JP2680430B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JP2680430B2
JP2680430B2 JP1160854A JP16085489A JP2680430B2 JP 2680430 B2 JP2680430 B2 JP 2680430B2 JP 1160854 A JP1160854 A JP 1160854A JP 16085489 A JP16085489 A JP 16085489A JP 2680430 B2 JP2680430 B2 JP 2680430B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
weight
parts
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1160854A
Other languages
Japanese (ja)
Other versions
JPH0329209A (en
Inventor
寿郎 小宮谷
泰雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP1160854A priority Critical patent/JP2680430B2/en
Publication of JPH0329209A publication Critical patent/JPH0329209A/en
Application granted granted Critical
Publication of JP2680430B2 publication Critical patent/JP2680430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微細な回路同志の電気的接続、更に詳しく
はLCD(液晶ディスプレー)とフレキシブル回路基板の
接続や、半導体ICとIC搭載用回路基板のマイクロ接合に
用いる事のできる異方性導電フィルムに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to electrical connection between minute circuits, more specifically, connection between an LCD (liquid crystal display) and a flexible circuit board, a semiconductor IC and an IC mounting circuit. The present invention relates to an anisotropic conductive film that can be used for micro joining of substrates.

〔従来の技術〕[Conventional technology]

最近の電子機器の小型化・薄型化に伴い、微細な回路
と微細な回路の接続、微小部品と微細回路基板の接続等
の必要性が飛躍的に増大してきており、その接合方法と
して、半田接合技術の進展と共に、新しい材料として、
縞状に導電部と絶縁部分を配した、いわゆる“エラスチ
ックコネクター”や、異方性の導電性接着剤やシートが
使用され始めている。(例えば、特開昭59−120436、60
−84718、60−191228、61−55809、61−274394、61−28
7974各号公報等) しかし、その多くは基本的には熱硬化性樹脂或いは熱
可塑性樹脂に分類され、それぞれの特徴を活かした使用
方法が提案されている。即ち、熱硬化性樹脂系では、そ
の耐熱性に基づく高信頼性を活かし、また、熱可塑性樹
脂系のものでは、その粘着性と、一度圧着した後に熱ま
たは溶剤で剥離が可能であり、良好な作業性を有してい
ることを活かして使い分けられ、主として、液晶ディス
プレーとフレキシブルプリント回路基板の接合を中心と
した微細回路の接合や、耐熱性の不足から半田付け接合
方法を採用出来ない回路同志の接合に用いられる。しか
し、上記特性をすべて合わせ持つ異方性導電フィルムは
未だなく、これを用いた電子機器の高信頼性化の足枷と
なっているのが現状である。
With the recent miniaturization and thinning of electronic devices, the need for connecting minute circuits to minute circuits, connecting minute parts to minute circuit boards, etc. has increased dramatically. With the progress of joining technology, as a new material,
A so-called "elastic connector", which has a conductive portion and an insulating portion arranged in stripes, and an anisotropic conductive adhesive or sheet have begun to be used. (For example, JP-A-59-120436, 60
-84718, 60-191228, 61-55809, 61-274394, 61-28
However, most of them are basically classified into thermosetting resins or thermoplastic resins, and usage methods utilizing the respective characteristics have been proposed. That is, in the thermosetting resin system, high reliability based on its heat resistance is utilized, and in the thermoplastic resin system, its adhesiveness and peelability by heat or solvent after once pressure-bonding are good, It can be used properly by taking advantage of its excellent workability, mainly for the bonding of fine circuits centering on the bonding of the liquid crystal display and the flexible printed circuit board, and the circuit where the soldering bonding method cannot be adopted due to lack of heat resistance. Used for joining comrades. However, there is still no anisotropic conductive film having all of the above-mentioned characteristics, and it is the present condition that it is a shackle for improving the reliability of electronic devices using the anisotropic conductive film.

