JP3150054B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JP3150054B2
JP3150054B2 JP20947895A JP20947895A JP3150054B2 JP 3150054 B2 JP3150054 B2 JP 3150054B2 JP 20947895 A JP20947895 A JP 20947895A JP 20947895 A JP20947895 A JP 20947895A JP 3150054 B2 JP3150054 B2 JP 3150054B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
film
connection
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20947895A
Other languages
Japanese (ja)
Other versions
JPH08167328A (en
Inventor
政和 川田
哲也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26517478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3150054(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP20947895A priority Critical patent/JP3150054B2/en
Publication of JPH08167328A publication Critical patent/JPH08167328A/en
Application granted granted Critical
Publication of JP3150054B2 publication Critical patent/JP3150054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微細な回路同士の電気
的接続、更に詳しくはLCD(以下、液晶ディスプレイ
という)とFPC(以下、フレキシブル回路基板とい
う)の接続や、半導体ICとIC搭載用基板のマイクロ
接合などに用いることのできる異方導電フィルムに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical connection between fine circuits, more specifically, a connection between an LCD (hereinafter, referred to as a liquid crystal display) and an FPC (hereinafter, referred to as a flexible circuit board), and a semiconductor IC and an IC mounted. The present invention relates to an anisotropic conductive film that can be used for micro joining of substrates for use.

【0002】[0002]

【従来の技術】最近の電子機器の小型化・薄型化に伴
い、微細な回路同士の接続、微小部分と微細な回路の接
続などの必要性が飛躍的に増大してきており、その接続
方法として、半田接合技術の進展とともに、新しい材料
として異方性の導電性接着剤やフィルムが使用されてい
る(例えば、特開昭59−120436、60−847
18、60−191228、61−55809、61−
274394、61−287974、62−24414
2、63−153534、63−305591、64−
47084、64−81878、特開平1−4654
9、1−251787、各号公報など)。特に、最近半
田付けでは対応できないLCDパネルとドライバICを
搭載したTCP(テープキャリヤパッケージ)との接続
に適用され、LCDには必要不可欠の接続材料となって
いる。
2. Description of the Related Art With the recent miniaturization and thinning of electronic devices, the necessity of connection between minute circuits and connection between minute parts and minute circuits has been dramatically increased. With the development of solder bonding technology, anisotropic conductive adhesives and films have been used as new materials (for example, see JP-A-59-120436 and 60-847).
18, 60-191228, 61-55809, 61-
274394, 61-287974, 62-24414
2, 63-153534, 63-3055591, 64-
47084, 64-81878, JP-A-1-4654
9, 1-251787, each gazette). In particular, it has recently been applied to the connection between an LCD panel that cannot be handled by soldering and a TCP (tape carrier package) equipped with a driver IC, and has become an indispensable connection material for LCDs.

【0003】この方法は、接続しようとする回路間に所
定量の導電性粒子を分散させた接着剤、又はフィルムを
挟み、所定の温度・圧力・時間により熱圧着することに
よって回路間の電気的接続を行うと同時に隣接する回路
間には絶縁性を確保させるものである。この異方導電接
着剤やフィルムに含まれている導電粒子は、通常金属粒
子や高分子核材に金属被覆を施したものである。
[0003] In this method, an adhesive or a film in which a predetermined amount of conductive particles is dispersed is sandwiched between circuits to be connected, and thermocompression bonding is performed at a predetermined temperature, pressure, and time, thereby electrically connecting the circuits. At the same time as connection is made, insulation between adjacent circuits is ensured. The conductive particles contained in the anisotropic conductive adhesive or the film are usually obtained by applying metal coating to metal particles or a polymer core material.

【0004】図4に示すように、金属粒子9の場合、半
田粒子などの柔らかいものが用いられる場合が多く、相
対する回路端子8間の間隔ばらつきを吸収して回路端子
間の接触面積を大きくとることができ、安定した導電性
が得られるという長所があった。又、接続温度を金属粒
子の溶融温度よりも高くすることにより、導電粒子と電
極端子の接続を強固にすることが可能となり、より接続
信頼性を高めることができるものである。しかしなが
ら、反面導電粒子の粒径を揃えることが困難なため、大
きな粒子により隣接端子間の電気的短絡が生じる可能性
が高く、微細な回路同士の接続への適用には限界があっ
た。又金属粒子を溶融させた場合には、端子間短絡が発
生したり、高温高湿度放置試験や高温放置試験などの処
理を施した場合に金属粒子の酸化などの変化が生じ接続
が不安定になるなどの問題があった。
As shown in FIG. 4, in the case of the metal particles 9, soft particles such as solder particles are often used, and a variation in the space between the opposing circuit terminals 8 is absorbed to increase the contact area between the circuit terminals. This has the advantage that stable conductivity can be obtained. By setting the connection temperature higher than the melting temperature of the metal particles, the connection between the conductive particles and the electrode terminals can be strengthened, and the connection reliability can be further improved. However, since it is difficult to make the particle size of the conductive particles uniform, there is a high possibility that an electrical short circuit will occur between adjacent terminals due to large particles, and there is a limit to the application to the connection of fine circuits. In addition, when metal particles are melted, short-circuiting between terminals occurs, and when subjected to treatments such as high-temperature and high-humidity storage tests and high-temperature storage tests, changes such as oxidation of metal particles occur, resulting in unstable connections. There were problems such as becoming.

