率を高めることができるという利点がある。その反面、第一金属層3aが表面に形成された基材粒子1の全てに均一な厚さで被膜を析出させることは困難であり、リンを含む被膜(無電解パラジウム−リン被膜)が形成されない粒子又は被膜が著しく薄い粒子が生じやすい。この現象は導電粒子の粒径が小さくなるほど現れやすくなる傾向がある。その結果、純度90質量%以上99質量%未満の還元型の無電解パラジウムめっき被膜を単独で形成した場合、パラジウム−リン合金めっき被膜が第一金属層3aの保護層として機能しなくなるおそれがある。他方、純度99質量%以上の置換又は還元型の無電解パラジウムめっき被膜は、純度90質量%以上99質量%未満の還元型の無電解パラジウムめっき被膜よりも、第一金属層3aへの析出が起こりやすく、第一金属層3aが表面に形成された基材粒子1の全てに十分に均一な厚さで析出が起こり、また、基材粒子1の粒径に依存しないで析出する。純度99質量%以上の置換又は還元型の無電解パラジウムめっき被膜を形成した後においては、その表面に純度90質量%以上99質量%未満の還元型の無電解パラジウムめっき被膜の析出が起こりやすいため、基材粒子1の粒径に依存せず析出が起こる。このような理由から、第三金属層3cは、第一金属層3aの外側に設けられた第一パラジウムめっき被膜(純度99質量%以上の置換又は無電解パラジウムめっき被膜)と、この被膜の外側に設けられた第二パラジウムめっき被膜(純度90質量%以上99質量%未満の無電解パラジウムめっき被膜)とを有することが好ましい。   That is, when a substitutional or reduced electroless palladium plating film having a purity of 99% by mass or more is formed alone as the third metal layer 3c, Pd is contained in the Sn—Cu—Ni compound or Sn—Ni compound. However, the reduced electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass has a higher effect of suppressing the growth of these compounds. . On the other hand, when the reduced electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass is formed alone as the third metal layer 3c, it is possible to increase the phosphorus content in the electroless palladium plating film. There is. On the other hand, it is difficult to deposit a coating with a uniform thickness on all of the substrate particles 1 on which the first metal layer 3a is formed, and a coating containing phosphorus (electroless palladium-phosphorus coating) is formed. Particles that are not formed or particles that are extremely thin are prone to occur. This phenomenon tends to appear more easily as the particle size of the conductive particles decreases. As a result, when a reduced electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass is formed alone, the palladium-phosphorus alloy plating film may not function as a protective layer for the first metal layer 3a. . On the other hand, the substitutional or reduced electroless palladium plating film having a purity of 99% by mass or more is more likely to deposit on the first metal layer 3a than the reduced electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass. It is easy to occur, and the first metal layer 3a is deposited on the entire surface of the substrate particles 1 having a sufficiently uniform thickness, and is deposited without depending on the particle size of the substrate particles 1. After forming a substituted or reduced electroless palladium plating film having a purity of 99% by mass or more, a reduced electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass is likely to be deposited on the surface. Precipitation occurs regardless of the particle size of the substrate particles 1. For this reason, the third metal layer 3c includes a first palladium plating film (a substituted or electroless palladium plating film having a purity of 99% by mass or more) provided outside the first metal layer 3a, and an outer side of this film. And a second palladium plating film (electroless palladium plating film having a purity of 90% by mass or more and less than 99% by mass).

第三金属層3cは、第二金属層3bが電極と接合した後において、第二金属層3b中にパラジウムが拡散することによって層として残存しなくなってもよい。パラジウムが第二金属層3b(スズ又はスズ合金を含む層)中に拡散することで、Sn−Cu−Ni−Pd系化合物又はSn−Ni−Pd系化合物が第一金属層3aと第二金属層3bとの間に形成することが可能である。これらの化合物におけるPd含有量は、好ましくは0.01〜3質量%であり、より好ましくは0.02〜1質量%であり、更に好ましくは0.05〜0.5質量%である。上記化合物のPd含有量が0.01質量%以上であれば、100℃程度の高温環境下におけるSn−Cu−Ni系化合物又はSn−Ni系化合物の成長を抑制する効果を得やすく、他方、Pd含有量が3質量%以下であれば第三金属層3c(パラジウムめっき被膜)がはんだ中に拡散して消失しやすくなり、耐落下衝撃信頼性が向上する傾向がある。   The third metal layer 3c may not remain as a layer by the diffusion of palladium in the second metal layer 3b after the second metal layer 3b is joined to the electrode. The palladium diffuses into the second metal layer 3b (a layer containing tin or a tin alloy), so that the Sn—Cu—Ni—Pd compound or the Sn—Ni—Pd compound is converted into the first metal layer 3a and the second metal. It can be formed between the layer 3b. The Pd content in these compounds is preferably 0.01 to 3% by mass, more preferably 0.02 to 1% by mass, and still more preferably 0.05 to 0.5% by mass. If the Pd content of the compound is 0.01% by mass or more, it is easy to obtain the effect of suppressing the growth of the Sn—Cu—Ni compound or Sn—Ni compound in a high temperature environment of about 100 ° C., If the Pd content is 3% by mass or less, the third metal layer 3c (palladium plating film) tends to diffuse and disappear in the solder, and the drop impact resistance reliability tends to be improved.

第三金属層3cは、はんだ(第二金属層3b)の濡れ広がりを確保する層としても機能する。第三金属層3cの厚さは例えば0.01〜0.5μmであり、0.03〜0.4μm又は0.05〜0.3μmであってもよい。第三金属層3cの厚さが0.01μm以上であれば、第二金属層3bが電極と接合した後において、上記のSn−Cu−Ni−Pd系化合物又はSn−Ni−Pd系化合物におけるPd含有量を0.01質量%以上としやすく、その結果、100℃程度の高温環境下におけるSn−Cu−Ni系化合物又はSn−Ni系化合物の成長を抑制する効果を得やすく、他方、0.5μm以下であれば第三金属層3c(パラジウムめっき被膜)がはんだ中に拡散して消失しやすくなり、耐落下衝撃信頼性向上する傾向がある。   The third metal layer 3c also functions as a layer that ensures wetting and spreading of the solder (second metal layer 3b). The thickness of the third metal layer 3c is, for example, 0.01 to 0.5 μm, and may be 0.03 to 0.4 μm or 0.05 to 0.3 μm. If the thickness of the third metal layer 3c is 0.01 μm or more, after the second metal layer 3b is joined to the electrode, the Sn—Cu—Ni—Pd compound or the Sn—Ni—Pd compound is used. It is easy to make the Pd content 0.01% by mass or more, and as a result, it is easy to obtain the effect of suppressing the growth of Sn—Cu—Ni compound or Sn—Ni compound in a high temperature environment of about 100 ° C. If it is 0.5 μm or less, the third metal layer 3c (palladium plating film) tends to diffuse and disappear in the solder, and there is a tendency to improve the drop impact resistance reliability.

<端子付き電極>
図3は、本実施形態に係る端子付き電極35を模式的に示す斜視図である。すなわち、同図は導電粒子10Aが第一の回路部材30の電極32表面に融着した状態を模式的に示したものであり、導電粒子10Aが電極32表面においてバンプ(接続用突起)の役割を果たす。第一の回路部材30は、第一の回路基板31と、その表面31a上に配置された第一の電極32とを備える。図3に示すとおり、導電粒子10Aの第一金属層3aが一旦融解しその後に固化する工程を経て第一の電極32に融着している。本明細書において「融着」とは上記のとおり、第一金属層3aの少なくとも一部が熱によって融解し、その後、これが固化する工程を経ることによって電極の表面に導電粒子が接合された状態を意味する。なお、ここでは導電粒子10Aを採用しているが、これの代わりに導電粒子10Bを採用してもよい。
<Electrode with terminal>
FIG. 3 is a perspective view schematically showing the terminal-equipped electrode 35 according to the present embodiment. That is, this figure schematically shows a state in which the conductive particles 10A are fused to the surface of the electrode 32 of the first circuit member 30, and the conductive particles 10A serve as bumps (connection protrusions) on the surface of the electrode 32. Fulfill. The first circuit member 30 includes a first circuit board 31 and a first electrode 32 disposed on the surface 31a. As shown in FIG. 3, the first metal layer 3a of the conductive particles 10A is fused to the first electrode 32 through a process of once melting and then solidifying. In the present specification, "fusion" is a state in which at least a part of the first metal layer 3a is melted by heat and then the conductive particles are bonded to the surface of the electrode through a process of solidifying. Means. Here, although the conductive particles 10A are employed, the conductive particles 10B may be employed instead.

第一の電極32の具体例としては、銅、銅/ニッケル、銅/ニッケル/金、銅/ニッケル/パラジウム、銅/ニッケル/パラジウム/金、銅/ニッケル/金、銅/パラジウム、銅/パラジウム/金、銅/スズ、銅/銀、インジウム錫酸化物等の電極が挙げられる。第一の電極32は、無電解めっき又は電解めっき又はスパッタリングで形成することができる。   Specific examples of the first electrode 32 include copper, copper / nickel, copper / nickel / gold, copper / nickel / palladium, copper / nickel / palladium / gold, copper / nickel / gold, copper / palladium, copper / palladium. Examples include electrodes such as / gold, copper / tin, copper / silver, and indium tin oxide. The first electrode 32 can be formed by electroless plating, electrolytic plating, or sputtering.

<接続構造体>
図4は、本実施形態に係る接続構造体50Aの一部を拡大して模式的に示す断面図である。すなわち、同図は第一の回路部材30の電極32と第二の回路部材40の電極42が導電粒子10Aを介して電気的に接続された状態を模式的に示したものである。第二の回路部材40は、第二の回路基板41と、その表面41a上に配置された第二の電極42とを備える。
<Connection structure>
FIG. 4 is a cross-sectional view schematically showing an enlarged part of the connection structure 50A according to the present embodiment. That is, this figure schematically shows a state in which the electrode 32 of the first circuit member 30 and the electrode 42 of the second circuit member 40 are electrically connected via the conductive particles 10A. The second circuit member 40 includes a second circuit board 41 and a second electrode 42 disposed on the surface 41a.

接続構造体50Aは、図4に示すとおり、第一の回路部材30と、第二の回路部材40と、第一の電極32と第二の電極42との間に介在している導電粒子10Aと、第一の回路部材30と第二の回路部材40との間に設けられた絶縁樹脂層55とを備える。本実施形態においては、導電粒子10Aの第二金属層3bが第一の電極32に融着し且つ第一金属層3aが第二の電極42の表面に接触している。回路部材30,40の間に充填された絶縁樹脂層55は、第一の回路部材30と第二の回路部材40が接着された状態を維持するとともに、第一の電極32と第二の電極42が電気的に接続された状態を維持する。   As shown in FIG. 4, the connection structure 50 </ b> A includes the first circuit member 30, the second circuit member 40, and the conductive particles 10 </ b> A interposed between the first electrode 32 and the second electrode 42. And an insulating resin layer 55 provided between the first circuit member 30 and the second circuit member 40. In the present embodiment, the second metal layer 3b of the conductive particle 10A is fused to the first electrode 32, and the first metal layer 3a is in contact with the surface of the second electrode. The insulating resin layer 55 filled between the circuit members 30 and 40 maintains the state in which the first circuit member 30 and the second circuit member 40 are bonded, and the first electrode 32 and the second electrode. 42 is maintained in an electrically connected state.

回路部材30,40のうちの一方の具体例として、ICチップ(半導体チップ)、抵抗体チップ、コンデンサチップ、ドライバーIC等のチップ部品;リジット型のパッケージ基板が挙げられる。これらの回路部材は、回路電極を備えており、多数の回路電極を備えているものが一般的である。回路部材30,40のうちの他方の具体例としては、金属配線を有するフレキシブルテープ基板、フレキシブルプリント配線板、インジウム錫酸化物(ITO)又は酸化亜鉛(IZO)が蒸着されたガラス基板等の配線基板が挙げられる。   Specific examples of one of the circuit members 30 and 40 include chip components such as an IC chip (semiconductor chip), a resistor chip, a capacitor chip, and a driver IC; a rigid package substrate. These circuit members are provided with circuit electrodes, and generally have many circuit electrodes. Examples of the other of the circuit members 30 and 40 include wiring such as a flexible tape substrate having metal wiring, a flexible printed wiring board, a glass substrate on which indium tin oxide (ITO) or zinc oxide (IZO) is deposited, and the like. A substrate is mentioned.

図5に示す接続構造体50Aは、図4に示す導電粒子10Aによる接続部分を複数(図5には三つ図示)備える。互いに対面する電極32,42同士の電気的接続は導電粒子10Aによって確保されるため、異方導電性接着剤を使用しなくてもよく、換言すれば、絶縁樹脂層55は導電粒子を含有しないものを採用すればよい。したがって、本実施形態及びその変形例によれば、狭ピッチ(例えば10μmレベルのピッチ)での絶縁信頼性を大幅に向上させることができる。   A connection structure 50A shown in FIG. 5 includes a plurality of connection parts (three shown in FIG. 5) by the conductive particles 10A shown in FIG. Since the electrical connection between the electrodes 32 and 42 facing each other is ensured by the conductive particles 10A, it is not necessary to use an anisotropic conductive adhesive. In other words, the insulating resin layer 55 does not contain conductive particles. What is necessary is just to adopt. Therefore, according to the present embodiment and its modification, the insulation reliability at a narrow pitch (for example, a pitch of 10 μm level) can be greatly improved.

