JP2003068143A - Conductive fine particle and conductive connection structure - Google Patents

Conductive fine particle and conductive connection structure

Info

Publication number
JP2003068143A
JP2003068143A JP2001253086A JP2001253086A JP2003068143A JP 2003068143 A JP2003068143 A JP 2003068143A JP 2001253086 A JP2001253086 A JP 2001253086A JP 2001253086 A JP2001253086 A JP 2001253086A JP 2003068143 A JP2003068143 A JP 2003068143A
Authority
JP
Japan
Prior art keywords
conductive
fine particle
fine particles
conductive fine
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001253086A
Other languages
Japanese (ja)
Inventor
Masami Okuda
正己 奥田
Nobuyuki Okinaga
信幸 沖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001253086A priority Critical patent/JP2003068143A/en
Publication of JP2003068143A publication Critical patent/JP2003068143A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive fine particle and a conductive connection structure capable of keeping the distance between facing boards or the like constant because of having an extremely narrow particle diameter distribution, having so excellent elasticity as to prevent stress from being easily imposed on a jointing part when it is used for a conductive joint, and capable of relaxing shearing stress due to displacement of a relative position between electrodes caused by thermal expansion and contraction of a board, an element or the like due to temperature variation. SOLUTION: This conductive fine particle is formed by covering the surface of a base material fine particle formed of a resin with a one or more metal layers. In the conductive fine particle, the particle diameter of the base material fine particle is distributed in a range of 95-105% of the average particle diameter of the base material fine particle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路の2つ以
上の電極を接続するのに使用され、回路中にかかる力を
緩和することにより、接続信頼性を向上することができ
る導電性微粒子及びそれを用いてなる導電接続構造体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for connecting two or more electrodes of an electric circuit, and is capable of improving connection reliability by relaxing the force applied in the circuit. And a conductive connection structure using the same.

【0002】[0002]

【従来の技術】従来、電子回路基板において、ICやL
SIを接続するためには、それぞれのピンをプリント基
板上にハンダ付けしていたが、この方法は、生産効率が
悪く、また、高密度化には適さないものであった。これ
らの課題を解決するために、ハンダを球状にした、いわ
ゆるハンダボールで基板と接続するBGA(ボールグリ
ッドアレイ)等の技術が開発されたが、この技術によれ
ば、チップ又は基板上に実装されたハンダボールを高温
で溶融しながら基板とチップとを接続することで、高生
産性と高接続信頼性とを両立した電子回路を構成でき
る。しかしながら、最近基板の多層化が進み、基板自体
の外環境変化による歪みや伸縮が発生し、結果としてこ
れらの力が基板間の接続部にかかることによる断線が発
生することが問題となっていた。また、多層化によっ
て、基板間の距離がほとんどとれなくなり、基板間の距
離を維持するために別途スペーサ等を置かなければなら
ず手間や費用がかかることが問題となっていた。
2. Description of the Related Art Conventionally, in electronic circuit boards, ICs and L
In order to connect SI, each pin was soldered on a printed circuit board, but this method had poor production efficiency and was not suitable for high density. In order to solve these problems, a technique such as BGA (ball grid array) in which solder is made spherical, which is connected to a substrate by a so-called solder ball has been developed. According to this technique, it is mounted on a chip or a substrate. By connecting the substrate and the chip while melting the solder ball produced at a high temperature, it is possible to configure an electronic circuit having both high productivity and high connection reliability. However, the multilayering of substrates has recently progressed, and distortion and expansion and contraction have occurred due to changes in the external environment of the substrates themselves, resulting in disconnection due to the application of these forces to the connecting portions between the substrates. . Further, due to the multi-layer structure, the distance between the substrates can hardly be taken, and a separate spacer or the like must be placed in order to maintain the distance between the substrates, which is troublesome and costly.

