WO2013129437A1 - Method for manufacturing connection element, and anisotropic electroconductive adhesive - Google Patents

Method for manufacturing connection element, and anisotropic electroconductive adhesive Download PDF

Info

Publication number
WO2013129437A1
WO2013129437A1 PCT/JP2013/055044 JP2013055044W WO2013129437A1 WO 2013129437 A1 WO2013129437 A1 WO 2013129437A1 JP 2013055044 W JP2013055044 W JP 2013055044W WO 2013129437 A1 WO2013129437 A1 WO 2013129437A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
conductive particles
conductive
conductive adhesive
particles
Prior art date
Application number
PCT/JP2013/055044
Other languages
French (fr)
Japanese (ja)
Inventor
芳人 田中
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2013129437A1 publication Critical patent/WO2013129437A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • C09J2301/1242Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape the opposite adhesive layers being different
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to an anisotropic conductive adhesive, and relates to an anisotropic conductive adhesive that achieves both high conduction performance and high insulation performance, and a method of manufacturing a connection body using the anisotropic conductive adhesive.
  • This application claims priority on the basis of Japanese Patent Application No. 2012-046983 filed on March 2, 2012 in Japan, and is incorporated herein by reference. Is done.
  • liquid crystal display devices are often used as various display means such as televisions, PC monitors, mobile phones, portable game machines, tablet PCs, and in-vehicle monitors.
  • COG chip on glass
  • FOG film on ⁇ ⁇ glass
  • a liquid crystal display device 100 employing a COG mounting system has a liquid crystal display panel 104 that performs a main function for liquid crystal display.
  • the liquid crystal display panel 104 is a glass substrate or the like. And two transparent substrates 102 and 103 facing each other.
  • the transparent substrates 102 and 103 are bonded to each other by a frame-shaped seal 105, and the liquid crystal 106 is sealed in a space surrounded by the transparent substrates 102 and 103 and the seal 105.
  • a panel display unit 107 is provided.
  • the transparent substrates 102 and 103 have a pair of striped transparent electrodes 108 and 109 made of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) on the inner surfaces facing each other. Are formed so as to cross each other.
  • the transparent substrates 102 and 103 are configured such that a pixel as a minimum unit of liquid crystal display is constituted by the intersection of the transparent electrodes 108 and 109.
  • one transparent substrate 103 is formed to have a larger planar dimension than the other transparent substrate 102, and the transparent electrode 109 is formed on the edge 103a of the transparent substrate 103 formed to be large. Terminal portion 109a is formed.
  • alignment films 111 and 112 subjected to a predetermined rubbing process are formed on both transparent electrodes 108 and 109, and the initial alignment of liquid crystal molecules is regulated by the alignment films 111 and 112. ing.
  • a pair of polarizing plates 118 and 119 are disposed outside the transparent electrodes 108 and 109, and the vibration direction of transmitted light from the light source 120 such as a backlight is regulated by the polarizing plates 118 and 119. It has come to be.
  • a liquid crystal driving IC 115 is thermocompression bonded via an anisotropic conductive film 114.
  • the anisotropic conductive film 114 is a film formed by mixing conductive particles in a thermosetting binder resin, and is electrically connected between the conductors by the conductive particles by thermocompression bonding between the two conductors. And the mechanical connection between the conductors is maintained by the binder resin.
  • the liquid crystal driving IC 115 can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying a liquid crystal driving voltage to the pixels.
  • the adhesive constituting the anisotropic conductive film 114 the most reliable thermosetting adhesive is usually used.
  • the anisotropic conductive film 114 is attached to the terminal portion 109a of the transparent electrode 109 by a temporary crimping means (not shown). Temporarily crimp. Subsequently, after the liquid crystal driving IC 115 is mounted on the anisotropic conductive film 114, the liquid crystal driving IC 115 is connected to the terminal together with the anisotropic conductive film 114 by the thermocompression bonding means 121 such as a thermocompression bonding head as shown in FIG. The thermocompression bonding means 121 is caused to generate heat while being pressed toward the portion 109a.
  • the softened binder resin flows out between the terminal portion 109a and the terminal portion of the liquid crystal driving IC 115, and the conductive particles are sandwiched between the two terminal portions. Is thermoset. Accordingly, the liquid crystal driving IC 115 is conductively connected to the terminal portion 109a through the anisotropic conductive film 114.
  • the terminal portion 109a made of ITO or IZO has a metal oxide formed on the surface, and the conductive particles contained in the anisotropic conductive film 114 break through the metal oxide formed on the surface of the terminal portion 109a. Insufficient conduction could result in insufficient conduction reliability.
  • a technique has been proposed in which conductivity is ensured by breaking through an oxide film using conductive particles having protrusions formed on the surface.
  • the conductive particles having protrusions on the surface have a small number of protrusions, the protrusions may not be directed to the terminal portion 109a and connection resistance may be increased.
  • the number of protrusions is increased, the continuity with the terminal portion 109a can be improved, but the particle size is increased by the amount of the protrusions, so that there is a disadvantage that the insulating property is deteriorated between the fine pitched wirings. is there.
  • the present invention provides a method for manufacturing a connection body using an anisotropic conductive adhesive that ensures conductivity even for electrode terminals having an oxide film formed on the surface and also has insulation between adjacent wires. And an anisotropic conductive adhesive.
  • a method for manufacturing a connection body according to the present invention includes disposing an electronic component on a terminal electrode formed on a substrate via an anisotropic conductive adhesive, and from above the electronic component.
  • the anisotropic conductive adhesive is softened by heat pressing and the anisotropic conductive adhesive is cured to connect the substrate and the electronic component
  • the conductive adhesive Is laminated on one surface of the first conductive adhesive layer having a binder resin and first conductive particles dispersed in the binder resin, and on the one surface of the first conductive adhesive layer.
  • a second conductive adhesive layer in which second conductive particles having a particle diameter smaller than the particle diameter of the first conductive particles are dispersed in a resin, and the second conductive adhesive The layer is attached to the substrate side.
  • the anisotropic conductive adhesive according to the present invention includes a first conductive adhesive layer having a binder resin and first conductive particles dispersed in the binder resin, and the first conductive A second conductive adhesive layer laminated on one surface of the adhesive layer, wherein second conductive particles having a particle diameter smaller than the particle diameter of the first conductive particles are dispersed in a binder resin; It is what has.
  • the anisotropic conductive film has the second conductive adhesive layer containing the second conductive particles having a particle diameter smaller than that of the first conductive particles attached to the terminal electrode of the substrate. Since the second conductive particles are in contact with the terminal electrode, the first conductive particles and the electrode terminals of the electronic component are connected to the terminal electrode through the second conductive particles.
  • an anisotropic conductive film applies a pressure to the 2nd electroconductive particle through an electronic component, even when a metal oxide (oxide film) is formed in the surface of a terminal electrode, the 2nd The metal oxide formed on the surface of the terminal electrode by the conductive particles can be penetrated sufficiently and the conduction reliability can be improved.
  • FIG. 1 is a sectional view showing a connection process to which the present invention is applied.
  • FIG. 2 is a cross-sectional view showing an anisotropic conductive film to which the present invention is applied.
  • FIG. 3 is a cross-sectional view illustrating a state in which an electronic component is connected using an anisotropic conductive film.
  • FIG. 4 is a cross-sectional view showing a state in which electronic components are connected when the thickness of the second conductive adhesive layer is made larger than the particle diameter of the first conductive particles.
  • FIG. 5 is a diagram for explaining the relationship between the particle diameters of the first conductive particles and the second conductive particles.
  • FIG. 6 is a cross-sectional view showing an embodiment.
  • FIG. 7 is a cross-sectional view showing Comparative Example 1.
  • FIG. 8 is a cross-sectional view showing Comparative Example 2.
  • FIG. 9 is a cross-sectional view showing Comparative Example 3.
  • FIG. 10 is a cross-sectional view showing Comparative Example 4.
  • FIG. 11 is a cross-sectional view showing a conventional liquid crystal display panel.
  • FIG. 12 is a cross-sectional view showing a COG mounting process of a conventional liquid crystal display panel.
  • connection body and an anisotropic conductive adhesive to which the present invention is applied will be described in detail with reference to the drawings.
  • the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
  • COG chip-on-glass
  • a liquid crystal driving IC chip is mounted on a glass substrate of a liquid crystal display panel.
  • two transparent substrates 11 and 12 made of a glass substrate or the like are arranged to face each other, and the transparent substrates 11 and 12 are bonded to each other by a frame-shaped seal 13.
  • the liquid crystal 14 is sealed in a space surrounded by the transparent substrates 11 and 12 to form a panel display unit 15.
  • the transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) on the inner surfaces facing each other. Are formed so as to cross each other.
  • the transparent electrodes 16 and 17 are configured such that a pixel as a minimum unit of liquid crystal display is configured by the intersection of the transparent electrodes 16 and 17.
  • one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and a liquid crystal driving edge is formed on the edge 12a of the formed transparent substrate 12.
  • a COG mounting unit 20 on which an electronic component 18 such as an IC is mounted is provided, and an FOG mounting unit 22 on which a flexible substrate 21 on which a liquid crystal driving circuit is formed is mounted near the outside of the COG mounting unit 20. ing.
  • liquid crystal driving IC and the liquid crystal driving circuit can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying the liquid crystal driving voltage to the pixels. ing.
  • the terminal portions 17a of the transparent electrodes 17 are formed on the mounting portions 20 and 22, respectively.
  • an electronic component 18 such as a liquid crystal driving IC and a flexible substrate 21 are connected using the anisotropic conductive film 1 as an anisotropic conductive adhesive.
  • the anisotropic conductive film 1 contains the first conductive particles 4 and the second conductive particles 6, and is formed on the electrodes of the electronic component 18 and the flexible substrate 21 and the edge 12 a of the transparent substrate 12.
  • the terminal portion 17 a of the transparent electrode 17 is electrically connected through the first conductive particles 4 and the second conductive particles 6.
  • the anisotropic conductive film 1 is, for example, a thermosetting adhesive, and is fluidized by being thermocompression-bonded by the heating and pressing head 30 so that the first conductive particles 4 and the second conductive film 1 are conductive.
  • the conductive particles 6 are crushed between the terminal portion 17a and each electrode terminal of the electronic component 18 or the flexible substrate 21 and heated at a predetermined temperature causing a thermosetting reaction, whereby the first conductive particles 4 and the first conductive particles 4 It hardens
  • the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 to the electronic component 18 and the flexible substrate 21.
  • an alignment film 24 subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of liquid crystal molecules is regulated by the alignment film 24.
  • a pair of polarizing plates 25 and 26 are disposed outside the transparent substrates 11 and 12, and these polarizing plates 25 and 26 allow transmitted light from a light source (not shown) such as a backlight to be transmitted. The vibration direction is regulated.
  • an anisotropic conductive film (ACF) 1 to which the present invention is applied includes a first conductive adhesive layer 3 and a second conductive film on a release film 2 serving as a base material.
  • the conductive adhesive layer 5 is laminated in this order.
  • the anisotropic conductive film 1 includes first and second conductive materials between a transparent electrode 17 formed on a transparent substrate 12 of the liquid crystal display panel 10 and an electronic component 18 or a flexible substrate 21. By interposing the adhesive layers 3, 5, the liquid crystal display panel 10 and the electronic component 18 or the flexible substrate 21 are connected and used for electrical connection.
  • a substrate such as a polyethylene terephthalate film generally used in anisotropic conductive films can be used.
  • the first conductive adhesive layer 3 is formed by dispersing first conductive particles 4 in a binder resin 3a.
  • the binder resin 3a contains a film-forming resin, a curable resin, a curing agent, a silane coupling agent, and the like, and is the same as the binder used for a normal anisotropic conductive film.
  • the film forming resin is preferably a resin having an average molecular weight of about 10,000 to 80,000.
  • the film forming resin include various resins such as a phenoxy resin, an epoxy resin, a modified epoxy resin, and a urethane resin.
  • phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.
  • the curable resin is not particularly limited, and examples thereof include an epoxy resin and an acrylic resin.
  • an epoxy resin there is no restriction
  • naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, A dicyclopentadiene type epoxy resin, a triphenylmethane type epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.
  • an acrylic resin there is no restriction
  • the curing agent is not particularly limited and may be appropriately selected depending on the purpose. However, when the curable resin is an epoxy resin, a cationic curing agent is preferable, and when the curable resin is an acrylic resin, radical curing is performed. Agents are preferred.
  • curing agent there is no restriction
  • curing agent For example, a sulfonium salt, onium salt, etc. can be mentioned, Among these, an aromatic sulfonium salt is preferable.
  • curing agent According to the objective, it can select suitably, For example, an organic peroxide can be mentioned.
  • silane coupling agents include epoxy, amino, mercapto sulfide, ureido and the like. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.
  • first conductive particles As the 1st electroconductive particle 4, any well-known electroconductive particle currently used in the anisotropic conductive film can be mentioned.
  • the first conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, and glass.
  • the surface of particles such as ceramics and plastics may be coated with metal, or the surface of these particles may be further coated with an insulating thin film.
  • examples of the resin particle include epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, and the like.
  • AS acrylonitrile / styrene
  • first conductive particles 4 for example, conductive particles having an average particle diameter of 4 ⁇ m can be used.
  • the second conductive adhesive layer 5 is formed by dispersing second conductive particles 6 in a binder resin 5a.
  • the binder resin 5 a is the same as the binder resin 3 a of the first conductive adhesive layer 3.
  • Examples of the second conductive particles 6 include any of the known conductive particles used in anisotropic conductive films. However, the second conductive particles 6 have a particle size smaller than that of the first conductive particles 4. Sex particles are used. As the second conductive particles 6, for example, nickel fine powder having an average particle diameter of 0.2 ⁇ m can be used.
  • anisotropic conductive film 1 may be produced by any method, for example, it can be produced by the following method.
  • the composition of the binder resin 3a constituting the first conductive adhesive layer 3 and the first conductive particles 4 are dissolved in a solvent.
  • a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • the adhesive layer generation solution obtained by dissolution is applied onto the release film 2 by a bar coater, and the solvent is volatilized by heating in an oven to obtain the first conductive adhesive layer 3.
  • the composition of the binder resin 5a constituting the second conductive adhesive layer 5 and the second conductive particles 6 are dissolved in a solvent, and the resulting solution for generating the adhesive layer is dissolved by a bar coater. Then, it is applied on the first conductive adhesive layer 3. And the solvent is volatilized by heating the layer which consists of this coating material in oven, and the 2nd conductive adhesive layer 5 is obtained on the 1st conductive adhesive layer 3.