【0005】又、図5で示すように高分子核材に金属被
覆を施した導電粒子10の場合、高分子核材粒子の作製
方法によっては、その粒度分布を極めてシャープにでき
るため、金属粒子よりも更に微細な回路接続にも対応可
能であり、特に外層に金被覆が用いられる場合が多いこ
ともあり、前述のような長期環境処理による粒子表面の
酸化などの変化は少ないという長所があった。しかしな
がら、反面高分子核材の表面に金属被覆を施す工程で粒
子が凝集したり、接着剤中に導電粒子を分散させる工程
で二次凝集が発生する場合があり、この場合には図5に
示すように回路端子間短絡が生じ、粒度分布がシャープ
という長所を十分に生かすことができず、微細な回路へ
の適用に限界がでてくるという問題があった。粒子の凝
集対策として、金属被覆後解砕工程を設けて対応するこ
とも考えられているが形成した金属被覆を剥がしてしま
ったり、又接着剤中に分散する際に分散を促す添加剤や
超音波処理を施すなどの工夫も考えられているがいずれ
も十分な効果が得られるものではなかった。また信頼性
を向上させるため、導電粒子数を増やすことが考えられ
るているが、粒子の配合量を多くし過ぎると回路間の電
気的絶縁性を保つことが困難になるため、配合量にも限
界があった。
In the case of the conductive particles 10 in which a polymer core material is coated with a metal as shown in FIG. 5, the particle size distribution can be extremely sharp depending on the method of producing the polymer core material particles. Even finer circuit connections can be accommodated, and gold coating is often used as the outer layer in many cases, and has the advantage that there is little change such as oxidation of the particle surface due to long-term environmental treatment as described above. Was. However, on the other hand, particles may be agglomerated in the step of applying a metal coating on the surface of the polymer core material, or secondary agglomeration may occur in the step of dispersing the conductive particles in the adhesive. In this case, FIG. As shown, a short circuit occurs between circuit terminals, and the advantage of a sharp particle size distribution cannot be fully exploited, and there has been a problem that application to a fine circuit is limited. As a countermeasure for particle agglomeration, it is considered to provide a disintegration step after metal coating, but it is possible to remove the formed metal coating or add an additive or ultra-fine powder that promotes dispersion when dispersing in the adhesive. Some measures such as sonication have been considered, but none of them has provided a sufficient effect. In order to improve reliability, it is considered to increase the number of conductive particles.However, if the amount of particles is too large, it becomes difficult to maintain electrical insulation between circuits. There was a limit.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の欠点に鑑みて種々の検討の結果なされたものであ
り、その目的とするところは、微細な回路接続にも対応
でき接続信頼性の高い異方導電フィルムを提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned drawbacks, and has been made as a result of various studies. An object of the present invention is to provide a highly conductive anisotropic conductive film.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は絶縁性接
着剤中に導電性粒子を分散させた異方導電フィルムにお
いて、該導電性粒子の中心核が高分子核材で、その表面
にニッケル膜を有し、該ニッケル膜の更に外層に金膜を
有し、該ニッケル膜中の燐含有量が〜20重量%であ
る異方導電フィルムである。
That is, the present invention relates to an anisotropic conductive film in which conductive particles are dispersed in an insulating adhesive, wherein the core of the conductive particles is a polymer core material, and An anisotropic conductive film having a nickel film, a gold film on the outer layer of the nickel film, and a phosphorus content in the nickel film of 5 to 20% by weight.