【0003】これらを解決する手段として、基板等の回
路に掛かる力の緩和については、基板接続部に樹脂等を
塗布して補強することが行われており、これは接続信頼
性の向上には一定の効果を示したが、手間がかかり、ま
た塗布工程が増えることにより費用が増大するという問
題があった。また、基板間の距離の維持については、銅
の周りにハンダをコーティングしたボールにより、ハン
ダのように溶融しない銅が支えとなり、基板間の距離を
維持することも可能であるが(特開平11−74311
号公報参照)、銅は高価であり、また、重量もあること
から安価・軽量な材料が求められていた。
As a means for solving these problems, in order to reduce the force applied to the circuit of the board or the like, a resin or the like is applied to the board connecting portion to reinforce it. This is to improve the connection reliability. Although a certain effect was exhibited, there was a problem that it took time and labor and the cost increased due to the increase of the coating process. As for maintaining the distance between the substrates, it is also possible to maintain the distance between the substrates by using a ball coated with solder around copper, which is supported by copper that does not melt like solder. -74311
Since the copper is expensive and has a heavy weight, an inexpensive and lightweight material has been demanded.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に鑑
み、基板等の回路にかかる力を緩和して、基板間の距離
を一定に維持することにより、接続信頼性を担保するこ
とができる導電性微粒子及び導電接続構造体を提供する
ことを目的とする。
In view of the above, the present invention can secure connection reliability by relaxing the force applied to a circuit such as a board and maintaining a constant distance between the boards. An object is to provide a conductive fine particle and a conductive connection structure.

【0005】[0005]

【課題を解決するための手段】本発明は、樹脂からなる
基材微粒子の表面が1層以上の金属層に覆われてなる導
電性微粒子であって、前記基材微粒子の粒径が前記基材
微粒子の平均粒径の95〜105%の範囲内に分布して
いる導電性微粒子である。以下に本発明を詳述する。
The present invention provides conductive fine particles in which the surface of base fine particles made of resin is covered with one or more metal layers, and the particle size of the base fine particles is The conductive fine particles are distributed within the range of 95 to 105% of the average particle size of the material fine particles. The present invention is described in detail below.

【0006】本発明の導電性微粒子は、樹脂からなる基
材微粒子の表面が1層以上の金属層に覆われてなるもの
である。上記基材微粒子を構成する樹脂としては特に限
定されず、例えば、フェノール樹脂、アミノ樹脂、アク
リル樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹
脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エ
ポキシ樹脂等の架橋型又は非架橋型合成樹脂;有機−無
機ハイブリッド重合体等が挙げられる。これらは単独で
用いられてもよく、2種類以上が併用されてもよい。
The conductive fine particles of the present invention are those in which the surface of base fine particles made of resin is covered with one or more metal layers. The resin constituting the base fine particles is not particularly limited, and examples thereof include phenol resin, amino resin, acrylic resin, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, and epoxy resin. Or a non-crosslinking type synthetic resin; an organic-inorganic hybrid polymer and the like. These may be used alone or in combination of two or more.

【0007】上記基材微粒子は、粒径が基材微粒子の平
均粒径の95〜105%の範囲内に分布しているもので
ある。本発明の導電性微粒子は、コアとなる基材微粒子
が、平均粒径の95〜105%という非常に狭い範囲に
分布する均一な粒径を有することにより、基板間の間隔
を極めて精度良く均一に保つことができる。
The base fine particles have a particle size distributed within a range of 95 to 105% of the average particle size of the base fine particles. In the conductive fine particles of the present invention, the base fine particles serving as the core have a uniform particle size that is distributed in a very narrow range of 95 to 105% of the average particle size, so that the distance between the substrates can be made extremely accurate and uniform. Can be kept at

【0008】上記基材微粒子の平均粒径は、1μm〜3
mmであることが好ましい。1μm未満であると、基板
の接合に用いた場合、基板同士が直接接触してショート
することがあり、3mmを超えると、微細ピッチの電極
を接合しにくくなることがある。
The average particle size of the base fine particles is 1 μm to 3
It is preferably mm. If it is less than 1 μm, when used for joining the substrates, the substrates may come into direct contact with each other to cause a short circuit. If it exceeds 3 mm, it may be difficult to join the electrodes having a fine pitch.

【0009】上記金属層を構成する金属としては、例え
ば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウ
ム、コバルト、インジウム、ニッケル、クロム、チタ
ン、アンチモン、ビスマス、ゲルマニウム、カドミウ
ム、珪素、錫−鉛合金、錫−銅合金、錫−銀合金等が挙
げられる。なかでも、ニッケル、銅、金、錫−鉛合金、
錫−銅合金、錫−銀合金が好ましい。上記金属層は、一
層からなるものであっても、多層からなるものであって
もよく、これらの金属は、単独で用いられてもよく、2
種類以上が併用されてもよい。これらの金属が2種類以
上併用される場合は、複数の層状構造を形成するように
用いられてもよく、合金として用いられてもよい。
Examples of the metal forming the metal layer include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium. , Silicon, tin-lead alloy, tin-copper alloy, tin-silver alloy, and the like. Among them, nickel, copper, gold, tin-lead alloy,
A tin-copper alloy and a tin-silver alloy are preferred. The metal layer may be composed of one layer or multiple layers, and these metals may be used alone or 2
More than one kind may be used in combination. When two or more kinds of these metals are used in combination, they may be used so as to form a plurality of layered structures or may be used as an alloy.

