JPH09199206A - Anisotropic conductive bonding film - Google Patents
Anisotropic conductive bonding filmInfo
- Publication number
- JPH09199206A JPH09199206A JP8025937A JP2593796A JPH09199206A JP H09199206 A JPH09199206 A JP H09199206A JP 8025937 A JP8025937 A JP 8025937A JP 2593796 A JP2593796 A JP 2593796A JP H09199206 A JPH09199206 A JP H09199206A
- Authority
- JP
- Japan
- Prior art keywords
- conductive particles
- anisotropic conductive
- particles
- adhesive film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/2939—Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/0781—Adhesive characteristics other than chemical being an ohmic electrical conductor
- H01L2924/07811—Extrinsic, i.e. with electrical conductive fillers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
Landscapes
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Wire Bonding (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、液晶表示
装置(LCD)と回路基板との間の電気的な接続に用い
られる異方性導電接着フィルムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive film used for electrical connection between a liquid crystal display device (LCD) and a circuit board, for example.
【0002】[0002]
【従来の技術】従来より、例えば、液晶表示装置と集積
回路基板等を接続する手段として、異方性導電接着フィ
ルムが用いられている。この異方性導電接着フィルム
は、例えば、フレキシブルプリント基板(FPC)やT
AB(Tape Automated Bondin
g)フィルム等の接続手段の端子と、LCDパネルのガ
ラス基板上に形成されたITO(Indium Tin
Oxide)電極の端子とを接続する場合を始めとし
て、種々の端子間を接着するとともに電気的に接続する
場合に用いられている。2. Description of the Related Art Conventionally, an anisotropic conductive adhesive film has been used as a means for connecting a liquid crystal display device to an integrated circuit board or the like. This anisotropic conductive adhesive film is used, for example, in flexible printed circuit boards (FPC) and T
AB (Tape Automated Bondin)
g) The terminals of the connecting means such as a film and the ITO (Indium Tin) formed on the glass substrate of the LCD panel.
It is used for bonding various terminals and for electrically connecting them, including the case of connecting the terminals of an oxide electrode.
【0003】一般に、異方性導電接着フィルムは、絶縁
性接着剤樹脂中に導電粒子を含有して構成される。この
場合、絶縁性接着剤樹脂としては、主にエポキシ系の熱
硬化樹脂が用いられ、その樹脂中には、カップリング剤
や硬化剤等が含まれている。また、導電粒子としては、
例えば、金属の粒子や樹脂粒子にめっきを施したもの等
が用いられる。従来、このような異方性導電接着フィル
ムによる端子間の接続は、接続しようとする基板の端子
上に異方性導電接着フィルムを配し、その上からTAB
フィルム等の接続手段を1枚ずつ熱圧着するようにして
いる。Generally, an anisotropic conductive adhesive film is constructed by containing conductive particles in an insulating adhesive resin. In this case, an epoxy thermosetting resin is mainly used as the insulating adhesive resin, and the resin contains a coupling agent, a curing agent, and the like. Further, as the conductive particles,
For example, metal particles or resin particles plated, etc. are used. Conventionally, the connection between terminals by such an anisotropic conductive adhesive film is performed by disposing the anisotropic conductive adhesive film on the terminals of the substrate to be connected, and then TAB.
The connecting means such as a film is thermocompression-bonded one by one.
【0004】[0004]
【発明が解決しようとする課題】ところで、近年、LC
D等の生産効率を向上させる必要性から、基板上に複数
の接続手段を並べ、これらを一括して熱圧着するという
工程が提案されている。しかしながら、従来の異方性導
電接着フィルムを用いて複数の接続手段を一括的に熱圧
着した場合には、端子間の導通不良が発生するという問
題があった。すなわち、従来の異方性導電接着フィルム
においては、導電粒子として加圧時にほとんど変形しな
いもの、例えば金属粒子や、ベンゾグアナミン、ジビニ
ルベンゼン系の硬質の樹脂粒子に金属めっきを施したも
のを用いているため、各TABフィルム等の接続手段の
厚みの違い(例えば、基材、パターン及びパターン上の
めっき等)に起因して端子間の間隔にばらつき(0.5
μm程度)が生じた場合には、間隔の広い方の端子間に
おいて導電粒子と接続端子とが十分に接触せず、端子間
の電気的な接続が不十分になるという問題があった。か
かる問題に対しては、導電粒子として例えばポリスチレ
ン等の軟質の樹脂粒子に金属めっきを施したものを用
い、加圧時の粒子の変形によって間隔の広い方の端子間
を近づけることも考えられるが、そのような粒子を用い
た場合、加圧後において導電粒子の樹脂部分が塑性変形
を起こしているため、エージング後の導通抵抗が上昇し
てしまうという問題があった。By the way, in recent years, LC
Due to the necessity of improving the production efficiency of D and the like, a process of arranging a plurality of connecting means on a substrate and collectively thermocompressing them has been proposed. However, when a plurality of connecting means are collectively thermocompression bonded by using the conventional anisotropic conductive adhesive film, there is a problem in that conduction failure between terminals occurs. That is, in the conventional anisotropic conductive adhesive film, conductive particles that hardly deform when pressed, for example, metal particles, benzoguanamine, or divinylbenzene-based hard resin particles plated with metal are used. Therefore, due to the difference in the thickness of the connecting means such as each TAB film (for example, the base material, the pattern, the plating on the pattern, etc.), the spacing between the terminals varies (0.5
(about .mu.m) occurs, there is a problem that the conductive particles and the connection terminal do not come into sufficient contact with each other between the terminals having a wider distance, and the electrical connection between the terminals becomes insufficient. For such a problem, it is possible to use soft resin particles such as polystyrene plated with metal as the conductive particles, and to bring the terminals of the wider spacing closer by the deformation of the particles at the time of pressurization. However, when such particles are used, there is a problem in that the resin portion of the conductive particles undergoes plastic deformation after pressurization, so that the conduction resistance after aging increases.
【0005】本発明は、このような従来の技術の課題を
解決するためになされたもので、導通信頼性を損なうこ
となく、複数の接続手段を一括して接続しうる異方性導
電接着フィルムを提供することを目的とするものであ
る。The present invention has been made in order to solve the problems of the prior art as described above, and an anisotropic conductive adhesive film capable of collectively connecting a plurality of connecting means without impairing the conduction reliability. It is intended to provide.