また、導電粒子に関しては、従来その多くが半田粒
子、ニッケル粒子、カーボンブラック粉などを用いる場
合が多い。半田粒子を用いた場合、電子回路間を接続す
る際の温度、圧力などの管理が難しい。すなわち、温度
が高すぎると半田粒子が溶融し隣接する回路間の絶縁が
保てなくなることがある。また、圧力が高すぎると半田
粒子がつぶれすぎるため、信頼性が劣り、圧力不足の場
合は十分な導通が得られない。また、ニッケル粒子やカ
ーボンブラック粉においては、そのものが硬く変形しな
いために接触面積が小さく、導電性に関して不利であ
る。一部において、ポリスチレンのような熱可塑性プラ
スチックビーズを用いた例(特開昭61−77279、61−780
69、62−243668各号公報)もあるが、耐熱性に問題があ
る。最近の動向として、特に耐熱性が求められており、
樹脂だけでなく導電粒子も耐熱性を考えなければならな
いのが現状である。
Further, with respect to the conductive particles, most of them have conventionally used solder particles, nickel particles, carbon black powder, and the like. When solder particles are used, it is difficult to control the temperature and pressure when connecting electronic circuits. That is, if the temperature is too high, the solder particles may melt and the insulation between adjacent circuits may not be maintained. Further, if the pressure is too high, the solder particles are crushed too much, resulting in poor reliability, and if the pressure is insufficient, sufficient conduction cannot be obtained. Further, the nickel particles and the carbon black powder are hard and do not deform, so that the contact area is small, which is disadvantageous in terms of conductivity. In some cases, examples using thermoplastic beads such as polystyrene (JP-A-61-77279, 61-780) are used.
69, 62-243668), but there is a problem in heat resistance. As a recent trend, heat resistance is especially required,
At present, not only the resin but also the conductive particles have to be considered for heat resistance.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、前記従来技術では得られなかった、良好な
作業性と、高信頼性とを合わせ持つ新規な異方性導電フ
ィルムを提供せんとするものである。
The present invention aims to provide a novel anisotropic conductive film having both good workability and high reliability, which were not obtained by the above-mentioned conventional techniques.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、エポキシ樹脂100重量部と、これを硬化す
るのに用いるイミダゾール系化合物を主成分とする硬化
剤1〜20重量部、およびエポキシ樹脂と相溶性が良く、
且つエポキシ樹脂と共通の溶剤で可溶な熱可塑性エラス
トマー20〜200重量部を均一に混合した樹脂溶液と、平
均粒子径が5〜15μmの範囲にあり、且つ最大粒子径が
25μm以下、最小粒子径が1μm以上であるノボラック
系フェノール樹脂の粒子状硬化物に、厚さ0.1〜0.3μm
のニッケルもしくはアルミニウムをコーティングした導
電性微小粒子を前記樹脂溶液の固形分に対して1〜10体
積%添加混合して、均一に分散せしめた混合溶液を、離
型フィルム上に流延、乾燥して厚さ150μm以下のフィ
ルム状に形成しBステージ化して得られる、一度熱圧着
した後、熱または有機溶剤によって剥離できることを特
徴とする異方性導電フィルムに関するものである。
The present invention, 100 parts by weight of an epoxy resin, 1 to 20 parts by weight of a curing agent containing an imidazole-based compound as a main component for curing the epoxy resin, and good compatibility with an epoxy resin,
Moreover, a resin solution in which 20 to 200 parts by weight of a thermoplastic elastomer soluble in a common solvent with an epoxy resin is uniformly mixed, and an average particle size is in the range of 5 to 15 μm, and a maximum particle size is
0.1 μm to 0.3 μm in the thickness of 25 μm or less and a novolac-based phenolic resin particulate cured product with a minimum particle size of 1 μm or more
1 to 10% by volume of the conductive fine particles coated with nickel or aluminum with respect to the solid content of the resin solution, and mixed, and the mixed solution uniformly dispersed is cast on a release film and dried. The present invention relates to an anisotropic conductive film, which is obtained by forming a film having a thickness of 150 μm or less and forming it into a B stage, and which can be peeled by heat or an organic solvent after thermocompression bonding once.