  • the anisotropic conductive film 1 is temporarily pressure-bonded onto the transparent electrode 17.
  • the method of temporarily press-bonding the anisotropic conductive film 1 is anisotropic so that the second conductive adhesive layer 5 is on the transparent electrode 17 side on the transparent electrode 17 of the transparent substrate 12 of the liquid crystal display panel 10.
  • Conductive film 1 is disposed.
  • the anisotropic conductive film 1 is heated and pressurized with the heating press head 30, for example from the peeling film 2 side, and the heating press head 30 is peeled from the peeling film 2.
  • the heating press head 30 is peeled from the peeling film 2.
  • Temporary pressure bonding by the heating and pressing head 30 heats the upper surface of the release film 2 while pressing it against the transparent electrode 17 side with a slight pressure (for example, about 0.1 MPa to 2 MPa).
  • the heating temperature is set to such a temperature that the thermosetting resin such as epoxy resin or acrylic resin in the anisotropic conductive film 1 is not cured (for example, about 70 to 100 ° C.).
  • the electronic component 18 is arranged so that the transparent electrode 17 of the transparent substrate 12 and the electrode terminal 18a of the electronic component 18 face each other with the first and second conductive adhesive layers 3 and 5 therebetween.
  • the upper surface of the electronic component 18 is heat-pressed at a predetermined temperature and a predetermined pressure for a predetermined time by the heating press head 30 heated to a predetermined heating temperature.
  • the first and second conductive adhesive layers 3 and 5 are cured by a thermosetting reaction after each binder resin is softened.
  • the binder resins 3 a and 5 a showing fluidity flow out from between the terminal portion 17 a of the transparent electrode 17 and the electrode terminal 18 a of the electronic component 18, and the terminal portion 17 a of the transparent electrode 17.
  • the first and second conductive particles 4 and 6 are crushed between the electrode terminals 18a of the electronic component 18 and the first and second conductive adhesive layers 3 and 5 are in this state.
  • Each binder resin 3a, 5a is thermally cured.
  • the anisotropic conductive film 1 includes a second conductive adhesive containing second conductive particles 6 having a particle diameter smaller than that of the first conductive particles 4 in the transparent electrode 17 of the transparent substrate 12. Since the layer 3 is adhered, the second conductive particles 6 are in contact with the terminal portions 17 a of the transparent electrode 17, and the first conductive particles 4 and the electronic component 18 are interposed via the second conductive particles 6. The electrode terminal 18a is connected to the terminal portion 17a.
  • the anisotropic conductive film 1 since the pressure by the heating and pressing head 30 is applied to the second conductive particles 6, metal oxide is formed on the surface of the terminal portion 17a of the transparent electrode 17 made of ITO or IZO. Also in this case, the metal oxide formed on the surface of the terminal portion 17a by the second conductive particles 6 can be penetrated sufficiently and the conduction reliability can be improved.
  • the thickness of the second conductive adhesive layer 5 laminated on the first conductive adhesive layer 3 is preferably less than the average particle diameter of the first conductive particles 4.
  • the second conductive particles 6 are dispersed between the electrode terminals 18a.
  • the adjacent electrode terminals 18 a may be continuous to cause a short circuit. It is.
  • the average particle diameter of the second conductive particles 6 is preferably 20% or less of the average particle diameter of the first conductive particles 4. Thereby, it is possible to prevent the first conductive particles 4 from being connected to each other through the second conductive particles 6.
  • FIG. 5 shows a state where two first conductive particles 4 and one second conductive particle 6 are in contact with each other. If the second conductive particles 6 have a diameter equal to or larger than the diameter shown in FIG. 5, the first conductive particles 4 may be connected to each other. On the other hand, when the diameter is smaller than the diameter shown in FIG. 5, there is almost no possibility that the second conductive particles 6 mediate the connection between the first conductive particles 4.
  • the hardness of the second conductive particles 6 is preferably equal to or higher than the hardness of the first conductive particles 4. As described above, the second conductive particle 6 receives pressure from the heating and pressing head 30 via the electrode terminal 18a and the first conductive particle 4, and the terminal portion 17a of the transparent electrode 17 made of ITO or IZO. It is necessary to break through the metal oxide formed on the surface. For this reason, the second conductive particles 6 should be equal to or higher than the hardness of the first conductive particles 4 in order to sufficiently apply pressure to the metal oxide of the terminal portion 17a without absorbing the pressure. preferable.
  • the anisotropic conductive film 1 uses the thermosetting first and second conductive adhesive layers 3 and 5 as well as the ultraviolet curable first and second conductive adhesive layers 3 and 5. 5 may be sufficient.
  • the glass substrate 12 constituting the connection body has a thickness of 0.5 mm, and a wiring electrode 17a (50 ⁇ m pitch: line 30 ⁇ m / space 20 ⁇ m / thickness 0.5 mm) made of an ITO film is formed on the surface.
  • a wiring electrode 17a 50 ⁇ m pitch: line 30 ⁇ m / space 20 ⁇ m / thickness 0.5 mm
  • the height of the bumps 18a is 15 ⁇ m
  • the space between the bumps 18a is 7.5 ⁇ m.
  • the first conductive adhesive layer 3 is Phenoxy resin (YP50: manufactured by Nippon Steel Chemical Co., Ltd.); 30 parts by mass epoxy resin (jER828: manufactured by Mitsubishi Chemical Corporation); 30 parts by mass imidazole-based curing agent (HX3941HP: manufactured by Asahi Kasei E-Materials Co., Ltd.); Non-protrusive conductive particles (first conductive particles 4) (AUL-704: manufactured by Sekisui Chemical Co., Ltd .: average particle size 4 ⁇ m); 30 parts by mass of an adhesive composition was applied onto a release film, The conductive adhesive layer 3 having a thickness of 18 ⁇ m was prepared by drying in an oven at 5 ° C. for 5 minutes.
  • the second conductive adhesive layer 5 is Phenoxy resin (YP50: manufactured by Nippon Steel Chemical Co., Ltd.); 30 parts by mass epoxy resin (jER828: manufactured by Mitsubishi Chemical Corporation); 30 parts by mass imidazole curing agent (HX3941HP: manufactured by Asahi Kasei E-Materials Co., Ltd.); Part Ni fine powder (second conductive particles 6) (NFP201: manufactured by JFE Mineral Co., Ltd .: average particle size 0.2 ⁇ m); an adhesive composition consisting of 10 parts by mass was applied onto a release film, and an 80 ° C. oven was dried for 5 minutes to prepare a conductive adhesive layer 5 having a thickness of 2 ⁇ m.
  • Phenoxy resin YP50: manufactured by Nippon Steel Chemical Co., Ltd.
  • 30 parts by mass epoxy resin jER828: manufactured by Mitsubishi Chemical Corporation
  • 30 parts by mass imidazole curing agent HX3941HP: manufactured by Asahi Kasei E-Materials Co., Ltd
  • the first conductive adhesive layer 3 and the second conductive adhesive layer 5 are made into a laminator so that the second conductive adhesive layer 5 is on the glass substrate 12 side.
  • the IC and mounting the IC After mounting the IC and mounting the IC, it was hot-pressed under the conditions of 200 ° C.-80 MPa-5 sec with a heating press head to obtain a connected body sample.
  • Comparative Example 1 As shown in FIG. 7, the first conductive adhesive layer 3 and the second conductive adhesive layer 5 are arranged so that the first conductive adhesive layer 3 is on the glass substrate 12 side.
  • the conditions were the same as in Example 1 except that the film was laminated with a laminator.
  • Comparative Example 2 As shown in FIG. 8, the second conductive adhesive layer 5 was not provided, and only the first conductive adhesive layer 3 was bonded to the glass substrate 12.
  • Ni fine powder (second conductive particles 6) (NFP201: manufactured by JFE Mineral Co., Ltd .: average particle diameter)
  • An adhesive composition containing 10 parts by mass of 0.2 ⁇ m) was applied onto the film and dried in an oven at 80 ° C. for 5 minutes to prepare a conductive adhesive layer 3 having a thickness of 20 ⁇ m.
  • the IC heat pressurizing conditions are the same as in Example 1.
  • Comparative Example 3 As shown in FIG. 9, the second conductive adhesive layer 5 was not provided, and only the first conductive adhesive layer 3 was bonded to the glass substrate 12.
  • the same adhesive composition as in Example 1 was applied on the film and dried in an oven at 80 ° C. for 5 minutes to form a conductive adhesive layer 3 having a thickness of 20 ⁇ m.
  • the IC heat pressurizing conditions are the same as in Example 1.
  • Comparative Example 4 As shown in FIG. 10, the second conductive adhesive layer 5 was not provided, and only the first conductive adhesive layer 3 was bonded to the glass substrate 12.
  • the conductive particles without protrusions (first conductive particles 4) in the components of the first conductive adhesive layer 3 according to Example 1 (AUL-704: manufactured by Sekisui Chemical Co., Ltd.)
  • an adhesive composition containing 30 parts by mass of conductive particles with protrusions (first conductive particles 4a) (AULB-704: manufactured by Sekisui Chemical Co., Ltd.)
  • this was applied onto a film, It dried for 5 minutes in 80 degreeC oven, and produced the electroconductive adhesive layer 3 of thickness 20 micrometers.
  • the IC heat pressurizing conditions are the same as in Example 1.
  • the number of shorts and the conduction resistance value were measured for each connection body sample manufactured as described above.
  • the resistance value ( ⁇ ) between the terminals of 16CH was measured by the two-terminal method for each connected body sample, and the number of shorts (pieces) was evaluated.
  • the measurement of a conduction resistance value measured the resistance value ((ohm)) between the terminals of 30ch about each connection body sample by the 4-terminal method, and calculated
  • the measurement results are shown in Table 1.
  • the Ni fine powder 6 of the second conductive adhesive layer 5 disposed on the glass substrate 12 side penetrates the metal oxide formed on the surface of the ITO electrode 17a. Sufficient conduction was obtained, and both the maximum conduction resistance value and the average conduction resistance value were low. Moreover, according to Example 1, the 2nd conductive adhesive layer 5 thinner than the 1st conductive particle 4 contained in the 1st conductive adhesive layer 3 on the glass substrate 12 side is provided. Since it was provided, the connection of the first conductive particles 4 due to the Ni fine powder 6 intervening between the IC bumps 18a was prevented, and the number of short circuits was zero.
  • Comparative Example 1 the second conductive adhesive layer 5 was disposed on the IC side.
  • Comparative Example 2 Ni fine powder 6 was dispersed throughout the first conductive adhesive layer 3. Therefore, in any case, the conduction with the ITO electrode 17a by the Ni fine powder 6 became insufficient, and the maximum conduction resistance value and the average conduction resistance value increased. Moreover, the connection of the 1st electroconductive particle 4 by the Ni fine powder 6 interposing between IC bumps 18a arose, and the number of shorts also increased.
  • Comparative Examples 3 and 4 since the Ni fine powder 6 was not contained, the effect of conduction with the ITO electrode 17a by the Ni fine powder 6 was not obtained, and the maximum conduction resistance value and the average conduction resistance value increased. Further, in Comparative Example 4, since the conductive particles 4a on which the protrusions are formed are dispersed throughout the first conductive adhesive layer 3, the particle diameter is increased by the amount of the protrusions. The number of shorts increased between the pitched IC bumps 18a.
  • each anisotropic conductive film according to the second example has the same configuration and manufacturing method as the anisotropic conductive film according to Example 1 except that the thickness of the second conductive adhesive layer 5 is changed. is there.
  • Example 2 the thickness of the second conductive adhesive layer 5 was 1 ⁇ m.
  • the second conductive adhesive layer 5 according to the example 2 has a temporary sticking temperature to the glass substrate 12 of 120 ° C. This is because the Ni binder is too much in the thin binder resin layer, the resin content is reduced, and the temporary sticking property is lowered.
  • Example 3 the thickness of the second conductive adhesive layer 5 was 2 ⁇ m.
  • the second conductive adhesive layer 5 according to Example 3 has a temporary sticking temperature to the glass substrate 12 of 80 ° C. Others are the same as in the second embodiment.
  • Example 4 is the same as Example 3 except that the thickness of the second conductive adhesive layer 5 is set to 3 ⁇ m.
  • Comparative Example 5 is the same as Example 3 except that the thickness of the second conductive adhesive layer 5 is 4 ⁇ m.
  • the average particle diameter of 4 ⁇ m of the protrusion-free conductive particles (first conductive particles 4) (AUL-704: manufactured by Sekisui Chemical Co., Ltd.) contained in the first conductive adhesive layer 3 is Have the same thickness.
  • Comparative Example 6 is the same as Example 3 except that the thickness of the second conductive adhesive layer 5 is set to 5 ⁇ m.
  • the conductive particles without protrusions (first conductive particles 4) (AUL-704: manufactured by Sekisui Chemical Co., Ltd.) contained in the first conductive adhesive layer have an average particle size of 4 ⁇ m or more. Has a thickness.
  • connection sample in which an IC was anisotropically conductively connected to the glass substrate 12 was prepared in the same manner as in Example 1. The value was measured. The measurement results are shown in Table 2.
  • the film thickness of the second conductive adhesive layer 5 is larger than the diameter of the first conductive particles 4 of the first conductive adhesive layer 3, Ni fine powder (first powder) is formed between the IC bumps 18 a. 2 conductive particles 6) are dispersed and act like projections provided on the conductive particles in the prior art, and are interposed between the first conductive particles 4 of the first conductive adhesive layer 3. Therefore, it is considered that the adjacent IC bumps 18a are made continuous to cause a short circuit. From this, the film thickness of the 2nd conductive adhesive layer 5 laminated
  • each anisotropic conductive film according to the third example is different from the example 1 except that the average particle diameter of the Ni fine powder (second conductive particle 6) of the second conductive adhesive layer 3 is changed. It is the same structure and manufacturing method as the anisotropic conductive film which concerns on this.
  • Example 5 except that Ni fine powder (NFP201: manufactured by JFE Mineral Co., Ltd.) having an average particle diameter of 0.2 ⁇ m was used as the second conductive particles 6 to be contained in the second conductive adhesive layer 5. These are the same as in Example 1.
  • Example 6 Ni fine powder (NFP401: manufactured by JFE Mineral Co., Ltd.) having an average particle diameter of 0.4 ⁇ m was used as the second conductive particles 6 to be included in the second conductive adhesive layer 5. These are the same as in Example 1.
  • Example 7 as the second conductive particles 6 to be contained in the second conductive adhesive layer 5, the average particle size obtained by classifying Ni fine powder (T-255: manufactured byariaco) with a sieve is used. The same as Example 1 except that 0.8 ⁇ m Ni fine powder was used.
  • the particle diameter of the Ni fine powder 6 is that of the first conductive particles 4 of the first conductive adhesive layer 3 (AUL-704: manufactured by Sekisui Chemical Co., Ltd .: average particle diameter of 4 ⁇ m). It is 20% or less of the average particle diameter.
  • the second conductive particles 6 contained in the second conductive adhesive layer 5 have an average particle size obtained by classifying Ni fine powder (T-255: manufactured by manariaco) with a sieve.
  • Ni fine powder T-255: manufactured by manariaco
  • Example 8 Ni fine powder having an average particle diameter of 2.5 ⁇ m (T-255: manufactured by manariaco) was used as the second conductive particles 6 to be included in the second conductive adhesive layer 5. These are the same as in Example 1.
  • connection sample in which an IC was anisotropically conductively connected to the glass substrate 12 was prepared in the same manner as in Example 1, and then the number of shorts and the conductive resistance were obtained. The value was measured. Table 3 shows the measurement results.
  • the average particle diameter of the Ni fine powder (second conductive particles 6) contained in the second conductive adhesive layer 5 is the first.
  • the Ni fine powder 6 is formed of the first conductive adhesive layer 3.
  • the average particle diameter of the Ni fine powder 6 is 30% and 62.5% of the average particle diameter of the first conductive particles 4 of the first conductive adhesive layer 3. Since it is large, there is a possibility that the first conductive particles 4 may be connected to each other through the Ni fine powder 6, and the number of shorts also increases. Accordingly, the average particle diameter of the second conductive particles 6 of the second conductive adhesive layer 5 is 20% of the average particle diameter of the first conductive particles 4 of the first conductive adhesive layer 3. It can be seen that the following is preferable.