【0006】[0006]
【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究を重ねた結果、絶縁性接着剤
中に導電粒子を分散した異方性導電接着フィルムにおい
て、この導電粒子における10%圧縮変位時の圧縮強度
を所定の値より小さくすること、また、導電粒子の圧縮
変位時の回復率を所定の値より大きくすることにより、
導通信頼性を損なうことなく複数の接続手段を一括して
接続しうる異方性導電接着フィルムが得られることを見
い出した。Means for Solving the Problems As a result of intensive studies for achieving the above object, the present inventors have found that in an anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive, By making the compression strength of the particles at 10% compression displacement smaller than a predetermined value, and by making the recovery rate of the conductive particles at the compression displacement larger than a predetermined value,
It has been found that an anisotropic conductive adhesive film can be obtained in which a plurality of connecting means can be collectively connected without impairing conduction reliability.
【0007】本発明はこのような知見に基づいて完成さ
れたものであって、請求項1記載の発明は、絶縁性接着
剤中に導電粒子を分散した異方性導電接着フィルムにお
いて、この導電粒子における10%圧縮変位時の圧縮強
度が7.0kgf/mm2以下であることを特徴とする。The present invention has been completed based on such findings, and the invention according to claim 1 is an anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive. The compressive strength of the particles at 10% compressive displacement is 7.0 kgf / mm 2 or less.
【0008】この場合、導電粒子における10%圧縮変
位時の圧縮強度を5.0kgf/mm2以下とするとより効果的
である。In this case, it is more effective to set the compressive strength of the conductive particles at 10% compressive displacement to 5.0 kgf / mm 2 or less.
【0009】一方、絶縁性接着剤としては、例えば、エ
ポキシ樹脂、フェノキシ樹脂等の熱硬化性樹脂を主成分
として、カップリング剤、硬化剤等を含むものなどを用
いることができる。On the other hand, as the insulating adhesive, for example, one containing a thermosetting resin such as an epoxy resin or a phenoxy resin as a main component and containing a coupling agent, a curing agent or the like can be used.
【0010】また、請求項2記載の発明は、請求項1記
載の発明において、導電粒子の圧縮変位時の回復率が1
0%以上であることを特徴とする。According to a second aspect of the present invention, in addition to the first aspect of the invention, the recovery rate when the conductive particles are compressed and displaced is 1.
0% or more.
【0011】この場合、導電粒子の圧縮変位時の回復率
を13%以上とするとより効果的である。In this case, it is more effective if the recovery rate of the conductive particles at the time of compressive displacement is 13% or more.
【0012】さらに、請求項3記載の発明は、請求項1
又は2記載の発明において、導電粒子が重合体を主成分
とする核体に金属薄膜を形成してなることを特徴とす
る。Further, the invention according to claim 3 is the invention according to claim 1.
Alternatively, in the invention described in item 2, the conductive particles are formed by forming a metal thin film on a core containing a polymer as a main component.
【0013】さらにまた、請求項4記載の発明のよう
に、請求項3記載の発明において、核体として脂肪族ア
クリレート架橋物を用いることも効果的である。Further, like the invention described in claim 4, in the invention described in claim 3, it is also effective to use an aliphatic acrylate crosslinked product as a nucleus.
【0014】かかる構成を有する請求項1記載の発明の
場合、絶縁性接着剤中に導電粒子を分散した異方性導電
接着フィルムにおいて、10%圧縮変位時の圧縮強度が
7.0kgf/mm2 以下である導電粒子を用いていることか
ら、例えば、TABフィルム等の接続手段の厚みの差異
(基材、パターン、めっき等)に起因して端子間の間隔
にばらつきが生じた場合であっても、導電粒子が変形し
てある程度つぶれ、その結果、間隔の広い方の端子間に
おいて導電粒子と接続端子とが十分に接触し、端子間の
電気的な接続が十分になされるようになる。In the case of the invention according to claim 1 having such a constitution, in the anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive, the compressive strength at 10% compression displacement is 7.0 kgf / mm 2. Since the following conductive particles are used, for example, when the spacing between terminals varies due to the difference in the thickness of the connecting means such as the TAB film (base material, pattern, plating, etc.). Also, the conductive particles are deformed and crushed to some extent, and as a result, the conductive particles and the connection terminals are sufficiently brought into contact with each other between the terminals having the wider spacing, and electrical connection between the terminals is sufficiently performed.
【0015】また、請求項2記載の発明の場合、請求項
1記載の発明において、導電粒子の圧縮変位時の回復率
が10%以上であることから、導電粒子が反発性を有し
ており、塑性変形を起こしていないので、エージング後
においても、導電粒子の導通抵抗はさほど上昇しない。Further, in the case of the invention described in claim 2, in the invention described in claim 1, since the recovery rate of the conductive particles at the time of compressive displacement is 10% or more, the conductive particles are repulsive. Since no plastic deformation occurs, the conduction resistance of the conductive particles does not increase so much even after aging.
【0016】さらに、請求項3記載の発明のように、請
求項1又は2記載の発明において、重合体を主成分とす
る核体に金属薄膜を形成してなる導電粒子を用いるこ
と、特に、請求項4記載の発明のように、核体が脂肪族
アクリレート架橋物である導電粒子を用いることによっ
て、10%圧縮変位時の圧縮強度が7.0kgf/mm2以下の
導電粒子、及び、圧縮変位時の回復率が10%以上の導
電粒子が容易に得られる。Further, as in the invention described in claim 3, in the invention described in claim 1 or 2, the use of conductive particles obtained by forming a metal thin film on a core containing a polymer as a main component, particularly, As in the invention according to claim 4, by using conductive particles whose core is an aliphatic acrylate cross-linked product, conductive particles having a compressive strength at 10% compression displacement of 7.0 kgf / mm 2 or less, and compressed particles Conductive particles having a recovery rate of 10% or more when displaced are easily obtained.