接続構造体50Aの適用対象としては、液晶ディスプレイ、パーソナルコンピュータ、携帯電話、スマートフォン、タブレット等のデバイスが挙げられる。   Examples of the application target of the connection structure 50A include devices such as a liquid crystal display, a personal computer, a mobile phone, a smartphone, and a tablet.

<端子付き電極の製造方法>
図6〜9を参照しながら、端子付き電極35の製造方法について説明する。ここでは、第一の回路部材30が有する電極32表面に複数の導電粒子10Aを融着させることによって端子付き電極35を製造する方法を説明する。
<Method for manufacturing electrode with terminal>
A method for manufacturing the electrode with terminal 35 will be described with reference to FIGS. Here, a method of manufacturing the electrode with terminal 35 by fusing a plurality of conductive particles 10A to the surface of the electrode 32 included in the first circuit member 30 will be described.

(転写型の準備)
まず、複数の導電粒子10Aの第二金属層3bをスパッタリングによって形成する際に使用されるとともに電極32の表面に配置及び融着させるための転写型60を準備する。図8(a)は転写型60の平面図であり、図8(b)は図8(a)に示すB−B線における断面図である。図9は、転写型60が有する複数の凹部(開口部)62に第二金属層3b形成前の導電粒子が収容された状態を示す断面図である。複数の凹部62は、導電粒子10Aが配列されるべき電極32表面の位置に対応する位置にそれぞれ設けられている。
(Preparation of transfer mold)
First, a transfer mold 60 is prepared which is used when the second metal layer 3b of the plurality of conductive particles 10A is formed by sputtering and is arranged and fused on the surface of the electrode 32. 8A is a plan view of the transfer mold 60, and FIG. 8B is a cross-sectional view taken along line BB shown in FIG. 8A. FIG. 9 is a cross-sectional view showing a state where conductive particles before forming the second metal layer 3b are accommodated in a plurality of recesses (openings) 62 of the transfer mold 60. FIG. The plurality of recesses 62 are respectively provided at positions corresponding to the position of the surface of the electrode 32 where the conductive particles 10A are to be arranged.

転写型60の凹部62は、凹部62の底部62a側(奥側)から転写型60の表面60a側に向けて開口面積が拡大するテーパ状に形成されていることが好ましい。すなわち、図9に示すように、凹部62の底部62aの幅(図9における幅a)は、凹部62の表面60aにおける開口の幅(図9における幅b)よりも狭いことが好ましい。そして、凹部62のサイズ(テーパ角度及び深さ)は、第二金属層3b形成前の導電粒子のサイズに応じて設定すればよい。すなわち、第二金属層3b形成前の導電粒子を凹部62に収容したとき、凹部62から突出する導電粒子の高さ(転写型60の表面60aから導電粒子の上端部までの距離(図9における距離c))は、電極32の表面により確実に導電粒子10Aを融着させる観点から、好ましくは1μm以上であり、より好ましくは2μm以上であることが好ましい。   The recess 62 of the transfer mold 60 is preferably formed in a tapered shape whose opening area increases from the bottom 62 a side (back side) of the recess 62 toward the surface 60 a side of the transfer mold 60. That is, as shown in FIG. 9, the width of the bottom 62a of the recess 62 (width a in FIG. 9) is preferably narrower than the width of the opening in the surface 60a of the recess 62 (width b in FIG. 9). And the size (taper angle and depth) of the recessed part 62 should just be set according to the size of the electrically-conductive particle before 2nd metal layer 3b formation. That is, when the conductive particles before forming the second metal layer 3b are accommodated in the recess 62, the height of the conductive particles protruding from the recess 62 (the distance from the surface 60a of the transfer mold 60 to the upper end of the conductive particles (in FIG. 9) The distance c)) is preferably 1 μm or more, more preferably 2 μm or more, from the viewpoint of reliably bonding the conductive particles 10A to the surface of the electrode 32.

転写型60を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。これらのうち、凹部62に導電粒子を収容した状態で保持する観点から、可撓性を有する樹脂材料からなることが好ましい。転写型60の凹部62は、フォトリソグラフ法等の公知の方法によって形成することができる。   As a material constituting the transfer mold 60, for example, an inorganic material such as silicon, various ceramics, glass, stainless steel, or the like, and an organic material such as various resins can be used. Of these, from the viewpoint of holding the conductive particles in a state in which the conductive particles are accommodated in the recesses 62, it is preferable to be made of a flexible resin material. The recess 62 of the transfer mold 60 can be formed by a known method such as a photolithographic method.

転写型60を使用することで、第二金属層3b形成前の導電粒子の粒度分布にある程度の幅があっても、これよりも粒度分布の幅が狭い複数の導電粒子を容易に選択し、これらの表面にスパッタリングによって第二金属層3bを形成できるとともに導電粒子10Aを電極32表面に配置することができる。すなわち、転写型60の凹部62のサイズよりも小さい導電粒子は凹部62に一旦収容されたとしても例えば凹部62が形成されている面を下に向ければ落下し、一方、凹部62のサイズよりも大きい導電粒子は凹部62に収容されない。凹部62のサイズに合う導電粒子が凹部62に嵌り込む。この状態を維持したまま、スパッタリングによって第二金属層3bを形成した後、転写型60の凹部62が形成されている面を電極表面に当接させることで電極32表面に複数の導電粒子10Aを凹部62の形成パターンに則して配置することができる(図7(a)及び図7(b)参照)。なお、ここでは、導電粒子が配置される開口部として凹部62(有底の開口)を例示したが、開口部は転写型の表面から裏面にかけて貫通する孔によって構成されていてもよい。   By using the transfer mold 60, even if there is a certain width in the particle size distribution of the conductive particles before forming the second metal layer 3b, a plurality of conductive particles having a narrower particle size distribution width than this is easily selected. The second metal layer 3b can be formed on these surfaces by sputtering, and the conductive particles 10A can be disposed on the surfaces of the electrodes 32. That is, even if the conductive particles smaller than the size of the concave portion 62 of the transfer mold 60 are once accommodated in the concave portion 62, for example, they fall if the surface on which the concave portion 62 is formed faces downward, whereas the conductive particles are smaller than the size of the concave portion 62. Large conductive particles are not accommodated in the recess 62. Conductive particles that fit the size of the recess 62 fit into the recess 62. While maintaining this state, after forming the second metal layer 3b by sputtering, the surface of the transfer mold 60 on which the concave portion 62 is formed is brought into contact with the electrode surface, whereby a plurality of conductive particles 10A are formed on the surface of the electrode 32. It can arrange | position according to the formation pattern of the recessed part 62 (refer Fig.7 (a) and FIG.7 (b)). Here, the concave portion 62 (bottomed opening) is exemplified as the opening in which the conductive particles are disposed, but the opening may be configured by a hole penetrating from the front surface to the back surface of the transfer mold.

(第二金属層の形成)
図6(a)は、転写型60の各凹部62に第二金属層3b形成前の導電粒子を収容させた状態において、転写型60をスパッタリング用電極70の表面に対面させた状態を模式的に示す断面図である。スパッタリング用電極70はスズ又はスズ合金を含む層からなる。図6(b)は転写型60の凹部62に収容された導電粒子の表面の一部に、スパッタリングによって第二金属層3bを形成した様子を模式的に示す断面図である。なお、スパッタリングにより、転写型60の表面上にもスズ又はスズ合金を含む層80が形成される。
(Formation of second metal layer)
FIG. 6A schematically shows a state in which the transfer mold 60 faces the surface of the sputtering electrode 70 in a state where the conductive particles before forming the second metal layer 3 b are accommodated in the respective recesses 62 of the transfer mold 60. FIG. The sputtering electrode 70 is made of a layer containing tin or a tin alloy. FIG. 6B is a cross-sectional view schematically showing a state in which the second metal layer 3 b is formed by sputtering on a part of the surface of the conductive particles accommodated in the recess 62 of the transfer mold 60. Note that a layer 80 containing tin or a tin alloy is also formed on the surface of the transfer mold 60 by sputtering.

(導電粒子の配置及び融着)
図7(a)は各凹部62に導電粒子10Aを収容している転写型60を第一の回路部材30の表面に対面させた状態を模式的に示す断面図である。図7(b)は転写型60の凹部62に収容された導電粒子10Aを第一の電極32の表面に当接させた状態を模式的に示す断面図である。転写型60は、スパッタリングによる第二金属層3bの形成後、凹部62に導電粒子10Aを収容した状態のままものである。スパッタリングによる第二金属層3bの形成と電極への導電粒子10Aの配置を連続して且つ一つの転写型60で実施することにより、作業の効率化が図れる。これに加え、図7(b)に示すとおり、第二金属層3bの最も厚い部分を第一の電極32の表面に当接させることができ、接続信頼性の向上を図れる。
(Disposition and fusion of conductive particles)
FIG. 7A is a cross-sectional view schematically showing a state in which the transfer mold 60 in which the conductive particles 10 </ b> A are accommodated in the respective recesses 62 faces the surface of the first circuit member 30. FIG. 7B is a cross-sectional view schematically showing a state in which the conductive particles 10 </ b> A accommodated in the recesses 62 of the transfer mold 60 are in contact with the surface of the first electrode 32. The transfer die 60 remains in a state in which the conductive particles 10A are accommodated in the recesses 62 after the second metal layer 3b is formed by sputtering. By performing the formation of the second metal layer 3b by sputtering and the arrangement of the conductive particles 10A on the electrodes continuously and with one transfer mold 60, the work efficiency can be improved. In addition, as shown in FIG. 7B, the thickest portion of the second metal layer 3b can be brought into contact with the surface of the first electrode 32, and the connection reliability can be improved.

図7(c)は導電粒子10Aが第一の電極32表面に融着した状態を模式的に示す断面図である。図7(b)に示す状態において、導電粒子10Aの第二金属層3bの融点よりも高い温度(例えば130〜260℃)に少なくとも導電粒子10Aを加熱することにより、第一金属層3aを溶融させ、その後、冷却することで第一の電極32の所定の位置に導電粒子10Aを融着させることができる。これにより、端子付き電極35が得られる(図3及び図7(c)参照)。   FIG. 7C is a cross-sectional view schematically showing a state where the conductive particles 10 </ b> A are fused to the surface of the first electrode 32. In the state shown in FIG. 7B, the first metal layer 3a is melted by heating at least the conductive particles 10A to a temperature (for example, 130 to 260 ° C.) higher than the melting point of the second metal layer 3b of the conductive particles 10A. Then, the conductive particles 10A can be fused to a predetermined position of the first electrode 32 by cooling. Thereby, the electrode 35 with a terminal is obtained (refer FIG.3 and FIG.7 (c)).

<接続構造体の製造方法>
図10(a)〜図10(d)を参照しながら、接続構造体50の製造方法について説明する。これらの図は、図7(c)に示す端子付き電極35が形成された第一の回路部材30と、第二の回路部材40とを備える接続構造体を形成する過程の一例を模式的に示す断面図である。本実施形態においては、絶縁性を有する樹脂材料からなる所定の厚さの絶縁樹脂フィルム55pを予め準備し(図11(a))、これを第一の回路部材30の表面にラミネートすることにより、第一の回路部材30の表面(端子付き電極35も含む)を被覆する(図11(b)参照)。ラミネートした絶縁樹脂フィルム55p上に、第二の電極42が形成された面が対面するように第二の回路部材40を配置する(図11(c)参照)。その後、これらの部材の積層体の厚さ方向(図11(d)に示す矢印A及び矢印Bの方向)に加圧することによって電極35を第二の電極42と接触させる。絶縁樹脂フィルムが例えば熱硬化性樹脂からなる場合、矢印A及び矢印Bの方向に加圧する際に全体を加熱することによって熱硬化性樹脂を硬化させることができる。これにより、熱硬化性樹脂の硬化物からなる絶縁樹脂層55が回路部材30,40の間に形成される。このときの加熱温度を導電粒子10Aの第一金属層3aの融点よりも高く設定すれば、図5に示すように、第二の電極42に対しても導電粒子10Aを融着させることができる。なお、ここでは絶縁樹脂フィルム55pを第一の回路部材30の表面に配置する場合を例示したが、これの代わりにペースト状の絶縁樹脂組成物を第一の回路部材30の表面に塗布してもよい。
<Method for manufacturing connection structure>
A method of manufacturing the connection structure 50 will be described with reference to FIGS. These drawings schematically illustrate an example of a process of forming a connection structure including the first circuit member 30 on which the terminal-attached electrode 35 shown in FIG. 7C is formed and the second circuit member 40. It is sectional drawing shown. In the present embodiment, an insulating resin film 55p having a predetermined thickness made of an insulating resin material is prepared in advance (FIG. 11A) and laminated on the surface of the first circuit member 30. The surface of the first circuit member 30 (including the terminal-attached electrode 35) is covered (see FIG. 11B). The second circuit member 40 is arranged on the laminated insulating resin film 55p so that the surface on which the second electrode 42 is formed faces (see FIG. 11C). Thereafter, the electrode 35 is brought into contact with the second electrode 42 by applying pressure in the thickness direction of the laminate of these members (directions of arrows A and B shown in FIG. 11D). When the insulating resin film is made of, for example, a thermosetting resin, the thermosetting resin can be cured by heating the whole when pressurizing in the directions of arrows A and B. As a result, an insulating resin layer 55 made of a cured product of a thermosetting resin is formed between the circuit members 30 and 40. If the heating temperature at this time is set higher than the melting point of the first metal layer 3a of the conductive particles 10A, the conductive particles 10A can be fused to the second electrode 42 as shown in FIG. . Here, the case where the insulating resin film 55p is arranged on the surface of the first circuit member 30 is illustrated, but instead of this, a paste-like insulating resin composition is applied to the surface of the first circuit member 30. Also good.