【0010】本発明の導電性微粒子の表面に金属層を形
成する方法としては特に限定されず、例えば、無電解メ
ッキによる方法、金属微粉を単独又はバインダーに混ぜ
合わせて得られるペーストを基材微粒子にコーティング
する方法;真空蒸着、イオンプレーティング、イオンス
パッタリング等の物理的蒸着方法等が挙げられる。
The method for forming the metal layer on the surface of the conductive fine particles of the present invention is not particularly limited. For example, a method by electroless plating, a paste obtained by mixing fine metal powder alone or with a binder is used as base fine particles. A physical vapor deposition method such as vacuum vapor deposition, ion plating, or ion sputtering.

【0011】上記無電解メッキ法による金属層の形成方
法を、金置換メッキの場合を例に挙げて、以下に説明す
る。金置換メッキは、エッチング工程、アクチベーショ
ン工程、化学ニッケルメッキ工程及び金置換メッキ工程
に分けられる。上記エッチング工程は、基材微粒子の表
面に凹凸を形成させることによりメッキ層の基材微粒子
に対する密着性を向上させるための前処理工程であり、
エッチング液としては、例えば、カセイソーダ水溶液、
濃塩酸、濃硫酸又は無水クロム酸等が挙げられる。
The method of forming the metal layer by the above electroless plating method will be described below by taking the case of gold displacement plating as an example. Gold displacement plating is divided into an etching process, an activation process, a chemical nickel plating process, and a gold displacement plating process. The etching step is a pretreatment step for improving the adhesion to the base particle of the plating layer by forming irregularities on the surface of the base particle,
Examples of the etching liquid include caustic soda aqueous solution,
Examples thereof include concentrated hydrochloric acid, concentrated sulfuric acid, chromic anhydride, and the like.

【0012】上記アクチベーション工程は、エッチング
された基材微粒子の表面に触媒層を形成させると共に、
この触媒層を活性化させるための工程である。触媒層の
活性化により後述の化学ニッケルメッキ工程における金
属ニッケルの析出が促進される。基材微粒子を触媒液に
分散させることにより基材微粒子表面に形成されたPd
2+及びSn2+を含む触媒層は、次いで、濃硫酸又は濃塩
酸で処理され、これによりPd2+が金属化され基材微粒
子表面に析出する。金属化されたパラジウムは、カセイ
ソーダ濃厚溶液等のパラジウム活性剤により活性化され
て増感される。
The activation step is an etching process.
While forming a catalyst layer on the surface of the base material fine particles,
This is a step for activating the catalyst layer. Of catalyst layer
Gold in the chemical nickel plating process described below due to activation
Precipitation of metal nickel is promoted. Base material fine particles as catalyst liquid
Pd formed on the surface of the base fine particles by dispersion
2+And Sn2+The catalyst layer containing is then concentrated sulfuric acid or concentrated salt.
Treated with acid, which results in Pd2+Is a metallized base material
Precipitates on the surface of the child. Metallized palladium is
Activated by a palladium activator such as concentrated soda solution
Will be sensitized.

【0013】上記化学ニッケルメッキ工程は、触媒層が
形成された基材微粒子の表面に、更に金属ニッケル層を
形成させる工程であり、例えば、塩化ニッケルを次亜リ
ン酸ナトリウムによって還元し、ニッケルを基材微粒子
の表面に析出させる。
The chemical nickel plating step is a step of further forming a metallic nickel layer on the surface of the base fine particles having the catalyst layer formed thereon. For example, nickel chloride is reduced by sodium hypophosphite to form nickel. It is deposited on the surface of the base fine particles.

【0014】上記金置換メッキ工程では、以上のように
してニッケルで被覆された基材微粒子を金シアン化カリ
ウム溶液に入れ、昇温させながらニッケルを溶出させ、
金を基材微粒子表面に析出させる。
In the gold displacement plating step, the base fine particles coated with nickel as described above are put into a gold potassium cyanide solution, and nickel is eluted while the temperature is raised,
Gold is deposited on the surface of the base fine particles.