【0017】[0017]
【発明の実施の形態】以下、本発明に係るの実施の形態
を図面を参照して詳細に説明する。図1は、本発明に係
る異方性導電接着フィルムの好ましい実施の形態を示す
断面図である。図1に示すように、本発明の異方性導電
接着フィルム1は、例えば、図示しない剥離フィルム上
に形成され、フィルム状の絶縁性接着剤樹脂2中に導電
粒子3を含有している。この場合、絶縁性接着剤樹脂2
としては、例えば、エポキシ樹脂、フェノキシ樹脂等を
主成分として、カップリング剤、硬化剤等を含むものな
どを用いることができる。また、導電粒子3の含有量と
しては、3〜5重量%程度が好ましい。なお、導電粒子
3を絶縁性接着剤樹脂2中に含有させる方法としては、
公知の方法を用いることができる。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing a preferred embodiment of the anisotropic conductive adhesive film according to the present invention. As shown in FIG. 1, the anisotropic conductive adhesive film 1 of the present invention is formed on, for example, a release film (not shown), and contains conductive particles 3 in a film-like insulating adhesive resin 2. In this case, the insulating adhesive resin 2
For example, a material containing an epoxy resin, a phenoxy resin, or the like as a main component and a coupling agent, a curing agent, or the like can be used. Further, the content of the conductive particles 3 is preferably about 3 to 5% by weight. In addition, as a method of containing the conductive particles 3 in the insulating adhesive resin 2,
A known method can be used.
【0018】一方、本発明の導電粒子3は、例えば、樹
脂粒子3aを核としてその表層に金属めっき3bを施し
たものから構成される。この場合、樹脂粒子3aを構成
する樹脂としては、脂肪族アクリレート架橋物などを用
いることができる。また、金属めっき3bとしては、ニ
ッケル−金めっきなどを用いることができる。On the other hand, the conductive particles 3 of the present invention are composed of, for example, resin particles 3a as cores and metal plating 3b on the surface thereof. In this case, as the resin forming the resin particles 3a, an aliphatic acrylate crosslinked product or the like can be used. Further, as the metal plating 3b, nickel-gold plating or the like can be used.
【0019】[0019]
【実施例】以下、本発明に係る異方性導電接着フィルム
の実施例を比較例とともに詳細に説明する。EXAMPLES Examples of the anisotropic conductive adhesive film according to the present invention will be described in detail below together with comparative examples.
【0020】〔サンプルの作成〕まず、以下の表1に示
す配合比を有する絶縁性接着剤樹脂、すなわち、バイン
ダーを調製した。[Preparation of Sample] First, an insulating adhesive resin having a compounding ratio shown in Table 1 below, that is, a binder was prepared.
【0021】[0021]
【表1】 [Table 1]
【0022】上記バインダー100重量部に対し、後述
の導電粒子を5重量部混合し、トルエンと酢酸エチルの
混合溶剤(重量比1:1)を固形分が60重量%になる
ように加え、バインダーペーストとする。さらに、この
バインダーペーストを剥離用のポリエチレンテレフタレ
ート(PET)フィルム上に乾燥後の厚みが25μmに
なるようにコーティングし、異方性導電接着フィルムを
得る。この異方性導電接着フィルムを幅2mmのスリッ
ト状に切断し、以下の実施例及び比較例のサンプルとし
た。To 100 parts by weight of the above binder, 5 parts by weight of conductive particles described below were mixed, and a mixed solvent of toluene and ethyl acetate (weight ratio 1: 1) was added so that the solid content was 60% by weight, and the binder was added. Use as a paste. Further, this binder paste is coated on a polyethylene terephthalate (PET) film for peeling so as to have a thickness after drying of 25 μm to obtain an anisotropic conductive adhesive film. This anisotropic conductive adhesive film was cut into slits having a width of 2 mm to obtain samples of the following examples and comparative examples.
【0023】〔実施例1〕バインダー100重量部に対
し、導電粒子として、脂肪族アクリレート架橋体を基材
とする樹脂粒子(積水ファインケミカル社製 商品名ミ
クロパールAU−7082LL)にニッケル−金めっき
を施したもの(平均粒径8.2μm)を5重量部分散さ
せた。なお、ニッケルめっきの厚みは1000オングス
トローム、金めっきの厚みは300オングストロームと
した。[Example 1] Nickel-gold plating was applied to 100 parts by weight of a binder as resin particles having a cross-linked aliphatic acrylate as a base material (Micropearl AU-7082LL manufactured by Sekisui Fine Chemical Co., Ltd.) as conductive particles. 5 parts by weight of the applied product (average particle size 8.2 μm) was dispersed. The nickel plating had a thickness of 1000 Å and the gold plating had a thickness of 300 Å.
【0024】〔実施例2〕バインダー100重量部に対
し、導電粒子として、脂肪族アクリレート架橋体を基材
とする樹脂粒子(積水ファインケミカル社製 商品名ミ
クロパールAU−2081M)にニッケル−金めっきを
施したもの(平均粒径8.1μm)を5重量部分散させ
た。[Example 2] Nickel-gold plating was applied to 100 parts by weight of a binder, as conductive particles, resin particles based on a crosslinked aliphatic acrylate (manufactured by Sekisui Fine Chemical Co., Ltd., trade name Micropearl AU-2081M). 5 parts by weight of the applied product (average particle size 8.1 μm) was dispersed.
【0025】〔実施例3〕バインダー100重量部に対
し、導電粒子として、脂肪族アクリレート架橋体を基材
とする樹脂粒子(積水ファインケミカル社製 商品名ミ
クロパールAU−2075L)にニッケル−金めっきを
施したもの(平均粒径7.5μm)を5重量部分散させ
た。[Example 3] Nickel-gold plating was applied to 100 parts by weight of a binder, as conductive particles, resin particles based on a crosslinked aliphatic acrylate (manufactured by Sekisui Fine Chemical Co., Ltd., trade name Micropearl AU-2075L). 5 parts by weight of the applied product (average particle size 7.5 μm) was dispersed.
【0026】〔比較例1〕バインダー100重量部に対
し、導電粒子として、ジビニルベンゼンを基材とする樹
脂粒子(積水ファインケミカル社製 商品名ミクロパー
ルAU−205)にニッケル−金めっきを施したもの
(平均粒径5.0μm)を5重量部分散させた。Comparative Example 1 100 parts by weight of a binder was coated with nickel-gold plating as conductive particles on resin particles based on divinylbenzene (trade name Micropearl AU-205 manufactured by Sekisui Fine Chemical Co., Ltd.). 5 parts by weight of (average particle size 5.0 μm) were dispersed.