図11(a)及び図11(b)を参照しながら、接続構造体50の製造方法の変形例について説明する。この変形例においては、端子付き電極35が形成された第一の回路部材30と、第二の回路部材40との間に絶縁樹脂フィルム55pを配置し(図11(a)参照)、その後、これらの部材の積層体の厚さ方向(図11(b)に示す矢印A及び矢印Bの方向)に加圧することによって電極35を第二の電極42と接触させる。絶縁樹脂フィルムが例えば熱硬化性樹脂からなる場合、矢印A及び矢印Bの方向に加圧する際に全体を加熱することによって熱硬化性樹脂を硬化させることができる。これにより、熱硬化性樹脂の硬化物からなる絶縁樹脂層55が回路部材30,40の間に形成される。   A modification of the method for manufacturing the connection structure 50 will be described with reference to FIGS. In this modification, an insulating resin film 55p is disposed between the first circuit member 30 on which the electrode with terminal 35 is formed and the second circuit member 40 (see FIG. 11A), and then The electrode 35 is brought into contact with the second electrode 42 by applying pressure in the thickness direction of the laminate of these members (directions of arrows A and B shown in FIG. 11B). When the insulating resin film is made of, for example, a thermosetting resin, the thermosetting resin can be cured by heating the whole when pressurizing in the directions of arrows A and B. As a result, an insulating resin layer 55 made of a cured product of a thermosetting resin is formed between the circuit members 30 and 40.

本実施形態によれば、接続面積が例えば16〜2000μmあるいは25〜1600μm又は100〜1000μmであるように微小であっても、絶縁信頼性及び導通信頼性の両方が優れる接続構造体及びその製造方法が提供される。 According to this embodiment, even in very small such that the contact area is for example 16~2000Myuemu 2 or 25~1600Myuemu 2 or 100 to 1000 [mu] m 2, the connection structure both insulation reliability and conduction reliability is excellent and A manufacturing method thereof is provided.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.

<実施例1>
[導電粒子の作製]
(工程a)前処理工程
平均粒径4.0μmの架橋ポリスチレン粒子(株式会社日本触媒製、商品名「ソリオスター」)4gを、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製、商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した。次に、φ3μmのメンブレンフィルタ(メルク株式会社製)で濾過した後、水洗を行うことで樹脂粒子を得た。その後、pH6.0に調整された0.5質量%ジメチルアミンボラン液に樹脂粒子を添加し、表面が活性化された樹脂粒子を得た。そして、20mLの蒸留水に、表面が活性化された樹脂粒子を浸漬した後、超音波分散することで、樹脂粒子分散液を得た。
<Example 1>
[Preparation of conductive particles]
(Process a) Pretreatment process 4 g of cross-linked polystyrene particles having an average particle size of 4.0 μm (product name “Soliostar” manufactured by Nippon Shokubai Co., Ltd.) and Atotech Neo Gant 834 (product manufactured by Atotech Japan Co., Ltd., product) Was added to 100 mL of a palladium-catalyzed solution containing 8% by mass and stirred at 30 ° C. for 30 minutes. Next, after filtering with a φ3 μm membrane filter (manufactured by Merck & Co., Inc.), resin particles were obtained by washing with water. Thereafter, resin particles were added to a 0.5 mass% dimethylamine borane liquid adjusted to pH 6.0 to obtain resin particles whose surface was activated. And after immersing the resin particle in which the surface was activated in 20 mL distilled water, the resin particle dispersion liquid was obtained by carrying out ultrasonic dispersion | distribution.

(工程b)第一金属層の形成
工程aを経て得た樹脂粒子分散液を、80℃に加温した水1000mLで希釈した後、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加した。次に、樹脂粒子を2g含む分散液に、下記組成(下記成分を含む水溶液。1g/Lの硝酸ビスマス水溶液をめっき液1Lあたり1mL添加した。以下同様)の第一金属層形成用無電解ニッケルめっき液500mLを5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過した。濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表1に示す0.5μmの膜厚のニッケル−リン合金被膜(ニッケル濃度93質量%、残部リン)からなる第1の層を形成した。第1の層を形成することにより得た粒子Aは8gであり、外径は5μmであった。
(第1の層形成用無電解ニッケルめっき液)
硫酸ニッケル:400g/L
次亜リン酸ナトリウム:150g/L
酢酸:120g/L
硝酸ビスマス水溶液(1g/L):1mL/L
(Step b) Formation of first metal layer After the resin particle dispersion obtained through step a was diluted with 1000 mL of water heated to 80 ° C., 1 mL of 1 g / L bismuth nitrate aqueous solution was added as a plating stabilizer. . Next, electroless nickel for forming a first metal layer having the following composition (an aqueous solution containing the following components. 1 g / L bismuth nitrate aqueous solution was added in an amount of 1 mL per liter of plating solution; the same applies hereinafter) to a dispersion containing 2 g of resin particles. 500 mL of plating solution was added dropwise at a dropping rate of 5 mL / min. After 10 minutes had elapsed after the completion of the dropping, the dispersion with the plating solution added was filtered. The filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. Thus, the 1st layer which consists of a nickel-phosphorus alloy film (nickel concentration 93 mass%, remainder phosphorus) of the film thickness of 0.5 micrometer shown in Table 1 was formed. The particle A obtained by forming the first layer was 8 g, and the outer diameter was 5 μm.
(Electroless nickel plating solution for first layer formation)
Nickel sulfate: 400 g / L
Sodium hypophosphite: 150 g / L
Acetic acid: 120 g / L
Bismuth nitrate aqueous solution (1 g / L): 1 mL / L

(工程c)第二金属層の形成
転写型として、開口径6μm角、底部径3μm角、深さ5μm(底部径3μm角は、開口部を上面からみると、開口径6μm角の中央に位置にある)の凹部を有するポリイミドフィルム(厚さ100μm)を準備した。工程bを経て得た粒子Aを転写型の開口部に配置した。転写型及びその凹部に配置された粒子Aに対し、スパッタリングにより、Sn−3.0Ag−0.5Cuの組成のはんだ層(第二金属層)を0.2μm形成した。この厚さ(0.2μm)は、はんだ層の最も厚い部分の厚さである。導電粒子表面においてはんだ層によって被覆されている部分の面積割合(被覆率)は約50%であった。
(Step c) Formation of the second metal layer As a transfer mold, an opening diameter of 6 μm square, a bottom diameter of 3 μm square, a depth of 5 μm (the bottom diameter of 3 μm square is located at the center of the opening diameter of 6 μm square when the opening is viewed from the top. A polyimide film (thickness: 100 μm) having a concave portion is prepared. The particles A obtained through the step b were placed in the opening of the transfer mold. A solder layer (second metal layer) having a composition of Sn-3.0Ag-0.5Cu was formed to 0.2 μm by sputtering on the transfer mold and the particles A arranged in the recesses. This thickness (0.2 μm) is the thickness of the thickest part of the solder layer. The area ratio (coverage) of the portion covered with the solder layer on the surface of the conductive particles was about 50%.

スパッタリングは具体的には以下の要領で実施した。すなわち、凹部に導電粒子が配置された転写型をスパッタリング装置内に入れ、装置内を1×10−4Pa以下に減圧した後、装置内が1Paになるようアルゴンを一定流速で流した。その後、ターゲットに電圧を印加し、粒子Aの表面及び転写型の表面にスパッタリング層を形成した。Sn−3.0Ag−0.5Cuの組成のスパッタリング層が0.2μmになるまでスパッタリングを行った後、装置内を大気圧に戻した。そして、Sn−3.0Ag−0.5Cuの組成のはんだ層(第二金属層)を有する導電粒子を転写型とともに装置から取り出した。 Specifically, sputtering was performed as follows. That is, a transfer mold in which conductive particles are arranged in the recesses was placed in a sputtering apparatus, the pressure inside the apparatus was reduced to 1 × 10 −4 Pa or less, and then argon was flowed at a constant flow rate so that the inside of the apparatus became 1 Pa. Thereafter, a voltage was applied to the target to form a sputtering layer on the surface of the particle A and the surface of the transfer mold. Sputtering was performed until the sputtering layer having a composition of Sn-3.0Ag-0.5Cu became 0.2 μm, and then the inside of the apparatus was returned to atmospheric pressure. Then, the conductive particles having a solder layer (second metal layer) having a composition of Sn-3.0Ag-0.5Cu were taken out from the apparatus together with the transfer mold.

[端子付き電極の作製]
(工程d)
銅バンプ(面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362)付きチップ(1.7×1.7mm、厚さ:0.5mm)と、スパッタリング装置から取り出された後であって凹部に導電粒子が配置された転写型を対面させ、銅バンプと導電粒子を接触させた。真空リフローはんだ付け装置[PINK社製(ドイツ)製真空リフローハンダ付け装置VADU100]を用い、ギ酸濃度2質量%、圧力2000Pa、230℃で1分間保持して接合することにより、端子付き電極付きチップ(1.7×1.7mm、厚さ:0.5mm)を得た。より具体的には、図12のように、銅バンプ上に8μmピッチで八個の導電粒子が配置された端子付き電極付きチップC1を得た。これと同様にして、下記の構成のチップC2,C3(1.7×1.7mm、厚さ:0.5mm)を得た。図13は、銅バンプ上に8μmピッチで四個の導電粒子が配置されたチップC2(回路部材)を模式的に示す平面図である。
・チップC1…面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数八個
・チップC2…面積15μm×15μm、スペース10μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数四個
・チップC3…面積15μm×30μm、スペース6μm、高さ:10μm、バンプ数362、銅バンプ上導電粒子数八個
[Production of electrodes with terminals]
(Process d)
After being taken out from the sputtering apparatus with a chip (1.7 × 1.7 mm, thickness: 0.5 mm) with copper bumps (area 15 μm × 30 μm, space 10 μm, height: 10 μm, number of bumps 362) The transfer mold in which the conductive particles are arranged in the recesses face each other, and the copper bumps and the conductive particles are brought into contact with each other. Using a vacuum reflow soldering apparatus [vacuum reflow soldering apparatus VADU100 manufactured by PINK (Germany)], holding for 1 minute at a formic acid concentration of 2 mass%, a pressure of 2000 Pa, and 230 ° C. (1.7 × 1.7 mm, thickness: 0.5 mm) was obtained. More specifically, as shown in FIG. 12, an electrode-attached chip C1 with terminals in which eight conductive particles were arranged at a pitch of 8 μm on a copper bump was obtained. In the same manner, chips C2 and C3 (1.7 × 1.7 mm, thickness: 0.5 mm) having the following configuration were obtained. FIG. 13 is a plan view schematically showing a chip C2 (circuit member) in which four conductive particles are arranged at a pitch of 8 μm on a copper bump.
Chip C1: Area 15 μm × 30 μm, Space 10 μm, Height: 10 μm, Bump number 362, Eight conductive particles on copper bumps Chip C2: Area 15 μm × 15 μm, Space 10 μm, Height: 10 μm, Bump number 362 Four conductive particles on copper bumps, chip C3: area 15 μm × 30 μm, space 6 μm, height: 10 μm, number of bumps 362, number of conductive particles on copper bumps 8

[接続構造体の作製]
(工程e)
フェノキシ樹脂(ユニオンカーバイド社製、商品名「PKHC」)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、分子量:85万)75gとを、酢酸エチル400gに溶解し、溶液を得た。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185、旭化成エポキシ株式会社製、商品名「ノバキュアHX−3941」)300gを加え、撹拌して接着剤溶液を得た。得られた接着剤溶液を、セパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータを用いて塗布し、90℃で10分間の加熱することにより乾燥して、厚さ10μmの接着フィルム(絶縁樹脂フィルム)をセパレータ上に作製した。
[Production of connection structure]
(Process e)
Copolymer of 100 g of phenoxy resin (trade name “PKHC” manufactured by Union Carbide) and acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, 3 parts by mass of glycidyl methacrylate, molecular weight: 85 10) was dissolved in 400 g of ethyl acetate to obtain a solution. To this solution, 300 g of a liquid epoxy resin (epoxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name “Novacure HX-3941”) containing a microcapsule type latent curing agent was added and stirred to obtain an adhesive solution. . The obtained adhesive solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) using a roll coater, dried by heating at 90 ° C. for 10 minutes, and an adhesive film having a thickness of 10 μm. (Insulating resin film) was produced on the separator.