【0015】上記ニッケル及び金からなる金属層の厚み
は、0.01〜500μmであることが好ましい。0.
01μm未満であると、導電接合に使用された場合、加
熱により表面から金属層が剥離することがあり、更に、
金属層の厚みが薄いために好ましい導電性が得られない
ことがある。一方、500μmを超えると、金属層の厚
みが厚くなりすぎて、基材微粒子の機械的特性が失われ
ることがある。
The thickness of the metal layer made of nickel and gold is preferably 0.01 to 500 μm. 0.
When the thickness is less than 01 μm, the metal layer may be peeled from the surface by heating when used for conductive bonding, and further,
A preferable conductivity may not be obtained because the metal layer is thin. On the other hand, when it exceeds 500 μm, the thickness of the metal layer becomes too thick and the mechanical properties of the base fine particles may be lost.

【0016】本発明の導電性微粒子は、必要に応じて、
上記金属層の下地メッキ層が形成されていてもよい。上
記下地メッキ層を形成する金属としては特に限定され
ず、例えば、ニッケル等が挙げられる。
The conductive fine particles of the present invention are, if necessary,
A base plating layer of the metal layer may be formed. The metal forming the base plating layer is not particularly limited, and examples thereof include nickel.

【0017】本発明の導電性微粒子は、基材微粒子とし
て、極めて狭い粒径分布を有する樹脂粒子を用いるの
で、対向する基板等の間隔を一定に保持することができ
るうえ、弾力性に優れ、導電接合に使用された場合に接
合部分に応力が掛かりにくい。また、温度変化による基
板、素子等の熱膨張及び収縮による電極間の相対位置の
ズレによる剪断応力を緩和することができる。
In the conductive fine particles of the present invention, resin particles having an extremely narrow particle size distribution are used as base material fine particles, so that the distance between opposing substrates can be kept constant and the elasticity is excellent. When used for conductive bonding, stress is less likely to be applied to the bonded part. Further, it is possible to relieve the shear stress due to the displacement of the relative position between the electrodes due to the thermal expansion and contraction of the substrate, the element and the like due to the temperature change.

【0018】更に、樹脂からなる基材微粒子の表面が1
層以上の金属層に覆われてなる導電性微粒子であって、
導電性微粒子の粒径が導電性微粒子の平均粒径の95〜
105%の範囲内に分布している導電性微粒子もまた、
本発明の1つである。このような導電性微粒子も、同様
に、極めて狭い粒径分布を有するので、対向する基板等
の間隔を一定に保持することができるうえ、弾力性に優
れ、導電接合に使用された場合に接合部分に応力が掛か
りにくい。また、温度変化による基板、素子等の熱膨張
及び収縮による電極間の相対位置のズレによる剪断応力
を緩和することができる。
Further, the surface of the base fine particles made of resin is 1
Conductive fine particles that are covered with a metal layer of at least one layer,
The particle size of the conductive particles is 95 to the average particle size of the conductive particles.
The conductive fine particles distributed within the range of 105% are also
It is one of the present invention. Since such conductive fine particles also have an extremely narrow particle size distribution, it is possible to maintain a constant gap between opposing substrates and the like, and it is also excellent in elasticity and bonded when used for conductive bonding. It is difficult to apply stress to parts. Further, it is possible to relieve the shear stress due to the displacement of the relative position between the electrodes due to the thermal expansion and contraction of the substrate, the element and the like due to the temperature change.

【0019】本発明の導電性微粒子は、そのまま、又
は、マイクロ素子実装用の導電接着剤、異方性導電接着
剤、異方性導電シート等の導電材料として、基板・部品
間の接続に用いられる。
The conductive fine particles of the present invention are used as they are or as a conductive material such as a conductive adhesive for mounting micro devices, an anisotropic conductive adhesive, an anisotropic conductive sheet, etc., for connection between substrates and parts. To be