Abstract

Through the present invention, conductivity is ensured even to an electrode terminal on which an oxide film is formed on the surface thereof, and insulation properties between adjacent wires are also provided. A method for manufacturing a connection element (10) in which an electronic component (18) is connected on a terminal electrode (17) formed on a substrate (12) via an anisotropic electroconductive adhesive (1), wherein the electroconductive adhesive (1) has: a first electroconductive adhesive layer (3) having a binder resin (3a) and first electroconductive particles (4) dispersed in the binder resin (3a); and a second electroconductive adhesive layer (5) layered on one side of the first electroconductive adhesive layer (3), second electroconductive particles (6) having a particle diameter smaller than that of the first electroconductive particles (4) being dispersed in a binder resin (5a) in the second electroconductive adhesive layer (5); and the second electroconductive adhesive layer (5) is bonded on a substrate (12) side.

Description

接続体の製造方法、及び異方性導電接着剤Method for manufacturing connected body and anisotropic conductive adhesive
 本発明は、異方性導電接着剤に関し、高い導通性能と高い絶縁性能との両立が図られた異方性導電接着剤と、この異方性導電接着剤を用いた接続体の製造方法に関する。本出願は、日本国において2012年3月2日に出願された日本特許出願番号特願2012-046983を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention relates to an anisotropic conductive adhesive, and relates to an anisotropic conductive adhesive that achieves both high conduction performance and high insulation performance, and a method of manufacturing a connection body using the anisotropic conductive adhesive. . This application claims priority on the basis of Japanese Patent Application No. 2012-046983 filed on March 2, 2012 in Japan, and is incorporated herein by reference. Is done.
 従来から、テレビやPCモニタ、携帯電話、携帯型ゲーム機、タブレットPCあるいは車載用モニタ等の各種表示手段として、液晶表示装置が多く用いられている。近年、このような液晶表示装置においては、ファインピッチ化、軽量薄型化等の観点から、液晶駆動用ICを直接液晶表示パネルの基板上に実装するいわゆるCOG(chip on glass)や、液晶駆動回路が形成されたフレキシブル基板を直接液晶表示パネルの基板上に実装するいわゆるFOG(film on glass)が採用されている。 Conventionally, liquid crystal display devices are often used as various display means such as televisions, PC monitors, mobile phones, portable game machines, tablet PCs, and in-vehicle monitors. In recent years, in such a liquid crystal display device, from the viewpoint of fine pitch, light weight, and thinning, a so-called COG (chip on glass) in which a liquid crystal driving IC is directly mounted on a substrate of a liquid crystal display panel, or a liquid crystal driving circuit A so-called FOG (film on す る glass) is used in which the flexible substrate on which is formed is directly mounted on the substrate of the liquid crystal display panel.
 例えばCOG実装方式が採用された液晶表示装置100は、図11に示すように、液晶表示のための主機能を果たす液晶表示パネル104を有しており、この液晶表示パネル104は、ガラス基板等からなる互いに対向する二枚の透明基板102,103を有している。そして、液晶表示パネル104は、これら両透明基板102,103が枠状のシール105によって互いに貼り合わされるとともに、両透明基板102,103およびシール105によって囲繞された空間内に液晶106が封入されたパネル表示部107が設けられている。 For example, as shown in FIG. 11, a liquid crystal display device 100 employing a COG mounting system has a liquid crystal display panel 104 that performs a main function for liquid crystal display. The liquid crystal display panel 104 is a glass substrate or the like. And two transparent substrates 102 and 103 facing each other. In the liquid crystal display panel 104, the transparent substrates 102 and 103 are bonded to each other by a frame-shaped seal 105, and the liquid crystal 106 is sealed in a space surrounded by the transparent substrates 102 and 103 and the seal 105. A panel display unit 107 is provided.
 透明基板102,103は、互いに対向する両内側表面に、ITO(Indium Tin Oxide:酸化インジウムスズ)やIZO(Indium Zinc Oxide:酸化インジウム亜鉛)等からなる縞状の一対の透明電極108,109が、互いに交差するように形成されている。そして、両透明基板102,103は、これら両透明電極108,109の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。 The transparent substrates 102 and 103 have a pair of striped transparent electrodes 108 and 109 made of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) on the inner surfaces facing each other. Are formed so as to cross each other. The transparent substrates 102 and 103 are configured such that a pixel as a minimum unit of liquid crystal display is constituted by the intersection of the transparent electrodes 108 and 109.
 両透明基板102,103のうち、一方の透明基板103は、他方の透明基板102よりも平面寸法が大きく形成されており、この大きく形成された透明基板103の縁部103aには、透明電極109の端子部109aが形成されている。また、両透明電極108,109上には、所定のラビング処理が施された配向膜111,112が形成されており、この配向膜111,112によって液晶分子の初期配向が規制されるようになっている。さらに、両透明電極108,109の外側には、一対の偏光板118,119が配設されており、これら両偏光板118,119によってバックライト等の光源120からの透過光の振動方向が規制されるようになっている。 Of the two transparent substrates 102 and 103, one transparent substrate 103 is formed to have a larger planar dimension than the other transparent substrate 102, and the transparent electrode 109 is formed on the edge 103a of the transparent substrate 103 formed to be large. Terminal portion 109a is formed. Further, alignment films 111 and 112 subjected to a predetermined rubbing process are formed on both transparent electrodes 108 and 109, and the initial alignment of liquid crystal molecules is regulated by the alignment films 111 and 112. ing. Further, a pair of polarizing plates 118 and 119 are disposed outside the transparent electrodes 108 and 109, and the vibration direction of transmitted light from the light source 120 such as a backlight is regulated by the polarizing plates 118 and 119. It has come to be.
 ITOやIZOからなる端子部109a上には、異方性導電フィルム114を介して液晶駆動用IC115が熱圧着されている。異方性導電フィルム114は、熱硬化型のバインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電性粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。液晶駆動用IC115は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。なお、異方性導電フィルム114を構成する接着剤としては、通常、最も信頼性の高い熱硬化性の接着剤が用いられる。 On the terminal portion 109a made of ITO or IZO, a liquid crystal driving IC 115 is thermocompression bonded via an anisotropic conductive film 114. The anisotropic conductive film 114 is a film formed by mixing conductive particles in a thermosetting binder resin, and is electrically connected between the conductors by the conductive particles by thermocompression bonding between the two conductors. And the mechanical connection between the conductors is maintained by the binder resin. The liquid crystal driving IC 115 can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying a liquid crystal driving voltage to the pixels. As the adhesive constituting the anisotropic conductive film 114, the most reliable thermosetting adhesive is usually used.
 このような異方性導電フィルム114を介して液晶駆動用IC115を端子部109aへ接続する場合は、先ず、透明電極109の端子部109a上に異方性導電フィルム114を図示しない仮圧着手段によって仮圧着する。続いて、異方性導電フィルム114上に液晶駆動用IC115を載置した後、図12に示すように熱圧着ヘッド等の熱圧着手段121によって液晶駆動用IC115を異方性導電フィルム114とともに端子部109a側へ押圧しつつ熱圧着手段121を発熱させる。この熱圧着手段121による発熱によって、軟化したバインダー樹脂が端子部109aと液晶駆動用IC115の端子部との間から流出するとともに、両端子部間で導電性粒子が挟持され、この状態でバインダー樹脂が熱硬化する。これにより、異方性導電フィルム114を介して液晶駆動用IC115が端子部109a上に導通接続される。 When the liquid crystal driving IC 115 is connected to the terminal portion 109a through such an anisotropic conductive film 114, first, the anisotropic conductive film 114 is attached to the terminal portion 109a of the transparent electrode 109 by a temporary crimping means (not shown). Temporarily crimp. Subsequently, after the liquid crystal driving IC 115 is mounted on the anisotropic conductive film 114, the liquid crystal driving IC 115 is connected to the terminal together with the anisotropic conductive film 114 by the thermocompression bonding means 121 such as a thermocompression bonding head as shown in FIG. The thermocompression bonding means 121 is caused to generate heat while being pressed toward the portion 109a. Due to the heat generated by the thermocompression bonding means 121, the softened binder resin flows out between the terminal portion 109a and the terminal portion of the liquid crystal driving IC 115, and the conductive particles are sandwiched between the two terminal portions. Is thermoset. Accordingly, the liquid crystal driving IC 115 is conductively connected to the terminal portion 109a through the anisotropic conductive film 114.
特開2010-27569号公報JP 2010-27569 A
 ここで、ITOやIZOからなる端子部109aは、表面に酸化金属が形成されており、異方性導電フィルム114に含有されている導電性粒子が端子部109a表面に形成された酸化金属を突き破って充分に食い込むことができず、導通信頼性が不十分となるおそれがあった。 Here, the terminal portion 109a made of ITO or IZO has a metal oxide formed on the surface, and the conductive particles contained in the anisotropic conductive film 114 break through the metal oxide formed on the surface of the terminal portion 109a. Insufficient conduction could result in insufficient conduction reliability.
 このような問題に対しては、例えば表面に突起を形成した導電性粒子を用いて、酸化膜を突き破ることにより導通性を確保する技術が提案されている。しかし、表面に突起を設けた導電性粒子は、突起の数が少ないと当該突起が端子部109aへ向かずかえって接続抵抗が高くなるおそれがある。また、突起の数を増やした場合、端子部109aとの導通性は改善できるが、突起の分だけ粒径が大きくなり、そのため、ファインピッチ化された配線間において絶縁性が悪くなるという欠点がある。 For such a problem, for example, a technique has been proposed in which conductivity is ensured by breaking through an oxide film using conductive particles having protrusions formed on the surface. However, if the conductive particles having protrusions on the surface have a small number of protrusions, the protrusions may not be directed to the terminal portion 109a and connection resistance may be increased. In addition, when the number of protrusions is increased, the continuity with the terminal portion 109a can be improved, but the particle size is increased by the amount of the protrusions, so that there is a disadvantage that the insulating property is deteriorated between the fine pitched wirings. is there.
 そこで、本発明は、表面に酸化膜が形成された電極端子に対しても導通性を確保するとともに、隣接する配線間の絶縁性も備える異方性導電接着剤を用いた接続体の製造方法、及び異方性導電接着剤を提供することを目的とする。 Accordingly, the present invention provides a method for manufacturing a connection body using an anisotropic conductive adhesive that ensures conductivity even for electrode terminals having an oxide film formed on the surface and also has insulation between adjacent wires. And an anisotropic conductive adhesive.
 上述した課題を解決するために、本発明に係る接続体の製造方法は、異方性導電接着剤を介して基板に形成された端子電極上に電子部品を配置し、上記電子部品の上から熱加圧することにより上記異方性導電接着剤を軟化させ、上記異方性導電接着剤を硬化させて上記基板と上記電子部品とを接続させた接続体の製造方法において、上記導電性接着剤は、バインダー樹脂と、上記バインダー樹脂に分散された第1の導電性粒子とを有する第1の導電性接着剤層と、上記第1の導電性接着剤層の一方の面に積層され、バインダー樹脂中に上記第1の導電性粒子の粒子径よりも小さな粒子径の第2の導電性粒子が分散された第2の導電性接着剤層とを有し、上記第2の導電性接着剤層を上記基板側に貼着するものである。 In order to solve the above-described problems, a method for manufacturing a connection body according to the present invention includes disposing an electronic component on a terminal electrode formed on a substrate via an anisotropic conductive adhesive, and from above the electronic component. In the method of manufacturing a connection body in which the anisotropic conductive adhesive is softened by heat pressing and the anisotropic conductive adhesive is cured to connect the substrate and the electronic component, the conductive adhesive Is laminated on one surface of the first conductive adhesive layer having a binder resin and first conductive particles dispersed in the binder resin, and on the one surface of the first conductive adhesive layer. A second conductive adhesive layer in which second conductive particles having a particle diameter smaller than the particle diameter of the first conductive particles are dispersed in a resin, and the second conductive adhesive The layer is attached to the substrate side.
 また、本発明に係る異方性導電接着剤は、バインダー樹脂と、上記バインダー樹脂に分散された第1の導電性粒子とを有する第1の導電性接着剤層と、上記第1の導電性接着剤層の一方の面に積層され、バインダー樹脂中に上記第1の導電性粒子の粒子径よりも小さな粒子径の第2の導電性粒子が分散された第2の導電性接着剤層とを有するものである。 The anisotropic conductive adhesive according to the present invention includes a first conductive adhesive layer having a binder resin and first conductive particles dispersed in the binder resin, and the first conductive A second conductive adhesive layer laminated on one surface of the adhesive layer, wherein second conductive particles having a particle diameter smaller than the particle diameter of the first conductive particles are dispersed in a binder resin; It is what has.
 本発明によれば、異方性導電フィルムは、基板の端子電極に、第1の導電性粒子よりも粒子径の小さい第2の導電性粒子を含有する第2の導電性接着剤層が貼着されているため、この第2の導電性粒子が端子電極と接し、第2の導電性粒子を介して第1の導電性粒子及び電子部品の電極端子が端子電極と接続される。 According to the present invention, the anisotropic conductive film has the second conductive adhesive layer containing the second conductive particles having a particle diameter smaller than that of the first conductive particles attached to the terminal electrode of the substrate. Since the second conductive particles are in contact with the terminal electrode, the first conductive particles and the electrode terminals of the electronic component are connected to the terminal electrode through the second conductive particles.
 これにより、異方性導電フィルムは、電子部品を介して圧力が第2の導電性粒子に掛かることから、端子電極の表面に酸化金属(酸化膜)が形成された場合にも、第2の導電性粒子によって端子電極表面に形成された酸化金属を突き破って充分に食い込むことができ、導通信頼性を向上させることができる。 Thereby, since an anisotropic conductive film applies a pressure to the 2nd electroconductive particle through an electronic component, even when a metal oxide (oxide film) is formed in the surface of a terminal electrode, the 2nd The metal oxide formed on the surface of the terminal electrode by the conductive particles can be penetrated sufficiently and the conduction reliability can be improved.
図1は、本発明が適用された接続工程を示す断面図である。FIG. 1 is a sectional view showing a connection process to which the present invention is applied. 図2は、本発明が適用された異方性導電フィルムを示す断面図である。FIG. 2 is a cross-sectional view showing an anisotropic conductive film to which the present invention is applied. 図3は、異方性導電フィルムを用いて電子部品を接続する状態を示す断面図である。FIG. 3 is a cross-sectional view illustrating a state in which an electronic component is connected using an anisotropic conductive film. 図4は、第1の導電性粒子の粒子径よりも第2の導電性接着剤層の厚みを厚くした場合における電子部品を接続する状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which electronic components are connected when the thickness of the second conductive adhesive layer is made larger than the particle diameter of the first conductive particles. 図5は、第1の導電性粒子と第2の導電性粒子との粒子径の関係を説明する図である。FIG. 5 is a diagram for explaining the relationship between the particle diameters of the first conductive particles and the second conductive particles. 図6は、実施例を示す断面図である。FIG. 6 is a cross-sectional view showing an embodiment. 図7は、比較例1を示す断面図である。FIG. 7 is a cross-sectional view showing Comparative Example 1. 図8は、比較例2を示す断面図である。FIG. 8 is a cross-sectional view showing Comparative Example 2. 図9は、比較例3を示す断面図である。FIG. 9 is a cross-sectional view showing Comparative Example 3. 図10は、比較例4を示す断面図である。FIG. 10 is a cross-sectional view showing Comparative Example 4. 図11は、従来の液晶表示パネルを示す断面図である。FIG. 11 is a cross-sectional view showing a conventional liquid crystal display panel. 図12は、従来の液晶表示パネルのCOG実装工程を示す断面図である。FIG. 12 is a cross-sectional view showing a COG mounting process of a conventional liquid crystal display panel.