次に、作製した接着フィルムを用いて、端子付き電極付きチップ(1.7×1.7mm、厚さ:0.5mm)と、IZO回路付きガラス基板(厚さ:0.7mm)との接続を、以下に示すi)〜iii)の手順に従って行うことによって接続構造体を得た。
i)接着フィルム(2×19mm)をIZO回路付きガラス基板に、80℃、0.98MPa(10kgf/cm)で貼り付けた。
ii)セパレータを剥離し、チップのバンプとIZO回路付きガラス基板の位置合わせを行った。
iii)190℃、40gf/バンプ、10秒の条件でチップ上方から加熱及び加圧を行い、本接続を行った。作製した導電粒子等の条件を表1にまとめて示した。
Next, using the produced adhesive film, connection between the electrode-equipped chip with terminal (1.7 × 1.7 mm, thickness: 0.5 mm) and the glass substrate with IZO circuit (thickness: 0.7 mm) Was performed according to the following procedures i) to iii) to obtain a connection structure.
i) An adhesive film (2 × 19 mm) was attached to a glass substrate with an IZO circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ).
ii) The separator was peeled off, and the bumps of the chip and the glass substrate with IZO circuit were aligned.
iii) The main connection was performed by heating and pressing from above the chip under the conditions of 190 ° C., 40 gf / bump, and 10 seconds. The conditions of the produced conductive particles and the like are summarized in Table 1.

<導電粒子の膜厚及び成分の評価>
得られた導電粒子の中心付近を通るようにウルトラミクロトーム法で断面を切り出した。透過型電子顕微鏡装置(以下「TEM装置」と略称する、日本電子株式会社製、商品名「JEM−2100F」)を用いて任意の倍率で観察した。得られた画像から、導電粒子の中心部から半径方向における、各被膜の厚さを測定した。5個の導電粒子について各5箇所測定し、合計25箇所の平均値を、膜厚とした。また、EDXマッピングデータから、各被膜における元素の含有量(純度)を算出した。
<Evaluation of film thickness and components of conductive particles>
A cross section was cut out by an ultramicrotome method so as to pass through the vicinity of the center of the obtained conductive particles. Observation was carried out at an arbitrary magnification using a transmission electron microscope apparatus (hereinafter abbreviated as “TEM apparatus”, manufactured by JEOL Ltd., trade name “JEM-2100F”). From the obtained image, the thickness of each coating in the radial direction from the center of the conductive particles was measured. Each of the five conductive particles was measured at five locations, and the average value at a total of 25 locations was defined as the film thickness. Further, the content (purity) of the element in each coating was calculated from the EDX mapping data.

[接続構造体の評価]
得られた接続構造体の導通抵抗試験及び絶縁抵抗試験を以下のように行った。
[Evaluation of connection structure]
The conduction resistance test and the insulation resistance test of the obtained connection structure were performed as follows.

(導通抵抗試験−吸湿耐熱試験)
チップ電極(バンプ)/ガラス電極(IZO)間の導通抵抗に関して、導通抵抗の初期値と吸湿耐熱試験(温度85℃、湿度85%の条件で100、300、500、1000、2000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。なお、前述のチップC1及びチップC2を用いて評価した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表2に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が2Ω未満
B:導通抵抗の平均値が2Ω以上5Ω未満
C:導通抵抗の平均値が5Ω以上10Ω未満
D:導通抵抗の平均値が10Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
(Conduction resistance test-moisture absorption heat resistance test)
Regarding the conduction resistance between the chip electrode (bump) / glass electrode (IZO), after the initial value of the conduction resistance and the moisture absorption heat resistance test (left at 100, 300, 500, 1000, 2000 hours under conditions of temperature 85 ° C. and humidity 85%) Was measured for 20 samples, and the average value thereof was calculated. In addition, it evaluated using the above-mentioned chip C1 and chip C2. The conduction resistance was evaluated from the average value obtained according to the following criteria. The results are shown in Table 2. In addition, it can be said that conduction resistance is favorable when the following A or B standard is satisfied after the moisture absorption heat test 500 hours.
A: Average value of conduction resistance is less than 2Ω B: Average value of conduction resistance is 2Ω or more and less than 5Ω C: Average value of conduction resistance is 5Ω or more and less than 10Ω D: Average value of conduction resistance is 10Ω or more and less than 20Ω E: Conduction resistance The average value of 20Ω or more

(導通抵抗試験−高温放置試験)
チップ電極(バンプ)/ガラス電極(IZO)間の導通抵抗に関して、導通抵抗の初期値と高温放置試験(温度100℃の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。なお、前述のチップC1を用いて評価した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表2に示す。なお、高温放置試験100時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が2Ω未満
B:導通抵抗の平均値が2Ω以上5Ω未満
C:導通抵抗の平均値が5Ω以上10Ω未満
D:導通抵抗の平均値が10Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
(Conduction resistance test-High temperature storage test)
Regarding the conduction resistance between the chip electrode (bump) / glass electrode (IZO), the initial value of the conduction resistance and the value after the high temperature standing test (100, 300, 500, 1000 hours standing at a temperature of 100 ° C.) are 20 samples. Were measured and the average value thereof was calculated. In addition, it evaluated using the above-mentioned chip C1. The conduction resistance was evaluated from the average value obtained according to the following criteria. The results are shown in Table 2. In addition, it can be said that conduction resistance is favorable when the following A or B standard is satisfied after 100 hours of high-temperature standing test.
A: Average value of conduction resistance is less than 2Ω B: Average value of conduction resistance is 2Ω or more and less than 5Ω C: Average value of conduction resistance is 5Ω or more and less than 10Ω D: Average value of conduction resistance is 10Ω or more and less than 20Ω E: Conduction resistance The average value of 20Ω or more

(絶縁抵抗試験)
チップ電極間の絶縁抵抗に関しては、絶縁抵抗の初期値とマイグレーション試験(温度60℃、湿度90%、20V印加の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、全20サンプル中、絶縁抵抗値が10Ω以上となるサンプルの割合を算出した。なお、前述のチップC1及びチップC3を用いて評価した。得られた割合から下記基準に従って絶縁抵抗を評価した。結果を表2に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たした場合は絶縁抵抗が良好といえる。
A:絶縁抵抗値109Ω以上の割合が100%
B:絶縁抵抗値109Ω以上の割合が90%以上100%未満
C:絶縁抵抗値109Ω以上の割合が80%以上90%未満
D:絶縁抵抗値109Ω以上の割合が50%以上80%未満
E:絶縁抵抗値109Ω以上の割合が50%未満
(Insulation resistance test)
Regarding the insulation resistance between chip electrodes, the initial value of the insulation resistance and the value after migration test (temperature 60 ° C., humidity 90%, 20 V applied for 100, 300, 500, 1000 hours) were measured for 20 samples. And the ratio of the sample from which the insulation resistance value becomes 10 9 Ω or more among all 20 samples was calculated. In addition, it evaluated using the above-mentioned chip C1 and chip C3. The insulation resistance was evaluated from the obtained ratio according to the following criteria. The results are shown in Table 2. In addition, it can be said that insulation resistance is favorable when the following A or B standard is satisfied after 500 hours of the moisture absorption heat test.
A: Ratio of insulation resistance value 109Ω or more is 100%
B: Ratio of insulation resistance value 109Ω or more is 90% or more and less than 100% C: Ratio of insulation resistance value 109Ω or more is 80% or more and less than 90% D: Ratio of insulation resistance value 109Ω or more is 50% or more and less than 80% E: Ratio of insulation resistance value 109Ω or more is less than 50%

<実施例2>
(工程c)において、Sn−3.0Ag−0.5Cuの組成のターゲットの代わりにSn−Bi(Sn43質量%、Bi57質量%)のターゲットを使用するとともに、(工程e)のiii)における加熱の条件を190℃から150℃に変更したこと以外は実施例1と同様にして、導電粒子、端子付き電極の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 2>
In (step c), a target of Sn—Bi (Sn 43 mass%, Bi 57 mass%) is used instead of a target having a composition of Sn-3.0Ag-0.5Cu, and heating in iii) of (step e) In the same manner as in Example 1 except that the condition was changed from 190 ° C. to 150 ° C., the production of conductive particles and electrodes with terminals, the production of connection structures, and the evaluation of the conductive particles and connection structures were performed. . The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<実施例3>
実施例1の(工程a)及び(工程b)を行った後、第一金属層(ニッケル)を形成した粒子8gを、50℃で加温した水200mLで希釈し、めっき安定剤として1g/Lの硝酸ビスマス水溶液を0.2mL添加し、下記組成の第三金属層形成用無電解パラジウムめっき液100mLを、1mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過した。濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、0.1μmの厚さのパラジウムめっき被膜(パラジウムの純度100%)からなる第三金属層を形成した。なお、アクリル粒子の外側に、内側から順に第一金属層(ニッケル)0.5μm、第三金属層(パラジウム)0.1μmを形成することにより得た粒子は9gであり、外径は5.2μmであった。続いて、実施例1の(工程c)と同様の操作を行い、転写型の凹部に配置された導電粒子の表面に、厚さ0.2μmのSn−3.0Ag−0.5Cuの組成のはんだ層(第二金属層)を形成した。これ以降は、実施例1の(工程d)以降と同様の操作を行い、端子付き電極の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
(無電解パラジウムめっき液)
塩化パラジウム:7g/L
EDTA・2ナトリウム:100g/L
クエン酸・2ナトリウム:100g/L
ギ酸ナトリウム:20g/L
pH:6
<Example 3>
After performing (Step a) and (Step b) of Example 1, 8 g of particles forming the first metal layer (nickel) were diluted with 200 mL of water heated at 50 ° C., and 1 g / 0.2 mL of L aqueous bismuth nitrate solution was added, and 100 mL of an electroless palladium plating solution for forming a third metal layer having the following composition was added dropwise at a dropping rate of 1 mL / min. After 10 minutes had elapsed after the completion of the dropping, the dispersion with the plating solution added was filtered. The filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. In this way, a third metal layer made of a palladium plating film (palladium purity 100%) having a thickness of 0.1 μm was formed. In addition, the particle | grains obtained by forming 0.5 micrometer of 1st metal layers (nickel) and 0.1 micrometer of 3rd metal layers (palladium) in order from the inside on the outer side of an acrylic particle are 9g, and an outer diameter is 5. It was 2 μm. Subsequently, the same operation as in (Step c) of Example 1 was performed, and the surface of the conductive particles arranged in the concave portion of the transfer mold had a composition of Sn-3.0Ag-0.5Cu having a thickness of 0.2 μm. A solder layer (second metal layer) was formed. Thereafter, the same operations as in (step d) onward in Example 1 were performed, and the production of the electrode with terminals, the production of the connection structure, and the evaluation of the conductive particles and the connection structure were performed. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.
(Electroless palladium plating solution)
Palladium chloride: 7g / L
EDTA · 2 sodium: 100 g / L
Citric acid, disodium: 100 g / L
Sodium formate: 20 g / L
pH: 6

<実施例4>
実施例1の(工程a)及び(工程b)を行った後、実施例3と同様に、0.1μmの膜厚のパラジウムめっき被膜(パラジウムの純度100%)からなる第三金属層を形成し、アクリル粒子の外側に、内側から順に第一金属層(ニッケル)0.5μm、第三金属層(パラジウム)0.1μmからなる粒子(外径:5.2μm)を作製した。この後、実施例2と同様に、転写型を用いて導電粒子の表面に厚さ0.2μmのはんだ層(第二金属層、種類:Sn-Bi(Sn43質量%、Bi57質量%))を形成した。(工程d)以降については、実施例2と同様にして、導電粒子、端子付き電極の作製、接続構造体の作製、並びに、導電粒子及び接続構造体の評価を行った。作製した導電粒子等の条件を表1にまとめて示した。また、評価結果を表2に示す。
<Example 4>
After performing (Step a) and (Step b) of Example 1, a third metal layer formed of a palladium plating film (palladium purity 100%) with a thickness of 0.1 μm is formed in the same manner as Example 3. And the particle | grains (outer diameter: 5.2 micrometers) which consisted of 0.5 micrometer of 1st metal layers (nickel) and 0.1 micrometer of 3rd metal layers (palladium) in order from the inner side were produced on the outer side of the acrylic particles. Thereafter, as in Example 2, a 0.2 μm thick solder layer (second metal layer, type: Sn—Bi (Sn 43 mass%, Bi 57 mass%)) was applied to the surface of the conductive particles using a transfer mold. Formed. About (process d) and subsequent, it carried out similarly to Example 2, preparation of the electroconductive particle and the electrode with a terminal, preparation of a connection structure, and evaluation of the electroconductive particle and the connection structure were performed. The conditions of the produced conductive particles and the like are summarized in Table 1. The evaluation results are shown in Table 2.