【0020】上記基板や部品を接合し、基板・部品間を
電気的に接続する方法としては、本発明の導電性微粒子
を用いて接合する方法であれば特に限定されず、例え
ば、以下のような方法等が挙げられる。 (1)基板上に形成された電極の上に本発明の導電性微
粒子を置き、加熱溶融することで電極上に固定する。そ
の後、もう一方の基板を電極が対向するように置き加熱
溶融することで両基板を接合する方法。 (2)表面に電極が形成された基板又は部品の上に、異
方性導電シートを載せた後、もう一方の基板又は部品を
電極面が対向するように置き、加熱、加圧して接合する
方法。 (3)異方性導電シートを用いる代わりに、スクリーン
印刷やディスペンサー等の手段で異方性導電接着剤を供
給し接合する方法。 (4)導電性微粒子を介して張り合わせた二つの電極部
の間隙に液状のバインダーを供給した後で硬化させて接
合する方法。
The method of joining the above-mentioned substrates and components and electrically connecting the substrates and components is not particularly limited as long as it is the method of joining using the conductive fine particles of the present invention. There are various methods. (1) The conductive fine particles of the present invention are placed on an electrode formed on a substrate and heated and melted to be fixed on the electrode. Then, the other substrate is placed so that the electrodes face each other, and the two substrates are joined by heating and melting. (2) After placing the anisotropic conductive sheet on the substrate or component having the electrodes formed on the surface, place the other substrate or component so that the electrode surfaces face each other, and heat and pressurize to join. Method. (3) Instead of using the anisotropic conductive sheet, a method such as screen printing or a dispenser is used to supply and bond the anisotropic conductive adhesive. (4) A method in which a liquid binder is supplied to a gap between two electrode portions bonded together via conductive fine particles, and then the liquid binder is cured to be bonded.

【0021】上記のようにして基板又は部品の接合体、
即ち、導電接続構造体を得ることができる。本発明の導
電性微粒子により接続されてなる導電接続構造体もま
た、本発明の1つである。
As described above, a joined body of substrates or parts,
That is, a conductive connection structure can be obtained. A conductive connection structure formed by connecting the conductive fine particles of the present invention is also one aspect of the present invention.

【0022】[0022]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0023】(実施例)スチレンとジビニルベンゼンと
を共重合させて基材微粒子を作製した。この基材微粒子
を選別し、平均粒径730.4μm、最小粒径701.
8μm、最大粒径760.1μmの基材微粒子を得た。
このときの基材微粒子の粒径の範囲は、平均粒径の9
6.1〜104.1%であった。
(Example) A base fine particle was prepared by copolymerizing styrene and divinylbenzene. The base fine particles are selected to have an average particle size of 730.4 μm and a minimum particle size of 701.
Substrate fine particles having a particle size of 8 μm and a maximum particle size of 760.1 μm were obtained.
At this time, the range of the particle size of the base fine particles is 9 of the average particle size.
It was 6.1 to 104.1%.

【0024】このようにして得た基材微粒子に導電下地
層としてニッケルめっき層を形成した。得られたニッケ
ルめっき微粒子30gをとり、バレルめっき装置を用い
てその表面に銅めっきを施し、更にその上に共晶ハンダ
めっきを行った。めっきバレルとしては、径50mm、
高さ50mmの正五角柱状で、側面の1面のみに孔径2
0μmのメッシュのフィルタが取り付けられているもの
を用いた。この装置を用い、銅めっき液中で1時間通電
し、めっきバレルを正五角形の中心同士を通る軸を中心
に50rpmで回転し、銅めっきを行い、洗浄を行っ
た。その後に共晶ハンダめっき液中で3時間通電しなが
ら、同様にめっきバレルを回転し、共晶ハンダめっきを
行った。
A nickel plating layer was formed as a conductive underlayer on the base fine particles thus obtained. 30 g of the obtained nickel-plated fine particles were taken, copper plating was performed on the surface thereof using a barrel plating device, and further eutectic solder plating was performed thereon. The plating barrel has a diameter of 50 mm,
It is a regular pentagonal column with a height of 50 mm, and the hole diameter is 2 on only one side surface.
A filter having a 0 μm mesh filter was used. Using this device, electricity was supplied for 1 hour in a copper plating solution, and the plating barrel was rotated at 50 rpm around an axis passing through the centers of regular pentagons to perform copper plating and washing. After that, the eutectic solder plating was performed by rotating the plating barrel in the same manner while energizing the eutectic solder plating solution for 3 hours.