本発明において用いられるエポキシ樹脂は、通常のビ
スフェノール系の他、脂肪族系或いは多官能芳香族系を
用いても良い。硬化剤としては、作業性、保存性、信頼
性の点から、イミダゾール系の硬化剤2−メチルイミダ
ゾール、2−フェニルイミダゾール、2−フェニル−4
メチルイミダゾール、2−フェニル−4,5−ジヒドロキ
シメチルイミダゾール、2−フェニル−4−メチル−5
−ヒドロキシメチルイミダゾール、N,N−〔2−メチル
イミダゾリル−(1)−エチル〕−アジボイルジアミ
ド、2,4−ジアミノ−6−{2′−メチルイミダゾリル
−1′}エチル−S−トリアジン・イソシアヌール酸付
加物等の、常温で固体のイミダゾール系化合物から選ば
れた1種又は2種以上の混合物が用いられ、エポキシ樹
脂と混合して保存性が良好(常温で3カ月以上、冷蔵で
6カ月以上)であり、且つ、加熱速硬化性(120〜200
℃、5秒〜1分で初期密着性を与える)組成物が好んで
用いられる。
The epoxy resin used in the present invention may be an bisphenol-based epoxy resin, or an aliphatic or polyfunctional aromatic resin. As a curing agent, from the viewpoint of workability, storability, and reliability, an imidazole-based curing agent 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4
Methyl imidazole, 2-phenyl-4,5-dihydroxymethyl imidazole, 2-phenyl-4-methyl-5
-Hydroxymethylimidazole, N, N- [2-methylimidazolyl- (1) -ethyl] -adivoyldiamide, 2,4-diamino-6- {2'-methylimidazolyl-1 '} ethyl-S-triazine. Mixtures of one or more selected from imidazole compounds that are solid at room temperature, such as isocyanuric acid adducts, are used, and have good storage stability when mixed with an epoxy resin (3 months or more at room temperature, refrigerated at room temperature. 6 months or more) and heat-hardening (120 to 200)
A composition that gives initial adhesion at 5 ° C. for 5 seconds to 1 minute) is preferably used.

エポキシ樹脂および硬化剤は、低温短時間硬化等の接
合条件、リペアー性等作業性や熱可塑性エラストマーと
の相溶性、さらには圧着・硬化後の耐熱性、耐湿性等の
信頼性要求特性に基づいて適宜選択される。
Epoxy resins and curing agents are based on bonding conditions such as low-temperature short-time curing, workability such as repairability, compatibility with thermoplastic elastomers, and required reliability characteristics such as heat resistance after bonding and curing, moisture resistance, etc. Is appropriately selected.

熱可塑性エラストマーはポリアミド樹脂、変性アクリ
ル系ゴム、エチレン−酢酸ビニル共重合体等が適用され
る。その他、老化防止剤、酸化防止剤、促進剤、架橋
剤、カップリング剤、粘着付与剤等と適宜併用しても良
い。
As the thermoplastic elastomer, polyamide resin, modified acrylic rubber, ethylene-vinyl acetate copolymer and the like are applied. In addition, an antioxidant, an antioxidant, an accelerator, a cross-linking agent, a coupling agent, a tackifier, etc. may be appropriately used in combination.

通常の異方性導電フィルムに要求される、いわゆるリ
ペアー性、すなわち一度熱圧着した後に位置ずれ等を起
こした場合、被着体を破損することなく熱または溶剤で
剥離できるという重要な特性は欠かすことのできないも
のである。
The so-called repairability required for ordinary anisotropic conductive films, that is, the important characteristic that when the material is misaligned after thermocompression bonding, it can be peeled off by heat or solvent without damaging the adherend, is essential. It cannot be done.

エポキシ樹脂100重量部に対する熱可塑性エラストマ
ーの配合量について種々検討を行なったところ、エポキ
シ樹脂100重量部に対して熱可塑性エラストマーの配合
量が20重量部以下では、エポキシ樹脂のマトリックスに
熱可塑性エラストマーが網目状に細く形成され、エポキ
シ樹脂に耐衝撃性を与えており、エポキシ樹脂の高い密
着力、耐熱性に裏付けられた高信頼性が期待されるが、
圧着後、被着体を破損することなく剥離することは不可
能であった。また、200重量部以上では、樹脂マトリッ
クスが熱可塑性エラストマーによって形成され、島状に
分布するエポキシ樹脂はほとんど密着強度に関与しない
為、熱可塑性エラストマーの持つ粘着(タッキネス)性
が中心となり、エポキシ樹脂本来の持つ被着体との密着
強度や高信頼性が得られなかった。従って、エポキシ樹
脂100重量部に対しての熱可塑性エラストマーは20重量
部以上、200重量部以下の範囲で用いるのが良い。
When various studies were conducted on the blending amount of the thermoplastic elastomer with respect to 100 parts by weight of the epoxy resin, when the blending amount of the thermoplastic elastomer was 20 parts by weight or less with respect to 100 parts by weight of the epoxy resin, the thermoplastic elastomer was contained in the matrix of the epoxy resin. It is formed in a fine mesh shape and gives impact resistance to the epoxy resin, and it is expected that the epoxy resin will have high adhesion and high reliability backed by heat resistance.
After pressure bonding, it was impossible to peel the adherend without damaging it. In addition, when the amount is 200 parts by weight or more, the resin matrix is formed of the thermoplastic elastomer, and the epoxy resin distributed in an island shape hardly participates in the adhesion strength. Therefore, the adhesiveness (tackiness) of the thermoplastic elastomer plays a central role. The original adhesion strength with the adherend and high reliability were not obtained. Therefore, it is preferable to use the thermoplastic elastomer in an amount of 20 parts by weight or more and 200 parts by weight or less based on 100 parts by weight of the epoxy resin.