<比較例1>
[導電粒子の作製]
実施例1の(工程a)において、平均粒径4.0μmの架橋ポリスチレン粒子(株式会社日本触媒製、商品名「ソリオスター」)4gの代わりに、平均粒径3.0μmの架橋ポリスチレン粒子(株式会社日本触媒製、商品名「ソリオスター」)2gを用いて同様の操作を行った後、実施例1の(工程b)を引き続き行い、無電解ニッケルめっきの液量を100mLとし、表3に示す0.1μmの膜厚のニッケル−リン合金被膜(ニッケル濃度93質量%、残部リン)からなる第一金属層を形成した。第一金属層を形成することにより得た粒子Aは2.8gであり、外径は3.2μmであった。続いて、実施例3と同一の無電解パラジウムめっき液及び方法により、第一金属層上にパラジウムめっき被膜(パラジウムの純度100%)からなる第三金属層を形成した。第三金属層形成用無電解パラジウムめっき液を100mLから20mLに変更し、パラジウムめっき被膜を0.02μm形成することで、アクリル粒子の外側に、内側から順に第一金属層(ニッケル)0.1μm、第三金属層(パラジウム)0.02μmが形成された、外径3.24μmの導電粒子3gを得た。
<Comparative Example 1>
[Preparation of conductive particles]
In Example 1 (step a), instead of 4 g of crosslinked polystyrene particles having an average particle diameter of 4.0 μm (trade name “Soliostar” manufactured by Nippon Shokubai Co., Ltd.), crosslinked polystyrene particles having an average particle diameter of 3.0 μm ( After performing the same operation using 2 g of Nippon Shokubai Co., Ltd., trade name “Soriostar”, Example 1 (Step b) was continued, the amount of electroless nickel plating was 100 mL, and Table 3 The 1st metal layer which consists of a nickel-phosphorus alloy film (nickel concentration 93 mass%, remainder phosphorus) of the film thickness of 0.1 micrometer shown in FIG. The particle A obtained by forming the first metal layer was 2.8 g, and the outer diameter was 3.2 μm. Subsequently, a third metal layer made of a palladium plating film (palladium purity 100%) was formed on the first metal layer by the same electroless palladium plating solution and method as in Example 3. By changing the electroless palladium plating solution for forming the third metal layer from 100 mL to 20 mL and forming a palladium plating film of 0.02 μm, the first metal layer (nickel) 0.1 μm in order from the inside to the outside of the acrylic particles. Then, 3 g of conductive particles having an outer diameter of 3.24 μm and a third metal layer (palladium) of 0.02 μm were formed.

[第1の絶縁粒子の作製]
500mlフラスコに入った純水400g中に下に示す配合モル比に従ってモノマーを加えた。全モノマーの総量が、純水に対して10質量%になるように配合した。窒素置換後、70℃で撹拌しながら6時間加熱を行った。攪拌速度は300min−1(300rpm)であった。なお、KBM−503(信越化学工業株式会社製、商品名)は、3−メタクリロキシプロピルトリメトキシシランである。合成することで得た第1の絶縁粒子の平均粒径は315nm、Tgは116℃であった。
(第1の絶縁粒子の配合モル比)
スチレン:600
ペルオキソ二硫酸カリウム:6
メタクリル酸ナトリウム:5.4
スチレンスルホン酸ナトリウム:0.32
ジビニルベンゼン:16.8
KBM−503:4.2
[Production of first insulating particles]
Monomers were added to 400 g of pure water in a 500 ml flask according to the blending molar ratio shown below. It mix | blended so that the total amount of all the monomers might be 10 mass% with respect to pure water. After nitrogen substitution, heating was performed for 6 hours with stirring at 70 ° C. The stirring speed was 300 min-1 (300 rpm). KBM-503 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) is 3-methacryloxypropyltrimethoxysilane. The average particle diameter of the first insulating particles obtained by synthesis was 315 nm, and Tg was 116 ° C.
(Mixing molar ratio of first insulating particles)
Styrene: 600
Potassium peroxodisulfate: 6
Sodium methacrylate: 5.4
Sodium styrene sulfonate: 0.32
Divinylbenzene: 16.8
KBM-503: 4.2

[第2の絶縁粒子の作製]
500mlフラスコに入った純水400g中に下に示す配合モル比に従ってモノマーを加えた。全モノマーの総量が、純水に対して10質量%になるように配合した。窒素置換後、70℃で撹拌しながら6時間加熱を行った。攪拌速度は300min−1(300rpm)であった。合成することで得た第2の絶縁粒子の平均粒径は100nm、Tgは116℃であった。
(第2の絶縁粒子の配合モル比)
スチレン:600
ペルオキソ二硫酸カリウム:6
アクリル酸メチル:270
メタクリル酸ナトリウム:5.4
スチレンスルホン酸ナトリウム:2.0
ジビニルベンゼン:16.8
KBM−503:4.2
[Production of second insulating particles]
Monomers were added to 400 g of pure water in a 500 ml flask according to the blending molar ratio shown below. It mix | blended so that the total amount of all the monomers might be 10 mass% with respect to pure water. After nitrogen substitution, heating was performed for 6 hours with stirring at 70 ° C. The stirring speed was 300 min-1 (300 rpm). The second insulating particles obtained by synthesis had an average particle size of 100 nm and Tg of 116 ° C.
(Mixing molar ratio of second insulating particles)
Styrene: 600
Potassium peroxodisulfate: 6
Methyl acrylate: 270
Sodium methacrylate: 5.4
Sodium styrenesulfonate: 2.0
Divinylbenzene: 16.8
KBM-503: 4.2

第1の絶縁粒子及び第2の絶縁粒子の平均粒径をHITACHI S−4800(株式会社日立ハイテクノロジーズ、商品名)の画像解析により測定した。第1の絶縁粒子及び第2の絶縁粒子のTgを、DSC(株式会社パーキンエルマージャパン製DSC−7型)を用いて、サンプル量10mg、昇温速度5℃/分、測定雰囲気:空気の条件で測定した。   The average particle diameter of the first insulating particles and the second insulating particles was measured by image analysis of HITACHI S-4800 (Hitachi High-Technologies Corporation, trade name). The Tg of the first insulating particles and the second insulating particles was determined by using DSC (DSC-7 type manufactured by PerkinElmer Japan Co., Ltd.), sample amount 10 mg, temperature rising rate 5 ° C./min, measurement atmosphere: air condition Measured with

(シリコーンオリゴマー1の調製)
攪拌装置、コンデンサー及び温度計を備えたガラスフラスコに、3−グリシドキシプロピルトリメトキシシラン118gとメタノール5.9gを配合した溶液を加えた。さらに、活性白土5g及び蒸留水4.8gを添加し、75℃で一定時間攪拌した後、重量平均分子量1300のシリコーンオリゴマーを得た。得られたシリコーンオリゴマー1は、水酸基と反応する末端官能基としてメトキシ基又はシラノール基を有するものである。得られたシリコーンオリゴマー溶液にメタノールを加えて、固形分20重量%の処理液を調製した。
(Preparation of silicone oligomer 1)
A solution containing 118 g of 3-glycidoxypropyltrimethoxysilane and 5.9 g of methanol was added to a glass flask equipped with a stirrer, a condenser and a thermometer. Further, 5 g of activated clay and 4.8 g of distilled water were added and stirred at 75 ° C. for a certain time, and then a silicone oligomer having a weight average molecular weight of 1300 was obtained. The obtained silicone oligomer 1 has a methoxy group or a silanol group as a terminal functional group that reacts with a hydroxyl group. Methanol was added to the obtained silicone oligomer solution to prepare a treatment liquid having a solid content of 20% by weight.

なお、シリコーンオリゴマーの重量平均分子量はゲルパーミエーションクロマトグラフィー法(GPC)法によって測定し、標準ポリスチレンの検量線を用いて換算することにより算出した。GPCの条件を以下に示す。
GPC条件
ポンプ:日立 L−6000型(株式会社日立製作所製、商品名)
カラム:Gelpack GL−R420、Gelpack GL−R430、Gelpack GL−R440(以上、(株)日立化成社製、商品名)
溶離液:テトラヒドロフラン(THF)
測定温度:40℃
流量:2.05mL/分
検出器:日立 L−3300型RI(「株式会社日立製作所製、商品名)
In addition, the weight average molecular weight of the silicone oligomer was measured by a gel permeation chromatography method (GPC) method, and was calculated by conversion using a standard polystyrene calibration curve. The GPC conditions are shown below.
GPC conditions Pump: Hitachi L-6000 type (manufactured by Hitachi, Ltd., trade name)
Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (above, manufactured by Hitachi Chemical Co., Ltd., trade name)
Eluent: Tetrahydrofuran (THF)
Measurement temperature: 40 ° C
Flow rate: 2.05 mL / min Detector: Hitachi L-3300 type RI (“trade name, manufactured by Hitachi, Ltd.)

[絶縁被覆導電粒子の作製]
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を調製した。次にアクリル粒子の外側に、内側から順に第1の層(ニッケル)0.1μm、第3の層(パラジウム)0.02μmが形成された、外径3.24μmの導電粒子3gを上記反応液に加え、室温で2時間スリーワンモーターと直径45mmの攪拌羽で攪拌した。メタノールで洗浄後、孔径3μmのメンブレンフィルタ(メルクミリポア社製)を用いてろ過することで、表面にカルボキシル基を有する導電粒子を得た。
[Preparation of insulating coated conductive particles]
A reaction solution was prepared by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol. Next, 3 g of conductive particles having an outer diameter of 3.24 μm, in which a first layer (nickel) 0.1 μm and a third layer (palladium) 0.02 μm were formed in order from the inside on the outside of the acrylic particles, were added to the reaction solution In addition, the mixture was stirred with a three-one motor and a stirring blade having a diameter of 45 mm at room temperature for 2 hours. After washing with methanol, the resultant was filtered using a membrane filter (manufactured by Merck Millipore) having a pore size of 3 μm to obtain conductive particles having a carboxyl group on the surface.

次に重量平均分子量70,000の30%ポリエチレンイミン水溶液(和光純薬工業株式会社製)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得た。上記表面にカルボキシル基を有する導電粒子を0.3重量%ポリエチレンイミン水溶液に加え、室温で15分攪拌した。その後、孔径3μmのメンブレンフィルタ(メルクミリポア社製)を用いて導電粒子をろ過し、ろ過された導電粒子を超純水200gに入れて室温で5分攪拌した。更に孔径3μmのメンブレンフィルタ(メルクミリポア社製)を用いて導電粒子をろ過し、上記メンブレンフィルタ上にて200gの超純水で2回洗浄を行った。これらの作業を行うことにより、吸着していないポリエチレンイミンが除去され、表面がアミノ基含有ポリマーで被覆された導電粒子が得られた。   Next, a 30% polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a weight average molecular weight of 70,000 was diluted with ultrapure water to obtain a 0.3 wt% polyethyleneimine aqueous solution. The conductive particles having a carboxyl group on the surface were added to a 0.3% by weight polyethyleneimine aqueous solution and stirred at room temperature for 15 minutes. Thereafter, the conductive particles were filtered using a membrane filter (manufactured by Merck Millipore) having a pore size of 3 μm, and the filtered conductive particles were put in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Furthermore, the conductive particles were filtered using a membrane filter (manufactured by Merck Millipore) having a pore size of 3 μm, and washed twice with 200 g of ultrapure water on the membrane filter. By performing these operations, unimsorbed polyethyleneimine was removed, and conductive particles whose surface was coated with an amino group-containing polymer were obtained.

次に、第1の絶縁粒子をシリコーンオリゴマー1で処理し、表面にグリシジル基含有オリゴマーを有する第1の絶縁粒子のメタノール分散媒を調製した。一方、第2の絶縁粒子も同様にシリコーンオリゴマー1で処理し、表面にグリシジル基含有オリゴマーを有する第2の絶縁粒子のメタノール分散媒を調製した。   Next, the 1st insulating particle was processed with the silicone oligomer 1, and the methanol dispersion medium of the 1st insulating particle which has a glycidyl group containing oligomer on the surface was prepared. On the other hand, the second insulating particles were similarly treated with the silicone oligomer 1 to prepare a methanol dispersion medium of second insulating particles having a glycidyl group-containing oligomer on the surface.

上記表面がアミノ基含有ポリマーで被覆された導電粒子をイソプロピルアルコールに浸漬し、第1の絶縁粒子のメタノール分散媒を滴下した。第1の絶縁粒子の被覆率は、第1の絶縁粒子のメタノール分散媒の滴下量で調整した。次いで、第2の絶縁粒子のメタノール分散媒を滴下することで、絶縁被覆導電粒子1を作製した。第2の絶縁粒子の被覆率は、第2の絶縁粒子の滴下量で調整した。第1の絶縁粒子による被覆率は30%、第2の絶縁粒子による被覆率は25%であり、絶縁粒子による被覆率は合計で55%であった。   The conductive particles whose surfaces were coated with an amino group-containing polymer were immersed in isopropyl alcohol, and a methanol dispersion medium of first insulating particles was dropped. The coverage of the 1st insulating particle was adjusted with the dripping amount of the methanol dispersion medium of the 1st insulating particle. Subsequently, the insulation coating electroconductive particle 1 was produced by dripping the methanol dispersion medium of the 2nd insulating particle. The coverage of the second insulating particles was adjusted by the amount of the second insulating particles dropped. The coverage with the first insulating particles was 30%, the coverage with the second insulating particles was 25%, and the coverage with the insulating particles was 55% in total.

得られた絶縁被覆導電粒子1を縮合剤とオクタデシルアミンで処理し、洗浄して表面の疎水化を行った。その後80℃で1時間の条件で加熱乾燥させて絶縁被覆導電粒子1を作製した。   The obtained insulating coated conductive particles 1 were treated with a condensing agent and octadecylamine and washed to make the surface hydrophobic. Thereafter, the insulating coated conductive particles 1 were produced by heating and drying at 80 ° C. for 1 hour.

