JPH11241054A - Anisotropically conductive adhesive and film for adhesion - Google Patents

Anisotropically conductive adhesive and film for adhesion

Info

Publication number
JPH11241054A
JPH11241054A JP10300763A JP30076398A JPH11241054A JP H11241054 A JPH11241054 A JP H11241054A JP 10300763 A JP10300763 A JP 10300763A JP 30076398 A JP30076398 A JP 30076398A JP H11241054 A JPH11241054 A JP H11241054A
Authority
JP
Japan
Prior art keywords
particles
conductive particles
average particle
particle size
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10300763A
Other languages
Japanese (ja)
Other versions
JP3296306B2 (en
Inventor
Yukio Yamada
幸男 山田
Masao Saito
雅男 斉藤
Junji Shinozaki
潤二 篠崎
Motohide Takechi
元秀 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP30076398A priority Critical patent/JP3296306B2/en
Priority to EP99306548A priority patent/EP0996321B1/en
Priority to DE1999636089 priority patent/DE69936089T2/en
Publication of JPH11241054A publication Critical patent/JPH11241054A/en
Application granted granted Critical
Publication of JP3296306B2 publication Critical patent/JP3296306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an anisotropically conductive adhesive which exhibits a high electric conduction reliability and a high elecric insulation reliability even when an IC with a small bump or pitch is connected by dispersing, in an insulating adhesive, conductive particles which comprise at least two kinds of conductive particles different in average particle size and coated with an insulating resin insoluble in the insulating adhesive. SOLUTION: A film 10 for anisotropic conductive adhesion is prepd. by dispersing conductive particles 11 having a smaller average particle size and conductive particles 12 having a larger average particle size in an insulating adhesive 13. An IC chip 14 forms a bump 15; and a circuit board 16 forms a wiring pattern 17. The conductive particles 11, 12 are formed by coating the surfaces of polymeric core particles with a metal plating layer and then with an insulating resin layer. The film 10 for adhesion in the state of being inserted is thermally press bonded under heating and pressure. The insulating resin layer of the larger-size particle 12 between the bump 15 and the wiring pattern 17 is softened, melted, ruptured, and excluded, and the film becomes electrically conductive through the metal plating layer. The film becomes electrically conductive in the same way at the site of the smaller size particle, too.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、相対峙する回路を
電気的に接続すると共に接着固定するために用いられる
回路接続用の異方導電性接着剤およびこれからなる異方
導電性接着用膜に関し、特にICチップを直接回路に接
続する、いわゆるフリップチップボンディングに好適に
用いられる異方導電性接着剤およびこれからなる異方導
電性接着用膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive for circuit connection, which is used for electrically connecting and adhering and fixing opposing circuits, and an anisotropic conductive adhesive film comprising the same. More particularly, the present invention relates to an anisotropic conductive adhesive suitably used for so-called flip chip bonding for directly connecting an IC chip to a circuit, and to an anisotropic conductive adhesive film made of the same.

【0002】[0002]

【従来の技術】電子部品の軽量薄型化に伴い、これら電
子部品に適用する実装方式として、ICチップを直接実
装するベアチップ実装、またはフリップチップボンディ
ング方式が用いられている。回路基板上にICチップを
直接実装する方法としては、1)IC電極と回路端子を
金線で接続するワイヤーボンディング方式、2)IC電
極と回路端子を半田リフローで接続するフェイスダウン
方式、3)ICチップにバンプを形成して、異方導電性
接着剤により接続する方式等があげられる。これらの中
では、特に異方導電性接着剤(異方導電性接着剤を剥離
フィルム上に塗布して加熱・乾燥してフィルム状にした
異方導電性接着用膜を含む)方式が、手軽で導通信頼性
が高く、しかも封止の必要がないため、最小のコストで
高密度実装が可能になる等のメリットがあり、最近広く
用いられるようになっている。
2. Description of the Related Art As electronic components become lighter and thinner, a bare chip mounting method for directly mounting an IC chip or a flip chip bonding method is used as a mounting method applied to these electronic components. Methods for directly mounting an IC chip on a circuit board include: 1) a wire bonding method in which an IC electrode and a circuit terminal are connected by a gold wire; 2) a face-down method in which an IC electrode and a circuit terminal are connected by solder reflow; There is a method of forming bumps on an IC chip and connecting them with an anisotropic conductive adhesive. Among these, the anisotropic conductive adhesive (including an anisotropic conductive adhesive film formed by applying an anisotropic conductive adhesive on a release film, heating and drying to form a film) is particularly simple. In addition, since it has high conduction reliability and does not require encapsulation, it has advantages such as high-density mounting at a minimum cost, and has recently been widely used.

【0003】しかしながら、ますますファインピッチ
化、およびICバンプ(突起電極)の面積の微小化に伴
い、異方導電性接着剤中に含まれる導電粒子の粒径を小
さくする必要があり、また導通信頼性を向上させるため
に導電粒子の配合量を増加させる傾向になっている。し
かしながら、導電粒子の粒径を小さくすると二次凝集に
より接続のバラツキやパターン間のショートが問題とな
り、配合量を増すとやはりパターン間のショートが問題
となってくる。
However, as the pitch becomes finer and the area of IC bumps (protruding electrodes) becomes smaller, it is necessary to reduce the particle size of conductive particles contained in the anisotropic conductive adhesive. There is a tendency to increase the amount of conductive particles to improve reliability. However, when the particle size of the conductive particles is reduced, the dispersion of the connection and the short circuit between the patterns are problematic due to the secondary aggregation, and when the blending amount is increased, the short circuit between the patterns is also a problem.

【0004】この対策として、導電粒子の表面を絶縁層
で被覆した絶縁コート粒子を用いたり、異方導電性接着
用膜を多層化して接続の際に電極からの導電粒子の流出
を防止する試みもなされている。しかしながら絶縁コー
ト粒子を用いる場合、その硬度、弾性によって長期間の
導通信頼性が低下することが懸念される。また絶縁コー
ト粒子としては平均粒径が5μm程度のものが主に使用
されているが、この粒子の配合量を増加すると、例えば
膜当り40000個/mm2程度配合すると、バンプ間
が10μm以下のピッチの小さいファインピッチICの
接続では絶縁信頼性を維持するのが困難になる。
[0004] As a countermeasure, an attempt is made to use insulating coated particles in which the surface of the conductive particles is coated with an insulating layer, or to form a multilayered anisotropic conductive bonding film to prevent the conductive particles from flowing out of the electrodes during connection. Has also been made. However, when insulating coating particles are used, there is a concern that long-term conduction reliability may be reduced due to their hardness and elasticity. Also, as the insulating coating particles, those having an average particle size of about 5 μm are mainly used. When the mixing amount of the particles is increased, for example, when the mixing amount is about 40,000 particles / mm 2 per film, the gap between the bumps is 10 μm or less. It is difficult to maintain insulation reliability when connecting fine pitch ICs having a small pitch.

【0005】一方、多層化した場合、導電粒子の配合量
を増加することができ、例えば平均粒径が3μm程度の
粒径が小さい導電粒子を膜当り80000個/mm2
度まで配合することができるが、この場合高精度のバン
プを作成する必要があるほか、接続する際のプレス精度
を厳しく管理する必要があるなど、コスト高になる。
On the other hand, in the case of a multilayer structure, the amount of the conductive particles can be increased. For example, it is possible to mix conductive particles having a small average particle diameter of about 3 μm to about 80,000 particles / mm 2 per film. However, in this case, it is necessary to form a high-precision bump, and it is necessary to strictly control the press accuracy at the time of connection.

【0006】ところで特開平4−174980号には、
加熱により変形する導電粒子の表面を熱可塑性絶縁層で
被覆した絶縁被覆粒子と、この絶縁被覆粒子より硬質で
ある厚み制御粒子とを、加熱により塑性流動性を示す絶
縁性接着剤中に含有させた回路の接続部材が記載されて
いる。
Japanese Patent Application Laid-Open No. 4-174980 discloses that
Insulating coated particles in which the surface of the conductive particles deformed by heating is coated with a thermoplastic insulating layer and thickness controlling particles that are harder than the insulating coated particles are contained in an insulating adhesive that exhibits plastic fluidity by heating. Circuit connection members are described.

【0007】しかしながら、この接続部材は、厚み制御
粒子が絶縁体の場合、この厚み制御粒子は導通には関与
しないので高い導通信頼性が得られにくい。また厚み制
御粒子が導体の場合は、配合量が多くなると短絡が起こ
り、絶縁信頼性が得られない。さらに厚み制御粒子は変
形しないため、粒径にバラツキがある場合、最も大粒径
の粒子によって厚みが制御され、これより小粒径の粒子
は導通に関与しないため導通信頼性にも欠ける。
However, when the thickness control particles of the connection member are insulators, the thickness control particles do not participate in the conduction, so that it is difficult to obtain high conduction reliability. When the thickness controlling particles are conductors, a short circuit occurs when the blending amount increases, and insulation reliability cannot be obtained. Furthermore, since the thickness control particles do not deform, when the particle size varies, the thickness is controlled by the particles having the largest particle size, and the particles having a smaller particle size do not participate in the conduction, so that the conduction reliability is also lacking.

【0008】また特開平9−102661号には、特定
の圧縮硬さ(K値)と特定の変形回復率を有する導電性
微粒子を用いた電極間の導電接続方法が記載されてい
る。しかしながら、上記導電性微粒子を用いた場合で
も、ファインピッチICの接続においては、高い導通信
頼性と高い絶縁信頼性とを得るのは難しい。
Japanese Patent Application Laid-Open No. 9-102661 describes a conductive connection method between electrodes using conductive fine particles having a specific compression hardness (K value) and a specific deformation recovery rate. However, even when the conductive fine particles are used, it is difficult to obtain high conduction reliability and high insulation reliability in connection with a fine pitch IC.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、バン
プまたはピッチの小さいICを接続する場合でも、ショ
ートや回路パターンへのダメージを与えることなく、高
い導通信頼性と高い絶縁信頼性が得られ、しかも低コス
トで容易に接続することができる異方導電性接着剤、お
よびそれからなる異方導電性接着用膜を提供することで
ある。
An object of the present invention is to obtain high conduction reliability and high insulation reliability without connecting a short circuit or damaging a circuit pattern even when connecting an IC having a small bump or a small pitch. An object of the present invention is to provide an anisotropic conductive adhesive which can be easily connected at a low cost, and an anisotropic conductive adhesive film made of the adhesive.