 以下、本発明が適用された接続体の製造方法及び異方性導電接着剤について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a method for manufacturing a connection body and an anisotropic conductive adhesive to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 以下では、接続対象物及び被接続対象物として、電子部品を基板に接続する場合を例に説明するが、本技術は、電子部品と基板との接続以外にも適用することができる。図1に示すように、例えば、液晶表示パネルのガラス基板に液晶駆動用のICチップを実装するいわゆるCOG(chip on glass)実装を行う。この液晶表示パネル10は、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。 Hereinafter, a case where an electronic component is connected to a substrate as an object to be connected and an object to be connected will be described as an example, but the present technology can be applied to other than the connection between the electronic component and the substrate. As shown in FIG. 1, for example, so-called COG (chip-on-glass) mounting is performed in which a liquid crystal driving IC chip is mounted on a glass substrate of a liquid crystal display panel. In the liquid crystal display panel 10, two transparent substrates 11 and 12 made of a glass substrate or the like are arranged to face each other, and the transparent substrates 11 and 12 are bonded to each other by a frame-shaped seal 13. In the liquid crystal display panel 10, the liquid crystal 14 is sealed in a space surrounded by the transparent substrates 11 and 12 to form a panel display unit 15.
 透明基板11,12は、互いに対向する両内側表面に、ITO(Indium Tin Oxide:酸化インジウムスズ)やIZO(Indium Zinc Oxide:酸化インジウム亜鉛)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。 The transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) on the inner surfaces facing each other. Are formed so as to cross each other. The transparent electrodes 16 and 17 are configured such that a pixel as a minimum unit of liquid crystal display is configured by the intersection of the transparent electrodes 16 and 17.
 両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、液晶駆動用IC等の電子部品18が実装されるCOG実装部20が設けられ、またCOG実装部20の外側近傍には、液晶駆動回路が形成されたフレキシブル基板21が実装されるFOG実装部22が設けられている。 Of the transparent substrates 11 and 12, one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and a liquid crystal driving edge is formed on the edge 12a of the formed transparent substrate 12. A COG mounting unit 20 on which an electronic component 18 such as an IC is mounted is provided, and an FOG mounting unit 22 on which a flexible substrate 21 on which a liquid crystal driving circuit is formed is mounted near the outside of the COG mounting unit 20. ing.
 なお、液晶駆動用ICや液晶駆動回路は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。 Note that the liquid crystal driving IC and the liquid crystal driving circuit can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying the liquid crystal driving voltage to the pixels. ing.
 各実装部20,22には、透明電極17の端子部17aが形成されている。端子部17a上には、異方性導電接着剤として異方性導電フィルム1を用いて液晶駆動用IC等の電子部品18やフレキシブル基板21が接続される。異方性導電フィルム1は、第1の導電性粒子4及び第2の導電性粒子6を含有しており、電子部品18やフレキシブル基板21の電極と透明基板12の縁部12aに形成された透明電極17の端子部17aとを、第1の導電性粒子4及び第2の導電性粒子6を介して電気的に接続させるものである。この異方性導電フィルム1は、後述するように、例えば熱硬化型の接着剤であり、加熱押圧ヘッド30により熱圧着されることにより流動化して第1の導電性粒子4及び第2の導電性粒子6が端子部17aと電子部品18やフレキシブル基板21の各電極端子との間で押し潰され、熱硬化反応を起こす所定温度で加熱されることにより、第1の導電性粒子4及び第2の導電性粒子6が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と電子部品18やフレキシブル基板21とを電気的、機械的に接続する。 The terminal portions 17a of the transparent electrodes 17 are formed on the mounting portions 20 and 22, respectively. On the terminal portion 17a, an electronic component 18 such as a liquid crystal driving IC and a flexible substrate 21 are connected using the anisotropic conductive film 1 as an anisotropic conductive adhesive. The anisotropic conductive film 1 contains the first conductive particles 4 and the second conductive particles 6, and is formed on the electrodes of the electronic component 18 and the flexible substrate 21 and the edge 12 a of the transparent substrate 12. The terminal portion 17 a of the transparent electrode 17 is electrically connected through the first conductive particles 4 and the second conductive particles 6. As will be described later, the anisotropic conductive film 1 is, for example, a thermosetting adhesive, and is fluidized by being thermocompression-bonded by the heating and pressing head 30 so that the first conductive particles 4 and the second conductive film 1 are conductive. The conductive particles 6 are crushed between the terminal portion 17a and each electrode terminal of the electronic component 18 or the flexible substrate 21 and heated at a predetermined temperature causing a thermosetting reaction, whereby the first conductive particles 4 and the first conductive particles 4 It hardens | cures in the state by which the electroconductive particle 6 of 2 was crushed. Thereby, the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 to the electronic component 18 and the flexible substrate 21.
 また、両透明電極16,17上には、所定のラビング処理が施された配向膜24が形成されており、この配向膜24によって液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。 Further, an alignment film 24 subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of liquid crystal molecules is regulated by the alignment film 24. In addition, a pair of polarizing plates 25 and 26 are disposed outside the transparent substrates 11 and 12, and these polarizing plates 25 and 26 allow transmitted light from a light source (not shown) such as a backlight to be transmitted. The vibration direction is regulated.
 [異方性導電フィルム]
 本発明が適用された異方性導電フィルム(ACF:anisotropic conductive film)1は、図2に示すように、基材となる剥離フィルム2上に第1の導電性接着剤層3と第2の導電性接着剤層5とが、この順に積層されたものである。異方性導電フィルム1は、図1に示すように、液晶表示パネル10の透明基板12に形成された透明電極17と電子部品18やフレキシブル基板21との間に第1、第2の導電性接着剤層3,5を介在させることで、液晶表示パネル10と電子部品18あるいはフレキシブル基板21とを接続し、導通させるために用いられる。
[Anisotropic conductive film]
As shown in FIG. 2, an anisotropic conductive film (ACF) 1 to which the present invention is applied includes a first conductive adhesive layer 3 and a second conductive film on a release film 2 serving as a base material. The conductive adhesive layer 5 is laminated in this order. As shown in FIG. 1, the anisotropic conductive film 1 includes first and second conductive materials between a transparent electrode 17 formed on a transparent substrate 12 of the liquid crystal display panel 10 and an electronic component 18 or a flexible substrate 21. By interposing the adhesive layers 3, 5, the liquid crystal display panel 10 and the electronic component 18 or the flexible substrate 21 are connected and used for electrical connection.
 剥離フィルム2としては、異方性導電フィルムにおいて一般に用いられている例えばポリエチレンテレフタレートフィルム等の基材を使用することができる。 As the release film 2, a substrate such as a polyethylene terephthalate film generally used in anisotropic conductive films can be used.
 [第1の導電性接着剤層]
 第1の導電性接着剤層3は、バインダー樹脂3a中に第1の導電性粒子4を分散してなるものである。バインダー樹脂3aは、膜形成樹脂、硬化性樹脂、硬化剤、シランカップリング剤等を含有するものであり、通常の異方性導電フィルムに用いられるバインダーと同様である。
[First conductive adhesive layer]
The first conductive adhesive layer 3 is formed by dispersing first conductive particles 4 in a binder resin 3a. The binder resin 3a contains a film-forming resin, a curable resin, a curing agent, a silane coupling agent, and the like, and is the same as the binder used for a normal anisotropic conductive film.
 膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。 The film forming resin is preferably a resin having an average molecular weight of about 10,000 to 80,000. Examples of the film forming resin include various resins such as a phenoxy resin, an epoxy resin, a modified epoxy resin, and a urethane resin. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.
 硬化性樹脂としては、特に限定されず、エポキシ樹脂、アクリル樹脂等が挙げられる。 The curable resin is not particularly limited, and examples thereof include an epoxy resin and an acrylic resin.
 エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。具体例として、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。 There is no restriction | limiting in particular as an epoxy resin, According to the objective, it can select suitably. As specific examples, for example, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, A dicyclopentadiene type epoxy resin, a triphenylmethane type epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.
 アクリル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、具体例として、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。 There is no restriction | limiting in particular as an acrylic resin, According to the objective, it can select suitably, For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, for example , Trimethylolpropane triacrylate, dimethyloltricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxye) Le) isocyanurate, urethane acrylate, epoxy acrylate. These may be used alone or in combination of two or more.
 硬化剤としては、特に制限はなく、目的に応じて適宜選択することができるが、硬化性樹脂がエポキシ樹脂の場合はカチオン系硬化剤が好ましく、硬化性樹脂がアクリル樹脂の場合はラジカル系硬化剤が好ましい。 The curing agent is not particularly limited and may be appropriately selected depending on the purpose. However, when the curable resin is an epoxy resin, a cationic curing agent is preferable, and when the curable resin is an acrylic resin, radical curing is performed. Agents are preferred.
 カチオン系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩等を挙げることができ、これらの中でも、芳香族スルホニウム塩が好ましい。ラジカル系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機過酸化物を挙げることができる。 There is no restriction | limiting in particular as a cationic hardening | curing agent, According to the objective, it can select suitably, For example, a sulfonium salt, onium salt, etc. can be mentioned, Among these, an aromatic sulfonium salt is preferable. There is no restriction | limiting in particular as a radical type hardening | curing agent, According to the objective, it can select suitably, For example, an organic peroxide can be mentioned.
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。 Examples of silane coupling agents include epoxy, amino, mercapto sulfide, ureido and the like. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.
 [第1の導電性粒子]
 第1の導電性粒子4としては、異方性導電フィルムにおいて使用されている公知の何れの導電性粒子を挙げることができる。第1の導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。このような、第1の導電性粒子4としては、例えば平均粒径が4μmの導電性粒子を用いることができる。
[First conductive particles]
As the 1st electroconductive particle 4, any well-known electroconductive particle currently used in the anisotropic conductive film can be mentioned. Examples of the first conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, and glass. In addition, the surface of particles such as ceramics and plastics may be coated with metal, or the surface of these particles may be further coated with an insulating thin film. In the case where the surface of the resin particle is coated with a metal, examples of the resin particle include epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, and the like. Can be mentioned. As such first conductive particles 4, for example, conductive particles having an average particle diameter of 4 μm can be used.
 [第2の導電性接着剤層]
 第2の導電性接着剤層5は、バインダー樹脂5a中に第2の導電性粒子6を分散してなるものである。バインダー樹脂5aは、第1の導電性接着剤層3のバインダー樹脂3aと同様である。
[Second conductive adhesive layer]
The second conductive adhesive layer 5 is formed by dispersing second conductive particles 6 in a binder resin 5a. The binder resin 5 a is the same as the binder resin 3 a of the first conductive adhesive layer 3.
 [第2の導電性粒子]
 第2の導電性粒子6は、異方性導電フィルムにおいて使用されている公知の何れの導電性粒子を挙げることができるが、第1の導電性粒子4の粒子径よりも小さな粒子径の導電性粒子が用いられる。第2の導電性粒子6は、例えば、平均粒径が0.2μmのニッケル微粉末を用いることができる。
[Second conductive particles]
Examples of the second conductive particles 6 include any of the known conductive particles used in anisotropic conductive films. However, the second conductive particles 6 have a particle size smaller than that of the first conductive particles 4. Sex particles are used. As the second conductive particles 6, for example, nickel fine powder having an average particle diameter of 0.2 μm can be used.
 [異方性導電フィルムの製造方法]
 異方性導電フィルム1は、何れの方法で作製するようにしてもよいが、例えば以下の方法によって作製することができる。
[Method for producing anisotropic conductive film]
Although the anisotropic conductive film 1 may be produced by any method, for example, it can be produced by the following method.
 先ず、第1の導電性接着剤層3を構成するバインダー樹脂3aの組成物及び第1の導電性粒子4を溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。溶解させて得られた接着剤層生成用溶液をバーコーターによって剥離フィルム2上に塗布し、オーブンで加熱することによって溶剤を揮発させ、第1の導電性接着剤層3を得る。 First, the composition of the binder resin 3a constituting the first conductive adhesive layer 3 and the first conductive particles 4 are dissolved in a solvent. As the solvent, toluene, ethyl acetate or the like, or a mixed solvent thereof can be used. The adhesive layer generation solution obtained by dissolution is applied onto the release film 2 by a bar coater, and the solvent is volatilized by heating in an oven to obtain the first conductive adhesive layer 3.
 次いで、第2の導電性接着剤層5を構成するバインダー樹脂5aの組成物及び第2の導電性粒子6を溶剤に溶解させ、溶解させて得られた接着剤層生成用溶液をバーコーターによって、第1の導電性接着剤層3上に塗布する。そして、この塗布物からなる層をオーブンで加熱することによって溶剤を揮発させ、第1の導電性接着剤層3上に第2の導電性接着剤層5を得る。 Next, the composition of the binder resin 5a constituting the second conductive adhesive layer 5 and the second conductive particles 6 are dissolved in a solvent, and the resulting solution for generating the adhesive layer is dissolved by a bar coater. Then, it is applied on the first conductive adhesive layer 3. And the solvent is volatilized by heating the layer which consists of this coating material in oven, and the 2nd conductive adhesive layer 5 is obtained on the 1st conductive adhesive layer 3. FIG.
 [接続体の製造方法]
 次いで、異方性導電フィルム1を介して電子部品18やフレキシブル基板21が透明基板12の透明電極17上に接続された接続体の製造工程について説明する。先ず、異方性導電フィルム1を透明電極17上に仮圧着する。異方性導電フィルム1を仮圧着する方法は、液晶表示パネル10の透明基板12の透明電極17上に、第2の導電性接着剤層5が透明電極17側となるように、異方性導電フィルム1を配置する。
[Manufacturing method of connected body]
Next, a manufacturing process of a connection body in which the electronic component 18 and the flexible substrate 21 are connected to the transparent electrode 17 of the transparent substrate 12 through the anisotropic conductive film 1 will be described. First, the anisotropic conductive film 1 is temporarily pressure-bonded onto the transparent electrode 17. The method of temporarily press-bonding the anisotropic conductive film 1 is anisotropic so that the second conductive adhesive layer 5 is on the transparent electrode 17 side on the transparent electrode 17 of the transparent substrate 12 of the liquid crystal display panel 10. Conductive film 1 is disposed.