[異方導電性接着剤フィルムの作製]
酢酸エチルとトルエンを重量比1:1で混合した溶媒300gに、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、重量平均分子量:85万)75gとを溶解し、溶液を得た。この溶液にマイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エボキシ当量185、旭化成エポキシ株式会社製、商品名:ノバキュアHX−3941)300gと、液状エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名:YL980)400gとを加えて撹拌した。得られた混合液に平均粒径が14nmのシリカを溶剤分散したシリカスラリー(日本アエロジル株式会社製、商品名:R202)を加えて接着剤溶液1を調製した。シリカスラリーは、上記混合液の固形分全量に対してシリカ固形分の含有量が5重量%となるように加えた。
[Production of anisotropic conductive adhesive film]
300 g of a solvent in which ethyl acetate and toluene are mixed at a weight ratio of 1: 1, 100 g of phenoxy resin (trade name: PKHC, manufactured by Union Carbide), acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, acrylonitrile 30) 75 parts by weight of a copolymer of 3 parts by weight of glycidyl methacrylate and 75 g of a weight average molecular weight was obtained to obtain a solution. 300 g of liquid epoxy (Eboxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name: NovaCure HX-3941) containing a microcapsule type latent curing agent in this solution, and liquid epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name) : YL980) 400 g was added and stirred. A silica slurry (manufactured by Nippon Aerosil Co., Ltd., trade name: R202) in which silica having an average particle size of 14 nm was solvent-dispersed was added to the obtained mixed solution to prepare an adhesive solution 1. The silica slurry was added so that the content of the silica solid content was 5% by weight with respect to the total solid content of the mixed solution.

ビーカーに、酢酸エチルとトルエンとを重量比1:1で混合した分散媒10gと、絶縁被覆導電粒子1を入れて超音波分散した。超音波分散の条件は、周波数が38kHZ、エネルギーが400W、体積が20Lの超音波槽(藤本科学株式会社、商品名:US107)に上記ビーカーを浸漬して1分間攪拌した。   In a beaker, 10 g of a dispersion medium in which ethyl acetate and toluene were mixed at a weight ratio of 1: 1 and the insulating coated conductive particles 1 were placed and ultrasonically dispersed. The ultrasonic dispersion was performed by immersing the beaker in an ultrasonic bath (Fujimoto Kagaku Co., Ltd., trade name: US107) having a frequency of 38 kHz, energy of 400 W, and volume of 20 L, and stirring for 1 minute.

得られた絶縁被覆導電粒子1の分散液を接着剤溶液1中に分散した。得られた分散液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚さ10μmの接着剤フィルムAを作製した。この接着剤フィルムは単位面積当たり7万個/mmの絶縁被覆導電粒子を有する。また、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚さ3μmの接着剤フィルムBを作製した。さらに、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し厚さ10μmの接着剤フィルムCを作製した。次に、接着剤フィルムB、接着剤フィルムA、接着剤フィルムCの順番で各接着剤フィルムをラミネートし、三層からなる異方導電性接着剤フィルムDを作製した。 The obtained dispersion liquid of insulating coated conductive particles 1 was dispersed in the adhesive solution 1. The obtained dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film A having a thickness of 10 μm. This adhesive film has 70,000 pieces / mm 2 of insulating coated conductive particles per unit area. Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film B having a thickness of 3 μm. Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 90 ° C. for 10 minutes to prepare an adhesive film C having a thickness of 10 μm. Next, each adhesive film was laminated in the order of the adhesive film B, the adhesive film A, and the adhesive film C to prepare an anisotropic conductive adhesive film D consisting of three layers.

[接続サンプルの作製]
実施例1の(工程d)の銅バンプの代わりに、銅バンプに無電解ニッケルめっき(膜厚:0.5μm)、無電解パラジウムめっき(膜厚:0.1μm)、置換金めっき(膜厚:0.05μm)を順次施した(無電解ニッケルめっき・パラジウムめっき・置換金めっき後のバンプの面積、スペース、高さ、バンプ数は、実施例1の銅バンプと同じ)、銅/ニッケル/パラジウム/金バンプ (面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362)[無電解ニッケルめっき(膜厚:0.5μm)、無電解パラジウムめっき(膜厚:0.1μm)、置換金めっき(膜厚:0.05μm)]付きチップ(1.7×1.7mm、厚さ:0.5mm)を用い、作製した異方導電性接着剤フィルムDを用いて、実施例1(工程e)と同様の、IZO回路付きガラス基板(厚さ:0.7mm)との接続を、以下に示すように行った。
[Preparation of connection sample]
Instead of the copper bumps in (Step d) of Example 1, electroless nickel plating (film thickness: 0.5 μm), electroless palladium plating (film thickness: 0.1 μm), displacement gold plating (film thickness) : 0.05 μm) in sequence (the area, space, height, and number of bumps of the bumps after electroless nickel plating / palladium plating / displacement gold plating are the same as the copper bumps of Example 1), copper / nickel / Palladium / gold bump (area 15 μm × 30 μm, space 10 μm, height: 10 μm, number of bumps 362) [electroless nickel plating (film thickness: 0.5 μm), electroless palladium plating (film thickness: 0.1 μm), replacement Example 1 (Using an anisotropic conductive adhesive film D produced using a chip (1.7 × 1.7 mm, thickness: 0.5 mm) with gold plating (film thickness: 0.05 μm)] Same as step e) IZO circuitized glass substrate (thickness: 0.7 mm) a connection with, was carried out as mentioned below.

異方導電性接着剤フィルムDを、IZO回路付きガラス基板に温度が80℃、圧力が0.98MPa(10kgf/cm)の条件で貼り付けた後、セパレータを剥離し、チップに備えている銅/ニッケル/パラジウム/金バンプと電極を備えているガラス基板の位置合わせを行った。次いで、温度が190℃、圧力が39N/バンプ(40gf/バンプ)の条件でチップ上方から10秒間加熱及び加圧を行い、本接続を行った。なお、異方導電性接着剤フィルムDは、接着剤フィルムBがガラス基板側に、接着剤フィルムCが金属バンプ側になるように配置された。 The anisotropic conductive adhesive film D is attached to a glass substrate with an IZO circuit under conditions of a temperature of 80 ° C. and a pressure of 0.98 MPa (10 kgf / cm 2 ), and then the separator is peeled off to prepare for the chip. A glass substrate provided with copper / nickel / palladium / gold bumps and electrodes was aligned. Next, heating and pressurization were performed for 10 seconds from above the chip under the conditions of a temperature of 190 ° C. and a pressure of 39 N / bump (40 gf / bump) to perform the main connection. The anisotropic conductive adhesive film D was disposed such that the adhesive film B was on the glass substrate side and the adhesive film C was on the metal bump side.

導電粒子の膜厚及び成分の評価、導通抵抗試験及び絶縁抵抗試験を実施例1と同様に行った。作製した導電粒子等の条件を表3に示した。また評価結果を表4に示した。   The film thickness and component evaluation of the conductive particles, the conduction resistance test, and the insulation resistance test were performed in the same manner as in Example 1. Table 3 shows the conditions of the produced conductive particles and the like. The evaluation results are shown in Table 4.

<比較例2>
[導電粒子の作製]
実施例1(工程a)において、平均粒径4.0μmの架橋ポリスチレン粒子(株式会社日本触媒製、商品名「ソリオスター」)4gの代わりに、平均粒径3.0μmの架橋ポリスチレン粒子(株式会社日本触媒製、商品名「ソリオスター」)2gを用いて同様の操作を行った後、実施例1の(工程b)を引き続き行い、0.5μmの膜厚のニッケル−リン合金被膜(ニッケル濃度93質量%、残部リン)からなる第1の層を形成した。第1の層を形成することにより得た粒子は6gであり、外径は4μmであった。実施例3と同様に、0.1μmの膜厚のパラジウムめっき被膜(パラジウムの純度100%)からなる第三金属層を形成した。なお、架橋ポリスチレン粒子の外側に、内側から順に第一金属層(ニッケル)0.5μm、第三金属層(パラジウム)0.1μmを形成することにより得た粒子は7gであり、外径は4.2μmであった。第三金属層(パラジウム)を形成した粒子7gに、バレルスパッタリングにより、Sn-Bi(Sn43質量%、Bi57質量%)の組成のはんだ層(第二金属層)を平均で0.5μm形成した。なお、バレルスパッタリングは、回転駆動部内部にSn-Biの組成のターゲットを備えた円筒状のバレルの中に上記第三金属層(パラジウム)を形成した粒子を入れ、バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転及び反転させて粒子を転動、攪拌した。更に、粒子に直接振動を加えて、粒子の凝集を抑制した。その後、ターゲットに電圧を印加し、粒子の表面にスパッタリング層を形成した。Sn-Bi(Sn43質量%、Bi57質量%)の組成のスパッタリング層が0.5μmになるまでスパッタリングを行った後、バレル内を大気圧に戻し、導電粒子を取り出した。第二金属層を形成することにより得た導電粒子2は11gであり、外径は5.2μmであった。粒子を取り出し、メッシュの開口径が8μm角である直径7cmの篩を通すことで、凝集体を取り除いた。
<Comparative example 2>
[Preparation of conductive particles]
In Example 1 (step a), instead of 4 g of crosslinked polystyrene particles having an average particle size of 4.0 μm (trade name “Soliostar” manufactured by Nippon Shokubai Co., Ltd.), crosslinked polystyrene particles having an average particle size of 3.0 μm (stocks) The same operation was carried out using 2 g of a product manufactured by Nippon Shokubai Co., Ltd. (trade name “Soriostar”), and then (step b) of Example 1 was continuously performed to obtain a nickel-phosphorus alloy film (nickel of 0.5 μm thickness). A first layer having a concentration of 93 mass% and the balance phosphorus) was formed. Particles obtained by forming the first layer were 6 g, and the outer diameter was 4 μm. In the same manner as in Example 3, a third metal layer made of a palladium plating film (palladium purity 100%) having a thickness of 0.1 μm was formed. In addition, the particle | grains obtained by forming 0.5 micrometer of 1st metal layers (nickel) and 0.1 micrometer of 3rd metal layers (palladium) in order from the inner side on the outside of a crosslinked polystyrene particle are 7g, and an outer diameter is 4. .2 μm. An average of 0.5 μm of a solder layer (second metal layer) having a composition of Sn—Bi (Sn 43 mass%, Bi 57 mass%) was formed on 7 g of the particles on which the third metal layer (palladium) had been formed, by barrel sputtering. In the barrel sputtering, particles in which the third metal layer (palladium) is formed are placed in a cylindrical barrel having a Sn—Bi composition target inside the rotation drive unit, and the inside of the barrel is 1 × 10 −. After reducing the pressure to 4 Pa or less, argon was flowed at a constant flow rate so that the inside of the barrel became 1 Pa. Thereafter, the barrel was rotated and inverted to roll and agitate the particles. Furthermore, vibration was directly applied to the particles to suppress particle aggregation. Thereafter, a voltage was applied to the target to form a sputtering layer on the surface of the particles. Sputtering was performed until the sputtering layer having the composition of Sn—Bi (Sn 43 mass%, Bi 57 mass%) became 0.5 μm, then the inside of the barrel was returned to atmospheric pressure, and the conductive particles were taken out. The electroconductive particle 2 obtained by forming a 2nd metal layer was 11g, and the outer diameter was 5.2 micrometers. Particles were taken out and passed through a sieve having a diameter of 7 cm with a mesh opening diameter of 8 μm square to remove aggregates.

[異方導電性接着剤フィルムの作製]
ビーカーに、酢酸エチルとトルエンとを質量比1:1で混合した分散媒10gと、導電粒子2を入れて超音波分散した。超音波分散の条件は、周波数が38kHZ、エネルギーが400W、体積が20Lの超音波槽(藤本科学株式会社、商品名:US107)に上記ビーカーを浸漬して1分間攪拌した。
[Production of anisotropic conductive adhesive film]
In a beaker, 10 g of a dispersion medium in which ethyl acetate and toluene were mixed at a mass ratio of 1: 1 and the conductive particles 2 were placed and ultrasonically dispersed. The ultrasonic dispersion was performed by immersing the beaker in an ultrasonic bath (Fujimoto Kagaku Co., Ltd., trade name: US107) having a frequency of 38 kHz, energy of 400 W, and volume of 20 L, and stirring for 1 minute.

得られた導電粒子2の分散液を比較例1の接着剤溶液1中に分散した。得られた分散液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚さ10μmの接着剤フィルムFを作製した。この接着剤フィルムは単位面積当たり3万個/mmの導電粒子2を有する。また、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚さ3μmの接着剤フィルムGを作製した。さらに、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚さ40μm)にロールコータで塗布し、90℃で10分間乾燥し厚さ10μmの接着剤フィルムHを作製した。次に、接着剤フィルムG、接着剤フィルムF、接着剤フィルムHの順番で各接着剤フィルムをラミネートし、三層からなる異方導電性接着剤フィルムIを作製した。 The obtained dispersion liquid of conductive particles 2 was dispersed in the adhesive solution 1 of Comparative Example 1. The obtained dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to produce an adhesive film F having a thickness of 10 μm. This adhesive film has 30,000 particles / mm 2 of conductive particles 2 per unit area. Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 90 ° C. for 10 minutes to prepare an adhesive film G having a thickness of 3 μm. Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film H having a thickness of 10 μm. Next, each adhesive film was laminated in order of the adhesive film G, the adhesive film F, and the adhesive film H, and the anisotropic conductive adhesive film I which consists of three layers was produced.