【0008】以下、本発明を詳細に説明する。図1は、
本発明による異方導電フィルムの断面模式図であり、図
2は、本発明による異方導電フィルムを用いた回路の接
続状態を示す断面図、図3はその平面図である。本発明
の異方導電フィルムは、図1の高分子核材2の表面に燐
含有量を最適化したニッケル膜4を施し、更にニッケル
膜の表面に金膜3を被覆した導電粒子1が絶縁性接着剤
5に分散されている。例えば、LCDの用途の場合、図
2に示すように回路基板6とガラス基板7を異方導電フ
ィルムを用いて接続した場合、回路端子8は導電粒子1
によって機械的に接触し、上下間の安定した電気的接続
を得ることができる。本発明の異方導電フィルムを用い
ることにより、回路端子間の導電粒子が均一に単一分散
し、従来の異方導電フィルムでは端子間短絡が生じ接続
困難であった微細な回路端子同士の接続も可能となる。
Hereinafter, the present invention will be described in detail. FIG.
FIG. 2 is a schematic cross-sectional view of an anisotropic conductive film according to the present invention, FIG. 2 is a cross-sectional view showing a connection state of a circuit using the anisotropic conductive film according to the present invention, and FIG. 3 is a plan view thereof. In the anisotropic conductive film of the present invention, the surface of the polymer nucleus material 2 of FIG. 1 is coated with a nickel film 4 having an optimized phosphorus content, and the nickel film is coated with a gold film 3 on the surface of which the conductive particles 1 are insulated. Dispersed in the adhesive 5. For example, in the case of an LCD application, when the circuit substrate 6 and the glass substrate 7 are connected using an anisotropic conductive film as shown in FIG.
Mechanical contact, and a stable electrical connection between the upper and lower sides can be obtained. By using the anisotropic conductive film of the present invention, the conductive particles between the circuit terminals are uniformly and uniformly dispersed, and the connection between the fine circuit terminals which is difficult to connect due to the short circuit between the terminals in the conventional anisotropic conductive film. Is also possible.

【0009】本発明における導電粒子表面の金膜、ニッ
ケル膜は、ニッケル中の燐含有量が〜20重量%であ
ることが必須である。皮膜の厚さは特に限定しないが、
薄すぎると導電性が不安定になり、厚すぎると粒子変形
が困難になったり凝集などが生じるため、各々の皮膜の
厚さは0.01〜1μmが好ましい。又被覆の形成方法
では、この被覆と中心核となる高分子核材との密着力・
導電性などを考慮し、均一に形成されている方がよいこ
とはいうまでもなく、従来から用いられている無電解メ
ッキなどが望ましい。ニッケル膜中の燐の含有量が
量%未満のもので被覆形成された導電粒子を用いて、異
方導電フィルムにした場合導電粒子の分散性が悪くなり
凝集が発生し、この導電粒子により隣接端子間の絶縁性
が低下し短絡に至る場合もあり、微細な回路接続には制
約がある。逆に、20重量%を超える場合には、分散性
は良くなるが導電率が低下し、接続抵抗値が高くなり、
長期の接続信頼性も低下してくる問題が生じる。
In the present invention, the gold film and the nickel film on the surface of the conductive particles must have a phosphorus content in nickel of 5 to 20% by weight. The thickness of the film is not particularly limited,
If the thickness is too small, the conductivity becomes unstable, and if the thickness is too large, particle deformation becomes difficult or aggregation occurs, so that the thickness of each film is preferably 0.01 to 1 μm. In addition, in the method of forming the coating, the adhesion between the coating and the polymer core material serving as the central core is determined by
It is needless to say that it is better to form the film uniformly in consideration of conductivity and the like, and it is desirable to use electroless plating which has been conventionally used. When conductive particles coated with a phosphorous content of less than 5 % by weight in a nickel film are used to form an anisotropic conductive film, dispersibility of the conductive particles deteriorates and aggregation occurs. Insulation between adjacent terminals may be reduced, resulting in a short circuit, and there is a restriction on fine circuit connection. Conversely, when the content exceeds 20% by weight, the dispersibility is improved, but the conductivity is reduced, and the connection resistance is increased.
There is a problem that long-term connection reliability is reduced.