【0010】[0010]

【課題を解決するための手段】本発明は次の異方導電性
接着剤およびそれからなる異方導電性接着用膜である。 (1) 絶縁性接着剤中に導電粒子が分散された異方導
電性接着剤であって、前記導電粒子は平均粒径が異なる
2種以上の導電粒子であり、かつこれらの導電粒子は絶
縁性接着剤に不溶な絶縁性樹脂で被覆された絶縁被覆導
電粒子であることを特徴とする異方導電性接着剤。 (2) 平均粒径が異なる2種以上の導電粒子が加圧に
より変形する粒子であることを特徴とする上記(1)記
載の異方導電性接着剤。 (3) 平均粒径の小さい導電粒子の硬度が、平均粒径
の大きい導電粒子と同等か、それ以上の硬度を有するこ
とを特徴とする上記(1)または(2)記載の異方導電
性接着剤。 (4) 平均粒径の小さい導電粒子のK値が350kg
f/mm2以上、平均粒径の大きい導電粒子のK値が4
50kgf/mm2以下であり、平均粒径の小さい導電
粒子のK値が平均粒径の大きい導電粒子のK値より相対
的に大きいことを特徴とする上記(1)ないし(3)の
いずれかに記載の異方導電性接着剤。 (5) 平均粒子径の小さい導電粒子の含有個数が平均
粒径の大きい導電粒子の含有個数より多いことを特徴と
する上記(1)ないし(4)のいずれかに記載の異方導
電性接着剤。 (6) 平均粒径が3±0.5μmと5±0.5μmの
2種類の導電粒子が分散されてなることを特徴とする上
記(1)ないし(5)のいずれかに記載の異方導電性接
着剤。 (7) ICチップと回路基板とを接続するICチップ
接続用である上記(1)ないし(6)のいずれかに記載
の異方導電性接着剤。 (8) ICチップに形成された4000μm2以下の
微小バンプと回路基板とを接続するICチップ接続用で
ある上記(1)ないし(7)のいずれかに記載の異方導
電性接着剤。 (9) 上記(1)ないし(8)のいずれかに記載の異
方導電性接着剤からなる異方導電性接着用膜。 (10) ICチップと回路基板とを接続するICチッ
プ接続用である上記(9)記載の異方導電性接着用膜。 (11) ICチップに形成された4000μm2以下
の微小バンプと回路基板とを接続するICチップ接続用
である上記(9)記載の異方導電性接着用膜。 (12) 単位面積当りの膜中に含有される平均粒径の
小さい導電粒子の含有量が30000〜80000個/
mm2の範囲であり、平均粒径の大きい導電粒子の含有
量が10000〜30000個/mm2の範囲であるこ
とを特徴とする上記(9)ないし(11)のいずれかに
記載の異方導電性接着用膜。 (13) 膜の厚みが、接続を行うICチップのバンプ
高さと回路基板上の配線パターンの高さとを合せた厚み
に対して1〜3倍である上記(9)ないし(12)のい
ずれかに記載の異方導電性接着用膜。
The present invention relates to the following anisotropic conductive adhesive and an anisotropic conductive adhesive film comprising the same. (1) An anisotropic conductive adhesive in which conductive particles are dispersed in an insulating adhesive, wherein the conductive particles are two or more types of conductive particles having different average particle sizes, and these conductive particles are insulated. An anisotropic conductive adhesive characterized by being an insulating coated conductive particle coated with an insulating resin insoluble in a conductive adhesive. (2) The anisotropic conductive adhesive according to (1), wherein the two or more kinds of conductive particles having different average particle diameters are particles that are deformed by pressure. (3) The anisotropic conductivity according to the above (1) or (2), wherein the hardness of the conductive particles having a small average particle size is equal to or higher than the hardness of the conductive particles having a large average particle size. adhesive. (4) The K value of the conductive particles having a small average particle size is 350 kg.
f / mm 2 or more, conductive particles having a large average particle size have a K value of 4
Any of (1) to (3) above, wherein the K value of the conductive particles having a small average particle size is 50 kgf / mm 2 or less and the K value of the conductive particles having a large average particle size is relatively large. The anisotropic conductive adhesive according to item 1. (5) The anisotropic conductive adhesive according to any one of (1) to (4) above, wherein the number of conductive particles having a small average particle diameter is larger than the number of conductive particles having a large average particle diameter. Agent. (6) Anisotropically described in any of (1) to (5) above, wherein two types of conductive particles having an average particle size of 3 ± 0.5 μm and 5 ± 0.5 μm are dispersed. Conductive adhesive. (7) The anisotropic conductive adhesive according to any one of the above (1) to (6), which is used for connecting an IC chip for connecting an IC chip to a circuit board. (8) The anisotropic conductive adhesive according to any one of the above (1) to (7), which is used for connecting an IC chip for connecting a minute bump of 4000 μm 2 or less formed on an IC chip to a circuit board. (9) An anisotropic conductive adhesive film comprising the anisotropic conductive adhesive according to any one of the above (1) to (8). (10) The anisotropic conductive bonding film according to the above (9), which is used for connecting an IC chip for connecting an IC chip to a circuit board. (11) The anisotropic conductive bonding film according to the above (9), which is used for connecting an IC chip for connecting a fine bump of 4000 μm 2 or less formed on the IC chip to a circuit board. (12) The content of the conductive particles having a small average particle size per unit area in the film is from 30,000 to 80,000 particles /
in the range of mm 2, anisotropic according to any one of (9) to, wherein the amount of large conductive particles having an average particle size in the range of 10,000 to 30,000 pieces / mm 2 (11) Conductive adhesive film. (13) The film as described in any of (9) to (12) above, wherein the thickness of the film is 1 to 3 times the total thickness of the bump height of the connecting IC chip and the height of the wiring pattern on the circuit board. 3. The anisotropic conductive adhesive film according to item 1.

【0011】本発明で用いる絶縁性接着剤としては、各
種の熱硬化性樹脂、熱可塑性の樹脂やゴムを用いること
ができる。接続後の信頼性の点から熱硬化性の樹脂が好
ましい。熱硬化性樹脂としては、エポキシ樹脂、メラミ
ン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ビ
スマレイミドトリアジン樹脂、ポリエステル樹脂、ポリ
ウレタン樹脂、フェノキシ樹脂、ポリアミド樹脂または
ポリイミド樹脂等の合成樹脂;ヒドロキシル基、カルボ
キシル基、ビニル基、アミノ基またはエポキシ基等の官
能基を含むゴムやエラストマなどを用いることができ
る。これらの中でも特にエポキシ樹脂が各種特性の点で
好ましく使用できる。
As the insulating adhesive used in the present invention, various thermosetting resins, thermoplastic resins and rubbers can be used. A thermosetting resin is preferable from the viewpoint of reliability after connection. As the thermosetting resin, epoxy resin, melamine resin, phenol resin, diallyl phthalate resin, bismaleimide triazine resin, polyester resin, polyurethane resin, phenoxy resin, polyamide resin or polyimide resin, etc .; hydroxyl group, carboxyl group, Rubber or an elastomer containing a functional group such as a vinyl group, an amino group, or an epoxy group can be used. Among them, epoxy resins are particularly preferably used in view of various characteristics.

【0012】エポキシ樹脂としては、ビスフェノール型
エポキシ樹脂、エポキシノボラック樹脂または分子内に
2個以上のオキシラン基を有するエポキシ化合物等が使
用できる。これらのエポキシ樹脂は、不純物イオン特に
塩素イオンが50ppm以下の高純度品を用いることが
好ましい。
As the epoxy resin, a bisphenol type epoxy resin, an epoxy novolak resin or an epoxy compound having two or more oxirane groups in a molecule can be used. As these epoxy resins, it is preferable to use high-purity products in which impurity ions, particularly chloride ions, are 50 ppm or less.

【0013】本発明で用いる導電粒子は、金属粒子また
は高分子核材粒子を導電材で被覆した導電被覆粒子など
の導電性の粒子を、前記絶縁性接着剤に不溶な絶縁性樹
脂で被覆した絶縁被覆導電粒子である。上記金属粒子と
しては、ニッケルまたは半田等の金属粒子があげられ
る。
The conductive particles used in the present invention are obtained by coating conductive particles such as metal particles or conductive coated particles obtained by coating polymer particles with a conductive material with an insulating resin insoluble in the insulating adhesive. Insulating coated conductive particles. Examples of the metal particles include metal particles such as nickel and solder.

【0014】前記導電被覆粒子を構成する高分子核材粒
子としては、エポキシ樹脂、スチレン樹脂、シリコーン
樹脂、アクリル樹脂、アクリル/スチレン樹脂(アクリ
レートとスチレンとの共重合体)、ポリオレフィン樹
脂、メラミン樹脂またはベンゾグアナミン樹脂等の合成
樹脂、ジビニルベンゼン架橋体;NBRまたはSBR等
の合成ゴム;これらの混合物などからなる粒子が使用で
きる。これらの中ではスチレン樹脂、アクリル樹脂、ア
クリル/スチレン樹脂、ベンゾグアナミン樹脂、ジビニ
ルベンゼン架橋体が好ましい。高分子核材粒子の硬度ま
たは弾性等は特に制限されず、適宜所望する硬度または
弾性等を有するものを選択することができる。
The polymer core material particles constituting the conductive coating particles include epoxy resin, styrene resin, silicone resin, acrylic resin, acrylic / styrene resin (copolymer of acrylate and styrene), polyolefin resin, and melamine resin. Alternatively, particles composed of a synthetic resin such as a benzoguanamine resin, a crosslinked divinylbenzene; a synthetic rubber such as NBR or SBR; a mixture thereof, or the like can be used. Among these, a styrene resin, an acrylic resin, an acrylic / styrene resin, a benzoguanamine resin, and a crosslinked divinylbenzene are preferable. The hardness, elasticity, and the like of the polymer core material particles are not particularly limited, and those having desired hardness, elasticity, or the like can be appropriately selected.

【0015】上記高分子核材粒子を被覆する導電材とし
ては、ニッケル、金、銅等の金属が1種または2種以上
使用できる。導電材は高分子核材粒子表面に無電解また
は電解メッキにより膜状に被覆されているのが好まし
い。導電材の膜厚は5〜300nm、好ましくは10〜
200nmであるのが望ましい。特に下地としてニッケ
ルメッキを施し、その上に金メッキを施したものが好ま
しく、この場合、ニッケル下地メッキの膜厚は10〜3
00nm、好ましくは30〜200nm、金メッキの膜
厚は5〜100nm、好ましくは10〜30nmとする
のが望ましい。
As the conductive material for coating the polymer core material particles, one or more metals such as nickel, gold, and copper can be used. The conductive material is preferably coated in a film shape on the surface of the polymer core material particles by electroless or electrolytic plating. The thickness of the conductive material is 5 to 300 nm, preferably 10 to 300 nm.
Preferably, it is 200 nm. In particular, it is preferable that nickel plating is applied as a base and gold plating is applied thereon. In this case, the thickness of the nickel base plating is 10 to 3 mm.
The thickness is preferably 100 nm, preferably 30 to 200 nm, and the thickness of the gold plating is 5 to 100 nm, preferably 10 to 30 nm.

【0016】前記金属粒子または導電被覆粒子を被覆す
る絶縁性樹脂としては、前記絶縁性接着剤に不溶であ
り、熱圧着により被覆が溶融または破壊されて導電性を
付与する絶縁性の樹脂が制限なく使用できるが、アクリ
ル樹脂、スチレン樹脂またはアクリル/スチレン樹脂が
好ましい。絶縁性樹脂は金属粒子または導電被覆粒子表
面に膜状に絶縁被覆されているのが好ましく、特にアク
リル樹脂架橋膜、スチレン樹脂架橋膜またはアクリル/
スチレン樹脂架橋膜で絶縁被覆されているのが好まし
い。絶縁性樹脂の膜厚は0.05〜2μm、好ましくは
0.1〜0.5μmであるのが望ましい。
The insulating resin which coats the metal particles or the conductive coating particles is limited to an insulating resin which is insoluble in the insulating adhesive and which is melted or broken by thermocompression bonding to impart conductivity. But an acrylic resin, a styrene resin or an acrylic / styrene resin is preferred. The insulating resin is preferably coated in the form of a film on the surface of the metal particles or conductive coating particles, and in particular, a crosslinked acrylic resin film, a crosslinked styrene resin film, or an acrylic resin.
It is preferable that the insulating coating is provided with a styrene resin crosslinked film. It is desirable that the film thickness of the insulating resin is 0.05 to 2 μm, preferably 0.1 to 0.5 μm.