[接続サンプルの作製]
作製した異方導電性接着剤フィルムIを用いて、比較例1と同様の、銅/ニッケル/パラジウム/金バンプ(面積15μm×30μm、スペース10μm、高さ:10μm、バンプ数362)[無電解ニッケルめっき(膜厚:0.5μm)、無電解パラジウムめっき(膜厚:0.1μm)、置換金めっき(膜厚:0.05μm)]付きチップ(1.7×1.7mm、厚さ:0.5mm)と、実施例1(工程e)と同様の、IZO回路付きガラス基板(厚さ:0.7mm)との接続を、以下に示すように行った。
[Preparation of connection sample]
Using the produced anisotropic conductive adhesive film I, copper / nickel / palladium / gold bumps (area 15 μm × 30 μm, space 10 μm, height: 10 μm, number of bumps 362) similar to Comparative Example 1 [electroless Nickel plating (film thickness: 0.5 μm), electroless palladium plating (film thickness: 0.1 μm), displacement gold plating (film thickness: 0.05 μm)] chip (1.7 × 1.7 mm, thickness: 0.5 mm) and the same glass substrate with IZO circuit (thickness: 0.7 mm) as in Example 1 (step e) were connected as shown below.

異方導電性接着剤フィルムIを、IZO回路付きガラス基板に温度が80℃、圧力が0.98MPa(10kgf/cm)の条件で貼り付けた後、セパレータを剥離し、チップに備えている銅/ニッケル/パラジウム/金バンプと電極を備えているガラス基板の位置合わせを行った。次いで、温度が190℃、圧力が39N/バンプ(40gf/バンプ)の条件でチップ上方から10秒間加熱及び加圧を行い、本接続を行った。なお、異方導電性接着剤フィルムIは、接着剤フィルムGがガラス基板側に、接着剤フィルムHが金属バンプ側になるように配置された。導電粒子の膜厚及び成分の評価、導通抵抗試験及び絶縁抵抗試験を実施例1と同様に行った。作製した導電粒子等の条件を表3に示した。また評価結果を表4に示した。 The anisotropic conductive adhesive film I is attached to a glass substrate with an IZO circuit at a temperature of 80 ° C. and a pressure of 0.98 MPa (10 kgf / cm 2 ), and then the separator is peeled off to prepare for the chip. A glass substrate provided with copper / nickel / palladium / gold bumps and electrodes was aligned. Next, heating and pressurization were performed for 10 seconds from above the chip under the conditions of a temperature of 190 ° C. and a pressure of 39 N / bump (40 gf / bump) to perform the main connection. The anisotropic conductive adhesive film I was disposed such that the adhesive film G was on the glass substrate side and the adhesive film H was on the metal bump side. The film thickness and component evaluation of the conductive particles, the conduction resistance test, and the insulation resistance test were performed in the same manner as in Example 1. Table 3 shows the conditions of the produced conductive particles and the like. The evaluation results are shown in Table 4.

Figure 2018129369
Figure 2018129369

Figure 2018129369
Figure 2018129369

Figure 2018129369
Figure 2018129369

Figure 2018129369
Figure 2018129369

1…基材粒子、3A,3B…金属層、3a…第一金属層、3b…第二金属層、3c…第三金属層、10A,10B…導電粒子、30…第一の回路部材、32…第一の電極、35…端子付き電極、40…第二の回路部材、42…第二の電極、50A…接続構造体,55…絶縁樹脂層、60…転写型、60a…表面、62…凹部(開口部)、62a…底部、70…スパッタリング用電極、80…スズ又はスズ合金を含む層 DESCRIPTION OF SYMBOLS 1 ... Base particle, 3A, 3B ... Metal layer, 3a ... First metal layer, 3b ... Second metal layer, 3c ... Third metal layer, 10A, 10B ... Conductive particle, 30 ... First circuit member, 32 ... 1st electrode, 35 ... Electrode with terminal, 40 ... 2nd circuit member, 42 ... 2nd electrode, 50A ... Connection structure, 55 ... Insulating resin layer, 60 ... Transfer mold, 60a ... Surface, 62 ... Recess (opening), 62a ... bottom, 70 ... sputtering electrode, 80 ... layer containing tin or tin alloy

Claims (46)

第一の基板と、前記第一の基板に設けられた第一の電極とを有する第一の回路部材を準備すること;
前記第一の電極と電気的に接続される第二の電極を有する第二の回路部材を準備すること;
第一の金属からなる表面を有する複数の導電粒子を準備すること;
複数の開口部を有する転写型の前記開口部に前記導電粒子を収容すること;
前記開口部に収容された前記導電粒子の表面の少なくとも一部に、スズ又はスズ合金を含む第二の金属からなる第二金属層をスパッタリングによって形成すること;
前記第二金属層が形成された前記複数の導電粒子を前記第一の電極の表面に配置すること;
前記第一の電極の表面に配置された前記複数の導電粒子を前記第二の金属の融点よりも高い温度に加熱することによって前記第一の電極に前記導電粒子を融着させること;
前記第一の回路部材の一方の面であって前記導電粒子が融着した前記第一の電極を有する面と、前記第二の回路部材の一方の面であって前記第二の回路を有する面との間に絶縁樹脂層を形成すること;
前記第一の回路部材と前記絶縁樹脂層と前記第二の回路部材と含む積層体を前記積層体の厚さ方向に押圧した状態で加熱することによって前記第一の電極と前記第二の電極とを前記導電粒子を介して電気的に接続し且つ前記第一の回路部材と前記第二の回路部材と接着すること;
を含む接続構造体の製造方法。
Providing a first circuit member having a first substrate and a first electrode provided on the first substrate;
Providing a second circuit member having a second electrode electrically connected to the first electrode;
Providing a plurality of conductive particles having a surface comprising a first metal;
Containing the conductive particles in the openings of a transfer mold having a plurality of openings;
Forming a second metal layer made of a second metal containing tin or a tin alloy by sputtering on at least a part of the surface of the conductive particles accommodated in the opening;
Disposing the plurality of conductive particles on which the second metal layer is formed on a surface of the first electrode;
Fusing the conductive particles to the first electrode by heating the plurality of conductive particles disposed on the surface of the first electrode to a temperature higher than the melting point of the second metal;
One surface of the first circuit member that has the first electrode fused with the conductive particles, and one surface of the second circuit member that has the second circuit Forming an insulating resin layer between the surfaces;
The first electrode and the second electrode are heated by heating a laminate including the first circuit member, the insulating resin layer, and the second circuit member while being pressed in the thickness direction of the laminate. Are electrically connected via the conductive particles and bonded to the first circuit member and the second circuit member;
A method for manufacturing a connection structure including:
前記導電粒子は、基材粒子と、前記基材粒子の表面を覆う前記第一の金属からなる第一金属層とを少なくとも有し、
前記第一の金属の融点が前記第二の金属の融点よりも高い、請求項1に記載の接続構造体の製造方法。
The conductive particles have at least base particles and a first metal layer made of the first metal covering the surface of the base particles,
The method for manufacturing a connection structure according to claim 1, wherein the melting point of the first metal is higher than the melting point of the second metal.
前記導電粒子は、前記第一金属層と前記第二金属層との間に、パラジウム又はパラジウム合金を含む第三金属層を含む、請求項2に記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to claim 2, wherein the conductive particles include a third metal layer containing palladium or a palladium alloy between the first metal layer and the second metal layer. 前記第三金属層のパラジウム含有率が90質量%以上である、請求項3に記載の接続構造体の製造方法。   The manufacturing method of the connection structure of Claim 3 whose palladium content rate of a said 3rd metal layer is 90 mass% or more. 前記基材粒子の粒径は2〜10μmである、請求項2〜4のいずれか一項に記載の接続構造体の製造方法。   The manufacturing method of the connection structure as described in any one of Claims 2-4 whose particle size of the said base particle is 2-10 micrometers. 前記基材粒子は樹脂からなる、請求項2〜5のいずれか一項に記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to any one of claims 2 to 5, wherein the base particle is made of a resin. 前記第一の金属はニッケル又はニッケル合金を含む、請求項1〜6のいずれか一項に記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to any one of claims 1 to 6, wherein the first metal includes nickel or a nickel alloy. 前記第一の金属はリン及びホウ素の少なくとも一方を含む、請求項1〜7のいずれか一項に記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to any one of claims 1 to 7, wherein the first metal includes at least one of phosphorus and boron. 前記第一の金属のニッケル含有率が85〜98質量%である、請求項1〜8のいずれか一項に記載の接続構造体の製造方法。   The manufacturing method of the connection structure as described in any one of Claims 1-8 whose nickel content rate of said 1st metal is 85-98 mass%. 前記第二の金属のスズ含有率が30〜100質量%である、請求項1〜9のいずれか一項に記載の接続構造体の製造方法。   The manufacturing method of the connection structure as described in any one of Claims 1-9 whose tin content rate of said 2nd metal is 30-100 mass%. 前記第一の電極は、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物からなる、請求項1〜10のいずれか一項に記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to any one of claims 1 to 10, wherein the first electrode is made of copper, nickel, palladium, gold, silver, an alloy thereof, and indium tin oxide. 前記転写型が有する複数の複数の開口部の位置は前記電極における前記複数の導電粒子が配置される位置に対応しており、
前記第一の回路部材と前記転写型とを重ね合せることにより、前記第一の電極の表面に前記転写型の前記開口部にそれぞれ収容されている前記導電粒子を配置し、
前記第一の回路部材と前記転写型とを重ね合せた状態で前記複数の導電粒子を前記第二の金属の融点よりも高い温度に加熱することによって前記第一の電極に前記導電粒子を融着させる、請求項1〜11のいずれか一項に記載の接続構造体の製造方法。
The positions of the plurality of openings of the transfer mold correspond to the positions where the plurality of conductive particles in the electrode are disposed,
By superposing the first circuit member and the transfer mold, the conductive particles respectively accommodated in the openings of the transfer mold are arranged on the surface of the first electrode,
The conductive particles are fused to the first electrode by heating the plurality of conductive particles to a temperature higher than the melting point of the second metal in a state where the first circuit member and the transfer mold are overlapped. The manufacturing method of the connection structure as described in any one of Claims 1-11 made to wear.
前記開口部は当該開口部の奥側から前記転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項1〜12のいずれか一項に記載の接続構造体の製造方法。   The connection structure according to any one of claims 1 to 12, wherein the opening is formed in a tapered shape in which an opening area increases from a back side of the opening toward a surface side of the transfer mold. Production method. 前記転写型は可撓性を有する樹脂材料からなる、請求項1〜13のいずれか一項に記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to any one of claims 1 to 13, wherein the transfer mold is made of a flexible resin material. 基板と、前記基板に設けられた電極とを有する回路部材を準備すること;
第一の金属からなる表面を有する複数の導電粒子を準備すること;
複数の開口部を有する転写型の前記開口部に前記導電粒子を収容すること;
前記開口部に収容された前記導電粒子の表面の一部に、スズ又はスズ合金を含む第二の金属からなる第二金属層をスパッタリングによって形成すること;
前記第二金属層が形成された前記複数の導電粒子を前記電極の表面に配置すること;
前記電極の表面に配置された前記複数の導電粒子を前記第二の金属の融点よりも高い温度に加熱することによって前記電極に前記導電粒子を融着させること;
を含む端子付き電極の製造方法。
Providing a circuit member having a substrate and electrodes provided on the substrate;
Providing a plurality of conductive particles having a surface comprising a first metal;
Containing the conductive particles in the openings of a transfer mold having a plurality of openings;
Forming a second metal layer made of a second metal containing tin or a tin alloy by sputtering on a part of the surface of the conductive particles accommodated in the opening;
Disposing the plurality of conductive particles formed with the second metal layer on a surface of the electrode;
Fusing the conductive particles to the electrode by heating the plurality of conductive particles disposed on the surface of the electrode to a temperature higher than the melting point of the second metal;
The manufacturing method of the electrode with a terminal containing this.
前記導電粒子は、基材粒子と、前記基材粒子の表面を覆う前記第一の金属からなる第一金属層とを少なくとも有し、
前記第一の金属の融点が前記第二の金属の融点よりも高い、請求項15に記載の端子付き電極の製造方法。
The conductive particles have at least base particles and a first metal layer made of the first metal covering the surface of the base particles,
The manufacturing method of the electrode with a terminal of Claim 15 whose melting | fusing point of said 1st metal is higher than melting | fusing point of said 2nd metal.
前記導電粒子は、前記第一金属層と前記第二金属層との間に、パラジウム又はパラジウム合金を含む第三金属層を含む、請求項16に記載の端子付き電極の製造方法。   The method of manufacturing an electrode with a terminal according to claim 16, wherein the conductive particles include a third metal layer containing palladium or a palladium alloy between the first metal layer and the second metal layer. 前記第三金属層のパラジウム含有率が90質量%以上である、請求項17に記載の端子付き電極の製造方法。   The manufacturing method of the electrode with a terminal of Claim 17 whose palladium content rate of a said 3rd metal layer is 90 mass% or more. 前記基材粒子の粒径は2〜10μmである、請求項16〜18のいずれか一項に記載の端子付き電極の製造方法。   The manufacturing method of the electrode with a terminal as described in any one of Claims 16-18 whose particle size of the said base particle is 2-10 micrometers. 前記基材粒子は樹脂からなる、請求項16〜19のいずれか一項に記載の端子付き電極の製造方法。   The said base particle consists of resin, The manufacturing method of the electrode with a terminal as described in any one of Claims 16-19. 前記第一の金属はニッケル又はニッケル合金を含む、請求項15〜20のいずれか一項に記載の端子付き電極の製造方法。   The method for manufacturing an electrode with a terminal according to any one of claims 15 to 20, wherein the first metal includes nickel or a nickel alloy. 前記第一の金属はリン及びホウ素の少なくとも一方を含む、請求項15〜21のいずれか一項に記載の端子付き電極の製造方法。   The method for manufacturing an electrode with a terminal according to any one of claims 15 to 21, wherein the first metal includes at least one of phosphorus and boron. 前記第一の金属のニッケル含有率が85〜98質量%である、請求項15〜22のいずれか一項に記載の端子付き電極の製造方法。   The manufacturing method of the electrode with a terminal as described in any one of Claims 15-22 whose nickel content rate of said 1st metal is 85-98 mass%. 前記第二の金属のスズ含有率が30〜100質量%である、請求項15〜23のいずれか一項に記載の端子付き電極の製造方法。   The manufacturing method of the electrode with a terminal as described in any one of Claims 15-23 whose tin content rate of said 2nd metal is 30-100 mass%. 前記電極は、銅、ニッケル、パラジウム、金、銀及びこれらの合金、並びに、インジウムスズ酸化物からなる、請求項15〜24のいずれか一項に記載の端子付き電極の製造方法。   The said electrode consists of copper, nickel, palladium, gold | metal | money, silver and these alloys, and an indium tin oxide, The manufacturing method of the electrode with a terminal as described in any one of Claims 15-24. 前記転写型が有する複数の複数の開口部の位置は前記電極における前記複数の導電粒子が配置される位置に対応しており、
前記回路部材と前記転写型とを重ね合せることにより、前記電極の表面に前記転写型の前記開口部にそれぞれ収容されている前記導電粒子を配置し、
前記回路部材と前記転写型とを重ね合せた状態で前記複数の導電粒子を前記第二の金属の融点よりも高い温度に加熱することによって前記電極に前記導電粒子を融着させる、請求項15〜25のいずれか一項に記載の端子付き電極の製造方法。
The positions of the plurality of openings of the transfer mold correspond to the positions where the plurality of conductive particles in the electrode are disposed,
By superposing the circuit member and the transfer mold, the conductive particles respectively accommodated in the openings of the transfer mold are arranged on the surface of the electrode,
The conductive particles are fused to the electrode by heating the plurality of conductive particles to a temperature higher than the melting point of the second metal in a state where the circuit member and the transfer mold are overlapped. The manufacturing method of the electrode with a terminal as described in any one of -25.
前記開口部は当該開口部の奥側から前記転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項26に記載の端子付き電極の製造方法。   27. The method of manufacturing an electrode with a terminal according to claim 26, wherein the opening is formed in a tapered shape in which an opening area increases from a back side of the opening toward a surface side of the transfer mold. 前記転写型は可撓性を有する樹脂材料からなる、請求項26又は27に記載の端子付き電極の製造方法。   The method of manufacturing an electrode with a terminal according to claim 26 or 27, wherein the transfer mold is made of a flexible resin material. 請求項1〜14のいずれか一項に記載の接続構造体の製造方法又は請求項15〜28のいずれか一項に記載の端子付き電極の製造方法において使用される導電粒子であって、
前記第二の金属の融点が120〜250℃である導電粒子。
It is the electroconductive particle used in the manufacturing method of the connection structure as described in any one of Claims 1-14, or the manufacturing method of the electrode with a terminal as described in any one of Claims 15-28,
Conductive particles having a melting point of the second metal of 120 to 250 ° C.
基材粒子と、前記基材粒子の表面を覆う前記第一の金属からなる第一金属層とを少なくとも有し、
前記第一の金属の融点が前記第二の金属の融点よりも高い、請求項29に記載の導電粒子。
Having at least substrate particles and a first metal layer made of the first metal covering the surface of the substrate particles;
30. The conductive particle according to claim 29, wherein the melting point of the first metal is higher than the melting point of the second metal.
前記第一金属層と前記第二金属層との間に、パラジウム又はパラジウム合金を含む第三金属層を含む、請求項30に記載の導電粒子。   31. The conductive particle according to claim 30, comprising a third metal layer containing palladium or a palladium alloy between the first metal layer and the second metal layer. 前記第三金属層のパラジウム含有率が90質量%以上である、請求項31に記載の導電粒子。   The electroconductive particle of Claim 31 whose palladium content rate of the said 3rd metal layer is 90 mass% or more. 前記基材粒子の粒径は1.5〜10μmである、請求項30〜32のいずれか一項に記載の導電粒子。   The conductive particles according to any one of claims 30 to 32, wherein a particle diameter of the base particle is 1.5 to 10 µm. 前記基材粒子は樹脂からなる、請求項30〜33のいずれか一項に記載の導電粒子。   The conductive particles according to any one of claims 30 to 33, wherein the base particles are made of a resin. 前記第一の金属はニッケル又はニッケル合金を含む、請求項29〜34のいずれか一項に記載の導電粒子。   The conductive particles according to any one of claims 29 to 34, wherein the first metal includes nickel or a nickel alloy. 前記第一の金属はリン及びホウ素の少なくとも一方を含む、請求項29〜35のいずれか一項に記載の導電粒子。   36. The conductive particle according to any one of claims 29 to 35, wherein the first metal includes at least one of phosphorus and boron. 前記第一の金属のニッケル含有率が85〜98質量%である、請求項29〜36のいずれか一項に記載の導電粒子。   The electroconductive particle as described in any one of Claims 29-36 whose nickel content rate of said 1st metal is 85-98 mass%. 前記第二の金属はスズ又はスズ合金を含む、請求項29〜37のいずれか一項に記載の導電粒子。   The conductive particles according to any one of claims 29 to 37, wherein the second metal includes tin or a tin alloy. 前記第二の金属のスズ含有率が30〜100質量%である、請求項29〜38のいずれか一項に記載の導電粒子。   The electroconductive particle as described in any one of Claims 29-38 whose tin content rate of said 2nd metal is 30-100 mass%. 第一の基板と前記第一の基板に設けられた第一の電極とを有する第一の回路部材と、
前記第一の電極と電気的に接続されている第二の電極を有する第二の回路部材と、
前記第一の電極と前記第二の電極との間に介在し且つ少なくとも前記第一の電極に融着している、請求項30〜39のいずれか一項に記載の導電粒子と、
前記第一の回路部材と前記第二の回路部材との間に設けられ、前記第一の回路部材と前記第二の回路部材と接着している絶縁樹脂層と、
を備える、接続構造体。
A first circuit member having a first substrate and a first electrode provided on the first substrate;
A second circuit member having a second electrode electrically connected to the first electrode;
The conductive particles according to any one of claims 30 to 39, which are interposed between the first electrode and the second electrode and are fused to at least the first electrode;
An insulating resin layer provided between the first circuit member and the second circuit member, and being bonded to the first circuit member and the second circuit member;
A connection structure comprising:
請求項29〜39のいずれか一項に記載の導電粒子と、
電極表面における複数の前記導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型と、
を備える端子付き電極製造用キット。
Conductive particles according to any one of claims 29 to 39;
A transfer mold having a plurality of openings at positions corresponding to positions where the plurality of conductive particles are disposed on the electrode surface;
An electrode manufacturing kit with a terminal.
前記開口部は当該開口部の奥側から前記転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項41に記載の端子付き電極製造用キット。   42. The electrode manufacturing kit with a terminal according to claim 41, wherein the opening is formed in a tapered shape in which an opening area increases from a back side of the opening toward a surface side of the transfer mold. 前記転写型は可撓性を有する樹脂材料からなる、請求項41又は42に記載の端子付き電極製造用キット。   The kit for manufacturing an electrode with a terminal according to claim 41 or 42, wherein the transfer mold is made of a resin material having flexibility. 請求項1〜14のいずれか一項に記載の接続構造体の製造方法又は請求項15〜28のいずれか一項に記載の端子付き電極の製造方法において使用される転写型であって、
電極表面における複数の前記導電粒子が配置される位置に対応する位置に複数の開口部を有する転写型。
A transfer mold used in the method for producing a connection structure according to any one of claims 1 to 14 or the method for producing an electrode with a terminal according to any one of claims 15 to 28,
A transfer mold having a plurality of openings at positions corresponding to positions at which a plurality of the conductive particles are arranged on the electrode surface.
前記開口部は当該開口部の奥側から当該転写型の表面側に向けて開口面積が拡大するテーパ状に形成されている、請求項44に記載の転写型。   45. The transfer mold according to claim 44, wherein the opening is formed in a tapered shape in which an opening area increases from a back side of the opening toward a surface side of the transfer mold. 可撓性を有する樹脂材料からなる、請求項44又は45に記載の転写型。   The transfer mold according to claim 44 or 45, comprising a resin material having flexibility.
JP2017020590A 2017-02-07 2017-02-07 A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method. Active JP7000685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017020590A JP7000685B2 (en) 2017-02-07 2017-02-07 A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020590A JP7000685B2 (en) 2017-02-07 2017-02-07 A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method.