【0010】高分子核材は特に組成など制限はなく、例
えば、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フ
ェノール樹脂、アクリル樹脂、ポリエステル樹脂、スチ
レン樹脂、スチレンブタジエン共重合体などのポリマー
があり、単独でも混合して用いてもよい。いずれの粒子
でも、接続する被着体に合わせ最適な粒子径・粒度分布
・配合量を選択すればよい。例えば、異方導電フィルム
の主要な用途であるLCDパネルとFPCとの接続で
は、好ましい粒子径は0.5〜50μmで、特に0.2
mmピッチ程度以下のファインピッチ回路の接続におい
ては、2〜10μm程度が望ましい。2μm未満だと、
微細な回路接続で高い接続信頼性を得るために導電粒子
数を多く配合することは可能であるが、凝集することな
く高分子核材に均一に金属被覆を施すことは現状の技術
では極めて困難であり、実際には微細な回路の接続を安
定して行うことは困難である。逆に、10μmを越える
と、凝集もなく均一に金属被覆を施すことは可能である
が、微細な回路を接続する場合には、端子間の電気的絶
縁性が保てなくなるため、粒子数はあまり多く配合でき
ず、接続信頼性の向上にも限界がでてくる。特に、0.
1mmピッチ回路の接続においては、平均粒径2〜5μ
m程度が望ましい。本発明の粒子径の測定は、コールタ
ーカウンターによるもので、得られた体積分布の累積5
0%の値を平均粒子径とした。又、粒度分布の範囲はシ
ャープな方が好ましく、〔平均粒子径−(平均粒子径×
0.8)〕〜〔平均粒子径+(平均粒子径×1)〕であ
ればなお好ましい。絶縁性接着剤に対する配合量は、1
〜10体積%が好ましい。これよりも粒子径が小さい場
合や配合量が少ない場合には接続面積が少なくなるため
接続信頼性が低下し、逆に粒子径が大きい場合や配合量
が多い場合には隣接端子間の絶縁性が低下し短絡の発生
にもつながる。
The polymer core material is not particularly limited in composition and the like. For example, there are polymers such as epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, styrene resin and styrene-butadiene copolymer. However, they may be used as a mixture. Regardless of the particles, the optimal particle size, particle size distribution, and blending amount may be selected according to the adherend to be connected. For example, in a connection between an LCD panel and an FPC, which is a main application of the anisotropic conductive film, a preferable particle diameter is 0.5 to 50 μm, and particularly 0.2 to 50 μm.
In the connection of a fine pitch circuit having a pitch of about mm or less, about 2 to 10 μm is desirable. If it is less than 2 μm,
Although it is possible to mix a large number of conductive particles in order to obtain high connection reliability with fine circuit connection, it is extremely difficult with the current technology to uniformly coat the polymer core material without agglomeration In practice, it is difficult to stably connect fine circuits. Conversely, if it exceeds 10 μm, it is possible to apply a uniform metal coating without aggregation, but when connecting a fine circuit, the electrical insulation between the terminals cannot be maintained. It is not possible to mix too much, and there is a limit to improvement in connection reliability. In particular, 0.
In connection of a 1 mm pitch circuit, the average particle size is 2 to 5 μm.
m is desirable. The measurement of the particle diameter of the present invention is based on a Coulter counter, and the cumulative volume distribution obtained is 5%.
The value of 0% was defined as the average particle size. Further, it is preferable that the range of the particle size distribution is sharp. [Average particle diameter− (average particle diameter ×
0.8)] to [average particle diameter + (average particle diameter × 1)]. The compounding amount for the insulating adhesive is 1
-10% by volume is preferred. If the particle size is smaller than this, or if the compounding amount is small, the connection area will be small and the connection reliability will be reduced. Conversely, if the particle size is large or the compounding amount is large, the insulation between adjacent terminals will be poor. And the short circuit may occur.

【0011】本発明に用いられる接着剤は、絶縁性を示
すものであれば、熱可塑性、熱硬化性、光硬化性など特
には限定されない。例えば、スチレンブタジエン樹脂、
スチレン樹脂、スチレン酢酸ビニル樹脂、アクリルニト
リルブタジエンゴム、シリコーン樹脂、アクリル樹脂、
エポキシ樹脂、ウレタン樹脂、フェノール樹脂、アミド
樹脂、エポキシメタクリレート系をはじめとするアクリ
レート系樹脂などが挙げられ、単独でも混合して用いて
もよい。又必要に応じて粘着付与剤、架橋剤、老化防止
剤、カップリング剤などを併用してもよい。
The adhesive used in the present invention is not particularly limited as long as it has an insulating property, such as thermoplasticity, thermosetting property, and photocuring property. For example, styrene butadiene resin,
Styrene resin, styrene vinyl acetate resin, acrylonitrile butadiene rubber, silicone resin, acrylic resin,
Epoxy resins, urethane resins, phenol resins, amide resins, acrylate resins such as epoxy methacrylate resins, and the like may be used, and they may be used alone or in combination. If necessary, a tackifier, a crosslinking agent, an antioxidant, a coupling agent and the like may be used in combination.

【0012】以下、本発明を実施例で説明する。 実施例1 エポキシ樹脂(エピコート828、油化シェルエポキシ
(株)・製)25重量部、ポリビニルブチラール樹脂
(エスレックBM−S、積水化学(株)・製)25重量
部、イミダゾール系潜在性硬化剤(ノバキュアHX−3
721、旭化成(株)・製)50重量部を混合した接着
剤を準備する。この接着剤中に、ポリスチレン樹脂を核
材とし、燐含有量が5重量%となるように調整し厚さ
0.1μmのニッケルを無電解メッキし、更にその表面
に無電解メッキで金被覆を0.1μm形成した平均粒径
5μm、粒度分布3〜8μmの導電粒子2体積%を上記
接着剤に分散させ、ポリエステルのキャリアフィルム上
に塗布・乾燥したものを、2mm幅にスリットして異方
導電フィルムを作製した。
Hereinafter, the present invention will be described with reference to embodiments. Example 1 25 parts by weight of an epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.), 25 parts by weight of a polyvinyl butyral resin (Eslec BM-S, manufactured by Sekisui Chemical Co., Ltd.), an imidazole-based latent curing agent (Novacure HX-3
721, manufactured by Asahi Kasei Corporation) is prepared. In this adhesive, polystyrene resin is used as a core material, nickel is adjusted to have a phosphorus content of 5% by weight, and electroless plating is performed with nickel having a thickness of 0.1 μm. 2 μ% of conductive particles having an average particle size of 5 μm and a particle size distribution of 3 to 8 μm formed in 0.1 μm are dispersed in the above-mentioned adhesive, coated and dried on a polyester carrier film, and slit into 2 mm width to be anisotropically. A conductive film was produced.

【0013】この異方導電フィルムを、回路幅0.05
mm、回路ピッチ0.1mm、160端子を有するFP
Cの接続端子上に置き、80℃、8kg/cm2、2s
ecの条件で加熱加圧して仮圧着を行った。その後、表
面のキァリアフィルムを剥がし、透明導電膜付きガラス
基板(ITOガラス)の上に置き、175℃、30kg
/cm2、20secの条件で加熱加圧して圧着接続を
行った。ここで用いたFPCは、75μmのポリイミド
基材と25μmの銅箔からなるものであり、回路加工後
表面を錫メッキしたものである。又隣接端子間の電気的
絶縁性を評価するために透明導電膜のない通常のガラス
基板にも上記と同じ条件でFPCを接続した。この接続
体のFPCの隣接端子間の接続抵抗値を測定(測定電流
1μA)した結果、全端子間で1Ω以下とばらつきが少
なく良好であった。隣接端子間の絶縁抵抗についても全
端子間で1010Ω以上(50v、20sec)と良好で
あった。又、このサンプルを高温高湿処理試験装置(8
5℃、85%RH)に投入し、隣接端子間の接続抵抗
値、絶縁抵抗値の変化を観察した結果、1000時間処
理後も初期からの接続抵抗上昇は全端子で3Ω以下、絶
縁抵抗値も1010Ω以上と良好な接続性が得られた。
The anisotropic conductive film is provided with a circuit width of 0.05
mm, circuit pitch 0.1 mm, FP with 160 terminals
Place on the connection terminal of C, 80 ° C, 8kg / cm 2 , 2s
Temporary pressure bonding was performed by heating and pressing under the conditions of ec. Thereafter, the carrier film on the surface is peeled off, placed on a glass substrate (ITO glass) with a transparent conductive film, and placed at 175 ° C., 30 kg
Pressure bonding was performed by applying heat and pressure under the conditions of / cm 2 and 20 sec. The FPC used here was made of a 75 μm polyimide substrate and a 25 μm copper foil, and had a surface plated with tin after circuit processing. In order to evaluate the electrical insulation between adjacent terminals, an FPC was also connected to a normal glass substrate having no transparent conductive film under the same conditions as described above. The connection resistance value between the adjacent terminals of the FPC of this connection body was measured (measurement current: 1 μA). The insulation resistance between adjacent terminals was as good as 10 10 Ω or more (50 v, 20 sec) between all terminals. Also, this sample was subjected to a high-temperature and high-humidity treatment test device (8
5 ° C., 85% RH), and observed changes in connection resistance and insulation resistance between adjacent terminals. As a result, the increase in connection resistance from the initial stage after treatment for 1000 hours was 3Ω or less at all terminals, and the insulation resistance was low. In this case, good connectivity of 10 10 Ω or more was obtained.

【0014】実施例2 実施例1と同じ接着剤を準備し、この中にポリスチレン
樹脂を核材とし、燐含有量が10重量%となるように調
整した厚さ0.1μmのニッケルを無電解メッキし、更
にその表面に無電解メッキで金被覆を0.1μm形成し
た、平均粒径3μm、粒度分布2〜5μmの導電粒子
1.5体積%を実施例1の接着剤に分散させ、ポリエス
テルのキァリアフィルム上に塗布・乾燥したものを2m
m幅にスリットして異方導電フィルムを作製した。この
異方導電フィルムを、実施例1と同様にサンプル作製し
評価を行った。隣接端子間の接続抵抗値は、全端子間で
1Ω以下とばらつきが少なく良好であり、絶縁抵抗値に
ついても全端子間で1010Ω以上と良好であった。又、
高温高湿処理1000時間後(85℃、85%RH)
も、接続抵抗値上昇は全端子で3Ω以下、絶縁抵抗値も
1010Ω以上と良好な接続性が得られた。 実施例3 実施例1と同じ接着剤を準備し、この中にメラミン樹脂
を核材とし、燐含有量が15重量%となるように調整し
た厚さ0.2μmのニッケルを無電解メッキし、更にそ
の表面に無電解メッキで金被覆を0.1μm形成した、
平均粒径4.5μm、粒度分布3〜10μmの分布を有
する導電粒子2体積%を実施例1の接着剤に分散させ、
ポリエステルのキァリアフィルム上に塗布・乾燥したも
のを2mm幅にスリットして異方導電フィルムを作製し
た。この異方導電フィルムを、実施例1と同様にサンプ
ル作製し評価を行った。隣接端子間の接続抵抗値は、全
端子間で1Ω以下とばらつきが少なく良好であり、絶縁
抵抗値についても全端子間で1010Ω以上と良好であっ
た。又、高温高湿処理1000時間後(85℃、85%
RH)も、接続抵抗値上昇は全端子で3Ω以下、絶縁抵
抗値も1010Ω以上と良好な接続性が得られた。
Example 2 The same adhesive as in Example 1 was prepared, and a polystyrene resin was used as a core material, and nickel having a thickness of 0.1 μm, which was adjusted to have a phosphorus content of 10% by weight, was electrolessly electrolessly prepared. Plating was performed, and electroless plating was applied on the surface to form a gold coating of 0.1 μm. 1.5% by volume of conductive particles having an average particle size of 3 μm and a particle size distribution of 2 to 5 μm were dispersed in the adhesive of Example 1, and the polyester was dispersed. 2m applied and dried on a carrier film
An anisotropic conductive film was prepared by slitting to an m width. A sample of this anisotropic conductive film was prepared and evaluated in the same manner as in Example 1. The connection resistance value between adjacent terminals was good with little variation of 1Ω or less between all terminals, and the insulation resistance value was good at 10 10 Ω or more between all terminals. or,
1000 hours after high temperature and high humidity treatment (85 ° C, 85% RH)
Also, the connection resistance increases 3Ω at all terminals below, good connectivity and insulation resistance value 10 10 Omega above were obtained. Example 3 The same adhesive as in Example 1 was prepared, and a melamine resin was used as a core material, and nickel having a thickness of 0.2 μm adjusted to have a phosphorus content of 15% by weight was electrolessly plated. Further, a gold coating of 0.1 μm was formed on the surface by electroless plating.
2% by volume of conductive particles having an average particle size of 4.5 μm and a particle size distribution of 3 to 10 μm are dispersed in the adhesive of Example 1,
An anisotropic conductive film was prepared by slitting the coated and dried polyester carrier film to a width of 2 mm. A sample of this anisotropic conductive film was prepared and evaluated in the same manner as in Example 1. The connection resistance value between adjacent terminals was good with little variation of 1Ω or less between all terminals, and the insulation resistance value was good at 10 10 Ω or more between all terminals. After 1000 hours of high temperature and high humidity treatment (85 ° C, 85%
RH), the connection resistance increased at all terminals of 3Ω or less and the insulation resistance was 10 10 Ω or more.

【0015】[0015]

【0016】比較例 実施例1と同じ接着剤を準備し、この中にメラミン樹脂
を核材とし、燐含有量が25重量%となるように調整し
た厚さ0.2μmのニッケルを無電解メッキし、更にそ
の表面に無電解メツキで金被覆を0.1μm形成した、
平均粒径5.5μm、粒度分布3〜10μmの導電粒子
2体積%を上記接着剤に分散させ、ポリエステルのキァ
リアフィルム上に塗布・乾燥したものを2mm幅にスリ
ットして異方導電フィルムを作製した。これを用いて実
施例1と同じFPCとガラスの接続サンプルを作製し、
評価を行った。フィルムの外観は、実施例の場合と同様
に導電粒子の分散が均一なものであった。このフィルム
を用いて実施例1と同じFPCとガラスの接続サンプル
を作製し、評価を行った結果庄着後の隣接端子間の絶縁
抵抗値は初期・高温高湿処理後共、全端子で1010Ωと
良好であったが、接続抵抗値は、初期で全端子3Ω以上
でありばらつきも大きく、高温高湿処理1000時間後
は、全端子で10Ω以上となった。
[0016] Prepare the same adhesive as in Comparative Example 1 Example 1, a melamine resin as a core material in this, electroless thickness 0.2μm of nickel was adjusted to phosphorus content of 25 wt% Plating, and a gold coating was formed on the surface by electroless plating to a thickness of 0.1 μm.
Anisotropic conductive film is prepared by dispersing 2% by volume of conductive particles having an average particle size of 5.5 μm and a particle size distribution of 3 to 10 μm in the above adhesive, coating and drying a polyester carrier film to a width of 2 mm. did. Using this, a connection sample of the same FPC and glass as in Example 1 was prepared,
An evaluation was performed. The appearance of the film was uniform in the dispersion of the conductive particles as in the case of the example. Using this film, the same connection sample of FPC and glass as in Example 1 was prepared and evaluated. As a result, the insulation resistance between adjacent terminals after bonding was 10% for all terminals both in the initial stage and after the high temperature and high humidity treatment. Although the resistance was as good as 10 Ω, the connection resistance value was 3 Ω or more at all terminals in the initial stage, and there was a large variation. After 1000 hours of high temperature and high humidity treatment, the connection resistance value was 10 Ω or more at all terminals.