【0025】このようにして得られた最外殻が共晶ハン
ダめっき層である導電性微粒子を顕微鏡で観察したとこ
ろ、全く凝集がなく、全ての粒子が単粒子として存在し
ていることが確認された。また、この導電性微粒子10
0個を測定した結果、平均粒径783.0μm、最小粒
径754.1μm、最大粒径812.3μmであった。
また、得られた導電性微粒子の粒子切断面を測定したと
ころ、ニッケルめっき層の厚みは0.3μm、銅めっき
層の厚みは5.6μm、共晶ハンダめっき層の厚みは2
0.3μmであった。
Observation of the conductive fine particles having the eutectic solder-plated layer as the outermost shell obtained in this manner under a microscope confirmed that there was no aggregation at all and all the particles were present as single particles. Was done. In addition, the conductive fine particles 10
As a result of measuring 0 particles, the average particle diameter was 783.0 μm, the minimum particle diameter was 754.1 μm, and the maximum particle diameter was 812.3 μm.
Moreover, when the particle cut surface of the obtained conductive fine particles was measured, the thickness of the nickel plating layer was 0.3 μm, the thickness of the copper plating layer was 5.6 μm, and the thickness of the eutectic solder plating layer was 2 μm.
It was 0.3 μm.

【0026】このようにして得られた導電性微粒子をダ
ミーチップ上に計24個置き、これを赤外線リフロー装
置を用いてプリント基板に接合した。次にダミーチップ
を接合したプリント基板10枚を切断しダミーチップと
基板との間隔を測定したところ、最小間隔785.7μ
m、最大間隔819.5μmであった。
A total of 24 conductive fine particles thus obtained were placed on a dummy chip and bonded to a printed board using an infrared reflow device. Next, when 10 printed boards to which dummy chips were joined were cut and the distance between the dummy chips and the board was measured, the minimum distance was 785.7 μm.
m, and the maximum interval was 819.5 μm.

【0027】(比較例)平均粒径732.2μm、最小
粒径660.0μm、最大粒径797.8μmの基材微
粒子を用いた他は、実施例と同様にめっきを行った。こ
のときの基材微粒子の粒径範囲は、平均粒径の90.1
〜109.0%であった。
(Comparative Example) Plating was performed in the same manner as in Example except that the base fine particles having an average particle size of 732.2 μm, a minimum particle size of 660.0 μm and a maximum particle size of 797.8 μm were used. The particle size range of the base fine particles at this time is 90.1 of the average particle size.
Was about 109.0%.

【0028】めっき後の導電性微粒子100個を測定し
た結果、平均粒径783.9μm、最小粒径718.4
μm、最大粒径850.5μmであった。また、粒子切
断面の測定から、ニッケルめっき層の厚みは、0.3μ
m、銅めっき層の厚みは5.9μm、共晶ハンダめっき
層の厚みは、19.5μmであった。
As a result of measuring 100 conductive fine particles after plating, the average particle diameter is 783.9 μm and the minimum particle diameter is 718.4.
The average particle size was 85 μm and the maximum particle size was 850.5 μm. Also, from the measurement of the cut surface of the particles, the thickness of the nickel plating layer was 0.3 μm.
m, the thickness of the copper plating layer was 5.9 μm, and the thickness of the eutectic solder plating layer was 19.5 μm.

【0029】このようにして得られた導電性微粒子をダ
ミーチップ上に計24個置き、これを赤外線リフロー装
置を用いてプリント基板に接合した。次にダミーチップ
を接合したプリント基板10枚を切断しダミーチップと
基板との間隔を測定したところ、最小間隔785.1μ
m、最大間隔867.9μmであった。
A total of 24 conductive fine particles thus obtained were placed on a dummy chip and bonded to a printed board using an infrared reflow device. Next, when 10 printed boards to which dummy chips were joined were cut and the distance between the dummy chips and the board was measured, the minimum distance was 785.1 μm.
m, and the maximum interval was 867.9 μm.

【0030】[性能評価]実施例、比較例で作製したダ
ミーチップを接合したプリント基板を各10枚ずつ用意
した。これを−40〜+125℃(各30分サイクル)
でプログラム運転する恒温槽に入れ、100サイクルご
とに導電性微粒子の導通を調べた。表1にサイクル数と
導通不良基板の枚数を示した。
[Performance Evaluation] Ten printed boards to which the dummy chips produced in Examples and Comparative Examples were joined were prepared. This is -40 to +125 ℃ (30 minutes each cycle)
The sample was placed in a constant temperature bath operated in a program at 1, and the conduction of the conductive fine particles was examined every 100 cycles. Table 1 shows the number of cycles and the number of poorly conductive substrates.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例の基板では、試験したサイクル数で
の導通不良は見られなかったが、比較例の基板では、5
00サイクルから導通不良が発生した。
In the substrate of the example, no conduction failure was observed in the number of tested cycles, but in the substrate of the comparative example, 5
Continuity failure occurred from 00 cycle.