Publications (2)

Publication Number Publication Date
JP2018129369A true JP2018129369A (en) 2018-08-16
JP7000685B2 JP7000685B2 (en) 2022-01-20

Family

ID=63173107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020590A Active JP7000685B2 (en) 2017-02-07 2017-02-07 A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method.

Country Status (1)

Country Link
JP (1) JP7000685B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157720A (en) * 1993-12-03 1995-06-20 Sumitomo Bakelite Co Ltd Film having anisotropic electrical conductivity
JP2007220839A (en) * 2006-02-16 2007-08-30 Sekisui Chem Co Ltd Circuit board and electrode connection structure of circuit
JP2012155950A (en) * 2011-01-25 2012-08-16 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
JP2012174358A (en) * 2011-02-17 2012-09-10 Sekisui Chem Co Ltd Connection structure, and method for manufacturing connection structure
JP2015046387A (en) * 2013-07-31 2015-03-12 デクセリアルズ株式会社 Anisotropically conductive film and manufacturing method therefor
JP2015187945A (en) * 2014-03-26 2015-10-29 デクセリアルズ株式会社 Conductive particle, method of producing conductive particle, conductive adhesive, method of producing connection body, and electronic component connection method
JP2016131242A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Film for forming bump, semiconductor device and manufacturing method thereof, and connection structure
JP2016211046A (en) * 2015-05-11 2016-12-15 日立化成株式会社 Conductive particle, semiconductor package using conductive particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157720A (en) * 1993-12-03 1995-06-20 Sumitomo Bakelite Co Ltd Film having anisotropic electrical conductivity
JP2007220839A (en) * 2006-02-16 2007-08-30 Sekisui Chem Co Ltd Circuit board and electrode connection structure of circuit
JP2012155950A (en) * 2011-01-25 2012-08-16 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
JP2012174358A (en) * 2011-02-17 2012-09-10 Sekisui Chem Co Ltd Connection structure, and method for manufacturing connection structure
JP2015046387A (en) * 2013-07-31 2015-03-12 デクセリアルズ株式会社 Anisotropically conductive film and manufacturing method therefor
JP2015187945A (en) * 2014-03-26 2015-10-29 デクセリアルズ株式会社 Conductive particle, method of producing conductive particle, conductive adhesive, method of producing connection body, and electronic component connection method
JP2016131242A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Film for forming bump, semiconductor device and manufacturing method thereof, and connection structure
JP2016211046A (en) * 2015-05-11 2016-12-15 日立化成株式会社 Conductive particle, semiconductor package using conductive particle

Also Published As

Publication number Publication date
JP7000685B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US5958590A (en) Dendritic powder materials for high conductivity paste applications
US8580621B2 (en) Solder interconnect by addition of copper
US5837119A (en) Methods of fabricating dendritic powder materials for high conductivity paste applications
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4413267B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2003303842A (en) Semiconductor device and manufacturing method therefor
JP5719483B1 (en) Conductive particles, conductive materials, and connection structures
CN1934690A (en) Solder composition and method of bump formation therewith
KR20120098513A (en) Solder paste for pre-coat
JP5476210B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP6500583B2 (en) Conductive particle and semiconductor package using conductive particle
JP2012004034A (en) Conductive particles, anisotropic conductive material and connection structure
WO2006017327A2 (en) Electrocodeposition of lead free tin alloys
CN113798722A (en) Composite soldering paste and method for preparing BGA (ball grid array) soldering ball/soldering point with fine-grain beta-Sn crystal grains by applying composite soldering paste
JP5940760B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
US8506850B2 (en) Conductive fine particles, anisotropic conductive element, and connection structure
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
JP7000685B2 (en) A method for manufacturing a connection structure, a method for manufacturing an electrode with a terminal, and conductive particles used for the method.
JP2012004033A (en) Conductive particles, anisotropic conductive material and connection structure
JP2006199833A (en) Anisotropic conductive adhesive
JP6907490B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
JP6897038B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
JP4739999B2 (en) Method for manufacturing anisotropic conductive material and anisotropic conductive material
TW202120704A (en) Sn-bi-in-based low melting-point joining member, production method therefor, semiconductor electronic circuit, and mounting method therefor
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R151 Written notification of patent or utility model registration

Ref document number: 7000685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350