異方性導電フィルムを介して回路間の接続を確保しよ
うとする場合、ファインピッチ化された細線間におい
て、隣接する回路間の絶縁性確保はもちろんのことであ
るが、回路上においては導電粒子の接触面積が広い方が
安定した導電性を得ることができる。本発明において用
いられる導電粒子は、広い範囲の圧着条件において潰れ
すぎずに変形し、回路との接触面積を広く取ることが可
能である。この導電粒子はノボラック系フェノール樹脂
を乳濁重合し、更には加熱硬化させた平均粒子径5〜15
μm、最大粒子径25μm、最小粒子径1μm以上に分級
されたフェノールビーズにニッケル、アルミニウムなど
酸化に対して安定な金属を0.1〜0.3μmの厚さに無電解
メッキあるいは物理的、化学的な方法によりコーティン
グした球状の導電体である。接合する回路のパターン精
度によっても異なるが、現状の接合に用いられる回路幅
/回路間隔=0.1/0.1mmに適合する為には、粒子径が1
μm以下であると粒子同志の凝集が著しくなったり、フ
ィルム全体としての誘電特性に影響がでてくる。
When attempting to secure the connection between circuits through an anisotropic conductive film, it is of course necessary to secure the insulation between adjacent circuits between fine lines with fine pitch, but on the circuit, conductive particles The larger the contact area, the more stable conductivity can be obtained. The conductive particles used in the present invention can be deformed without being excessively crushed under a wide range of pressure bonding conditions, and can have a large contact area with a circuit. The conductive particles are obtained by emulsion-polymerizing a novolac-based phenol resin and further cured by heating.
μm, maximum particle size of 25 μm, minimum particle size of 1 μm or more, phenol beads are classified by metal such as nickel and aluminum that is stable against oxidation to 0.1-0.3 μm thickness by electroless plating or physical or chemical method. Is a spherical conductor coated with. Although it depends on the pattern accuracy of the circuit to be joined, the particle size is 1 in order to meet the current circuit width / circuit spacing = 0.1 / 0.1mm used for joining.
If it is less than μm, the cohesion of the particles becomes remarkable, and the dielectric properties of the film as a whole are affected.

また、最大粒子径が25μm以上であると樹脂接着層の
厚みとの関係から被着体になじんだ平滑な接着面が得ら
れないと同時に、圧着後隣接する回路間に導電粒子が集
まった場合短絡する恐れがある。このことは樹脂接着剤
に対する導電粒子の配合量、分散度にも関係し、本発明
においては樹脂固形分に対して1〜10体積%、更に好ま
しくは3〜7体積%配合するのが良い。導電粒子の配合
量が1体積%以下であると安定した導電信頼性が得られ
ず、20体積%以上では隣接回路間の絶縁信頼性が劣る。
Also, if the maximum particle size is 25 μm or more, a smooth adhesive surface that fits the adherend cannot be obtained due to the relationship with the thickness of the resin adhesive layer, and at the same time, conductive particles gather between adjacent circuits after pressure bonding. There is a risk of short circuit. This also relates to the blending amount and dispersity of the conductive particles with respect to the resin adhesive, and in the present invention, the blending amount is preferably 1 to 10% by volume, more preferably 3 to 7% by volume with respect to the resin solid content. If the content of the conductive particles is 1% by volume or less, stable conductivity reliability cannot be obtained, and if it is 20% by volume or more, the insulation reliability between adjacent circuits is poor.

また、平均粒子径については、断面観察によるその導
電メカニズムから、厚み方向に単一の粒子で電気的に接
合されていることが望ましく、5〜15μmの場合が最も
安定した接合状態を示した。
Regarding the average particle size, it is desirable that the particles are electrically bonded by a single particle in the thickness direction from the conduction mechanism by cross-section observation, and the most stable bonding state is shown in the case of 5 to 15 μm.