【0027】〔比較例2〕バインダー100重量部に対
し、導電粒子として、5%架橋させたポリスチレンを基
材とする樹脂粒子(山王社製)にニッケル−金めっきを
施したもの(平均粒径8.0μm)を5重量部分散させ
た。[Comparative Example 2] Resin particles (manufactured by Sanno Co., Ltd.) based on 5% cross-linked polystyrene as conductive particles were plated with nickel-gold with respect to 100 parts by weight of binder (average particle diameter). 5 parts by weight of 8.0 μm) was dispersed.
【0028】次に、上述のサンプルを用い、以下の方法
により、ガラス基板と、TABフィルムとの圧着を行っ
た。この場合、TABフィルムとしては、厚みが75μ
mのポリイミドからなる基材上に、厚みが35μmの銅
箔にすずめっきを施したパターンを100μmのピッチ
で形成したものを用いた。一方、ガラス基板としては、
全面にITOによる電極が形成されたもので、その表面
抵抗が10Ω/□となるものを用いた。Next, using the above-mentioned sample, the glass substrate and the TAB film were pressure-bonded by the following method. In this case, the thickness of the TAB film is 75μ.
A copper foil having a thickness of 35 μm, on which tin-plated patterns were formed at a pitch of 100 μm, was used on a base material made of polyimide of m. On the other hand, as a glass substrate,
An electrode having ITO formed on the entire surface and having a surface resistance of 10Ω / □ was used.
【0029】図2は、TABフィルムとガラス基板との
圧着方法を示す説明図である。図2に示すように、1枚
の長尺のガラス基板4上に異方性導電接着フィルム1を
細長く形成し、その上にTABフィルム5(5a〜5
e)を横一線に5枚並べ、図6〜図8に示すように、T
ABフィルム5の上から圧着ヘッド6によって熱圧着を
行った。この場合、各TABフィルム5a〜5eの幅d
は30〜40mmとし、両端のTABフィルム5a、5
eの端部間の距離Dは230mmとした。また、圧着条
件としては、温度180℃、圧力30kgf/cm2、17秒
の条件で行った。FIG. 2 is an explanatory view showing a pressure bonding method between the TAB film and the glass substrate. As shown in FIG. 2, the anisotropic conductive adhesive film 1 is formed in a slender shape on one long glass substrate 4, and the TAB film 5 (5a-5) is formed thereon.
5) e) are arranged in a horizontal line, and as shown in FIGS.
Thermocompression bonding was performed on the AB film 5 by the pressure bonding head 6. In this case, the width d of each TAB film 5a to 5e
Is 30 to 40 mm, and the TAB films 5a and 5 on both ends are
The distance D between the ends of e was 230 mm. The pressure bonding was carried out under the conditions of a temperature of 180 ° C., a pressure of 30 kgf / cm 2 and 17 seconds.
【0030】そして、このようにして作成した各サンプ
ルについて、導通信頼性の測定を行った。その結果を表
2に示す。また、同様の条件で、ガラス基板4に対して
一枚ずつTABフィルム5を熱圧着し、各サンプルにつ
いて導通信頼性の測定を行った。その結果を表2に示
す。Then, the continuity reliability of each of the samples thus prepared was measured. Table 2 shows the results. Further, under the same conditions, the TAB films 5 were thermocompression-bonded to the glass substrates 4 one by one, and the conduction reliability of each sample was measured. Table 2 shows the results.
【0031】[0031]
【表2】 [Table 2]
【0032】ここで、導通信頼性は、パターン間の初期
抵抗値が20Ω未満のものを○、20Ω以上のものを×
とした。一方、エージング後の導通信頼性については、
温度85℃、相対湿度85%の条件下で1000時間エ
ージング後のパターン間の抵抗値を測定し、抵抗上昇が
初期抵抗値の3倍未満のものを○、3倍以上のものを×
とした。Here, the conduction reliability is ◯ when the initial resistance value between the patterns is less than 20Ω, and x when the initial resistance value is 20Ω or more.
And On the other hand, regarding the conduction reliability after aging,
Measure the resistance value between the patterns after aging for 1000 hours under the condition of temperature of 85 ° C and relative humidity of 85%. ○ If resistance increase is less than 3 times the initial resistance value ○ ○, 3 times or more
And
【0033】また、各サンプルの導電粒子の物性とし
て、10%圧縮強度と回復率を測定した。その結果を表
2に示す。As the physical properties of the conductive particles of each sample, 10% compressive strength and recovery rate were measured. Table 2 shows the results.
【0034】〔10%圧縮強度の測定方法〕まず、平滑
な表面を有する鋼板の上にスペーサーである各導電粒子
を散布し、その中から一個の導電粒子を選ぶ。次に、粉
体圧縮試験機(島津製作所製 MCTM200型)を用
いて、ダイヤモンド製の直径50μmの円柱の平滑な端
面で上記導電粒子を圧縮する。この際、圧縮荷重を電磁
力として電気的に検出し、圧縮変位を作動トランスによ
る変位として電気的に検出する。その結果、図3に示す
ように、導電粒子に対する圧縮変位と荷重との関係が求
められる。そして、図3から導電粒子の10%圧縮変形
における荷重値と圧縮変位がそれぞれ求められ、これら
の値と式(1)から図4に示す10%圧縮強度と圧縮ひ
ずみとの関係が求められる。ただし、圧縮ひずみは圧縮
変位を導電粒子の平均粒子径で割った値を百分率で表し
たものである。[Method of Measuring 10% Compressive Strength] First, conductive particles as spacers are scattered on a steel plate having a smooth surface, and one conductive particle is selected from them. Next, using a powder compression tester (MCTM200 manufactured by Shimadzu Corporation), the conductive particles are compressed with a smooth end surface of a diamond cylinder having a diameter of 50 μm. At this time, the compression load is electrically detected as an electromagnetic force, and the compression displacement is electrically detected as a displacement by the operating transformer. As a result, as shown in FIG. 3, the relationship between the compressive displacement of the conductive particles and the load is obtained. Then, the load value and the compressive displacement at 10% compressive deformation of the conductive particles are obtained respectively from FIG. 3, and the relationship between these values and the 10% compressive strength and compressive strain shown in FIG. 4 is obtained from the equation (1). However, the compressive strain is a value obtained by dividing the compressive displacement by the average particle diameter of the conductive particles and expressing it as a percentage.
【0035】 S10(10%圧縮強度)=2.8P/πd2(kgf/mm2)・・・式(1) P:10%圧縮変位時の荷重(kgf) d:導電粒子の粒径(mm)S 10 (10% compressive strength) = 2.8 P / πd 2 (kgf / mm 2 ) ... Formula (1) P: Load at 10% compressive displacement (kgf) d: Particle size of conductive particles (Mm)
【0036】なお、圧縮速度は、定負荷速度圧縮方式
で、毎秒0.27グラム重(grf)の割合で荷重を増加させ
た。また、試験荷重は、最大10grf とし、測定温度
は、20℃とした。The compression speed was a constant load speed compression method, and the load was increased at a rate of 0.27 gram weight per second (grf). The maximum test load was 10 grf and the measurement temperature was 20 ° C.
【0037】〔回復率の定義と測定方法〕上述の10%
圧縮強度により導電粒子の硬さを表すのみでは、微粒子
である導電粒子の材料力学的な性質を完全に規定できな
い。もう一つの重要な性質は圧縮変形後の回復率であ
る。この回復率を用いれば、導電粒子の弾性又は弾塑性
を定量的かつ一義的に表すことが可能である。[Definition of Recovery Rate and Measuring Method] 10% mentioned above
Only by expressing the hardness of the conductive particles by the compressive strength, the material mechanical properties of the conductive particles which are fine particles cannot be completely defined. Another important property is the recovery rate after compressive deformation. By using this recovery rate, it is possible to quantitatively and uniquely express the elasticity or elastoplasticity of the conductive particles.
【0038】まず、10%圧縮強度の場合と同様に、平
滑な表面を有する鋼板の上にスペーサーである各導電粒
子を散布し、その中から一個の導電粒子を選ぶ。次に、
粉体圧縮試験機(島津製作所製 MCTM200型)を
用いて、ダイヤモンド製の直径50μmの円柱の平滑な
端面で上記導電粒子を圧縮する。この際、圧縮荷重を電
磁力として電気的に検出し、圧縮変位を作動トランスに
よる変位として電気的に検出する。そして、図5に示す
ように、導電粒子を反転荷重値まで圧縮した(図中の曲
線a)後、逆に荷重を減少させて行き(図中の曲線
b)、荷重と圧縮変位との関係を測定する。ただし、除
荷重における終点は荷重値がゼロではなく、0.1gの原
点荷重値とする。そして、回復率は、式(2)に示すよ
うに、反転の点までの変位L1と反転の点から原点荷重
値をとる点までの変位差L2の比を百分率で表した値で
定義する。First, as in the case of 10% compressive strength, each conductive particle which is a spacer is sprinkled on a steel plate having a smooth surface, and one conductive particle is selected from them. next,
Using a powder compression tester (model Shimadzu MCTM200), the conductive particles are compressed with a smooth end surface of a diamond column having a diameter of 50 μm. At this time, the compression load is electrically detected as an electromagnetic force, and the compression displacement is electrically detected as a displacement by the operating transformer. Then, as shown in FIG. 5, after the conductive particles are compressed to the reversal load value (curve a in the figure), the load is decreased on the contrary (curve b in the figure), and the relationship between the load and the compression displacement. To measure. However, the end point in unloading is not the zero load value but the origin load value of 0.1 g. Then, the recovery rate is defined as a ratio of the displacement L 1 to the point of reversal and the displacement difference L 2 from the point of reversal to the point where the origin load value is taken, expressed as a percentage, as shown in equation (2). To do.
【0039】 R(回復率)=(L2/L1)×100(%) ・・・式(2)R (recovery rate) = (L 2 / L 1 ) × 100 (%) Equation (2)
【0040】この場合、測定条件は、反転荷重値を1.
0grf、原点荷重値を0.1grfとし、負荷及び除負荷に
おける圧縮速度を0.27grf/sec、測定温度を20℃
とした。In this case, the reversal load value is 1.
0 grf, origin load value is 0.1 grf, compression speed under load and unload is 0.27 grf / sec, measurement temperature is 20 ° C.
And
【0041】〔評価結果〕表2に示すように、実施例1
〜3の異方性導電接着フィルム1は、初期導通性が良
く、また、エージング後においても、抵抗上昇は少なか
った。さらに、TABフィルム5を1枚圧着した場合に
おいても、特に問題は生じなかった。[Evaluation Results] As shown in Table 2, Example 1
The anisotropic conductive adhesive films Nos. 1 to 3 had good initial conductivity and showed little increase in resistance even after aging. Further, even when one TAB film 5 was pressure-bonded, no particular problem occurred.
【0042】図6は、本発明の実施例1〜3の作用を示
す原理図であり、圧着ヘッド6により熱圧着が行われる
状態を示すものである。図6に示すように、導電粒子3
の基材として脂肪族アクリレート架橋体を用いた実施例
1〜3の異方性導電接着フィルム1においては、導電粒
子3の10%圧縮強度が3.22〜4.70(kgf/mm2)と
従来のものに比べて小さいことから、各TABフィルム
5a〜5cの厚みの差異(基材、パターン、めっき等)
に起因して端子間の間隔にばらつき(最大2μm程度)
が生じた場合であっても、導電粒子3が変形してある程
度つぶれ、その結果、間隔の広い方のTABフィルム5
bの接続端子(図示せず)に対しても導電粒子3が十分
に接触し、端子間の電気的な接続が十分になされるよう
になる。また、実施例1〜3においては、導電粒子3の
回復率も13.7〜49.2(%)と大きく粒子に反発性
があり、塑性変形を起こさないことから、エージング後
においても、導通抵抗はさほど上昇しない。FIG. 6 is a principle diagram showing the operation of Examples 1 to 3 of the present invention, and shows a state in which thermocompression bonding is performed by the pressure bonding head 6. As shown in FIG. 6, the conductive particles 3
In the anisotropic conductive adhesive films 1 of Examples 1 to 3 using the aliphatic acrylate cross-linked body as the base material of No. 3, the conductive particles 3 have a 10% compressive strength of 3.22 to 4.70 (kgf / mm 2 ). Since it is smaller than the conventional one, the difference in the thickness of each TAB film 5a to 5c (base material, pattern, plating, etc.)
Variation in the spacing between terminals due to (maximum about 2 μm)
Even if the TAB film 5 is generated, the conductive particles 3 are deformed and are crushed to some extent, and as a result, the TAB film 5 having a wider space is formed.
The conductive particles 3 sufficiently come into contact with the connection terminal (not shown) of b, and the electric connection between the terminals is sufficiently made. In addition, in Examples 1 to 3, the recovery rate of the conductive particles 3 is as large as 13.7 to 49.2 (%), and the particles have a high resilience and do not cause plastic deformation. Resistance does not rise so much.
【0043】表2に示すように、導電粒子の基材として
ジビニルベンゼンを用いた比較例1の異方性導電接着フ
ィルムにおいては、一括してTABフィルム5を圧着し
た場合に、パターン間の初期導通性が悪く、また、エー
ジング後の導通抵抗も上昇した。As shown in Table 2, in the anisotropic conductive adhesive film of Comparative Example 1 in which divinylbenzene was used as the base material of the conductive particles, when the TAB film 5 was collectively pressure-bonded, the initial space between the patterns was increased. The conductivity was poor, and the conductivity resistance after aging also increased.
【0044】図7は、比較例1における作用を示す原理
図であり、圧着ヘッド6により熱圧着が行われる状態を
示すものである。比較例1の異方性導電接着フィルムの
場合、導電粒子11の10%圧縮強度が8.88(kgf/m
m2)と大きいことから、図7に示すように、各TABフ
ィルム5a〜5cの厚みの差異に起因して端子間の間隔
にばらつきが生じた場合に、間隔の広い方のTABフィ
ルム5bの接続端子間において導電粒子11と接続端子
(図示せず)とが十分に接触せず、端子間の電気的な接
続が不十分になる。その結果、導電粒子11と接続端子
間に絶縁性のバインダーが存在することになるため、初
期及びエージング後の導通抵抗が上昇する。FIG. 7 is a principle diagram showing the operation in Comparative Example 1, and shows a state in which thermocompression bonding is performed by the pressure bonding head 6. In the case of the anisotropic conductive adhesive film of Comparative Example 1, the 10% compressive strength of the conductive particles 11 is 8.88 (kgf / m
m 2 ), the TAB film 5b having a larger distance is separated from the TAB film 5b having a larger distance when the distance between the terminals varies due to the difference in the thickness of the TAB films 5a to 5c as shown in FIG. The conductive particles 11 and the connection terminals (not shown) do not sufficiently contact each other between the connection terminals, and the electrical connection between the terminals becomes insufficient. As a result, an insulating binder is present between the conductive particles 11 and the connection terminal, so that the conduction resistance increases at the initial stage and after aging.
【0045】表2に示すように、導電粒子の基材として
5%架橋ポリスチレンを用いた比較例2の異方性導電接
着フィルムの場合は、初期の導通抵抗は良好であった
が、エージング後の導通抵抗については、一括して圧着
を行った場合のみならず、TABフィルム5を1枚圧着
した場合においても、パターン間の抵抗値が上昇した。As shown in Table 2, in the case of the anisotropic conductive adhesive film of Comparative Example 2 in which 5% cross-linked polystyrene was used as the base material of the conductive particles, the initial conduction resistance was good, but after aging. Regarding the conduction resistance of, the resistance value between the patterns was increased not only when the pressure was applied collectively, but also when one TAB film 5 was pressure-bonded.
【0046】図8は、本発明の比較例2における作用を
示す原理図である。図8に示すように、比較例2の異方
性導電接着フィルムの場合、導電粒子の10%圧縮強度
は2.22(kgf/mm2)と小さく、初期の導通抵抗は良好
であるが、回復率については測定できないほど柔らか
く、導電粒子12が塑性変形を起こすため、エージング
後の導通抵抗が上昇する。すなわち、導電粒子12が塑
性変形を起こすと元に戻ろうとする力が働かず変形した
ままになってしまい、エージングによって熱及び湿度が
加わり膨張・収縮をすることで導電粒子12とパターン
の接触部が不安定になり導通抵抗が上昇してしまう。一
方、上述のように、本発明の場合はこのような現象を回
避しうるものである。FIG. 8 is a principle view showing the operation in Comparative Example 2 of the present invention. As shown in FIG. 8, in the case of the anisotropic conductive adhesive film of Comparative Example 2, the 10% compressive strength of the conductive particles was as small as 2.22 (kgf / mm 2 ), and the initial conduction resistance was good, The recovery rate is so soft that it cannot be measured, and the conductive particles 12 undergo plastic deformation, which increases the conduction resistance after aging. That is, when the conductive particles 12 are plastically deformed, the force for returning to the original state does not work and remains deformed, and heat and humidity are applied by aging to expand and contract, so that the contact portion between the conductive particles 12 and the pattern contacts. Becomes unstable and conduction resistance increases. On the other hand, as described above, in the case of the present invention, such a phenomenon can be avoided.
【0047】[0047]
【発明の効果】以上述べたように、請求項1記載の発明
によれば、絶縁性接着剤中に導電粒子を分散した異方性
導電接着フィルムにおいて、10%圧縮変位時の圧縮強
度が7.0kgf/mm2 以下である導電粒子を用いることに
より、例えば、TABフィルム等の接続手段の厚みの差
異に起因する端子間の間隔にばらつきが生じた場合であ
っても、端子間の電気的な接続を十分に行うことがで
き、その結果、導通信頼性を損なうことなく、複数の接
続手段を一括して接続することが可能になる。As described above, according to the first aspect of the present invention, in the anisotropic conductive adhesive film in which the conductive particles are dispersed in the insulating adhesive, the compressive strength at 10% compression displacement is 7%. By using conductive particles having a weight of 0.0 kgf / mm 2 or less, for example, even if the distance between the terminals varies due to the difference in the thickness of the connecting means such as the TAB film, the electrical characteristics between the terminals can be reduced. Various connections can be sufficiently performed, and as a result, it becomes possible to collectively connect a plurality of connecting means without impairing the conduction reliability.
【0048】また、請求項2記載の発明のように、請求
項1記載の発明において、圧縮変位時の回復率が10%
以上の導電粒子を用いることにより、エージング後にお
いても導電粒子の導通信頼性の優れた異方性導電接着フ
ィルムを得ることができる。Further, as in the invention described in claim 2, in the invention described in claim 1, the recovery rate at the time of compressive displacement is 10%.
By using the above conductive particles, it is possible to obtain an anisotropic conductive adhesive film having excellent conductive reliability of the conductive particles even after aging.
【0049】さらに、請求項3記載の発明のように、請
求項1又は2記載の発明において、重合体を主成分とす
る核体に金属薄膜を形成してなる導電粒子を用いるこ
と、特に、請求項4記載の発明のように、核体が脂肪族
アクリレート架橋物である導電粒子を用いることによ
り、10%圧縮変位時の圧縮強度が7.0kgf/mm2以下の
導電粒子、及び、圧縮変位時の回復率が10%以上の導
電粒子が容易に得られ、その結果、本発明に係る異方性
導電接着フィルムの製造が容易になるという効果があ
る。Further, as in the invention described in claim 3, in the invention described in claim 1 or 2, the use of conductive particles obtained by forming a metal thin film on a core containing a polymer as a main component, particularly, As in the invention according to claim 4, by using conductive particles whose core is an aliphatic acrylate cross-linked product, conductive particles having a compressive strength at 10% compression displacement of 7.0 kgf / mm 2 or less, and compressed particles Conductive particles having a recovery rate upon displacement of 10% or more can be easily obtained, and as a result, the anisotropic conductive adhesive film according to the present invention can be easily produced.
【図1】本発明に係る異方性導電接着フィルムの好まし
い実施の形態を示す断面図である。FIG. 1 is a sectional view showing a preferred embodiment of an anisotropic conductive adhesive film according to the present invention.
【図2】TABフィルムとガラス基板との圧着方法を示
す説明図である。FIG. 2 is an explanatory diagram showing a pressure bonding method between a TAB film and a glass substrate.
【図3】導電粒子の圧縮変位と荷重との関係を示すグラ
フである。FIG. 3 is a graph showing the relationship between the compressive displacement of conductive particles and the load.
【図4】導電粒子の圧縮ひずみと10%圧縮強度との関
係を示すグラフである。FIG. 4 is a graph showing the relationship between the compressive strain of conductive particles and 10% compressive strength.
【図5】導電粒子の回復率を説明するためのグラフであ
る。FIG. 5 is a graph for explaining the recovery rate of conductive particles.
【図6】本発明の実施例1〜3の作用を示す原理図であ
る。FIG. 6 is a principle diagram showing an operation of Examples 1 to 3 of the present invention.
【図7】比較例1の作用を示す原理図である。7 is a principle diagram showing an operation of Comparative Example 1. FIG.
【図8】比較例2の作用を示す原理図である。FIG. 8 is a principle diagram showing an operation of Comparative Example 2.
1 異方性導電接着フィルム 2 絶縁性接着剤樹脂 3 導電粒子 3a 樹脂粒子 3b 金属めっき 4 ガラス基板 5 TABフィルム 6 圧着ヘッド 1 Anisotropic Conductive Adhesive Film 2 Insulating Adhesive Resin 3 Conductive Particles 3a Resin Particles 3b Metal Plating 4 Glass Substrate 5 TAB Film 6 Crimping Head
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/20 H01B 1/20 D 5/16 5/16 H01L 21/60 311 H01L 21/60 311W H01R 43/00 H01R 43/00 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 1/20 H01B 1/20 D 5/16 5/16 H01L 21/60 311 H01L 21/60 311W H01R 43/00 H01R 43/00 H
Claims (4)
性導電接着フィルムにおいて、上記導電粒子における1
0%圧縮変位時の圧縮強度が7.0kgf/mm2以下であるこ
とを特徴とする異方性導電接着フィルム。1. An anisotropic conductive adhesive film in which conductive particles are dispersed in an insulating adhesive, wherein 1 of the conductive particles is used.
An anisotropic conductive adhesive film having a compressive strength at 0% compression displacement of 7.0 kgf / mm 2 or less.
上であることを特徴とする請求項1記載の異方性導電接
着フィルム。2. The anisotropic conductive adhesive film according to claim 1, wherein the recovery rate of the conductive particles upon compression displacement is 10% or more.
属薄膜を形成してなることを特徴とする請求項1又は2
記載の異方性導電接着フィルム。3. The conductive particles are formed by forming a metal thin film on a core containing a polymer as a main component.
The anisotropic conductive adhesive film described.
とを特徴とする請求項3記載の異方性導電接着フィル
ム。4. The anisotropic conductive adhesive film according to claim 3, wherein the core is a cross-linked aliphatic acrylate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8025937A JP3027115B2 (en) | 1996-01-19 | 1996-01-19 | Anisotropic conductive adhesive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8025937A JP3027115B2 (en) | 1996-01-19 | 1996-01-19 | Anisotropic conductive adhesive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09199206A true JPH09199206A (en) | 1997-07-31 |
JP3027115B2 JP3027115B2 (en) | 2000-03-27 |
Family
ID=12179690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8025937A Expired - Lifetime JP3027115B2 (en) | 1996-01-19 | 1996-01-19 | Anisotropic conductive adhesive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3027115B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001028280A (en) * | 1999-07-13 | 2001-01-30 | Three Bond Co Ltd | Circuit connection member |
JP2003323813A (en) * | 2002-02-28 | 2003-11-14 | Hitachi Chem Co Ltd | Circuit connecting material and connection structure of circuit terminal using the same |
KR100435034B1 (en) * | 2001-11-08 | 2004-06-09 | 엘지전선 주식회사 | Anisotropic conductive film |
JP2006303130A (en) * | 2005-04-20 | 2006-11-02 | Sharp Corp | Method for connecting drive circuit board to display panel |
CN1317752C (en) * | 2004-08-30 | 2007-05-23 | 友达光电股份有限公司 | Method and structure for detecting anisotropic conductive rubber conductive particle deformation content |
JP2007305583A (en) * | 2002-02-28 | 2007-11-22 | Hitachi Chem Co Ltd | Circuit connection material and connection structure of circuit terminal using the same |
WO2010055722A1 (en) * | 2008-11-11 | 2010-05-20 | シャープ株式会社 | Display apparatus and television receiving apparatus |
DE102009053255A1 (en) * | 2009-11-06 | 2011-05-12 | Technische Universität Berlin | Method of making an assembly |
US7957151B2 (en) | 2005-12-01 | 2011-06-07 | Sharp Kabushiki Kaisha | Circuit component, electrode connection structure and display device including the same |
US8043709B2 (en) | 2003-06-25 | 2011-10-25 | Hitachi Chemical Co., Ltd. | Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same |
CN107429087A (en) * | 2015-03-06 | 2017-12-01 | 日东电工株式会社 | Pressurize adhesion type adhesive member |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06349536A (en) * | 1993-06-14 | 1994-12-22 | Japan Aviation Electron Ind Ltd | Spherical contact point for electric connector |
JPH0750104A (en) * | 1993-08-05 | 1995-02-21 | Hitachi Chem Co Ltd | Conductive particle and connection member using conductive particle |
JPH07157720A (en) * | 1993-12-03 | 1995-06-20 | Sumitomo Bakelite Co Ltd | Film having anisotropic electrical conductivity |
-
1996
- 1996-01-19 JP JP8025937A patent/JP3027115B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06349536A (en) * | 1993-06-14 | 1994-12-22 | Japan Aviation Electron Ind Ltd | Spherical contact point for electric connector |
JPH0750104A (en) * | 1993-08-05 | 1995-02-21 | Hitachi Chem Co Ltd | Conductive particle and connection member using conductive particle |
JPH07157720A (en) * | 1993-12-03 | 1995-06-20 | Sumitomo Bakelite Co Ltd | Film having anisotropic electrical conductivity |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001028280A (en) * | 1999-07-13 | 2001-01-30 | Three Bond Co Ltd | Circuit connection member |
KR100435034B1 (en) * | 2001-11-08 | 2004-06-09 | 엘지전선 주식회사 | Anisotropic conductive film |
JP2003323813A (en) * | 2002-02-28 | 2003-11-14 | Hitachi Chem Co Ltd | Circuit connecting material and connection structure of circuit terminal using the same |
JP2007305583A (en) * | 2002-02-28 | 2007-11-22 | Hitachi Chem Co Ltd | Circuit connection material and connection structure of circuit terminal using the same |
US8043709B2 (en) | 2003-06-25 | 2011-10-25 | Hitachi Chemical Co., Ltd. | Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same |
US8501045B2 (en) | 2003-06-25 | 2013-08-06 | Hitachi Chemical Company, Ltd. | Circuit connecting material, film-form circuit connecting material using the same, circuit member connecting structure and method of manufacturing the same |
US8202622B2 (en) | 2003-06-25 | 2012-06-19 | Hitachi Chemical Co., Ltd. | Circuit connecting material, film-form circuit connecting material using the same, circuit member connecting structure and method of manufacturing the same |
CN1317752C (en) * | 2004-08-30 | 2007-05-23 | 友达光电股份有限公司 | Method and structure for detecting anisotropic conductive rubber conductive particle deformation content |
JP2006303130A (en) * | 2005-04-20 | 2006-11-02 | Sharp Corp | Method for connecting drive circuit board to display panel |
JP4602150B2 (en) * | 2005-04-20 | 2010-12-22 | シャープ株式会社 | Connection method of drive circuit board and display panel |
US7957151B2 (en) | 2005-12-01 | 2011-06-07 | Sharp Kabushiki Kaisha | Circuit component, electrode connection structure and display device including the same |
WO2010055722A1 (en) * | 2008-11-11 | 2010-05-20 | シャープ株式会社 | Display apparatus and television receiving apparatus |
DE102009053255A1 (en) * | 2009-11-06 | 2011-05-12 | Technische Universität Berlin | Method of making an assembly |
CN107429087A (en) * | 2015-03-06 | 2017-12-01 | 日东电工株式会社 | Pressurize adhesion type adhesive member |
CN107429087B (en) * | 2015-03-06 | 2021-03-16 | 日东电工株式会社 | Pressure-bonding type adhesive member |
Also Published As
Publication number | Publication date |
---|---|
JP3027115B2 (en) | 2000-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3379456B2 (en) | Anisotropic conductive adhesive film | |
JP3296306B2 (en) | Anisotropic conductive adhesive and adhesive film | |
KR100539060B1 (en) | Anisotropic conductive adhesive and adhesive film | |
JP3530980B2 (en) | Adhesive structure, liquid crystal device, and electronic equipment | |
JP3624818B2 (en) | Anisotropic conductive connection material, connection body, and manufacturing method thereof | |
CN102120920A (en) | Anisotropic conductive adhesive composite and film, and circuit connecting structure including the same | |
JP2001049228A (en) | Low-temperature-curing adhesive and anisotropically conductive adhesive film using the same | |
JP3516379B2 (en) | Anisotropic conductive film | |
JP3027115B2 (en) | Anisotropic conductive adhesive film | |
KR100694529B1 (en) | Conductive particle and adhesive agent | |
JPH07157720A (en) | Film having anisotropic electrical conductivity | |
JP3137578B2 (en) | Conductive particles for anisotropic conductive adhesive film, method for producing the same, and anisotropic conductive adhesive film | |
JP3622792B2 (en) | Connection member and electrode connection structure and connection method using the connection member | |
JP2010251336A (en) | Anisotropic conductive film and method for manufacturing connection structure using the same | |
JP3150054B2 (en) | Anisotropic conductive film | |
JP3449889B2 (en) | Anisotropic conductive adhesive | |
JPS608377A (en) | Anisotropically electrically-conductive adhesive | |
JP3114162B2 (en) | Electrical connection method | |
JPS63110506A (en) | Anisotropic conducting sheet | |
JP2001214149A (en) | Anisotropic electrically conductive adhesive | |
JP4155470B2 (en) | Electrode connection method using connecting members | |
JPH05334912A (en) | Anisotropic conductive adhesive and conductive connection structure | |
KR101086659B1 (en) | Anisotropic conductive adhesive film | |
JPH03101007A (en) | Anisotropic conductive film | |
JP2000332391A (en) | Method of connecting ic chip |