【0017】本発明で用いる平均粒径が異なる2種以上
の導電粒子は、本発明の異方導電性接着剤または接着用
膜を使用する際の接着温度、例えば200℃では熱変形
を起こさず、接着する際の接着圧力、例えば400kg
f/cm2−バンプでは変形、特に弾性変形するものが
好ましい。具体的には、高分子核材粒子がスチレン樹
脂、アクリル樹脂、アクリル/スチレン樹脂またはベン
ゾグアナミン樹脂の弾性を有する樹脂からなる導電粒子
が好ましい。
The two or more kinds of conductive particles having different average particle sizes used in the present invention do not undergo thermal deformation at the bonding temperature when using the anisotropic conductive adhesive or the bonding film of the present invention, for example, 200 ° C. , Bonding pressure when bonding, for example, 400 kg
The f / cm 2 -bump that deforms, particularly elastically deforms, is preferable. Specifically, it is preferable that the polymer core material particles be conductive particles made of a resin having elasticity such as a styrene resin, an acrylic resin, an acrylic / styrene resin, or a benzoguanamine resin.

【0018】本発明では平均粒径の異なる2種以上の前
記導電粒子を用いる。各導電粒子の平均粒径は1〜10
μm、好ましくは2〜7μmであるのが望ましく、特に
バンプ面積が4000μm2以下またはバンプ間が10
μm以下の微小バンプのバンプと配線パターンとの接続
に用いる場合は2〜7μm、好ましくは3〜6μmであ
るのが望ましい。平均粒径が1μm未満では粒子が二次
凝集を起こしやすくなるほか、製造上の取扱が難しくな
る。また10μmを超えると絶縁幅の狭い微細回路での
絶縁性が低下する。
In the present invention, two or more kinds of the conductive particles having different average particle sizes are used. The average particle size of each conductive particle is 1 to 10
μm, preferably 2 to 7 μm, and in particular, the bump area is 4000 μm 2 or less or the distance between bumps is 10 μm.
When it is used for connection between the bumps of micro bumps of less than μm and the wiring pattern, the thickness is preferably 2 to 7 μm, more preferably 3 to 6 μm. When the average particle size is less than 1 μm, the particles are liable to undergo secondary aggregation and handling in production becomes difficult. On the other hand, if it exceeds 10 μm, the insulating property in a fine circuit having a narrow insulating width is reduced.

【0019】以下、2種類の導電粒子を用いた場合を例
にして詳しく説明する。導電粒子の平均粒径の差は0.
5〜5μm、好ましくは1〜3μmあるのが望ましい。
バンプ面積が4000μm2以下またはバンプ間隔が1
0μm以下の微小バンプのバンプと配線パターンとの接
続に用いる場合、平均粒径が3±0.5μmの導電粒子
と5±0.5μmの導電粒子とを組み合せて用いるのが
好ましい。
Hereinafter, the case where two types of conductive particles are used will be described in detail. The difference between the average particle sizes of the conductive particles is 0.
It is desirably 5 to 5 μm, preferably 1 to 3 μm.
The bump area is 4000 μm 2 or less or the bump interval is 1
When used for connection between the bumps of fine bumps of 0 μm or less and the wiring pattern, it is preferable to use a combination of conductive particles having an average particle size of 3 ± 0.5 μm and conductive particles having an average particle size of 5 ± 0.5 μm.

【0020】また平均粒径が小さい導電粒子の硬度は平
均粒径が大きい導電粒子の硬度と同等かそれ以上の硬度
を有しているのが好ましい。具体的には、平均粒径の小
さい導電粒子のK値は350kgf/mm2以上、好ま
しくは500kgf/mm2以上であり、平均粒径の大
きい導電粒子のK値は450kgf/mm2以下、好ま
しくは100〜450kgf/mm2であって、平均粒
径の小さい導電粒子のK値が平均粒径の大きい導電粒子
のK値より相対的に大きいのが好ましい。特に、50k
gf/mm2以上、好ましくは100kgf/mm2以上
大きいのが望ましい。平均粒径が3±0.5μmと5±
0.5μmの2種類の導電粒子を用いる場合、3±0.
5μmの導電粒子のK値は450kgf/mm2以上、
好ましくは600kgf/mm2以上、5±0.5μm
の導電粒子のK値は450kgf/mm2以下、好まし
くは100〜450kgf/mm2であって、K値の差
が50kgf/mm2以上、好ましくは100kgf/
mm2以上であるのが望ましい。
The hardness of the conductive particles having a small average particle size is preferably equal to or higher than the hardness of the conductive particles having a large average particle size. Specifically, the K value of the conductive particles having a small average particle size is 350 kgf / mm 2 or more, preferably 500 kgf / mm 2 or more, and the K value of the conductive particles having a large average particle size is 450 kgf / mm 2 or less, preferably Is preferably from 100 to 450 kgf / mm 2 , and the K value of the conductive particles having a small average particle size is preferably relatively larger than the K value of the conductive particles having a large average particle size. In particular, 50k
gf / mm 2 or more, preferably 100 kgf / mm 2 or more. Average particle size is 3 ± 0.5μm and 5 ±
When two types of conductive particles of 0.5 μm are used, 3 ± 0.
The K value of 5 μm conductive particles is 450 kgf / mm 2 or more,
Preferably 600 kgf / mm 2 or more, 5 ± 0.5 μm
K value of the conductive particles is 450 kgf / mm 2 or less, preferably a 100~450kgf / mm 2, the difference between the K value is 50 kgf / mm 2 or more, preferably 100 kgf /
mm 2 or more.

【0021】ここで、上記K値について説明する。ラン
ダウ−リフシッツ理論物理学教程『弾性理論』(東京図
書1972年発行)42頁によれば、半径がそれぞれ
R、R′の二つの弾性球体の接触問題は次式により与え
られる。
Here, the K value will be described. According to the Landau-Lifshitz theory physics course "Elasticity" (published by Tokyo Book, 1972), page 42, the contact problem between two elastic spheres having radii R and R 'is given by the following equation.

【数1】 h=F2/3[D2(1/R+1/R′)]1/3 ・・・(1) D=(3/4)[(1−σ2)/E+(1−σ′2)/E′] ・・・(2) (式中、hはR+R′と両球の中心間の距離の差、Fは
圧縮力、E,E′は二つの弾性球の弾性率、σ,σ′は
弾性球のポアッソン比を表す。)一方の球を剛体の板に
置き換えて他方の球と接触させ、かつ両側から圧縮する
場合、R′→∞、E≫E′とすると、近似的に次式が得
られる。
H = F 2/3 [D 2 (1 / R + 1 / R ′)] 1/3 (1) D = (3/4) [(1−σ 2 ) / E + (1−) σ ′ 2 ) / E ′] (2) where h is the difference between the distance between R + R ′ and the center of the two spheres, F is the compressive force, and E and E ′ are the elastic moduli of the two elastic spheres. , Σ, σ 'represent the Poisson's ratio of the elastic sphere.) When one sphere is replaced with a rigid plate and brought into contact with the other sphere and compressed from both sides, if R' → ∞, E≫E ' Approximately, the following equation is obtained.

【数2】 F=(21/2/3)(S3/2)(E・R1/2)(1−σ2) ・・・(3) (式中、Sは圧縮変形量を表す。)F = (2 1/2/3 ) (S 3/2 ) (E · R 1/2 ) (1−σ 2 ) (3) (where S is the amount of compressive deformation) Represents.)

【0022】ここで、次式によりK値を定義する。Here, the K value is defined by the following equation.

【数3】 K=E/(1−σ2) ・・・(4) 式(3)と式(4)から容易に次式が得られる。K = E / (1−σ 2 ) (4) The following equation can be easily obtained from Equations (3) and (4).

【数4】 K=(3/√2)・F・S-3/2・R-1/2 ・・・(5) このK値は球体の硬さ(硬度)を普偏的かつ定量的に表
すものである。従って、K値により微粒子の硬さを定量
的かつ一義的に表すことが可能である。
Equation 4] K = (3 / √2) · F · S -3/2 · R -1/2 ··· (5) The K value ubiquity and quantitatively the hardness of the spheres (hardness) Is represented by Therefore, the hardness of the fine particles can be quantitatively and uniquely represented by the K value.

【0023】K値は下記測定方法により測定することが
できる。平滑表面を有する鋼板の上に試料粒子を散布
し、その中から1個の試料粒子を選ぶ。次に、粉体圧縮
試験機(例えば、PCT−200型、島津製作所製)を
用いて、ダイヤモンド製の直径50μmの円柱の平滑な
端面で試料粒子を圧縮する。この際、圧縮荷重を電磁力
として電気的に検出し、圧縮変位を作動トランスによる
変位として電気的に検出する。そして図1に示す圧縮変
位−荷重の関係が求められる。この図から試料粒子の1
0%圧縮変形における荷重値と圧縮変位がそれぞれ求め
られ、これらの値と式(5)から図2に示すK値と圧縮
歪みの関係が求められる。ただし、圧縮歪みは圧縮変位
を試料粒子の粒子径で割った値を%で表したものであ
る。測定条件は以下の通りである。 圧縮速度: 定負荷速度圧縮方式で毎秒0.27グラム
重(grf)の割合で荷重を増加させる。 試験荷重: 最大10grf 測定温度: 20℃
The K value can be measured by the following measuring method. The sample particles are sprayed on a steel plate having a smooth surface, and one sample particle is selected from them. Next, using a powder compression tester (for example, PCT-200 type, manufactured by Shimadzu Corporation), the sample particles are compressed on a smooth end face of a diamond-made cylinder having a diameter of 50 μm. At this time, the compression load is electrically detected as an electromagnetic force, and the compression displacement is electrically detected as a displacement by the operation transformer. Then, the relationship between the compression displacement and the load shown in FIG. 1 is obtained. From this figure, the sample particles 1
The load value and the compressive displacement at 0% compressive deformation are obtained, respectively, and the relationship between the K value and the compressive strain shown in FIG. 2 is obtained from these values and Expression (5). Here, the compressive strain is a value obtained by dividing the compressive displacement by the particle diameter of the sample particles and expressing the value in%. The measurement conditions are as follows. Compression speed: The load is increased at a rate of 0.27 gram weight per second (grf) by a constant load speed compression method. Test load: Max 10grf Measurement temperature: 20 ° C

【0024】本発明で用いる導電粒子は、下記方法で測
定した1g荷重圧縮回復率(R)が5〜80%、好まし
くは30〜80%であるのが望ましい。平滑表面を有す
る鋼板の上に試料粒子を散布し、その中から1個の試料
粒子を選ぶ。次に、粉体圧縮試験機(例えば、PCT−
200型、島津製作所製)を用いて、ダイヤモンド製の
直径50μmの円柱の平滑な端面で試料粒子を圧縮す
る。この際、圧縮荷重を電磁力として電気的に検出し、
圧縮変位を作動トランスによる変位として電気的に検出
する。そして、図3に示すように試料粒子を反転荷重値
まで圧縮した後(図中の曲線a)、逆に荷重を減らして
行き(図中の曲線b)荷重と圧縮変位との関係を測定す
る。ただし、除荷重における終点は荷重値ゼロではな
く、0.1gの原点荷重値とする。圧縮回復率は反転の
点までの変位L 1と反転の点から原点荷重値をとる点ま
での変位差L2の比を%で表した値で定義する。
The conductive particles used in the present invention are measured by the following method.
The specified 1g load compression recovery rate (R) is 5 to 80%, preferably
Preferably, it is 30 to 80%. Has a smooth surface
Sample particles on a steel plate
Choose the particles. Next, a powder compression tester (for example, PCT-
200 type, manufactured by Shimadzu Corporation)
Compress sample particles with a smooth end face of a 50 μm diameter cylinder
You. At this time, the compression load is electrically detected as an electromagnetic force,
Compressive displacement is electrically detected as displacement by the working transformer
I do. Then, as shown in FIG.
After compressing (curve a in the figure), reduce the load
Outbound (curve b in the figure) Measure the relationship between load and compressive displacement
You. However, the end point of the unloading is not zero.
In addition, the origin load value is 0.1 g. Compression recovery rate is reversed
Displacement L to point 1From the point of reversal to the point of taking the origin load value.
Displacement difference LTwoIs defined as a value expressed in%.

【数5】 R圧縮(回復率)=(L2/L1)×100 ・・・(6) 測定条件は次の通りである。 反転荷重値: 1.0grf 原点荷重値: 0.1grf 負荷および除負荷における圧縮速度: 0.27grf
/sec 測定温度: 20℃
R compression (recovery rate) = (L 2 / L 1 ) × 100 (6) The measurement conditions are as follows. Reverse load value: 1.0 grf Origin load value: 0.1 grf Compression speed under load and unload: 0.27 grf
/ Sec Measurement temperature: 20 ° C

【0025】本発明の異方導電性接着剤中の導電粒子の
含有量は、平均粒径の小さい導電粒子の含有個数が平均
粒径の大きい導電粒子の含有個数より多いのが好まし
い。具体的には、平均粒径の小さい導電粒子の含有量
は、30000〜80000個/mm2、好ましくは3
0000〜50000個/mm2、平均粒径の大きい導
電粒子の含有量は、10000〜30000個/m
2、好ましくは15000〜30000個/mm2であ
るのが望ましい。また平均粒径の小さい導電粒子含有量
/平均粒径の大きい導電粒子含有量の比は、個数の比で
1.1〜8、好ましくは1.3〜4であるのが望まし
い。平均粒径が3±0.5μmと5±0.5μmの2種
類の導電粒子を用いる場合も、上記含有量が好ましい。
The content of the conductive particles in the anisotropic conductive adhesive of the present invention is preferably such that the number of conductive particles having a small average particle size is larger than the number of conductive particles having a large average particle size. Specifically, the content of the conductive particles having a small average particle size is 30,000 to 80,000 particles / mm 2 , preferably 3
The content of the conductive particles having a large average particle diameter of 10,000 to 50,000 particles / mm 2 is 10,000 to 30,000 particles / m 2.
m 2 , preferably 15,000 to 30,000 particles / mm 2 . The ratio of the content of the conductive particles having a small average particle size to the content of the conductive particles having a large average particle size is 1.1 to 8, preferably 1.3 to 4 in terms of the number ratio. Even when two types of conductive particles having an average particle size of 3 ± 0.5 μm and 5 ± 0.5 μm are used, the above-mentioned content is preferable.

【0026】なお上記個数は、本発明の異方導電性接着
剤から接着用膜を形成し、この膜(接続に使用する前の
膜)の単位面積当りの膜中に含まれる個数、すなわち膜
の表面における面積1mm2を底面とし、膜厚を高さと
する直方体中に含まれる個数である。この場合、直方体
の側面で切断される導電粒子は1/2個と数える。な
お、上記膜厚は接続に用いる膜の膜厚とする。従って、
導電粒子の密度をより大きくすると、膜厚をより薄くし
た状態で使用することができ、逆に導電粒子の密度をよ
り小さくすると、膜厚をより厚くした状態で使用するの
が好ましい。平均粒径の大きい導電粒子および平均粒径
の小さい導電粒子を前記個数で含有している場合、接着
後のバンプ面上には、平均粒径の大きい導電粒子が、平
均−3σ(σは標準偏差を示す)で1個/1バンプ以
上、平均粒径の小さい導電粒子が、平均−3σで5個/
1バンプ以上通常存在する。なお導電粒子の膜中の含有
個数は、光学顕微鏡を用い、500倍の倍率で写真を撮
影し、200μm角中の粒子数を数え、その結果を1m
2に換算して求めることができる。
The above-mentioned number is the number included in a film per unit area of an adhesive film formed from the anisotropic conductive adhesive of the present invention (a film before use for connection), that is, the film Is the number included in a rectangular parallelepiped having an area of 1 mm 2 on the surface as a bottom surface and a thickness as a height. In this case, the number of conductive particles cut on the side surface of the rectangular parallelepiped is counted as 1 /. Note that the thickness is the thickness of a film used for connection. Therefore,
When the density of the conductive particles is increased, the film can be used in a state where the film thickness is reduced. On the contrary, when the density of the conductive particles is reduced, the film is preferably used in a state where the film thickness is increased. In the case where the conductive particles having a large average particle diameter and the conductive particles having a small average particle diameter are contained in the above-mentioned numbers, the conductive particles having a large average particle diameter are -3σ (σ is standard) on the bump surface after bonding. The average particle size of the conductive particles having a small average particle size is 1 / bump or more.
There is usually one or more bumps. The number of conductive particles contained in the film was determined by taking a photograph at a magnification of 500 times using an optical microscope, counting the number of particles in a 200 μm square, and finding the result as 1 m
It can be obtained by converting to m 2 .

【0027】本発明で導電粒子として使用する前記絶縁
被覆導電粒子は、例えば次のような方法により製造する
ことができる。まず前記高分子核材粒子の表層部分を公
知のハイブリダイゼーションシステムによる処理(以下
「ハイブリダイゼーション処理」という)によって改質
する。ハイブリダイゼーション処理は、微粒子に微粒子
を複合化するもので(例えば、粉体と工業VOL.2
7,NO.8,1995,p35〜42等参照)、母粒
子と子粒子とを気相中に分散させながら、衝撃力を主体
とする機械的熱エネルギーを粒子に与えることによっ
て、粒子の固定化および成膜処理を行うものである。
The insulating coated conductive particles used as the conductive particles in the present invention can be produced, for example, by the following method. First, the surface layer portion of the polymer core material particles is modified by a treatment using a known hybridization system (hereinafter, referred to as “hybridization treatment”). The hybridization treatment is to combine fine particles with fine particles (for example, powder and industrial VOL.2).
7, NO. 8, 1995, pp. 35-42, etc.), while dispersing base particles and child particles in the gas phase, applying mechanical thermal energy mainly composed of impact force to the particles, thereby fixing the particles and forming a film. The processing is performed.

【0028】図4は、ハイブリダイゼーション処理を施
した高分子核材粒子の形態を模式的に示すものであり、
図4(a)はシリコーンゴム粒子1aに対してニッケル
粒子2を用いてハイブリダイゼーション処理を施したも
の、図4(b)はベンゾグアナミン粒子1bに対してア
クリル/スチレン粒子3を用いてハイブリダイゼーショ
ン処理を施したものを示す。
FIG. 4 schematically shows the form of the polymer core material particles subjected to the hybridization treatment.
FIG. 4 (a) shows a result of a hybridization treatment using nickel particles 2 on silicone rubber particles 1a, and FIG. 4 (b) shows a hybridization treatment using acrylic / styrene particles 3 on benzoguanamine particles 1b. Is shown.

【0029】図4(a)に示すように、シリコーンゴム
粒子1aに対してニッケル粒子2を用いてハイブリダイ
ゼーション処理を施した場合には、母粒子であるシリコ
ーンゴム粒子1aの表層部分に子粒子であるニッケル粒
子2が埋め込まれるように改質され、改質高分子核材粒
子5が得られる。
As shown in FIG. 4 (a), when the silicone rubber particles 1a were subjected to the hybridization treatment using the nickel particles 2, the child particles were formed on the surface of the silicone rubber particles 1a as the base particles. The modified polymer core material particles 5 are obtained by being modified so that the nickel particles 2 are embedded.

【0030】一方、図4(b)に示すように、ベンゾグ
アナミン粒子1bに対してアクリル/スチレン粒子3を
用いてハイブリダイゼーション処理を施した場合には、
母粒子であるベンゾグアナミン粒子1bの表層部分に子
粒子であるアクリル・スチレン樹脂による薄膜4が形成
されるように改質され、改質高分子核材粒子5が得られ
る。
On the other hand, as shown in FIG. 4B, when the benzoguanamine particles 1b were subjected to a hybridization treatment using the acrylic / styrene particles 3,
The surface of the benzoguanamine particles 1b, which are the mother particles, is modified so that the thin film 4 made of the acrylic / styrene resin as the child particles is formed on the surface layer portion, and the modified polymer core material particles 5 are obtained.

【0031】次に、ハイブリダイゼーション処理した改
質高分子核材粒子5を金属めっきすることにより、図4
(c)に示すような、改質高分子核材粒子5表面が金属
めっき6により被覆された導電被覆粒子7を得る。金属
めっき6は公知の方法により行うことができるが、この
場合改質高分子核材粒子5の表面は金属めっき6との密
着性が向上するように改質されているので、従来の技術
では困難であったシリコーンゴムからなる粒子1aに対
しても容易に金属めっき6を施すことができる。
Next, the modified polymer nucleus material particles 5 subjected to the hybridization treatment are plated with a metal, whereby
As shown in (c), the conductive coated particles 7 in which the surfaces of the modified polymer core material particles 5 are coated with the metal plating 6 are obtained. The metal plating 6 can be performed by a known method. In this case, since the surface of the modified polymer core material particles 5 is modified so as to improve the adhesion with the metal plating 6, the conventional technique is not used. The metal plating 6 can be easily applied to the particles 1a made of silicone rubber, which has been difficult.

【0032】次に上記導電被覆粒子7表面に絶縁性樹脂
層8を形成し、絶縁被覆導電粒子9を得る。絶縁性樹脂
層8を形成するには、前記ハイブリダイゼーション処
理、静電塗装法、噴霧法、溶液塗布法、熱溶融被覆法、
高速攪拌法など、公知の方法が採用できる。またアクリ
ル樹脂架橋膜またはスチレン樹脂架橋膜などの絶縁性樹
脂層9を形成する場合も、前記ハイブリダイゼーション
処理などの方法により行うことができる。
Next, an insulating resin layer 8 is formed on the surface of the conductive coating particles 7 to obtain insulating coating conductive particles 9. To form the insulating resin layer 8, the above-mentioned hybridization treatment, electrostatic coating method, spraying method, solution coating method, hot melt coating method,
Known methods such as a high-speed stirring method can be adopted. Also, the formation of the insulating resin layer 9 such as an acrylic resin crosslinked film or a styrene resin crosslinked film can be performed by the above-mentioned hybridization treatment or the like.

【0033】本発明の異方導電性接着剤中には、前記導
電粒子の他に、熱反応性樹脂類の硬化剤、シランカップ
リング剤、フィルム形成性樹脂等の他の成分を必要に応
じ配合することができる。本発明の異方導電性接着剤
は、絶縁性接着剤中に導電粒子および必要により配合す
る他の成分を配合し、均一に分散させることにより製造
することができる。
In the anisotropic conductive adhesive of the present invention, in addition to the conductive particles, other components such as a curing agent for heat-reactive resins, a silane coupling agent, and a film-forming resin may be used, if necessary. Can be blended. The anisotropic conductive adhesive of the present invention can be produced by blending conductive particles and other components to be blended as necessary into an insulating adhesive and uniformly dispersing the same.