【0033】[0033]

【発明の効果】本発明は、上述の構成よりなるので、基
板等の回路にかかる力を緩和して、基板間の距離を一定
に維持することにより、接続信頼性を担保することがで
きる導電性微粒子及び導電接続構造体を提供することが
できる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned structure, the connection reliability can be ensured by alleviating the force applied to the circuit such as the substrate and keeping the distance between the substrates constant. Microparticles and a conductive connection structure can be provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂からなる基材微粒子の表面が1層以
上の金属層に覆われてなる導電性微粒子であって、前記
基材微粒子の粒径が前記基材微粒子の平均粒径の95〜
105%の範囲内に分布していることを特徴とする導電
性微粒子。
1. A conductive fine particle in which the surface of a base fine particle made of a resin is covered with one or more metal layers, and the particle diameter of the base fine particle is 95% of the average particle diameter of the base fine particle. ~
Conductive fine particles characterized by being distributed within a range of 105%.
【請求項2】 樹脂からなる基材微粒子の表面が1層以
上の金属層に覆われてなる導電性微粒子であって、前記
導電性微粒子の粒径が前記導電性微粒子の平均粒径の9
5〜105%の範囲内に分布していることを特徴とする
導電性微粒子。
2. A conductive fine particle in which the surface of a base fine particle made of resin is covered with one or more metal layers, and the particle diameter of the conductive fine particle is 9 times the average particle diameter of the conductive fine particle.
Conductive fine particles characterized by being distributed within a range of 5 to 105%.
【請求項3】 金属層は、金、銀、銅、白金、亜鉛、
鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニ
ッケル、クロム、チタン、アンチモン、ビスマス、ゲル
マニウム、カドミウム、珪素、錫−鉛合金、錫−銅合
金、及び、錫−銀合金からなる群より選ばれる少なくと
も1種の金属からなることを特徴とする請求項1又は2
記載の導電性微粒子。
3. The metal layer comprises gold, silver, copper, platinum, zinc,
It is selected from the group consisting of iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, tin-lead alloy, tin-copper alloy, and tin-silver alloy. 3. The method according to claim 1, wherein the metal is made of at least one kind of metal.
The conductive fine particles described.
【請求項4】 請求項1、2又は3記載の導電性微粒子
により接続されてなることを特徴とする導電接続構造
体。
4. A conductive connection structure comprising the conductive fine particles according to claim 1, 2 or 3.
JP2001253086A 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure Withdrawn JP2003068143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253086A JP2003068143A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253086A JP2003068143A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Publications (1)

Publication Number Publication Date
JP2003068143A true JP2003068143A (en) 2003-03-07

Family

ID=19081464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253086A Withdrawn JP2003068143A (en) 2001-08-23 2001-08-23 Conductive fine particle and conductive connection structure

Country Status (1)

Country Link
JP (1) JP2003068143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles

Similar Documents

Publication Publication Date Title
US6037065A (en) Spheres useful in a detachable connective medium for ball grid array assemblies
JPH03112011A (en) Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JP3542874B2 (en) Conductive fine particles
JP2003068145A (en) Conductive fine particle and conductive connection structure
JP2003068143A (en) Conductive fine particle and conductive connection structure
JP2003068144A (en) Conductive fine particle and conductive connection structure
JP2002260446A (en) Conductive fine particle and conductive connecting structure
JPH09306231A (en) Conductive particulate and substrate
JP5210236B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2003064500A (en) Electrically conductive fine particle, and substrate constituting body
JP2003068142A (en) Conductive fine particle and conductive connection structure
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP2003253465A (en) Conductive fine particle and conductive connecting structure
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2512709B2 (en) Connection sheet
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2003247083A (en) Conductive fine particle with flux, and conductive connecting structure
JP6897038B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
KR20130100441A (en) Manufacturing method for flip chip packages using bumps of complex structure and flip chip packages produced using the same method
JP3682156B2 (en) Conductive fine particles and conductive connection structure
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
JP2003133474A (en) Mounting structure of electronic device
JP6907490B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
Kulojarvi et al. A low temperature interconnection method for electronics assembly
JP5534745B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060216