〔実施例1〜4〕 エポキシ樹脂(油化シェル(株)製、EP−1001)をメ
チルエチルケトンで溶解して20重量%溶液を調整し、ま
た、カルボン酸変性アクリロニトリル・ブタジエン共重
合体(日本合成ゴム(株)製、XNBR)も同じくメチルエ
チルケトンに溶解して15重量%溶液に調整した。
[Examples 1 to 4] An epoxy resin (EP-1001 manufactured by Yuka Shell Co., Ltd.) was dissolved in methyl ethyl ketone to prepare a 20 wt% solution, and a carboxylic acid-modified acrylonitrile-butadiene copolymer (Nippon Synthetic Chemical Co., Ltd.) was prepared. Rubber (XNBR) manufactured by Rubber Co., Ltd. was also dissolved in methyl ethyl ketone to prepare a 15 wt% solution.

上記2種の樹脂溶液を混合し、エポキシ樹脂固形分10
0重量部に対してエラストマー固形分を20重量部、50重
量部、100重量部、200重量部なる4種の均一な混合物を
調整した。更に、エポキシ樹脂固形分に対して各々2重
量%となるように、イミダゾール系硬化剤およびジシア
ンジアミドをそれぞれ4種の樹脂溶液に加え均一に混合
した。
Epoxy resin solid content 10
A uniform mixture of 4 kinds of 20 parts by weight, 50 parts by weight, 100 parts by weight, and 200 parts by weight of elastomer solid content was prepared with respect to 0 part by weight. Further, the imidazole-based curing agent and the dicyandiamide were added to each of the four resin solutions so as to be 2% by weight with respect to the solid content of the epoxy resin, and mixed uniformly.

次にこのようにして得た樹脂混合溶液に、ニッケルを
0.1μmの厚さに無電解メッキしたフェノールビーズ
(平均粒子径10μm、最大粒子径22μm、最小粒子径2
μm)を樹脂固形分に対して5体積%投入し、攪拌混合
機によって1時間混合した。このものをアプリケーター
を用いて、離型フィルム(厚さ25μmのポリエチレンテ
レフタレート)上に乾燥後の厚みが20μmになるように
流延し、80℃で5分間乾燥後、100℃、5分間加熱して
異方性導電フィルムを得た。得られた異方性導電フィル
ムを用いて、インジウム・錫酸化物で回路形成した透明
導電回路とフレキシブルプリント回路板(銅箔18μm、
回路巾0.1mm、ポリイミド25μm)を回路端子部を位置
合わせした後、150℃で20秒間熱圧着することにより接
続した。
Next, nickel is added to the resin mixed solution thus obtained.
Electroless plated phenol beads with a thickness of 0.1 μm (average particle size 10 μm, maximum particle size 22 μm, minimum particle size 2
μm) was added to the resin solid content in an amount of 5% by volume, and mixed by an agitating mixer for 1 hour. Using an applicator, cast this on a release film (25 μm thick polyethylene terephthalate) so that the thickness after drying will be 20 μm, dry at 80 ° C for 5 minutes, then heat at 100 ° C for 5 minutes. An anisotropic conductive film was obtained. Using the obtained anisotropic conductive film, a transparent conductive circuit circuit formed of indium / tin oxide and a flexible printed circuit board (copper foil 18 μm,
After the circuit terminals were aligned, a circuit width of 0.1 mm and polyimide 25 μm) were connected, and then thermocompression bonding was performed for 20 seconds at 150 ° C.

このようにして接続した試験片について、初期特性と
150℃、1000時間処理後の特性の比較を行なった。結果
を第1表に示す。
For the test pieces connected in this way,
The characteristics were compared after treatment at 150 ° C for 1000 hours. The results are shown in Table 1.

〔比較例1〜2〕 また、比較例として、エポキシ樹脂固形分に対するエ
ラストマーの割合を10重量部(比較例1)および250重
量部(比較例2)混合した溶液より、実施例と同様にし
て試料を作成し評価を行なった。その結果も第1表に併
記する。
[Comparative Examples 1 and 2] As a comparative example, a solution obtained by mixing 10 parts by weight (comparative example 1) and 250 parts by weight (comparative example 2) of the elastomer with respect to the epoxy resin solid content was prepared in the same manner as in the example. A sample was prepared and evaluated. The results are also shown in Table 1.