 そして、異方性導電フィルム1を透明電極17上に配置した後、剥離フィルム2側から異方性導電フィルム1を例えば加熱押圧ヘッド30で加熱及び加圧し、加熱押圧ヘッド30を剥離フィルム2から離し、剥離フィルム2を第1の導電性接着剤層3から剥離することによって、第1、第2の導電性接着剤層3,5のみが透明電極17上に仮圧着される。加熱押圧ヘッド30による仮圧着は、剥離フィルム2の上面を僅かな圧力(例えば0.1MPa~2MPa程度)で透明電極17側に押圧しながら加熱する。ただし、加熱温度は、異方性導電フィルム1中のエポキシ樹脂やアクリル樹脂等の熱硬化性樹脂が硬化しない程度の温度(例えば70~100℃程度)とする。 And after arrange | positioning the anisotropic conductive film 1 on the transparent electrode 17, the anisotropic conductive film 1 is heated and pressurized with the heating press head 30, for example from the peeling film 2 side, and the heating press head 30 is peeled from the peeling film 2. Release the release film 2 from the first conductive adhesive layer 3 to temporarily press-bond the first and second conductive adhesive layers 3 and 5 onto the transparent electrode 17. Temporary pressure bonding by the heating and pressing head 30 heats the upper surface of the release film 2 while pressing it against the transparent electrode 17 side with a slight pressure (for example, about 0.1 MPa to 2 MPa). However, the heating temperature is set to such a temperature that the thermosetting resin such as epoxy resin or acrylic resin in the anisotropic conductive film 1 is not cured (for example, about 70 to 100 ° C.).
 次に、透明基板12の透明電極17と電子部品18の電極端子18aとが第1、第2の導電性接着剤層3,5を介して対向するように、電子部品18を配置する。 Next, the electronic component 18 is arranged so that the transparent electrode 17 of the transparent substrate 12 and the electrode terminal 18a of the electronic component 18 face each other with the first and second conductive adhesive layers 3 and 5 therebetween.
 次に、電子部品18の上面を所定の加熱温度に昇温された加熱押圧ヘッド30により、所定の温度及び所定の圧力で所定時間、熱加圧する。これにより第1、第2の導電性接着剤層3,5は、各バインダー樹脂が軟化した後、熱硬化反応によって硬化する。このとき、図3に示すように、透明電極17の端子部17aと電子部品18の電極端子18aとの間から流動性を示したバインダー樹脂3a,5aが流出し、透明電極17の端子部17a及び電子部品18の電極端子18aの間で第1、第2の導電性粒子4,6が押し潰された状態とされ、この状態で第1、第2の導電性接着剤層3,5の各バインダー樹脂3a,5aが熱硬化する。 Next, the upper surface of the electronic component 18 is heat-pressed at a predetermined temperature and a predetermined pressure for a predetermined time by the heating press head 30 heated to a predetermined heating temperature. Thus, the first and second conductive adhesive layers 3 and 5 are cured by a thermosetting reaction after each binder resin is softened. At this time, as shown in FIG. 3, the binder resins 3 a and 5 a showing fluidity flow out from between the terminal portion 17 a of the transparent electrode 17 and the electrode terminal 18 a of the electronic component 18, and the terminal portion 17 a of the transparent electrode 17. In addition, the first and second conductive particles 4 and 6 are crushed between the electrode terminals 18a of the electronic component 18 and the first and second conductive adhesive layers 3 and 5 are in this state. Each binder resin 3a, 5a is thermally cured.
 [異方性導電フィルムの作用・効果]
 ここで、異方性導電フィルム1は、透明基板12の透明電極17に、第1の導電性粒子4よりも粒子径の小さい第2の導電性粒子6を含有する第2の導電性接着剤層3が貼着されているため、この第2の導電性粒子6が透明電極17の端子部17aと接し、第2の導電性粒子6を介して第1の導電性粒子4及び電子部品18の電極端子18aが端子部17aと接続される。
[Operation and effect of anisotropic conductive film]
Here, the anisotropic conductive film 1 includes a second conductive adhesive containing second conductive particles 6 having a particle diameter smaller than that of the first conductive particles 4 in the transparent electrode 17 of the transparent substrate 12. Since the layer 3 is adhered, the second conductive particles 6 are in contact with the terminal portions 17 a of the transparent electrode 17, and the first conductive particles 4 and the electronic component 18 are interposed via the second conductive particles 6. The electrode terminal 18a is connected to the terminal portion 17a.
 これにより、異方性導電フィルム1は、加熱押圧ヘッド30による圧力が第2の導電性粒子6に掛かることから、ITOやIZOからなる透明電極17の端子部17aの表面に酸化金属が形成された場合にも、第2の導電性粒子6によって端子部17a表面に形成された酸化金属を突き破って充分に食い込むことができ、導通信頼性を向上させることができる。 Thereby, in the anisotropic conductive film 1, since the pressure by the heating and pressing head 30 is applied to the second conductive particles 6, metal oxide is formed on the surface of the terminal portion 17a of the transparent electrode 17 made of ITO or IZO. Also in this case, the metal oxide formed on the surface of the terminal portion 17a by the second conductive particles 6 can be penetrated sufficiently and the conduction reliability can be improved.
 [第2の導電性接着剤層の層厚と第1の導電性粒子の粒子径]
 ここで、第1の導電性接着剤層3に積層される第2の導電性接着剤層5の膜厚は、第1の導電性粒子4の平均粒径未満とすることが好ましい。
[Layer thickness of second conductive adhesive layer and particle diameter of first conductive particles]
Here, the thickness of the second conductive adhesive layer 5 laminated on the first conductive adhesive layer 3 is preferably less than the average particle diameter of the first conductive particles 4.
 図4に示すように、第2の導電性接着剤層5の膜厚が第1の導電性粒子4の平均粒径よりも厚いと、電極端子18a間に第2の導電性粒子6が分散し、従来技術において導電性粒子に設けられた突起のごとく作用して、第1の導電性粒子4間に介在することにより、隣接する電極端子18a間を連続させ、短絡を引き起こすおそれが生じるためである。 As shown in FIG. 4, when the thickness of the second conductive adhesive layer 5 is larger than the average particle size of the first conductive particles 4, the second conductive particles 6 are dispersed between the electrode terminals 18a. In addition, since it acts like a protrusion provided on the conductive particles in the prior art and is interposed between the first conductive particles 4, the adjacent electrode terminals 18 a may be continuous to cause a short circuit. It is.
 [第2の導電性粒子の粒子径と第1の導電性粒子の粒子径]
 また、第2の導電性粒子6の平均粒径は、第1の導電性粒子4の平均粒径の20%以下とすることが好ましい。これにより、第2の導電性粒子6を介して第1の導電性粒子4同士が接続されることを防止することができる。
[Particle size of second conductive particles and particle size of first conductive particles]
The average particle diameter of the second conductive particles 6 is preferably 20% or less of the average particle diameter of the first conductive particles 4. Thereby, it is possible to prevent the first conductive particles 4 from being connected to each other through the second conductive particles 6.
 すなわち、図5に2つの第1の導電性粒子4と1つの第2の導電性粒子6とが接している状態を示す。第2の導電性粒子6は、図5に示す径以上の径を備えると、第1の導電性粒子4同士を接続させるおそれがある。反対に、図5に示す径より小さな径を備える場合、第2の導電性粒子6が第1の導電性粒子4同士の接続を媒介するおそれは殆どない。 That is, FIG. 5 shows a state where two first conductive particles 4 and one second conductive particle 6 are in contact with each other. If the second conductive particles 6 have a diameter equal to or larger than the diameter shown in FIG. 5, the first conductive particles 4 may be connected to each other. On the other hand, when the diameter is smaller than the diameter shown in FIG. 5, there is almost no possibility that the second conductive particles 6 mediate the connection between the first conductive particles 4.
 このような第2の導電性粒子6の径は、図5に示す三角形から、
(r-x)+r=(r+x)
との式を得る。これを解くと、
x=0.25r
すなわち、第2の導電性粒子6は第1の導電性粒子4の平均粒径の25%未満とすることが好ましい。さらに、各導電性粒子4,6の粒径のバラツキや、バインダー樹脂5a内での分散性等を考慮すると、第2の導電性粒子6の平均粒径は、第1の導電性粒子4の平均粒径の20%以下とすることがより好ましい。
The diameter of such second conductive particles 6 is from the triangle shown in FIG.
(R−x) 2 + r 2 = (r + x) 2
And get the formula. Solving this,
x = 0.25r
That is, the second conductive particles 6 are preferably less than 25% of the average particle size of the first conductive particles 4. Furthermore, in consideration of variation in the particle diameters of the conductive particles 4 and 6, dispersibility in the binder resin 5 a, the average particle diameter of the second conductive particles 6 is the same as that of the first conductive particles 4. More preferably, the average particle size is 20% or less.
 [第2の導電性粒子の硬度と第1の導電性粒子の硬度]
 また、第2の導電性粒子6の硬度は、第1の導電性粒子4の硬度と同等以上とすることが好ましい。上述したように、第2の導電性粒子6は、電極端子18a及び第1の導電性粒子4を介して加熱押圧ヘッド30による圧力を受け、ITOやIZOからなる透明電極17の端子部17aの表面に形成された酸化金属を突き破る必要がある。このため、第2の導電性粒子6は、圧力を吸収することなく、端子部17aの酸化金属に圧力を充分に掛けるために、第1の導電性粒子4の硬度と同等以上とすることが好ましい。
[Hardness of second conductive particles and hardness of first conductive particles]
The hardness of the second conductive particles 6 is preferably equal to or higher than the hardness of the first conductive particles 4. As described above, the second conductive particle 6 receives pressure from the heating and pressing head 30 via the electrode terminal 18a and the first conductive particle 4, and the terminal portion 17a of the transparent electrode 17 made of ITO or IZO. It is necessary to break through the metal oxide formed on the surface. For this reason, the second conductive particles 6 should be equal to or higher than the hardness of the first conductive particles 4 in order to sufficiently apply pressure to the metal oxide of the terminal portion 17a without absorbing the pressure. preferable.
 なお、異方性導電フィルム1は、熱硬化型の第1、第2の導電性接着剤層3,5を用いる他に、紫外線硬化型の第1、第2の導電性接着剤層3,5であってもよい。 The anisotropic conductive film 1 uses the thermosetting first and second conductive adhesive layers 3 and 5 as well as the ultraviolet curable first and second conductive adhesive layers 3 and 5. 5 may be sufficient.
 [第1の実施例]
 次いで、本発明の実施例について説明する。第1の実施例では、以下の実施例及び比較例に係る異方性導電フィルムを用いて、ガラス基板上にICを熱圧着して接続体を形成し、各接続体について、ショート数及び導通抵抗値を測定した。
[First embodiment]
Next, examples of the present invention will be described. In the first example, using the anisotropic conductive films according to the following examples and comparative examples, ICs are thermocompression-bonded on a glass substrate to form a connection body. The resistance value was measured.
 接続体を構成するガラス基板12は、厚み0.5mmで、表面にITO膜からなる配線電極17a(50μmピッチ:ライン30μm/スペース20μm/厚さ0.5mm)が形成されている。ガラス基板12に接続されるICは、バンプ18aの高さが15μmでバンプ18a間のスペースが7.5μmである。 The glass substrate 12 constituting the connection body has a thickness of 0.5 mm, and a wiring electrode 17a (50 μm pitch: line 30 μm / space 20 μm / thickness 0.5 mm) made of an ITO film is formed on the surface. In the IC connected to the glass substrate 12, the height of the bumps 18a is 15 μm, and the space between the bumps 18a is 7.5 μm.
 実施例1では、第1の導電性接着剤層3は、
フェノキシ樹脂(YP50:新日鐵化学株式会社製);30質量部
エポキシ樹脂(jER828:三菱化学株式会社製);30質量部
イミダゾール系硬化剤(HX3941HP:旭化成イーマテリアルズ株式会社製);30質量部
突起無し導電性粒子(第1の導電性粒子4)(AUL-704:積水化学株式会社製:平均粒径4μm);30質量部
からなる接着剤組成物を剥離フィルム上に塗布し、80℃オーブンにて5分間乾燥し、厚さ18μmの導電性接着剤層3を作成した。
In Example 1, the first conductive adhesive layer 3 is
Phenoxy resin (YP50: manufactured by Nippon Steel Chemical Co., Ltd.); 30 parts by mass epoxy resin (jER828: manufactured by Mitsubishi Chemical Corporation); 30 parts by mass imidazole-based curing agent (HX3941HP: manufactured by Asahi Kasei E-Materials Co., Ltd.); Non-protrusive conductive particles (first conductive particles 4) (AUL-704: manufactured by Sekisui Chemical Co., Ltd .: average particle size 4 μm); 30 parts by mass of an adhesive composition was applied onto a release film, The conductive adhesive layer 3 having a thickness of 18 μm was prepared by drying in an oven at 5 ° C. for 5 minutes.
 また、第2の導電性接着剤層5は、
フェノキシ樹脂(YP50:新日鐵化学株式会社製);30質量部
エポキシ樹脂(jER828:三菱化学株式会社製);30質量部
イミダゾール系硬化剤(HX3941HP:旭化成イーマテリアルズ株式会社製);30質量部
Ni微粉末(第2の導電性粒子6)(NFP201:JFEミネラル株式会社製:平均粒径0.2μm);10質量部
からなる接着剤組成物を剥離フィルム上に塗布し、80℃オーブンにて5分間乾燥し、厚さ2μmの導電性接着剤層5を作成した。
The second conductive adhesive layer 5 is
Phenoxy resin (YP50: manufactured by Nippon Steel Chemical Co., Ltd.); 30 parts by mass epoxy resin (jER828: manufactured by Mitsubishi Chemical Corporation); 30 parts by mass imidazole curing agent (HX3941HP: manufactured by Asahi Kasei E-Materials Co., Ltd.); Part Ni fine powder (second conductive particles 6) (NFP201: manufactured by JFE Mineral Co., Ltd .: average particle size 0.2 μm); an adhesive composition consisting of 10 parts by mass was applied onto a release film, and an 80 ° C. oven Was dried for 5 minutes to prepare a conductive adhesive layer 5 having a thickness of 2 μm.
 そして、図6に示すように、これら第1の導電性接着剤層3及び第2の導電性接着剤層5を、第2の導電性接着剤層5がガラス基板12側となるようにラミネータで貼り合わせ、ICを搭載後、加熱押圧ヘッドにて200℃-80MPa-5secの条件にて熱加圧し、接続体サンプルを得た。 Then, as shown in FIG. 6, the first conductive adhesive layer 3 and the second conductive adhesive layer 5 are made into a laminator so that the second conductive adhesive layer 5 is on the glass substrate 12 side. After mounting the IC and mounting the IC, it was hot-pressed under the conditions of 200 ° C.-80 MPa-5 sec with a heating press head to obtain a connected body sample.
 比較例1では、図7に示すように、第1の導電性接着剤層3及び第2の導電性接着剤層5を、第1の導電性接着剤層3がガラス基板12側となるようにラミネータで貼り合わせた以外は、実施例1と同様の条件とした。 In Comparative Example 1, as shown in FIG. 7, the first conductive adhesive layer 3 and the second conductive adhesive layer 5 are arranged so that the first conductive adhesive layer 3 is on the glass substrate 12 side. The conditions were the same as in Example 1 except that the film was laminated with a laminator.
 比較例2では、図8に示すように、第2の導電性接着剤層5を設けず、第1の導電性接着剤層3のみをガラス基板12に貼り合わせた。また、比較例2では、実施例1に係る第1の導電性接着剤層3の成分に加え、Ni微粉末(第2の導電性粒子6)(NFP201:JFEミネラル株式会社製:平均粒径0.2μm)を10質量部配合した接着剤組成物をフィルム上に塗布し、80℃オーブンにて5分間乾燥し、厚さ20μmの導電性接着剤層3を作成した。ICの熱加圧条件は実施例1と同様である。 In Comparative Example 2, as shown in FIG. 8, the second conductive adhesive layer 5 was not provided, and only the first conductive adhesive layer 3 was bonded to the glass substrate 12. In Comparative Example 2, in addition to the components of the first conductive adhesive layer 3 according to Example 1, Ni fine powder (second conductive particles 6) (NFP201: manufactured by JFE Mineral Co., Ltd .: average particle diameter) An adhesive composition containing 10 parts by mass of 0.2 μm) was applied onto the film and dried in an oven at 80 ° C. for 5 minutes to prepare a conductive adhesive layer 3 having a thickness of 20 μm. The IC heat pressurizing conditions are the same as in Example 1.
 比較例3では、図9に示すように、第2の導電性接着剤層5を設けず、第1の導電性接着剤層3のみをガラス基板12に貼り合わせた。また、比較例3では、実施例1と同様の接着剤組成物をフィルム上に塗布し、80℃オーブンにて5分間乾燥し、厚さ20μmの導電性接着剤層3を作成した。ICの熱加圧条件は実施例1と同様である。 In Comparative Example 3, as shown in FIG. 9, the second conductive adhesive layer 5 was not provided, and only the first conductive adhesive layer 3 was bonded to the glass substrate 12. In Comparative Example 3, the same adhesive composition as in Example 1 was applied on the film and dried in an oven at 80 ° C. for 5 minutes to form a conductive adhesive layer 3 having a thickness of 20 μm. The IC heat pressurizing conditions are the same as in Example 1.
 比較例4では、図10に示すように、第2の導電性接着剤層5を設けず、第1の導電性接着剤層3のみをガラス基板12に貼り合わせた。また、比較例4では、実施例1に係る第1の導電性接着剤層3の成分中、突起無し導電性粒子(第1の導電性粒子4)(AUL-704:積水化学株式会社製)に代えて、突起有り導電性粒子(第1の導電性粒子4a)(AULB-704:積水化学株式会社製)を30質量部配合した接着剤組成物を用い、これをフィルム上に塗布し、80℃オーブンにて5分間乾燥し、厚さ20μmの導電性接着剤層3を作成した。ICの熱加圧条件は実施例1と同様である。 In Comparative Example 4, as shown in FIG. 10, the second conductive adhesive layer 5 was not provided, and only the first conductive adhesive layer 3 was bonded to the glass substrate 12. In Comparative Example 4, the conductive particles without protrusions (first conductive particles 4) in the components of the first conductive adhesive layer 3 according to Example 1 (AUL-704: manufactured by Sekisui Chemical Co., Ltd.) Instead of using an adhesive composition containing 30 parts by mass of conductive particles with protrusions (first conductive particles 4a) (AULB-704: manufactured by Sekisui Chemical Co., Ltd.), this was applied onto a film, It dried for 5 minutes in 80 degreeC oven, and produced the electroconductive adhesive layer 3 of thickness 20 micrometers. The IC heat pressurizing conditions are the same as in Example 1.