【0034】本発明の異方導電性接着剤は、相対峙する
回路を電気的に接続するとともに接着固定するために用
いられる。例えば、ICチップの接続端子と回路基板上
の接続端子(配線パターン)とを接続するICチップ接
続用、液晶パネルの接続端子と回路基板上の接続端子と
の接続用などに用いられる。これらの中ではICチップ
接続用に用いるのが好ましく、特にICチップを直接回
路基板に接続するいわゆるフリップチップボンディング
の接続に用いるのが好ましく、中でもバンプ(突起電
極)を有するICチップのフリップチップボンディング
の接続に用いるのが好ましい。バンプの大きさは特に限
定されないが、4000μm2以下であるのが好まし
い。このような小さいバンプを接続する場合でも、高精
度のバンプを作成する必要はない。
The anisotropic conductive adhesive of the present invention is used for electrically connecting opposing circuits and for bonding and fixing. For example, it is used for connecting an IC chip for connecting a connection terminal of an IC chip to a connection terminal (wiring pattern) on a circuit board, and for connecting a connection terminal of a liquid crystal panel to a connection terminal on a circuit board. Among these, it is preferable to use for connection of an IC chip, particularly, it is preferable to use for connection of so-called flip chip bonding for directly connecting the IC chip to a circuit board, and in particular, for flip chip bonding of an IC chip having bumps (protruding electrodes). Is preferably used for the connection. The size of the bump is not particularly limited, but is preferably 4000 μm 2 or less. Even when such small bumps are connected, it is not necessary to form high-precision bumps.

【0035】接続は、温度150〜250℃、好ましく
は180〜220℃、圧力50〜3000kgf/cm
2−バンプ、好ましくは100〜1500kgf/cm2
−バンプ、時間2〜30秒、好ましくは3〜20秒の条
件で圧着して行うのが望ましい。
The connection is performed at a temperature of 150 to 250 ° C., preferably 180 to 220 ° C., and a pressure of 50 to 3000 kgf / cm.
2 -bump, preferably 100-1500 kgf / cm 2
-It is desirable to perform the bonding by pressing under a condition of a bump for a time of 2 to 30 seconds, preferably 3 to 20 seconds.

【0036】接続後は、相対峙する回路同士は導通性が
確保され、また隣接するバンプ間または配線パターン間
では絶縁性が確保されるので、電気的異方性が維持され
た状態で接着固定することができる。
After the connection, the opposing circuits are kept conductive and the adjacent bumps or wiring patterns are kept insulated, so that they are bonded and fixed while maintaining the electrical anisotropy. can do.

【0037】本発明の異方導電性接着用膜は前記異方導
電性接着剤からなるフィルムである。膜厚は特に限定さ
れないが、通常5〜200μm、好ましくは10〜10
0μmとするのが望ましい。バンプを有するICチップ
の接続に使用する場合は、接続を行うICチップのバン
プ高さと、回路基板上の配線パターンの高さとを合せた
厚みに対して1〜3倍、好ましくは1〜2倍の膜厚を有
する接着用膜を使用するのが好ましい。膜厚が上記値よ
り大きい場合、圧着の際にバンプと配線パターンとの間
から排除される接着剤の量が多くなるので、バンプと配
線パターンとの間に保持される導電粒子が減少する。保
持量を多くするため導電粒子の配合量を多くすることも
できるが、この場合コスト高になる。また排除された接
着剤によりプレスヘッドが汚れるなど、作業性が低下す
る。一方膜厚が上記値より小さいと、圧着の際にバンプ
間または配線パターン間に接着剤が行き渡らず、接着力
が低下する場合がある。本発明の異方導電性接着用膜中
に含まれる導電粒子の個数は前記接着剤中の個数と同じ
であるのが好ましい。
The anisotropic conductive adhesive film of the present invention is a film comprising the above anisotropic conductive adhesive. The thickness is not particularly limited, but is usually 5 to 200 μm, preferably 10 to 10 μm.
Desirably, it is 0 μm. When used for connection of an IC chip having a bump, the thickness is 1 to 3 times, preferably 1 to 2 times, the total thickness of the bump height of the connecting IC chip and the height of the wiring pattern on the circuit board. It is preferable to use an adhesive film having a thickness of When the film thickness is larger than the above value, the amount of the adhesive removed from between the bump and the wiring pattern at the time of pressure bonding increases, so that the conductive particles held between the bump and the wiring pattern decrease. Although the amount of the conductive particles can be increased in order to increase the holding amount, the cost increases in this case. In addition, the workability is reduced, for example, the press head is stained by the removed adhesive. On the other hand, if the film thickness is smaller than the above value, the adhesive may not spread between the bumps or between the wiring patterns during the pressure bonding, and the adhesive strength may be reduced. The number of conductive particles contained in the anisotropic conductive adhesive film of the present invention is preferably the same as the number in the adhesive.

【0038】本発明の異方導電性接着用膜は単層であっ
てもよく、片面または両面に1層以上の他の層が積層さ
れていてもよい。他の層を積層することにより、接続
(接着)の際に電極からの導電粒子の流出を防止するこ
とができる。また最外層に保管および取扱いを容易にす
るためのカバーフィルムを積層することもできる。
The anisotropic conductive adhesive film of the present invention may be a single layer, or one or more layers may be laminated on one or both sides. By laminating another layer, it is possible to prevent the conductive particles from flowing out of the electrode during connection (adhesion). Further, a cover film for easy storage and handling can be laminated on the outermost layer.

【0039】本発明の異方導電性接着用膜は前記接着剤
と同様の用途に使用することができ、同様にしてICチ
ップ等の接続端子と回路基板上の接続端子とを接続する
ことができる。
The anisotropic conductive adhesive film of the present invention can be used for the same applications as the above-mentioned adhesive, and can similarly connect connection terminals such as IC chips and connection terminals on a circuit board. it can.

【0040】本発明の異方導電性接着剤および接着用膜
は、平均粒径の異なる2種以上の導電粒子を含有してい
るので、導電粒子の凝集を防止して配合量を多くするこ
とができ、これによりバンプまたはピッチの小さいIC
を接続する場合でも、ショートや回路パターンへのダメ
ージを与えることなく、高い導通信頼性と高い絶縁信頼
性を確保した状態で容易に低コストで接続することがで
きる。
Since the anisotropic conductive adhesive and the adhesive film of the present invention contain two or more kinds of conductive particles having different average particle diameters, it is necessary to prevent the aggregation of the conductive particles and increase the compounding amount. , So that bumps or small pitch ICs
Can be easily and inexpensively connected while ensuring high conduction reliability and high insulation reliability without causing a short circuit or damaging the circuit pattern.

【0041】このような異方導電性接着剤および接着用
膜の中でも、導電粒子が加圧により変形し、しかも平均
粒径の大きい導電粒子の硬度が平均粒径の小さい導電粒
子の硬度と同等かそれ以下の場合、圧着の際に平均粒径
の大きい導電粒子がまず変形して相対峙する回路同士を
導通させ、続いて平均粒径の小さい導電粒子も変形して
回路同士を導通させるので、より高い導通信頼性が得ら
れるので好ましい。この場合でも、隣接するバンプ間ま
たは配線パターン間は、絶縁性樹脂および絶縁性接着剤
により高い絶縁信頼性が維持される。このように本発明
においては、粒径の大きい粒子により圧着の際の厚みが
制御されることはない。
Among such anisotropic conductive adhesives and adhesive films, the conductive particles are deformed by pressure, and the hardness of the conductive particles having a large average particle size is equal to the hardness of the conductive particles having a small average particle size. In the case of or less than that, the conductive particles having a large average particle size are deformed at the time of crimping to conduct the circuits facing each other, and then the conductive particles having the small average particle size are also deformed to conduct the circuits. This is preferable because higher conduction reliability can be obtained. Even in this case, high insulating reliability is maintained between the adjacent bumps or between the wiring patterns by the insulating resin and the insulating adhesive. Thus, in the present invention, the thickness at the time of pressure bonding is not controlled by the particles having a large particle diameter.

【0042】[0042]

【発明の効果】本発明の異方導電性接着剤は、絶縁性接
着剤中に絶縁被覆された平均粒径の異なる2種以上の導
電粒子を含有しているのでバンプまたはピッチの小さい
ICを接続する場合でも、ショートや回路パターンへの
ダメージを与えることなく、高い導通信頼性と高い絶縁
信頼性が得られ、しかも低コストで容易に接続すること
ができる。本発明の異方導電性接着用膜は上記接着剤か
らなっているので、ピッチの小さいICを接続する場合
でも、ショートや回路パターンへのダメージを与えるこ
となく、高い導通信頼性と高い絶縁信頼性が得られ、し
かも低コストで容易に接続することができ、しかもフィ
ルム状であるので取扱性および作業性に優れている。
The anisotropic conductive adhesive of the present invention contains two or more kinds of conductive particles having different average particle diameters coated insulatively in the insulating adhesive. Even in the case of connection, high connection reliability and high insulation reliability can be obtained without causing a short circuit or damage to a circuit pattern, and connection can be easily performed at low cost. Since the anisotropic conductive adhesive film of the present invention is made of the above-mentioned adhesive, even when an IC having a small pitch is connected, high conduction reliability and high insulation reliability can be obtained without causing a short circuit or damage to a circuit pattern. Thus, it can be easily connected at low cost, and since it is in the form of a film, it is excellent in handleability and workability.

【0043】[0043]

【発明の実施の形態】本発明の異方導電性接着用膜を用
いてICチップを接続した実施の形態を図面を用いて説
明する。図5は、本発明の異方導電性接着用膜を用いて
ICチップを回路基板上に直接フリップチップボンディ
ング方式により接続した垂直断面模式図であり、10は
異方導電性接着用膜で、平均粒径の小さい導電粒子11
と平均粒径が大きい導電粒子12とが絶縁性接着剤13
中に分散している。14はICチップであって、バンプ
15が形成されている。16は回路基板であって、配線
パターン17が形成されている。導電粒子11、12は
高分子核材粒子表面に金属めっき層が形成され、さらに
絶縁樹脂層で被覆されているが、これらの層の図示は省
略されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which an IC chip is connected using the anisotropic conductive adhesive film of the present invention will be described with reference to the drawings. FIG. 5 is a schematic vertical sectional view in which an IC chip is directly connected to a circuit board by a flip chip bonding method using the anisotropic conductive bonding film of the present invention, and 10 is an anisotropic conductive bonding film. Conductive particles 11 having a small average particle size
And the conductive particles 12 having a large average particle size are insulative adhesive 13
Dispersed inside. Reference numeral 14 denotes an IC chip on which bumps 15 are formed. Reference numeral 16 denotes a circuit board on which a wiring pattern 17 is formed. The conductive particles 11 and 12 each have a metal plating layer formed on the surface of the polymer core material particles and are further covered with an insulating resin layer, but these layers are not shown.

【0044】図5において、ICチップ14に形成され
ているバンプ15と回路基板16上の配線パターン17
とは、導電粒子11、12上の金属めっき層(図示せ
ず)により導通され、かつICチップ14と回路基板1
6とは絶縁性接着剤13により接着、固定されている。
In FIG. 5, the bumps 15 formed on the IC chip 14 and the wiring patterns 17 on the circuit board 16 are shown.
Are electrically connected to each other by a metal plating layer (not shown) on the conductive particles 11 and 12, and the IC chip 14 and the circuit board 1
6 is adhered and fixed by an insulating adhesive 13.

【0045】図5のようにICチップ14と回路基板1
6とを接続するには、ICチップ14と回路基板16と
の間に異方導電性接着剤用膜10を介在させた状態で、
バンプ15と配線パターン17とを上下に相対峙するよ
うに配置し、この状態で上下方向に加圧するとともに加
熱して熱圧着する。これにより、まずバンプ15と配線
パターン17との間に存在する平均粒径の大きい導電粒
子12表面の絶縁性樹脂層が軟化ないし溶融あるいは破
壊するとともに粒子が変形し、絶縁性樹脂層がバンプ1
5および配線パターン17の接触部から排除され、金属
めっき層によりバンプ15と配線パターン17とが導通
する。続いて、平均粒径の小さい導電粒子11において
も、上記平均粒径の大きい導電粒子12の場合と同様に
してバンプ15と配線パターン17とが導通される。こ
のように、本発明の異方導電性接着用膜10において
は、平均粒径の大きい導電粒子12および平均粒径の小
さい導電粒子11の両方によりバンプ15と配線パター
ン17とが導通するので、高い導通信頼性が得られる。
この場合においても、隣接する導電粒子11、12間は
絶縁性樹脂層および絶縁性接着剤13により絶縁性が確
保される。
As shown in FIG. 5, the IC chip 14 and the circuit board 1
6 is connected with the IC chip 14 and the circuit board 16 with the anisotropic conductive adhesive film 10 interposed therebetween.
The bumps 15 and the wiring patterns 17 are arranged so as to face each other up and down, and in this state, pressure is applied in the up and down direction, and heating and thermocompression bonding are performed. As a result, first, the insulating resin layer on the surface of the conductive particles 12 having a large average particle size existing between the bump 15 and the wiring pattern 17 is softened, melted or broken, and the particles are deformed.
5 and the wiring pattern 17 are removed from the contact portion, and the metal plating layer allows the bump 15 and the wiring pattern 17 to conduct. Subsequently, even in the conductive particles 11 having a small average particle diameter, the bumps 15 and the wiring patterns 17 are electrically connected in the same manner as in the case of the conductive particles 12 having a large average particle diameter. As described above, in the anisotropic conductive bonding film 10 of the present invention, both the conductive particles 12 having a large average particle size and the conductive particles 11 having a small average particle size conduct the conduction between the bump 15 and the wiring pattern 17. High conduction reliability can be obtained.
Also in this case, insulation between the adjacent conductive particles 11 and 12 is ensured by the insulating resin layer and the insulating adhesive 13.

【0046】このように、異方導電性接着用膜10を用
いることにより、ICチップ14と回路基板16との接
着固定、バンプ15と配線パターン17との導通、およ
び隣接回路間の絶縁を同時にしかも簡単に低コストで行
うことができる。しかも本発明の異方導電性接着用膜1
0は、平均粒径の異なる導電粒子11、12を含有して
いるので、バンプ15面積が小さい場合やバンプ15の
間隔が狭い場合でも、ショートや回路パターンへのダメ
ージを与えることなく、高い導通信頼性と高い絶縁信頼
性が得られる。
As described above, the use of the anisotropic conductive adhesive film 10 enables simultaneous adhesion and fixing between the IC chip 14 and the circuit board 16, conduction between the bumps 15 and the wiring pattern 17, and insulation between adjacent circuits. Moreover, it can be easily performed at low cost. Moreover, the anisotropic conductive adhesive film 1 of the present invention.
No. 0 contains conductive particles 11 and 12 having different average particle diameters, so that even if the area of the bumps 15 is small or the interval between the bumps 15 is small, short-circuiting or damage to the circuit pattern can be achieved without causing a high conduction. High reliability and high insulation reliability can be obtained.

【0047】[0047]

【実施例】次に本発明の実施例について説明する。 実施例1 絶縁性接着剤としてエポキシ系樹脂組成物(高分子量ビ
スフェノールA系エポキシ樹脂33.3重量%、ナフタ
レン系エポキシ樹脂33.3重量%およびビスフェノー
ルF系エポキシ分散型潜在性硬化剤33.3重量%を含
む組成物)を用い、この絶縁性接着剤中に下記平均粒径
3μmおよび5μmの2種類の導電粒子を配合し、異方
導電性接着剤を調製した。
Next, an embodiment of the present invention will be described. Example 1 Epoxy resin composition (33.3% by weight of high molecular weight bisphenol A type epoxy resin, 33.3% by weight of naphthalene type epoxy resin and bisphenol F type epoxy dispersed latent curing agent 33.3%) as insulating adhesive % Of the composition), and two types of conductive particles having the following average particle diameters of 3 μm and 5 μm were blended into the insulating adhesive to prepare an anisotropic conductive adhesive.

【0048】上記平均粒径3μmの導電粒子としては、
ベンゾグアナミン樹脂からなる高分子核材粒子にAu/
Niめっきを施し、さらにその表面を約0.3μmの膜
厚のアクリル/スチレン樹脂架橋膜で絶縁コートした導
電粒子(以下、B粒子と略記する)を用いた。なおアク
リル/スチレン樹脂架橋膜による絶縁被覆は、ハイブリ
ダイゼーションシステムによる処理によって行った。こ
のB粒子の配合量は30000個/mm2とした。
The conductive particles having an average particle size of 3 μm include:
The polymer core material particles made of benzoguanamine resin are Au /
Conductive particles (hereinafter abbreviated as B particles), which were Ni-plated and whose surface was insulated and coated with an acrylic / styrene resin cross-linked film having a thickness of about 0.3 μm, were used. The insulation coating with the crosslinked acrylic / styrene resin film was performed by a treatment using a hybridization system. The blending amount of the B particles was 30,000 particles / mm 2 .

【0049】前記平均粒径5μmの導電粒子としては、
アクリル/スチレン樹脂からなる高分子核材粒子にAu
/Niめっきを施し、さらにその表面を約0.3μmの
膜厚のアクリル/スチレン樹脂架橋膜で絶縁コートした
導電粒子(以下、LL粒子と略記する)を用いた。
The conductive particles having an average particle size of 5 μm include:
Au on the polymer core material particles composed of acrylic / styrene resin
/ Ni plating, and conductive particles (hereinafter abbreviated as LL particles) whose surface was insulated and coated with an acrylic / styrene resin crosslinked film having a thickness of about 0.3 μm were used.

【0050】前記異方導電性接着剤をフィルム成形し、
膜厚75μmの単層の異方導電性接着用膜を得た。この
膜中のLL粒子の配合量は、単位面積当りの膜中に含有
される個数として20000個/mm2であった。この
異方導電性接着用膜を用いて、下記のようにしてICチ
ップの導通評価および絶縁評価を行った。
The anisotropic conductive adhesive is formed into a film,
A single-layer anisotropic conductive adhesive film having a thickness of 75 μm was obtained. The blending amount of the LL particles in the film was 20000 particles / mm 2 as the number contained in the film per unit area. Using the anisotropic conductive adhesive film, the conduction evaluation and the insulation evaluation of the IC chip were performed as follows.

【0051】《導通評価》 ICチップ:100μm×100μm角パット上にスタ
ッドバンプを立て、バンプ面積1000、2000、3
000、4000または5000μm2となるように平
坦化処理を行い、評価用ICを作成した。バンプ高さは
いずれも約40μm、ICサイズは6mm×6mmであ
る。 基板:BT樹脂0.7mm厚の基板上に、18μm厚の
CuおよびAuめっきで配線パターンを形成した基板。
配線パターン間のピッチは150μm。
<< Evaluation of Continuity >> IC chip: A stud bump is set up on a 100 μm × 100 μm square pad, and the bump area is 1000, 2000, 3
A flattening process was performed so that the thickness became 4,000, 4000, or 5000 μm 2 , and an evaluation IC was prepared. The bump heights are all about 40 μm, and the IC size is 6 mm × 6 mm. Substrate: A substrate in which a wiring pattern is formed on a substrate having a thickness of 0.7 mm of BT resin by plating with Cu and Au having a thickness of 18 μm.
The pitch between the wiring patterns is 150 μm.

【0052】上記ICチップと基板との間(バンプ高さ
と配線パターンの高さとの合計は約58μm)に前記異
方導電性接着用膜を介在させた状態で、温度200℃、
圧力400kgf/cm2−バンプの条件で20秒間加
熱加圧し、圧着して接続した。この接続サンプルを24
0℃、リフロー2回通した後、121℃、2.1atm
飽和プレッシャークッカーテスト(PCT)100Hr
後の抵抗上昇値で導通信頼性を評価した。結果を表1に
示す。 ○:抵抗上昇 0.1Ω以下 △:抵抗上昇 0.1Ωを超え0.3以下 ×:抵抗上昇 0.3Ωを超える
With the anisotropic conductive adhesive film interposed between the IC chip and the substrate (the sum of the height of the bump and the height of the wiring pattern is about 58 μm), the temperature is 200 ° C.
Heating and pressing were performed for 20 seconds under the condition of a pressure of 400 kgf / cm 2 -bump, followed by pressure bonding for connection. 24 samples of this connection
After passing through the reflow twice at 0 ° C., 121 ° C. and 2.1 atm
Saturated pressure cooker test (PCT) 100Hr
The conduction reliability was evaluated by the resistance rise value afterward. Table 1 shows the results. ○: Resistance rise 0.1Ω or less △: Resistance rise more than 0.1Ω and 0.3 or less ×: Resistance rise more than 0.3Ω

【0053】《絶縁評価》 ICチップ:バンプサイズ=70μm×100μm、ス
ペース=10μm、バンプ高さ=20μm、ICサイズ
=6mm×6mm 基板:ガラス上にITO(Indium Tin Oxide)で配線
パターンを作成した透明基板、ピッチ=80μm、ライ
ン=70μm、スペース=10μm。ショートの発生の
有無を顕微鏡で確認するため透明基板を使用。
<< Evaluation of Insulation >> IC chip: bump size = 70 μm × 100 μm, space = 10 μm, bump height = 20 μm, IC size = 6 mm × 6 mm Substrate: A wiring pattern was formed on glass using ITO (Indium Tin Oxide). Transparent substrate, pitch = 80 μm, line = 70 μm, space = 10 μm. A transparent substrate is used to check for the occurrence of short circuit with a microscope.

【0054】上記ICチップと基板とを導通評価の場合
と同様にして接続した。この接続サンプルを85℃、8
5%RH、1000Hrエージングした後、隣接する2
ピン間に25V、1min印加し、絶縁抵抗を評価し
た。結果を表1に示す。 ○:108Ω以上 ×:108Ω未満
The IC chip and the substrate were connected in the same manner as in the case of the conduction evaluation. This connected sample was placed at 85 ° C for 8
After aging at 5% RH for 1000 hours, the adjacent 2
A voltage of 25 V was applied between the pins for 1 minute, and the insulation resistance was evaluated. Table 1 shows the results. :: 10 8 Ω or more ×: less than 10 8 Ω

【0055】実施例2〜5、比較例1〜8 実施例1の導電粒子の種類および配合量を表1または表
2に示すように変更した以外は実施例1と同様にして行
った。結果を表1または表2に示す。
Examples 2 to 5 and Comparative Examples 1 to 8 The same procedures as in Example 1 were carried out except that the kind and the amount of the conductive particles of Example 1 were changed as shown in Table 1 or Table 2. The results are shown in Table 1 or Table 2.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】表1および表2の注 *1 導電粒子を含む膜厚25μmの異方導電性接着用
膜に、膜厚50μmの導電粒子を含有しない膜を積層し
たもの。この2層化接着膜は導電粒子を含む面を基板側
にして使用。 *2 *1と同じ *3 *1と同じ *4 ハミ出し多く、プレスヘッドを汚す *5 スペースをつめられなく接着力が低下し、剥離
Notes to Tables 1 and 2 * 1 A film obtained by laminating a 50 μm-thick film containing no conductive particles on a 25 μm-thick anisotropic conductive adhesive film containing conductive particles. This two-layer adhesive film is used with the surface containing the conductive particles facing the substrate. * 2 Same as * 1 * 3 Same as * 1 * 4 Many blemishes and stains the press head * 5 Space is not packed, adhesion decreases and peels off

【0059】試験例1 実施例1で用いたエポキシ系樹脂中に下記導電粒子を所
定量配合して異方導電性接着剤を調製した。平均粒径5
μmのベンゾグアナミン樹脂からなる高分子核材に、A
u/Niめっきを施し、さらにその表面を膜厚0.3μ
mのアクリル/スチレン樹脂で絶縁コートしたB粒子。
Test Example 1 A predetermined amount of the following conductive particles was mixed with the epoxy resin used in Example 1 to prepare an anisotropic conductive adhesive. Average particle size 5
A polymer nucleus material made of benzoguanamine resin
u / Ni plating, and furthermore, the surface is 0.3 μm thick
B particles coated with acrylic / styrene resin.

【0060】上記接着剤をフィルム成形して膜厚75μ
mの単層の接着用膜を得た。この接着用膜を用いて、バ
ンプ面積が1000〜5000μm2のICチップの接
続を実施例1と同様にして行った。
The above adhesive is formed into a film to have a thickness of 75 μm.
m was obtained as a single-layer adhesive film. Using this adhesive film, connection of an IC chip having a bump area of 1000 to 5000 μm 2 was performed in the same manner as in Example 1.

【0061】接着後、200℃にICチップを加熱して
剥離し、バンプおよび基板上の粒子数を数え、合計した
粒子数をバンプ上に存在していた粒子数としてカウント
し、バンプ面上の導電粒子の平均数を求め、さらに平均
数と3σ(σは標準偏差である)との差を求めた。この
差と異方導電性接着用膜中の導電粒子数との関係を図6
に示す。また導電粒子数が20000個/mm2または
30000個/mm2の接着用膜におけるバンプ面積と
バンプ上の導電粒子数との関係を図7に示す。
After bonding, the IC chip is heated to 200 ° C. and peeled off, the number of particles on the bump and the substrate is counted, and the total number of particles is counted as the number of particles existing on the bump. The average number of the conductive particles was determined, and the difference between the average number and 3σ (σ is the standard deviation) was determined. The relationship between this difference and the number of conductive particles in the anisotropic conductive adhesive film is shown in FIG.
Shown in FIG. 7 shows the relationship between the bump area and the number of conductive particles on the bump in the bonding film having the number of conductive particles of 20,000 / mm 2 or 30,000 / mm 2 .

【0062】図6からバンプ面積が3000μm2以下
のICチップの接続においては、バンプ上に確実に5個
の粒子を存在させるためには、30000個/mm2
上の粒子が必要であり、また1000μm2では400
00個/mm2以上の粒子が必要であることがわかる。
[0062] In connection from FIG bump area is 3000 .mu.m 2 following IC chips, in order to present a reliable five particles on the bump, it is necessary to 30000 / mm 2 or more particles, also 400 for 1000 μm 2
It can be seen that 00 particles / mm 2 or more are required.

【0063】図7から、バンプ上に必ず5個以上の粒子
を存在させるには、20000個/mm2の異方導電性
接続用膜ではバンプ面積が5000μm2以上必要であ
り、30000個/mm2の異方導電性接着用膜ではバ
ンプ面積が3000μm2以上必要であることがわか
る。
As shown in FIG. 7, in order to ensure that 5 or more particles are present on the bump, a bump area of 5000 μm 2 or more is required for an anisotropic conductive connection film of 20000 particles / mm 2 , and 30000 particles / mm 2 It can be seen that the bump area of 3000 μm 2 or more is necessary for the anisotropic conductive adhesive film No. 2 .

【図面の簡単な説明】[Brief description of the drawings]

【図1】導電粒子の圧縮変位と荷重との関係を示すグラ
フである。
FIG. 1 is a graph showing a relationship between a compressive displacement of a conductive particle and a load.

【図2】導電粒子の圧縮歪みとK値との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the compressive strain of conductive particles and the K value.

【図3】導電粒子の負荷時および除負荷時の圧縮変位と
荷重との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a compressive displacement and a load when a conductive particle is loaded and when a conductive particle is unloaded.

【図4】(a)は高分子核材粒子と金属粒子とをハイブ
リダイゼーション処理した場合の高分子核材粒子の改質
状態を示す断面模式図、(b)は高分子核材粒子と樹脂
粒子とをハイブリダイゼーション処理した場合の高分子
核材粒子の改質状態を示す断面模式図、(c)は改質高
分子核材粒子を金属めっきした状態を示す断面模式図、
(d)は(c)の粒子を絶縁性樹脂で被覆した状態を示
す断面模式図である。
FIG. 4 (a) is a schematic cross-sectional view showing a modified state of the polymer nucleus particles when the polymer nucleus particles and metal particles are subjected to a hybridization treatment, and FIG. A schematic cross-sectional view showing a modified state of the polymer nuclear material particles when the particles are subjected to a hybridization treatment, (c) a schematic sectional view showing a state in which the modified polymer nuclear material particles are metal-plated,
(D) is a schematic sectional view showing a state in which the particles of (c) are covered with an insulating resin.

【図5】本発明の異方導電性接着用膜を用いてバンプと
配線パターンとを接続したときの状態を示す垂直断面模
式図である。
FIG. 5 is a schematic vertical sectional view showing a state in which a bump and a wiring pattern are connected using the anisotropic conductive adhesive film of the present invention.

【図6】異方導電性接着用膜中の導電粒子数に対するバ
ンプ上の導電粒子が存在する確率を示すグラフである。
FIG. 6 is a graph showing the probability of the presence of conductive particles on bumps relative to the number of conductive particles in the anisotropic conductive adhesive film.

【図7】バンプ面積に対するバンプ上の導電粒子数の確
率を示すグラフである。
FIG. 7 is a graph showing a probability of the number of conductive particles on a bump with respect to a bump area.

【符号の説明】[Explanation of symbols]

1a シリコーンゴム粒子 1b ベンゾグアナミン粒子 2 ニッケル粒子 3 アクリル/スチレン粒子 4 薄膜 5 改質高分子核材粒子 6 金属めっき 7 導電被覆粒子 8 絶縁性樹脂層 9 絶縁被覆導電粒子 10 異方導電性接着用膜 11 平均粒径の小さい導電粒子 12 平均粒径の大きい導電粒子 13 絶縁性接着剤 14 ICチップ 15 バンプ 16 回路基板 17 配線パターン 1a Silicone rubber particles 1b Benzoguanamine particles 2 Nickel particles 3 Acrylic / styrene particles 4 Thin film 5 Modified polymer core material particles 6 Metal plating 7 Conductive coating particles 8 Insulating resin layer 9 Insulating coating conductive particles 10 Anisotropic conductive bonding film DESCRIPTION OF SYMBOLS 11 Conductive particle with small average particle size 12 Conductive particle with large average particle size 13 Insulating adhesive 14 IC chip 15 Bump 16 Circuit board 17 Wiring pattern

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武市 元秀 栃木県鹿沼市さつき町12−3 ソニーケミ カル株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Motohide Takeichi 12-3 Satsukicho, Kanuma City, Tochigi Prefecture Sony Chemical Corporation

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性接着剤中に導電粒子が分散された
異方導電性接着剤であって、 前記導電粒子は平均粒径が異なる2種以上の導電粒子で
あり、かつこれらの導電粒子は絶縁性接着剤に不溶な絶
縁性樹脂で被覆された絶縁被覆導電粒子であることを特
徴とする異方導電性接着剤。
1. An anisotropic conductive adhesive in which conductive particles are dispersed in an insulating adhesive, wherein the conductive particles are two or more types of conductive particles having different average particle sizes, and these conductive particles are Is an anisotropic conductive adhesive characterized by insulating coated conductive particles coated with an insulating resin insoluble in the insulating adhesive.
【請求項2】 平均粒径が異なる2種以上の導電粒子が
加圧により変形する粒子であることを特徴とする請求項
1記載の異方導電性接着剤。
2. The anisotropic conductive adhesive according to claim 1, wherein the two or more kinds of conductive particles having different average particle diameters are particles that are deformed by pressure.
【請求項3】 平均粒径の小さい導電粒子の硬度が、平
均粒径の大きい導電粒子と同等か、それ以上の硬度を有
することを特徴とする請求項1または2記載の異方導電
性接着剤。
3. The anisotropic conductive adhesive according to claim 1, wherein the hardness of the conductive particles having a small average particle size is equal to or higher than the hardness of the conductive particles having a large average particle size. Agent.
【請求項4】 平均粒径の小さい導電粒子のK値が35
0kgf/mm2以上、平均粒径の大きい導電粒子のK
値が450kgf/mm2以下であり、平均粒径の小さ
い導電粒子のK値が平均粒径の大きい導電粒子のK値よ
り相対的に大きいことを特徴とする請求項1ないし3の
いずれかに記載の異方導電性接着剤。
4. The conductive particles having a small average particle diameter have a K value of 35.
0 kgf / mm 2 or more, K of conductive particles having a large average particle size
The value of the conductive particles having a small average particle size is 450 kgf / mm 2 or less, and the K value of the conductive particles having a small average particle size is relatively larger than the K value of the conductive particles having a large average particle size. The anisotropic conductive adhesive as described in the above.
【請求項5】 平均粒子径の小さい導電粒子の含有個数
が平均粒径の大きい導電粒子の含有個数より多いことを
特徴とする請求項1ないし4のいずれかに記載の異方導
電性接着剤。
5. The anisotropic conductive adhesive according to claim 1, wherein the number of conductive particles having a small average particle diameter is larger than the number of conductive particles having a large average particle diameter. .
【請求項6】 平均粒径が3±0.5μmと5±0.5
μmの2種類の導電粒子が分散されてなることを特徴と
する請求項1ないし5のいずれかに記載の異方導電性接
着剤。
6. An average particle size of 3 ± 0.5 μm and 5 ± 0.5
The anisotropic conductive adhesive according to any one of claims 1 to 5, wherein two kinds of conductive particles having a diameter of μm are dispersed.
【請求項7】 ICチップと回路基板とを接続するIC
チップ接続用である請求項1ないし6のいずれかに記載
の異方導電性接着剤。
7. An IC for connecting an IC chip to a circuit board.
The anisotropic conductive adhesive according to any one of claims 1 to 6, which is used for chip connection.
【請求項8】 ICチップに形成された4000μm2
以下の微小バンプと回路基板とを接続するICチップ接
続用である請求項1ないし7のいずれかに記載の異方導
電性接着剤。
8. 4000 μm 2 formed on an IC chip
8. The anisotropic conductive adhesive according to claim 1, which is used for connecting an IC chip for connecting the following minute bumps to a circuit board.
【請求項9】 請求項1ないし8のいずれかに記載の異
方導電性接着剤からなる異方導電性接着用膜。
9. An anisotropic conductive adhesive film comprising the anisotropic conductive adhesive according to claim 1. Description:
【請求項10】 ICチップと回路基板とを接続するI
Cチップ接続用である請求項9記載の異方導電性接着用
膜。
10. An IC for connecting an IC chip to a circuit board.
10. The anisotropic conductive adhesive film according to claim 9, which is for connecting a C chip.
【請求項11】 ICチップに形成された4000μm
2以下の微小バンプと回路基板とを接続するICチップ
接続用である請求項9記載の異方導電性接着用膜。
11. 4000 μm formed on an IC chip
10. The anisotropic conductive adhesive film according to claim 9, which is for connecting an IC chip for connecting two or less micro bumps to a circuit board.
【請求項12】 単位面積当りの膜中に含有される平均
粒径の小さい導電粒子の含有量が30000〜8000
0個/mm2の範囲であり、平均粒径の大きい導電粒子
の含有量が10000〜30000個/mm2の範囲で
あることを特徴とする請求項9ないし11のいずれかに
記載の異方導電性接着用膜。
12. The content of conductive particles having a small average particle size per unit area in a film is 30,000 to 8,000.
In the range of 0 / mm 2, anisotropic according to any one of 9 claims, wherein the content of larger conductive particles having an average particle size in the range of 10,000 to 30,000 pieces / mm 2 11 Conductive adhesive film.
【請求項13】 膜の厚みが、接続を行うICチップの
バンプ高さと回路基板上の配線パターンの高さとを合せ
た厚みに対して1〜3倍である請求項9ないし12のい
ずれかに記載の異方導電性接着用膜。
13. The method according to claim 9, wherein the thickness of the film is 1 to 3 times the total thickness of the bump height of the connecting IC chip and the height of the wiring pattern on the circuit board. The anisotropic conductive adhesive film according to the above.
JP30076398A 1997-10-28 1998-10-22 Anisotropic conductive adhesive and adhesive film Expired - Lifetime JP3296306B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30076398A JP3296306B2 (en) 1997-10-28 1998-10-22 Anisotropic conductive adhesive and adhesive film
EP99306548A EP0996321B1 (en) 1998-10-22 1999-08-19 Anisotropically electroconductive adhesive and adhesive film
DE1999636089 DE69936089T2 (en) 1998-10-22 1999-08-19 Anisotropically conductive adhesive and adhesive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29600597 1997-10-28
JP9-296005 1997-10-28
JP30076398A JP3296306B2 (en) 1997-10-28 1998-10-22 Anisotropic conductive adhesive and adhesive film

Publications (2)

Publication Number Publication Date
JPH11241054A true JPH11241054A (en) 1999-09-07
JP3296306B2 JP3296306B2 (en) 2002-06-24

Family

ID=26560500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30076398A Expired - Lifetime JP3296306B2 (en) 1997-10-28 1998-10-22 Anisotropic conductive adhesive and adhesive film

Country Status (1)

Country Link
JP (1) JP3296306B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358825A (en) * 2001-05-31 2002-12-13 Hitachi Chem Co Ltd Anisotropic conductive adhesion film
US6632532B1 (en) 1999-11-05 2003-10-14 Sony Chemicals Corp. Particle material anisotropic conductive connection and anisotropic conductive connection material
WO2005017923A1 (en) * 2003-08-19 2005-02-24 Sony Chemicals Corp. Insulation-coated electroconductive particles
JP2005244189A (en) * 2004-01-27 2005-09-08 Sekisui Chem Co Ltd Adhesive resin sheet for bonding semiconductor chip and semiconductor device
JP2006236759A (en) * 2005-02-24 2006-09-07 Sony Chemical & Information Device Corp Insulation coated conductive particle
JP2007012378A (en) * 2005-06-29 2007-01-18 Fujikura Kasei Co Ltd Conductive particulate
KR100724720B1 (en) 2005-11-02 2007-06-04 중앙대학교 산학협력단 Conductive adhesive and connection method between terminals employing it
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
JP2009124076A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Connection structure and manufacturing method of connection structure
JP2009182365A (en) * 2009-05-21 2009-08-13 Hitachi Chem Co Ltd Manufacturing method of circuit board, and circuit connection material
JP2009218228A (en) * 2009-06-23 2009-09-24 Sony Chemical & Information Device Corp Insulation coated conductive particles
WO2010147002A1 (en) * 2009-06-15 2010-12-23 住友電気工業株式会社 Electrode connection structure, conductive adhesive used therefor, and electronic device
JP2011175970A (en) * 2011-02-07 2011-09-08 Hitachi Chem Co Ltd Circuit connecting material, and manufacturing method of connection structure of circuit member
JP2012015115A (en) * 2011-07-27 2012-01-19 Sony Chemical & Information Device Corp Insulation-coated conductive particle
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
WO2013058380A1 (en) * 2011-10-20 2013-04-25 日立化成株式会社 Adhesive composition, connection structure and method for producing same
KR20130072156A (en) * 2011-12-21 2013-07-01 히타치가세이가부시끼가이샤 Circuit connecting material, connection structure and method for producing connection structure
WO2013129437A1 (en) * 2012-03-02 2013-09-06 デクセリアルズ株式会社 Method for manufacturing connection element, and anisotropic electroconductive adhesive
WO2014061435A1 (en) * 2012-10-19 2014-04-24 株式会社サンメディカル技術研究所 Anisotropic conductive connector
TWI475662B (en) * 2005-11-01 2015-03-01 Sandisk Technologies Inc Multiple die integrated circuit package
KR101527104B1 (en) * 2013-09-27 2015-06-09 이성호 Anisotropic conductive film with enhanced conducting ratio
JP2015127392A (en) * 2013-11-27 2015-07-09 日東電工株式会社 Conductive adhesive tape, electronic component and adhesive agent
WO2015111738A1 (en) * 2014-01-23 2015-07-30 株式会社ダイセル Film-shaped adhesive including electroconductive-fiber-coated particles
US9226406B2 (en) 2009-06-15 2015-12-29 Sumitomo Electric Industries, Ltd. Electrode connection method, electrode connection structure, conductive adhesive used therefor, and electronic device
JP2016012560A (en) * 2014-06-06 2016-01-21 積水化学工業株式会社 Conductive material and connection structure
JP2016131246A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Multilayer substrate
JP6114883B1 (en) * 2015-05-20 2017-04-12 積水化学工業株式会社 Conductive adhesive and conductive adhesive with conductive substrate

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632532B1 (en) 1999-11-05 2003-10-14 Sony Chemicals Corp. Particle material anisotropic conductive connection and anisotropic conductive connection material
KR100554925B1 (en) * 1999-11-05 2006-03-03 소니 케미카루 가부시키가이샤 Particle material for anisotropic conductive connection and anisotropic conductive connection material
JP2002358825A (en) * 2001-05-31 2002-12-13 Hitachi Chem Co Ltd Anisotropic conductive adhesion film
JP4539813B2 (en) * 2003-08-19 2010-09-08 ソニーケミカル&インフォメーションデバイス株式会社 Insulation coated conductive particles
WO2005017923A1 (en) * 2003-08-19 2005-02-24 Sony Chemicals Corp. Insulation-coated electroconductive particles
JP2005063904A (en) * 2003-08-19 2005-03-10 Sony Chem Corp Insulation coated conductive particle
KR100845875B1 (en) * 2003-08-19 2008-07-14 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Insulation-coated electroconductive particles
US7846547B2 (en) 2003-08-19 2010-12-07 Sony Corporation Insulation-coated conductive particle
JP2005244189A (en) * 2004-01-27 2005-09-08 Sekisui Chem Co Ltd Adhesive resin sheet for bonding semiconductor chip and semiconductor device
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
JP2006236759A (en) * 2005-02-24 2006-09-07 Sony Chemical & Information Device Corp Insulation coated conductive particle
JP2007012378A (en) * 2005-06-29 2007-01-18 Fujikura Kasei Co Ltd Conductive particulate
TWI475662B (en) * 2005-11-01 2015-03-01 Sandisk Technologies Inc Multiple die integrated circuit package
KR100724720B1 (en) 2005-11-02 2007-06-04 중앙대학교 산학협력단 Conductive adhesive and connection method between terminals employing it
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2009124076A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Connection structure and manufacturing method of connection structure
JP2009182365A (en) * 2009-05-21 2009-08-13 Hitachi Chem Co Ltd Manufacturing method of circuit board, and circuit connection material
WO2010147002A1 (en) * 2009-06-15 2010-12-23 住友電気工業株式会社 Electrode connection structure, conductive adhesive used therefor, and electronic device
JP2010287838A (en) * 2009-06-15 2010-12-24 Sumitomo Electric Ind Ltd Electrode connection structure, conductive adhesive used therefor, and electronic device
US9226406B2 (en) 2009-06-15 2015-12-29 Sumitomo Electric Industries, Ltd. Electrode connection method, electrode connection structure, conductive adhesive used therefor, and electronic device
US8470438B2 (en) 2009-06-15 2013-06-25 Sumitomo Electric Industries, Ltd. Electrode-connecting structure, conductive adhesive used for the same, and electronic apparatus
JP2009218228A (en) * 2009-06-23 2009-09-24 Sony Chemical & Information Device Corp Insulation coated conductive particles
JP2011175970A (en) * 2011-02-07 2011-09-08 Hitachi Chem Co Ltd Circuit connecting material, and manufacturing method of connection structure of circuit member
JP2012015115A (en) * 2011-07-27 2012-01-19 Sony Chemical & Information Device Corp Insulation-coated conductive particle
WO2013058380A1 (en) * 2011-10-20 2013-04-25 日立化成株式会社 Adhesive composition, connection structure and method for producing same
KR20130072156A (en) * 2011-12-21 2013-07-01 히타치가세이가부시끼가이샤 Circuit connecting material, connection structure and method for producing connection structure
JP2013149966A (en) * 2011-12-21 2013-08-01 Hitachi Chemical Co Ltd Circuit connection material, connection body, and method for manufacturing connection body
WO2013129437A1 (en) * 2012-03-02 2013-09-06 デクセリアルズ株式会社 Method for manufacturing connection element, and anisotropic electroconductive adhesive
WO2014061435A1 (en) * 2012-10-19 2014-04-24 株式会社サンメディカル技術研究所 Anisotropic conductive connector
KR101527104B1 (en) * 2013-09-27 2015-06-09 이성호 Anisotropic conductive film with enhanced conducting ratio
US9982170B2 (en) 2013-11-27 2018-05-29 Nitto Denko Corporation Electro-conductive pressure-sensitive adhesive tape, an electronic member, and a pressure-sensitive adhesive
JP2015127392A (en) * 2013-11-27 2015-07-09 日東電工株式会社 Conductive adhesive tape, electronic component and adhesive agent
WO2015111738A1 (en) * 2014-01-23 2015-07-30 株式会社ダイセル Film-shaped adhesive including electroconductive-fiber-coated particles
JPWO2015111738A1 (en) * 2014-01-23 2017-03-23 株式会社ダイセル Film adhesive containing conductive fiber coated particles
JP2016012560A (en) * 2014-06-06 2016-01-21 積水化学工業株式会社 Conductive material and connection structure
JP2016131246A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Multilayer substrate
US11901325B2 (en) 2015-01-13 2024-02-13 Dexerials Corporation Multilayer substrate
JP6114883B1 (en) * 2015-05-20 2017-04-12 積水化学工業株式会社 Conductive adhesive and conductive adhesive with conductive substrate

Also Published As

Publication number Publication date
JP3296306B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP3296306B2 (en) Anisotropic conductive adhesive and adhesive film
KR100539060B1 (en) Anisotropic conductive adhesive and adhesive film
JP3379456B2 (en) Anisotropic conductive adhesive film
JP3530980B2 (en) Adhesive structure, liquid crystal device, and electronic equipment
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
KR20110066235A (en) Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
EP1093160A2 (en) Connecting material for anisotropically electroconductive connection
KR20120122943A (en) Anisotropic conductive film, connection method and connection structure
JP3624818B2 (en) Anisotropic conductive connection material, connection body, and manufacturing method thereof
KR102517498B1 (en) Conductive material and manufacturing method of connection body
US6426021B2 (en) Anisotropically electroconductive adhesive material and connecting method
KR100694529B1 (en) Conductive particle and adhesive agent
JP2000207943A (en) Anisotropically conductive film and electrical connection device using the same
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JPH07157720A (en) Film having anisotropic electrical conductivity
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP3486346B2 (en) Bare chip mounting structure
JPH09199206A (en) Anisotropic conductive bonding film
KR20120022580A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP3876993B2 (en) Adhesive structure, liquid crystal device, and electronic device
JP2007027712A (en) Adhering method and manufacturing method of liquid crystal device
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
EP0996321B1 (en) Anisotropically electroconductive adhesive and adhesive film
JP4181239B2 (en) Connecting member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term