以上の結果より、実施例1〜4においては優れた耐熱
性を示すことを確認した。また、圧着後、試験片を再度
180℃にて加熱し、直ちに引き剥がしたところ被着体を
破損することなく剥離が可能であった。
From the above results, it was confirmed that Examples 1 to 4 exhibited excellent heat resistance. Also, after crimping,
When heated at 180 ° C. and immediately peeled off, the adherend could be peeled off without damage.

〔比較例3〜4〕 次に、実施例と同様の配合比である樹脂溶液に、樹脂
固形分に対して5体積%の半田粉およびスチレンビーズ
にニッケルを0.1μmメッキしたものを混合して同様の
試験片を作成し、150℃、1000時間加熱後の接続抵抗の
変化を測定した。その結果を第2表に示す。使用した半
田粉およびスチレンビーズは球状であり、粒度分布も実
施例1〜4で用いたフェノールビーズと同様な分布を示
すものを用いた。
[Comparative Examples 3 to 4] Next, a resin solution having the same compounding ratio as that of the example was mixed with 5% by volume of solder powder based on the resin solid content and styrene beads plated with 0.1 μm of nickel. A similar test piece was prepared and the change in connection resistance after heating at 150 ° C. for 1000 hours was measured. Table 2 shows the results. The solder powder and the styrene beads used were spherical, and those having a particle size distribution similar to those of the phenol beads used in Examples 1 to 4 were used.

〔実施例5〕〔比較例5〜6〕 実施例2および比較例3、4で作成した異方性導電フ
ィルムを用いて、圧着条件の圧力を20〜50kg/cm2の範囲
において変化させ、150℃、20秒間で圧着した時の接続
抵抗と顕微鏡による圧着状態を観察した。それぞれ実施
例5および比較例5、6として、評価結果を第3表に示
す。
[Example 5] [Comparative Examples 5 to 6] Using the anisotropic conductive films prepared in Example 2 and Comparative Examples 3 and 4, pressure under pressure bonding conditions was changed in the range of 20 to 50 kg / cm 2 , The connection resistance at the time of crimping at 150 ° C. for 20 seconds and the crimping state with a microscope were observed. The evaluation results are shown in Table 3 as Example 5 and Comparative Examples 5 and 6, respectively.

以上の結果より、フェノールビーズは耐熱性および作
業性を兼ね備えた導電粒子の芯材となり得ることを確認
した。
From the above results, it was confirmed that phenol beads can be a core material for conductive particles having both heat resistance and workability.

〔発明の効果〕〔The invention's effect〕

本発明の異方性導電フィルムは、エポキシ樹脂に対し
て広い範囲で相溶性の良い熱可塑性エラストマーをエポ
キシ樹脂に均一に混合することにより、エポキシ樹脂の
耐熱性および高い密着力と熱可塑性エラストマーのリペ
アー性を合わせ持つと同時にエポキシ樹脂の脆性をなく
し、フェノール樹脂ビーズを導電粒子の芯材として使用
することにより、安定した耐熱性をはじめとする信頼性
を得ることができ、しかも、圧着条件の重要な要素であ
る圧力の範囲を広く選択でき、程よいつぶれ具合で広い
接触面積を持ち、安定した接続信頼性を得ることができ
たもので、微細な回路や部品の接続用材料として有用で
ある。
The anisotropic conductive film of the present invention is obtained by uniformly mixing a thermoplastic elastomer having good compatibility with an epoxy resin in a wide range with the epoxy resin, thereby providing the epoxy resin with heat resistance and high adhesion and By combining the repairability with eliminating the brittleness of the epoxy resin and using phenol resin beads as the core material of the conductive particles, stable heat resistance and other reliability can be obtained, and the pressure bonding conditions A wide range of pressure, which is an important factor, can be selected, it has a wide contact area with a good crushing condition, and stable connection reliability can be obtained, which is useful as a material for connecting minute circuits and components. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/32 H05K 3/32 B 3/36 3/36 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H05K 3/32 H05K 3/32 B 3/36 3/36 A