 以上のようにして製造した各接続体サンプルについて、ショート数及び導通抵抗値を測定した。ショート数の測定は、各接続体サンプルについて、16CHの端子間の抵抗値(Ω)を2端子法によって測定し、ショート数(個)を評価した。また、導通抵抗値の測定は、各接続体サンプルについて、30chの端子間の抵抗値(Ω)を4端子法によって測定し、最大値及び平均値を求めた。測定結果を表1に示す。 The number of shorts and the conduction resistance value were measured for each connection body sample manufactured as described above. For the measurement of the number of shorts, the resistance value (Ω) between the terminals of 16CH was measured by the two-terminal method for each connected body sample, and the number of shorts (pieces) was evaluated. Moreover, the measurement of a conduction resistance value measured the resistance value ((ohm)) between the terminals of 30ch about each connection body sample by the 4-terminal method, and calculated | required the maximum value and the average value. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1によれば、ガラス基板12側に配された第2の導電性接着剤層5のNi微粉末6がITO電極17a表面に形成された酸化金属を突き破り、充分な導通を得ることができ、最大導通抵抗値、平均導通抵抗値のいずれも低いものとなった。また、実施例1によれば、ガラス基板12側に第1の導電性接着剤層3に含有された第1の導電性粒子4よりも厚さの薄い第2の導電性接着剤層5を設けたため、ICバンプ18a間でNi微粉末6が介在することによる第1の導電性粒子4の接続も防止され、ショート数も0であった。 As shown in Table 1, according to Example 1, the Ni fine powder 6 of the second conductive adhesive layer 5 disposed on the glass substrate 12 side penetrates the metal oxide formed on the surface of the ITO electrode 17a. Sufficient conduction was obtained, and both the maximum conduction resistance value and the average conduction resistance value were low. Moreover, according to Example 1, the 2nd conductive adhesive layer 5 thinner than the 1st conductive particle 4 contained in the 1st conductive adhesive layer 3 on the glass substrate 12 side is provided. Since it was provided, the connection of the first conductive particles 4 due to the Ni fine powder 6 intervening between the IC bumps 18a was prevented, and the number of short circuits was zero.
 一方、比較例1では、第2の導電性接着剤層5をIC側に配したため、また、比較例2では、Ni微粉末6が第1の導電性接着剤層3の全体に亘って分散されているため、いずれもNi微粉末6によるITO電極17aとの導通が不十分となり、最大導通抵抗値、平均導通抵抗値が上昇した。また、ICバンプ18a間でNi微粉末6が介在することによる第1の導電性粒子4の接続が生じ、ショート数も増えた。 On the other hand, in Comparative Example 1, the second conductive adhesive layer 5 was disposed on the IC side. In Comparative Example 2, Ni fine powder 6 was dispersed throughout the first conductive adhesive layer 3. Therefore, in any case, the conduction with the ITO electrode 17a by the Ni fine powder 6 became insufficient, and the maximum conduction resistance value and the average conduction resistance value increased. Moreover, the connection of the 1st electroconductive particle 4 by the Ni fine powder 6 interposing between IC bumps 18a arose, and the number of shorts also increased.
 また、比較例3、4では、Ni微粉末6を含有しないために、Ni微粉末6によるITO電極17aとの導通の効果が得られず、最大導通抵抗値、平均導通抵抗値が上昇した。また、比較例4では、突起が形成された導電性粒子4aが第1の導電性接着剤層3の全体に亘って分散されているため、突起の分だけ粒径が大きくなり、そのため、ファインピッチ化されたICバンプ18a間においてショート数が増えた。 In Comparative Examples 3 and 4, since the Ni fine powder 6 was not contained, the effect of conduction with the ITO electrode 17a by the Ni fine powder 6 was not obtained, and the maximum conduction resistance value and the average conduction resistance value increased. Further, in Comparative Example 4, since the conductive particles 4a on which the protrusions are formed are dispersed throughout the first conductive adhesive layer 3, the particle diameter is increased by the amount of the protrusions. The number of shorts increased between the pitched IC bumps 18a.
 [第2の実施例]
 次いで、上記実施例1にかかる異方性導電フィルムにおいて、第2の導電性接着剤層5の厚さを変えた第2の実施例について説明する。第2の実施例に係る各異方性導電フィルムは、第2の導電性接着剤層5の厚さを変えた以外は、実施例1に係る異方性導電フィルムと同一の構成、製法である。
[Second Embodiment]
Next, in the anisotropic conductive film according to Example 1, a second example in which the thickness of the second conductive adhesive layer 5 is changed will be described. Each anisotropic conductive film according to the second example has the same configuration and manufacturing method as the anisotropic conductive film according to Example 1 except that the thickness of the second conductive adhesive layer 5 is changed. is there.
 実施例2では、第2の導電性接着剤層5の厚さを1μmとした。実施例2にかかる第2の導電性接着剤層5はガラス基板12への仮貼り温度が120℃である。これは、薄いバインダー樹脂層にNi微粉末が多すぎ、樹脂分が減少し、仮貼り性が低下したためである。 In Example 2, the thickness of the second conductive adhesive layer 5 was 1 μm. The second conductive adhesive layer 5 according to the example 2 has a temporary sticking temperature to the glass substrate 12 of 120 ° C. This is because the Ni binder is too much in the thin binder resin layer, the resin content is reduced, and the temporary sticking property is lowered.
 実施例3では、第2の導電性接着剤層5の厚さを2μmとした。実施例3にかかる第2の導電性接着剤層5はガラス基板12への仮貼り温度が80℃である。その他は、実施例2と同様である。 In Example 3, the thickness of the second conductive adhesive layer 5 was 2 μm. The second conductive adhesive layer 5 according to Example 3 has a temporary sticking temperature to the glass substrate 12 of 80 ° C. Others are the same as in the second embodiment.
 実施例4では、第2の導電性接着剤層5の厚さを3μmとした他は、実施例3と同様である。 Example 4 is the same as Example 3 except that the thickness of the second conductive adhesive layer 5 is set to 3 μm.
 比較例5では、第2の導電性接着剤層5の厚さを4μmとした他は、実施例3と同様である。比較例5は、第1の導電性接着剤層3に含有されている突起無し導電性粒子(第1の導電性粒子4)(AUL-704:積水化学株式会社製)の平均粒径4μmと同じ厚さを有する。 Comparative Example 5 is the same as Example 3 except that the thickness of the second conductive adhesive layer 5 is 4 μm. In Comparative Example 5, the average particle diameter of 4 μm of the protrusion-free conductive particles (first conductive particles 4) (AUL-704: manufactured by Sekisui Chemical Co., Ltd.) contained in the first conductive adhesive layer 3 is Have the same thickness.
 比較例6では、第2の導電性接着剤層5の厚さを5μmとした他は、実施例3と同様である。比較例6は、第1の導電性接着剤層に含有されている突起無し導電性粒子(第1の導電性粒子4)(AUL-704:積水化学株式会社製)の平均粒径4μm以上の厚さを有する。 Comparative Example 6 is the same as Example 3 except that the thickness of the second conductive adhesive layer 5 is set to 5 μm. In Comparative Example 6, the conductive particles without protrusions (first conductive particles 4) (AUL-704: manufactured by Sekisui Chemical Co., Ltd.) contained in the first conductive adhesive layer have an average particle size of 4 μm or more. Has a thickness.
 これら第2の実施例に係る各異方性導電フィルムを用いて、実施例1と同様に、ガラス基板12にICを異方性導電接続した接続体サンプルを作成した後、ショート数及び導通抵抗値を測定した。測定結果を表2に示す。 Using each of the anisotropic conductive films according to the second example, a connection sample in which an IC was anisotropically conductively connected to the glass substrate 12 was prepared in the same manner as in Example 1. The value was measured. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第2の導電性接着剤層5の膜厚が、第1の導電性接着剤層3に含有されている第1の導電性粒子4の平均粒径より小さい実施例2~4では、最大導通抵抗及び平均導通抵抗のいずれも低く、かつショート数も0であった。 As shown in Table 2, Examples in which the film thickness of the second conductive adhesive layer 5 is smaller than the average particle diameter of the first conductive particles 4 contained in the first conductive adhesive layer 3 In 2 to 4, both the maximum conduction resistance and the average conduction resistance were low, and the number of short circuits was zero.
 一方、第2の導電性接着剤層5の膜厚が、第1の導電性接着剤層3の第1の導電性粒子4の平均粒径と同等の比較例5ではショートが生じ、第1の導電性接着剤層3の第1の導電性粒子4の平均粒径より厚い比較例6ではショート数が増加した。 On the other hand, in the comparative example 5 in which the film thickness of the second conductive adhesive layer 5 is equal to the average particle diameter of the first conductive particles 4 of the first conductive adhesive layer 3, a short circuit occurs. In Comparative Example 6, which was thicker than the average particle diameter of the first conductive particles 4 of the conductive adhesive layer 3, the number of shorts increased.
 これは、第2の導電性接着剤層5の膜厚が第1の導電性接着剤層3の第1の導電性粒子4の径よりも厚いと、ICバンプ18a間にNi微粉末(第2の導電性粒子6)が分散し、従来技術において導電性粒子に設けられた突起のごとく作用して、第1の導電性接着剤層3の第1の導電性粒子4間に介在することにより、隣接するICバンプ18a間を連続させ、短絡を引き起こしたためと考えられる。これより、第1の導電性接着剤層3に積層される第2の導電性接着剤層5の膜厚は、第1の導電性接着剤層3に含有された第1の導電性粒子4の平均粒径未満とすることが好ましいことがわかる。 This is because when the film thickness of the second conductive adhesive layer 5 is larger than the diameter of the first conductive particles 4 of the first conductive adhesive layer 3, Ni fine powder (first powder) is formed between the IC bumps 18 a. 2 conductive particles 6) are dispersed and act like projections provided on the conductive particles in the prior art, and are interposed between the first conductive particles 4 of the first conductive adhesive layer 3. Therefore, it is considered that the adjacent IC bumps 18a are made continuous to cause a short circuit. From this, the film thickness of the 2nd conductive adhesive layer 5 laminated | stacked on the 1st conductive adhesive layer 3 is 1st conductive particle 4 contained in the 1st conductive adhesive layer 3. It can be seen that the average particle size is preferably less than the average particle size.
 [第3の実施例]
 次いで、上記実施例1に係る異方性導電フィルムにおいて、第2の導電性接着剤層5に含有させる第2の導電性粒子6の平均粒径を変えた第3の実施例について説明する。第3の実施例に係る各異方性導電フィルムは、第2の導電性接着剤層3のNi微粉末(第2の導電性粒子6)の平均粒径を変えた以外は、実施例1に係る異方性導電フィルムと同一の構成、製法である。
[Third embodiment]
Next, a third example in which the average particle diameter of the second conductive particles 6 contained in the second conductive adhesive layer 5 in the anisotropic conductive film according to Example 1 is changed will be described. Each anisotropic conductive film according to the third example is different from the example 1 except that the average particle diameter of the Ni fine powder (second conductive particle 6) of the second conductive adhesive layer 3 is changed. It is the same structure and manufacturing method as the anisotropic conductive film which concerns on this.
 実施例5では、第2の導電性接着剤層5に含有させる第2の導電性粒子6として、平均粒径が0.2μmのNi微粉末(NFP201:JFEミネラル株式会社製)を用いた以外は、実施例1と同様である。 In Example 5, except that Ni fine powder (NFP201: manufactured by JFE Mineral Co., Ltd.) having an average particle diameter of 0.2 μm was used as the second conductive particles 6 to be contained in the second conductive adhesive layer 5. These are the same as in Example 1.
 実施例6では、第2の導電性接着剤層5に含有させる第2の導電性粒子6として、平均粒径が0.4μmのNi微粉末(NFP401:JFEミネラル株式会社製)を用いた以外は、実施例1と同様である。 In Example 6, Ni fine powder (NFP401: manufactured by JFE Mineral Co., Ltd.) having an average particle diameter of 0.4 μm was used as the second conductive particles 6 to be included in the second conductive adhesive layer 5. These are the same as in Example 1.
 実施例7では、第2の導電性接着剤層5に含有させる第2の導電性粒子6として、Ni微粉末(T-255:バーレインコ社製)を篩で分級して得た平均粒径が0.8μmのNi微粉末を用いた以外は、実施例1と同様である。実施例5~7は、Ni微粉末6の粒径が、第1の導電性接着剤層3の第1の導電性粒子4(AUL-704:積水化学株式会社製:平均粒径4μm)の平均粒径の20%以下である。 In Example 7, as the second conductive particles 6 to be contained in the second conductive adhesive layer 5, the average particle size obtained by classifying Ni fine powder (T-255: manufactured by Bahrainco) with a sieve is used. The same as Example 1 except that 0.8 μm Ni fine powder was used. In Examples 5 to 7, the particle diameter of the Ni fine powder 6 is that of the first conductive particles 4 of the first conductive adhesive layer 3 (AUL-704: manufactured by Sekisui Chemical Co., Ltd .: average particle diameter of 4 μm). It is 20% or less of the average particle diameter.
 比較例7では、第2の導電性接着剤層5に含有させる第2の導電性粒子6として、Ni微粉末(T-255:バーレインコ社製)を篩で分級して得た平均粒径が1.2μmのNi微粉末を用いた以外は、実施例1と同様である。 In Comparative Example 7, the second conductive particles 6 contained in the second conductive adhesive layer 5 have an average particle size obtained by classifying Ni fine powder (T-255: manufactured by Bahrainco) with a sieve. The same as Example 1 except that 1.2 μm Ni fine powder was used.
 比較例8では、第2の導電性接着剤層5に含有させる第2の導電性粒子6として、平均粒径が2.5μmのNi微粉末(T-255:バーレインコ社製)を用いた以外は、実施例1と同様である。 In Comparative Example 8, Ni fine powder having an average particle diameter of 2.5 μm (T-255: manufactured by Bahrainco) was used as the second conductive particles 6 to be included in the second conductive adhesive layer 5. These are the same as in Example 1.
 これら第3の実施例に係る各異方性導電フィルムを用いて、実施例1と同様に、ガラス基板12にICを異方性導電接続した接続体サンプルを作成した後、ショート数及び導通抵抗値を測定した。測定結果を表3に示す。 Using each of the anisotropic conductive films according to the third example, a connection sample in which an IC was anisotropically conductively connected to the glass substrate 12 was prepared in the same manner as in Example 1, and then the number of shorts and the conductive resistance were obtained. The value was measured. Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、上記実施例1に係る異方性導電フィルムにおいて、第2の導電性接着剤層5に含有させるNi微粉末(第2の導電性粒子6)の平均粒径が第1の導電性接着剤層3の第1の導電性粒子4の平均粒径の20%以下とされている実施例5~7では、Ni微粉末6が第1の導電性接着剤層3の第1の導電性粒子4同士の接続を媒介するおそれは殆どなく、ショート数は0であった。 As shown in Table 3, in the anisotropic conductive film according to Example 1 described above, the average particle diameter of the Ni fine powder (second conductive particles 6) contained in the second conductive adhesive layer 5 is the first. In Examples 5 to 7 in which the average particle diameter of the first conductive particles 4 of one conductive adhesive layer 3 is 20% or less, the Ni fine powder 6 is formed of the first conductive adhesive layer 3. There was almost no possibility of mediating the connection between the first conductive particles 4, and the number of shorts was zero.
 一方、比較例7及び比較例8では、Ni微粉末6の平均粒径が第1の導電性接着剤層3の第1の導電性粒子4の平均粒径の30%及び62.5%と大きいため、これらNi微粉末6を介して第1の導電性粒子4同士を接続させるおそれが生じ、ショート数も増えた。これより、第2の導電性接着剤層5の第2の導電性粒子6の平均粒径は、第1の導電性接着剤層3の第1の導電性粒子4の平均粒径の20%以下とすることが好ましいことがわかる。 On the other hand, in Comparative Example 7 and Comparative Example 8, the average particle diameter of the Ni fine powder 6 is 30% and 62.5% of the average particle diameter of the first conductive particles 4 of the first conductive adhesive layer 3. Since it is large, there is a possibility that the first conductive particles 4 may be connected to each other through the Ni fine powder 6, and the number of shorts also increases. Accordingly, the average particle diameter of the second conductive particles 6 of the second conductive adhesive layer 5 is 20% of the average particle diameter of the first conductive particles 4 of the first conductive adhesive layer 3. It can be seen that the following is preferable.
1 異方性導電フィルム、2 剥離フィルム、3 第1の導電性接着剤層、3a バインダー樹脂、4 第1の導電性粒子、5 第2の導電性接着剤層、5a バインダー樹脂、6 第2の導電性粒子、10 液晶表示パネル、11,12 透明基板、13 シール、14 液晶、15 パネル表示部、16,17 透明電極、17a 端子部、18 電子部品、18a 電極端子、20 COG実装部、21 フレキシブル基板、22 FOG実装部、24 配向膜、15,26 偏光板、30 加熱押圧ヘッド 1. Anisotropic conductive film, 2. Release film, 3. First conductive adhesive layer, 3a binder resin, 4. First conductive particle, 5. Second conductive adhesive layer, 5a. Binder resin, 6. Second. Conductive particles, 10 liquid crystal display panel, 11, 12 transparent substrate, 13 seal, 14 liquid crystal, 15 panel display part, 16, 17 transparent electrode, 17a terminal part, 18 electronic component, 18a electrode terminal, 20 COG mounting part, 21 flexible substrate, 22 FOG mounting part, 24 alignment film, 15, 26 polarizing plate, 30 heating press head

Claims (8)

  1.  異方性導電接着剤を介して基板に形成された端子電極上に電子部品を配置し、
     上記電子部品の上から熱加圧することにより上記異方性導電接着剤を軟化させ、
     上記異方性導電接着剤を硬化させて上記基板と上記電子部品とを接続させた接続体の製造方法において、
     上記導電性接着剤は、
     バインダー樹脂と、上記バインダー樹脂に分散された第1の導電性粒子とを有する第1の導電性接着剤層と、
     上記第1の導電性接着剤層の一方の面に積層され、バインダー樹脂中に上記第1の導電性粒子の粒子径よりも小さな粒子径の第2の導電性粒子が分散された第2の導電性接着剤層とを有し、
     上記第2の導電性接着剤層を上記基板側に貼着する接続体の製造方法。
    Place electronic components on the terminal electrodes formed on the substrate via an anisotropic conductive adhesive,
    Softening the anisotropic conductive adhesive by applying heat and pressure from above the electronic component,
    In the manufacturing method of the connection body in which the anisotropic conductive adhesive is cured and the substrate and the electronic component are connected,
    The conductive adhesive is
    A first conductive adhesive layer having a binder resin and first conductive particles dispersed in the binder resin;
    The second conductive particles are laminated on one surface of the first conductive adhesive layer, and second conductive particles having a particle size smaller than the particle size of the first conductive particles are dispersed in a binder resin. A conductive adhesive layer,
    The manufacturing method of the connection body which sticks the said 2nd conductive adhesive layer to the said board | substrate side.
  2.  上記第2の導電性接着剤層の層厚は、上記第1の導電性粒子の粒子径未満である請求項1記載の接続体の製造方法。 2. The method of manufacturing a connection body according to claim 1, wherein a layer thickness of the second conductive adhesive layer is less than a particle diameter of the first conductive particles.
  3.  上記第2の導電性粒子の粒子径は、上記第1の導電性粒子の粒子径の20%以下である請求項1又は請求項2記載の接続体の製造方法。 The method for manufacturing a connection body according to claim 1 or 2, wherein the particle diameter of the second conductive particles is 20% or less of the particle diameter of the first conductive particles.
  4.  上記第2の導電性粒子の硬度は、上記第1の導電性粒子の硬度と同等以上である請求項1~請求項3の何れか1項に記載の接続体の製造方法。 The method for manufacturing a connection body according to any one of claims 1 to 3, wherein the hardness of the second conductive particles is equal to or higher than the hardness of the first conductive particles.
  5.  バインダー樹脂と、上記バインダー樹脂に分散された第1の導電性粒子とを有する第1の導電性接着剤層と、
     上記第1の導電性接着剤層の一方の面に積層され、バインダー樹脂中に上記第1の導電性粒子の粒子径よりも小さな粒子径の第2の導電性粒子が分散された第2の導電性接着剤層とを有する異方性導電接着剤。
    A first conductive adhesive layer having a binder resin and first conductive particles dispersed in the binder resin;
    The second conductive particles are laminated on one surface of the first conductive adhesive layer, and second conductive particles having a particle size smaller than the particle size of the first conductive particles are dispersed in a binder resin. An anisotropic conductive adhesive having a conductive adhesive layer.
  6.  上記第2の導電性接着剤層の層厚は、上記第1の導電性粒子の粒子径未満である請求項5記載の異方性導電接着剤。 The anisotropic conductive adhesive according to claim 5, wherein the layer thickness of the second conductive adhesive layer is less than the particle diameter of the first conductive particles.
  7.  上記第2の導電性粒子の粒子径は、上記第1の導電性粒子の粒子径の20%以下である請求項5又は請求項6記載の異方性導電接着剤。 The anisotropic conductive adhesive according to claim 5 or 6, wherein the particle diameter of the second conductive particles is 20% or less of the particle diameter of the first conductive particles.
  8.  上記第2の導電性粒子の硬度は、上記第1の導電性粒子の硬度と同等以上である請求項5~請求項7の何れか1項に記載の異方性導電接着剤。 The anisotropic conductive adhesive according to any one of claims 5 to 7, wherein the hardness of the second conductive particles is equal to or higher than the hardness of the first conductive particles.
PCT/JP2013/055044 2012-03-02 2013-02-27 Method for manufacturing connection element, and anisotropic electroconductive adhesive WO2013129437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012046983A JP2013182823A (en) 2012-03-02 2012-03-02 Manufacturing method of connection body and anisotropic conductive adhesive
JP2012-046983 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013129437A1 true WO2013129437A1 (en) 2013-09-06

Family

ID=49082632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055044 WO2013129437A1 (en) 2012-03-02 2013-02-27 Method for manufacturing connection element, and anisotropic electroconductive adhesive

Country Status (2)

Country Link
JP (1) JP2013182823A (en)
WO (1) WO2013129437A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108025A1 (en) * 2014-01-16 2015-07-23 デクセリアルズ株式会社 Connection body, connection body production method, connection method, anisotropic conductive adhesive
JP2015149313A (en) * 2014-02-04 2015-08-20 日立化成株式会社 Adhesive for electronic device and method of bonding electronic device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186099A1 (en) * 2015-05-20 2016-11-24 積水化学工業株式会社 Electroconductive pressure-sensitive adhesive material, and electroconductive pressure-sensitive adhesive material with electroconductive substrate
JP6889020B2 (en) * 2016-05-02 2021-06-18 デクセリアルズ株式会社 Manufacturing method of anisotropic conductive film and anisotropic conductive film
JP7039883B2 (en) 2016-12-01 2022-03-23 デクセリアルズ株式会社 Anisotropic conductive film
WO2018101106A1 (en) 2016-12-01 2018-06-07 デクセリアルズ株式会社 Anisotropic electroconductive film
WO2018139474A1 (en) * 2017-01-24 2018-08-02 大日本印刷株式会社 Light control cell, light control body and moving body
US11242472B2 (en) * 2017-02-17 2022-02-08 Showa Denko Materials Co., Ltd. Adhesive film
KR20220110772A (en) 2019-12-06 2022-08-09 쇼와덴코머티리얼즈가부시끼가이샤 Method for manufacturing a connector and adhesive film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391908A (en) * 1986-10-03 1988-04-22 信越ポリマ−株式会社 Pressure-sensitive anisotropic conducting film body
JPS6459786A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Connection member of circuit
JPH08102218A (en) * 1994-09-30 1996-04-16 Nec Corp Anisotropic conductive film
JPH1125760A (en) * 1997-07-03 1999-01-29 Nec Corp Anisotropic conductive film
JPH11241054A (en) * 1997-10-28 1999-09-07 Sony Chem Corp Anisotropically conductive adhesive and film for adhesion
JP2006108523A (en) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd Method of connecting electrical component using anisotropic conductive film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598419B (en) * 2009-11-16 2015-04-29 日立化成株式会社 Circuit connecting material and connection structure for circuit member using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391908A (en) * 1986-10-03 1988-04-22 信越ポリマ−株式会社 Pressure-sensitive anisotropic conducting film body
JPS6459786A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Connection member of circuit
JPH08102218A (en) * 1994-09-30 1996-04-16 Nec Corp Anisotropic conductive film
JPH1125760A (en) * 1997-07-03 1999-01-29 Nec Corp Anisotropic conductive film
JPH11241054A (en) * 1997-10-28 1999-09-07 Sony Chem Corp Anisotropically conductive adhesive and film for adhesion
JP2006108523A (en) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd Method of connecting electrical component using anisotropic conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108025A1 (en) * 2014-01-16 2015-07-23 デクセリアルズ株式会社 Connection body, connection body production method, connection method, anisotropic conductive adhesive
JP2015149313A (en) * 2014-02-04 2015-08-20 日立化成株式会社 Adhesive for electronic device and method of bonding electronic device

Also Published As

Publication number Publication date
JP2013182823A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
JP5972844B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, method for manufacturing connected body, and connection method
TWI661027B (en) Connecting body, manufacturing method of connecting body, connecting method, anisotropic conductive adhesive
CN106415937B (en) Connector and method for manufacturing connector
JP6324746B2 (en) Connection body, method for manufacturing connection body, electronic device
JP6679320B2 (en) Connection body manufacturing method, electronic component connection method
WO2011152421A1 (en) Anisotropic conductive film and method of manufacturing same
JP6317508B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, method for manufacturing connected body, and connection method
JP7369756B2 (en) Connection body and method for manufacturing the connection body
JP6257303B2 (en) Manufacturing method of connecting body, connecting method, and connecting body
TWI603136B (en) Method of manufacturing connection body and connection method of electronic component
JP2017175015A (en) Method of manufacturing connection body
JP2019140413A (en) Connection body, manufacturing method of the same, and connection method
JP6393039B2 (en) Manufacturing method of connecting body, connecting method and connecting body
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body
WO2015111599A1 (en) Connection body production method and electronic component connection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755444

Country of ref document: EP

Kind code of ref document: A1