【0017】比較例 導電粒子にスズ/鉛=63/37の半田粒子(平均粒径
10μm)を用い、実施例1と同じ接着剤に2体積%分
散させて同様に異方導電フィルムを作製した。これを用
いて実施例1と同じFPCとガラスの接続サンプルを作
製し、評価を行った結果圧着後の初期の接続抵抗値は全
端子1Ω以下と良好であったが、高温高湿処理1000
時間後は、全端子で接続抵抗値が5Ω以上となった。又
絶縁抵抗値は初期で数ヶ所108Ω以下の端子があり、
高温高湿処理後は108Ω以下の箇所が増加した。この
付近の外観を顕微鏡で観察したところ、端子間で大きな
導電粒子がみられた。
Comparative Example 2 An anisotropic conductive film was similarly prepared by dispersing 2% by volume in the same adhesive as in Example 1 using solder particles of tin / lead = 63/37 (average particle size: 10 μm) as the conductive particles. did. Using this, the same connection sample of FPC and glass as in Example 1 was prepared and evaluated. As a result, the initial connection resistance after crimping was as good as 1Ω or less for all terminals, but the high-temperature and high-humidity treatment was 1000.
After a lapse of time, the connection resistance value was 5Ω or more at all terminals. In addition, there are several terminals with an insulation resistance value of 10 8 Ω or less at the initial stage.
After the high-temperature and high-humidity treatment, the number of portions of 10 8 Ω or less increased. When the external appearance in the vicinity was observed with a microscope, large conductive particles were observed between the terminals.

【0018】[0018]

【発明の効果】本発明の異方導電フィルムは、フィルム
中に導電粒子が均一に単一分散されており、従来の異方
導電フィルムでは困難であった微細な回路接続への適用
が可能となる。又、従来高い接続信頼性を得るために多
量の導電粒子を配合していたが、同じ導電性を得るため
に分散が良好であるため導電粒子の量を低減でき、コス
トを削減できるだけでなく、より微細な回路への適用が
可能となる。
According to the anisotropic conductive film of the present invention, conductive particles are uniformly and uniformly dispersed in the film, and it can be applied to fine circuit connection which was difficult with the conventional anisotropic conductive film. Become. Conventionally, a large amount of conductive particles were blended in order to obtain high connection reliability.However, in order to obtain the same conductivity, the amount of conductive particles can be reduced because the dispersion is good, so that not only can the cost be reduced, Application to a finer circuit becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による異方導電フィルムを説明するため
の断面模式図である。
FIG. 1 is a schematic sectional view illustrating an anisotropic conductive film according to the present invention.

【図2】本発明による異方導電フィルムを用いた場合の
回路の接続状態を示す断面図である。
FIG. 2 is a sectional view showing a connection state of a circuit when an anisotropic conductive film according to the present invention is used.

【図3】本発明による異方導電フィルムを用いた場合の
回路の接続状態を示す平面図である。
FIG. 3 is a plan view showing a connection state of a circuit when an anisotropic conductive film according to the present invention is used.

【図4】従来の金属粒子を適用した異方導電フィルムを
用いた場合の回路の接続状態を示す平面図である。
FIG. 4 is a plan view showing a connection state of a circuit when an anisotropic conductive film to which conventional metal particles are applied is used.

【図5】従来の高分子核材に金属被覆を施した粒子を適
用した異方導電フィルムを用いた場合の回路の接続状態
を示す平面図である。
FIG. 5 is a plan view showing a connection state of a circuit when using an anisotropic conductive film in which particles obtained by applying a metal coating to a conventional polymer nucleus material are used.

【符号の説明】[Explanation of symbols]

1 導電粒子 2 高分子核材 3 金膜 4 ニッケル膜 5 絶縁性接着剤 6 回路基板 7 ガラス基板 8 回路端子 9 金属粒子 10 導電粒子(従来品) DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Polymer core material 3 Gold film 4 Nickel film 5 Insulating adhesive 6 Circuit board 7 Glass substrate 8 Circuit terminal 9 Metal particle 10 Conductive particle (conventional product)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 1/00 - 1/22 H01B 5/00 - 5/16 H01B 13/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 1/00-1/22 H01B 5/00-5/16 H01B 13/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁性接着剤中に導電性粒子を分散させ
た異方導電フィルムにおいて、該導電性粒子の中心核が
高分子材料で、その表面にニッケル膜を有し、該ニッケ
ル膜の更に外層に金膜を有し、該ニッケル膜中の燐含有
量が〜20重量%であることを特徴とする異方導電性
フィルム。
1. An anisotropic conductive film in which conductive particles are dispersed in an insulating adhesive, wherein the core of the conductive particles is a polymer material and has a nickel film on the surface thereof. An anisotropic conductive film further comprising a gold film in an outer layer, wherein the nickel film has a phosphorus content of 5 to 20% by weight.
【請求項2】 導電性粒子の粒子径が0.5〜50μm
で、かつ平均粒子径が2〜10μmである請求項1記載
の異方導電フィルム。
2. The conductive particles have a particle size of 0.5 to 50 μm.
The anisotropic conductive film according to claim 1, wherein the average particle diameter is 2 to 10 m.
【請求項3】 導電性粒子の金及びニッケルの皮膜の厚
さが各々0.01〜1μmである請求項1、又は請求項
2記載の異方導電フィルム。
3. The anisotropic conductive film according to claim 1, wherein the gold and nickel films of the conductive particles each have a thickness of 0.01 to 1 μm.
【請求項4】 導電性粒子の粒度分布の範囲が、〔平均
粒子径−(平均粒子径×0.8)〕〜〔平均粒子径+
(平均粒子径×1)〕μmである請求項1、請求項2、
又は請求項3記載の異方導電フィルム。
4. The range of the particle size distribution of the conductive particles is from [average particle diameter− (average particle diameter × 0.8)] to [average particle diameter +
(Average particle diameter × 1)] μm.
Or the anisotropic conductive film according to claim 3.
【請求項5】 導電性粒子を絶縁性接着剤中に1〜10
体積%分散させてなる請求項1、請求項2、請求項3、
又は請求項4記載の異方導電フィルム。
5. The method according to claim 5, wherein the conductive particles are contained in the insulating adhesive in an amount of 1 to 10%.
Claim 1, Claim 2, Claim 3, which is dispersed by volume%.
Or the anisotropic conductive film according to claim 4.
JP20947895A 1994-10-13 1995-08-17 Anisotropic conductive film Expired - Lifetime JP3150054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20947895A JP3150054B2 (en) 1994-10-13 1995-08-17 Anisotropic conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-247459 1994-10-13
JP24745994 1994-10-13
JP20947895A JP3150054B2 (en) 1994-10-13 1995-08-17 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH08167328A JPH08167328A (en) 1996-06-25
JP3150054B2 true JP3150054B2 (en) 2001-03-26

Family

ID=26517478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20947895A Expired - Lifetime JP3150054B2 (en) 1994-10-13 1995-08-17 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3150054B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
GB9822822D0 (en) 1998-10-19 1998-12-16 Dyno Particles As Particles
JP2003034879A (en) * 2001-07-26 2003-02-07 Sony Chem Corp Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
KR100621463B1 (en) * 2003-11-06 2006-09-13 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive film Containing the Particles
KR100784902B1 (en) * 2004-12-30 2007-12-11 주식회사 동부하이텍 Manufacturing method of plastic conductive particles
JP4735606B2 (en) * 2007-06-14 2011-07-27 日本ゼオン株式会社 Anisotropic conductive material
JP5358328B2 (en) * 2009-07-16 2013-12-04 デクセリアルズ株式会社 Conductive particles, anisotropic conductive film, joined body, and connection method
JP7284703B2 (en) * 2018-04-04 2023-05-31 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structures

Also Published As

Publication number Publication date
JPH08167328A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
JP3516379B2 (en) Anisotropic conductive film
JP2000195339A (en) Anisotropic conductive adhesive film
JP3296306B2 (en) Anisotropic conductive adhesive and adhesive film
CN101690426B (en) Connector, manufacture method for connector and anisotropic conductive film to be used therein
JPH07501183A (en) Die attachment using uniaxial conductive adhesive
JPH07157720A (en) Film having anisotropic electrical conductivity
JPH0623349B2 (en) Anisotropic conductive adhesive
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JP2948038B2 (en) Anisotropic conductive film
JP3150054B2 (en) Anisotropic conductive film
JP3103956B2 (en) Anisotropic conductive film
JPH0652715A (en) Anisotropic conductive adhesive composite
JP3542874B2 (en) Conductive fine particles
JPH07118617A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JP3449889B2 (en) Anisotropic conductive adhesive
JP2680412B2 (en) Anisotropic conductive film
JPH07118618A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JPS608377A (en) Anisotropically electrically-conductive adhesive
JPS63110506A (en) Anisotropic conducting sheet
JP2680430B2 (en) Anisotropic conductive film
JPH09153516A (en) Semiconductor device and ic chip inspecting method
JP2954241B2 (en) Anisotropic conductive film
JPH087658A (en) Anisotropic conductive adhesive film
JPH03291807A (en) Anisotropic conductive paste