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エポキシ樹脂100重量部と、これを硬化す
るのに用いるイミダゾール系化合物を主成分とする硬化
剤1〜20重量部、およびエポキシ樹脂と相溶性が良く、
且つエポキシ樹脂と共通の溶剤で可溶な熱可塑性エラス
トマー20〜200重量部を均一に混合した樹脂溶液と、平
均粒子径が515μmの範囲にあり、且つ最大粒子径が25
μm以下、最小粒子径が1μm以上であるノボラック系
フェノール樹脂の粒子状硬化物に、厚さ0.1〜0.3μmの
ニッケルもしくはアルミニウムをコーティングした導電
性微小粒子を前記樹脂溶液の固形分に対して1〜10体積
%添加混合して、均一に分散せしめた混合溶液を、離型
フィルム上に流延、乾燥して厚さ150μm以下のフィル
ム状に形成しBステージ化して得られる、一度熱圧着し
た後、熱または有機溶剤によって剥離できることを特徴
とする異方性導電フィルム。
1. An epoxy resin of 100 parts by weight, 1 to 20 parts by weight of a curing agent containing an imidazole compound as a main component for curing the epoxy resin, and good compatibility with the epoxy resin,
Also, a resin solution in which 20 to 200 parts by weight of a thermoplastic elastomer soluble in a common solvent with an epoxy resin is uniformly mixed, and an average particle diameter is in the range of 515 μm and a maximum particle diameter is 25
Conductive microparticles coated with nickel or aluminum having a thickness of 0.1 to 0.3 μm on a particle-like cured product of a novolac-based phenol resin having a particle diameter of 1 μm or less and a minimum particle diameter of 1 μm or more is 1 with respect to the solid content of the resin solution. ~ 10% by volume added and mixed, and the mixed solution uniformly dispersed is cast on a release film, dried to form a film having a thickness of 150 µm or less, which is obtained by B-stage, and thermocompression-bonded once. An anisotropic conductive film, which can be subsequently peeled off by heat or an organic solvent.
JP1160854A 1989-06-26 1989-06-26 Anisotropic conductive film Expired - Fee Related JP2680430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160854A JP2680430B2 (en) 1989-06-26 1989-06-26 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160854A JP2680430B2 (en) 1989-06-26 1989-06-26 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH0329209A JPH0329209A (en) 1991-02-07
JP2680430B2 true JP2680430B2 (en) 1997-11-19

Family

ID=15723827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160854A Expired - Fee Related JP2680430B2 (en) 1989-06-26 1989-06-26 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2680430B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046257A (en) * 1995-07-18 2000-04-04 Toray Industries, Inc. Composition for prepreg comprising epoxy resin, polyamide block copolymer and curing agent
JP2002204052A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
KR101381483B1 (en) 2006-10-20 2014-04-04 에아.워타 가부시키가이샤 Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
KR101140067B1 (en) * 2007-10-15 2012-04-30 히다치 가세고교 가부시끼가이샤 Circuit connecting adhesive film and circuit connecting structure

Also Published As

Publication number Publication date
JPH0329209A (en) 1991-02-07

Similar Documents

Publication Publication Date Title
KR950000710B1 (en) Anisotropic conductive adhesive compositions
US8133412B2 (en) Anisotropic conductive film
EP2884590B1 (en) Anisotropic conductive film, connection method, and assembly
KR102345942B1 (en) adhesive composition
JP4556936B2 (en) Adhesive for electrode connection
JP2000195339A (en) Anisotropic conductive adhesive film
JP2008094908A (en) Adhesive for electrode connection
JPH07157720A (en) Film having anisotropic electrical conductivity
JP2007317563A (en) Circuit connecting adhesive
JP3418492B2 (en) Anisotropic conductive film
EP1657725B1 (en) Insulation-coated electroconductive particles
JP6326867B2 (en) Connection structure manufacturing method and connection structure
JPH06187834A (en) Anisotropic conductive film
JP2680430B2 (en) Anisotropic conductive film
JP4867805B2 (en) Adhesive for electrode connection
JP2680412B2 (en) Anisotropic conductive film
JP3150054B2 (en) Anisotropic conductive film
JP5273514B2 (en) Electrode connecting adhesive and method for producing the same
JP3449889B2 (en) Anisotropic conductive adhesive
JP2009084307A (en) Adhesive for connecting electrodes
JP4918908B2 (en) Anisotropic conductive film
JPH07118618A (en) Adhesive for fine pitch having anisotropic electrical conductivity
JPS63110506A (en) Anisotropic conducting sheet
KR20120029406A (en) Connection method, connection structure, and electronic device
JP2004164910A (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees