JP2003034879A - Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR - Google Patents

Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR

Info

Publication number
JP2003034879A
JP2003034879A JP2001225823A JP2001225823A JP2003034879A JP 2003034879 A JP2003034879 A JP 2003034879A JP 2001225823 A JP2001225823 A JP 2001225823A JP 2001225823 A JP2001225823 A JP 2001225823A JP 2003034879 A JP2003034879 A JP 2003034879A
Authority
JP
Japan
Prior art keywords
coating
particles
plating
plated
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001225823A
Other languages
Japanese (ja)
Inventor
Makoto Yoshinari
誠 吉成
Ryoji Kojima
亮二 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP2001225823A priority Critical patent/JP2003034879A/en
Publication of JP2003034879A publication Critical patent/JP2003034879A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide Ni-plated particles having superior electroconductivity, little cohesiveness, and uniform thickness of the Ni film. SOLUTION: The Ni-plated particle 1 having a Ni film 3 plated by an electroless Ni plating method on the surface of a particle core 2, has a less P content in the surface side 3x than in the particle core side 2, along a depth direction of the whole Ni film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無電界Niメッキ
により芯材粒子の表面に無電界Niメッキ被膜を形成し
たNiメッキ粒子に関する。
TECHNICAL FIELD The present invention relates to Ni-plated particles in which electroless Ni-plated coatings are formed on the surface of core material particles by electroless Ni-plating.

【0002】[0002]

【従来の技術】無電界Niメッキはその技術の進歩と用
途の開発によって、種々の大きさや形状の被メッキ物に
適用されており、例えば、粒子状の芯材に無電界Niメ
ッキする方法としては、特公平3−44149号公報、
特公平6−96771号公報、特開平7−11886号
公報、特開平8−311655号公報に記載の方法があ
る。
2. Description of the Related Art Electroless Ni plating has been applied to objects to be plated of various sizes and shapes due to the progress of the technology and the development of applications. For example, as a method of electroless Ni plating on a particulate core material, Is Japanese Patent Publication No. 3-44149,
There are methods described in JP-B-6-96771, JP-A-7-11886, and JP-A-8-31655.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、被メッ
キ物が粒径0.1〜50μm程度の微粒子の場合、非常
に表面が活性であり、比面積が大きく、凝集力が大きい
ので、特公平6−96771号公報等に記載されている
ように、一定のpHで、芯材の分散液にNiメッキ液を
構成するNi塩溶液と次亜リン酸ナトリウム等の還元剤
溶液とを各々少量ずつ添加する方法では、メッキ反応の
速度を精密に制御することが困難である。
However, when the object to be plated is fine particles having a particle size of about 0.1 to 50 μm, the surface is very active, the specific area is large, and the cohesive force is large. As described in Japanese Patent Publication No. 967771 and the like, a Ni salt solution constituting a Ni plating solution and a reducing agent solution such as sodium hypophosphite are added little by little to a dispersion liquid of a core material at a constant pH. However, it is difficult to precisely control the plating reaction rate.

【0004】さらに、Ni被膜中のP含有量が多いと、
Ni被膜の導電性が低下するので、Niメッキ粒子を導
電性接着剤、異方導電性接着剤等の導電性フィラーとし
て使用する場合には、Ni被膜中のP含有量を低下させ
ることが望まれるが、還元剤として次亜リン酸ナトリウ
ムを使用する場合には、次式に示すように、Niメッキ
反応の副反応によりPが生成するので、Ni被膜中のP
含有量を制御することも困難となる。
Furthermore, if the P content in the Ni coating is high,
Since the electroconductivity of the Ni coating decreases, it is desirable to reduce the P content in the Ni coating when the Ni plated particles are used as a conductive filler such as a conductive adhesive or an anisotropic conductive adhesive. However, when sodium hypophosphite is used as the reducing agent, P is produced by a side reaction of the Ni plating reaction, as shown in the following formula, so that P in the Ni coating film is formed.
It is also difficult to control the content.

【0005】[0005]

【化1】 局部アノード反応 H2PO2 -+H2O→H2PO3 -+2H++2e 局部カソード反応 2e+Ni2+→Ni 2e+2H+→H2 副反応 H2PO2 -+2H++2e→P+H2Embedded image Local anode reaction H 2 PO 2 + H 2 O → H 2 PO 3 + 2H + + 2e Local cathode reaction 2e + Ni 2+ → Ni 2e + 2H + → H 2 side reaction H 2 PO 2 + 2H + + 2e → P + H 2 O

【0006】即ち、pH4〜5の低pH域で無電界Ni
メッキ反応を行うと、Niメッキ反応(局部カソード反
応)の速度が遅く、副反応の速度が速いため、Ni被膜
中に多くのPが取り込まれ、Ni被膜の電気導電率が低
下する。一方、Niメッキ粒子同士の凝集は少なくな
る。
That is, in the low pH range of pH 4 to 5, electroless Ni
When the plating reaction is performed, the rate of the Ni plating reaction (local cathode reaction) is slow and the rate of the side reaction is fast, so that a large amount of P is taken into the Ni coating and the electrical conductivity of the Ni coating is lowered. On the other hand, the agglomeration of the Ni plated particles is reduced.

【0007】反対に、pH7〜8の高pH域で無電界N
iメッキ反応を行うと、Niメッキ反応の速度が速いた
めに、Pの取り込み量の少ないNi被膜が形成される
が、Ni被膜が磁性を持ち、Niメッキ粒子同士の凝集
が著しくなるので、Ni被膜は凸凹となり、その厚さも
不均一となり、Niメッキを続けることが困難となる。
さらに、Niメッキ粒子の用途により、Ni被膜上にさ
らに金メッキが施される場合、金メッキはNi被膜を形
成するNiが金で置換されることにより行われるので、
均一な金メッキ被膜を得ることが困難となる。
On the contrary, in the high pH range of pH 7-8, no electric field N
When the i plating reaction is performed, the Ni plating reaction speed is high, so that a Ni coating film with a small P incorporation is formed. However, since the Ni coating film has magnetism and the Ni plating particles agglomerate remarkably, The coating film becomes uneven and its thickness becomes non-uniform, making it difficult to continue Ni plating.
Further, depending on the use of the Ni-plated particles, when gold plating is further applied on the Ni coating, gold plating is performed by replacing Ni forming the Ni coating with gold.
It becomes difficult to obtain a uniform gold plating film.

【0008】それ故、Niメッキ粒子の製造に際して
は、如何にして、Niメッキ粒子の導電性が損なわれな
いようにP含有量を少なくし、かつ凝集性を抑制するか
が課題となっている。
Therefore, in the production of the Ni-plated particles, how to reduce the P content so as not to impair the conductivity of the Ni-plated particles and to suppress the cohesiveness is an issue. .

【0009】これに対し、本発明は優れた電気導電性を
有し、かつ凝集性が少なく、Ni被膜の厚みが均一な、
新たなNiメッキ粒子を提供することを目的とする。
On the other hand, the present invention has excellent electric conductivity, less cohesiveness, and a uniform Ni coating thickness.
The purpose is to provide new Ni-plated particles.

【0010】[0010]

【課題を解決するための手段】本発明者は、無電界Ni
メッキ法によりNiメッキ粒子を製造するにあたり、N
i被膜中のP含有量をNi被膜の厚み方向で異ならせ、
芯材粒子側に対してNi被膜の表面側のP含有量を低下
させると、P含有量の低いNi被膜の表面側領域によっ
て優れた電気導電性が確保され、かつ、P含有量の高い
芯材側領域によってNiメッキ粒子の凝集性が抑制され
ることを見出した。
The inventor of the present invention has found that electroless Ni
When manufacturing Ni plated particles by the plating method, N
The P content in the i coating is varied in the thickness direction of the Ni coating,
When the P content on the surface side of the Ni coating is reduced with respect to the core particle side, excellent electrical conductivity is ensured by the surface side region of the Ni coating having a low P content, and the core having a high P content is secured. It has been found that the material-side region suppresses the cohesiveness of the Ni-plated particles.

【0011】さらに、Ni被膜中のP含有量をNi被膜
の厚み方向で異ならせるためには、芯材粒子の分散液中
に、Ni塩溶液と還元剤溶液を滴下してNiメッキ反応
を進行させる場合に、反応時間の経過と共に反応液のp
Hを上昇させ、Ni被膜中のP含有量を漸減させること
が有効であることを見出した。
Furthermore, in order to make the P content in the Ni coating different in the thickness direction of the Ni coating, the Ni salt solution and the reducing agent solution are dropped into the dispersion liquid of the core particles to proceed the Ni plating reaction. When the reaction is performed, p
It has been found that increasing H and gradually reducing the P content in the Ni coating is effective.

【0012】即ち、本発明は、芯材粒子の表面に無電界
Niメッキ法によりNi被膜を設けたNiメッキ粒子で
あって、Ni被膜中の厚み方向のP含有量が、芯材粒子
側よりもNi被膜表面側で少ないことを特徴とするNi
メッキ粒子を提供する。
That is, the present invention is a Ni-plated particle in which a Ni coating is provided on the surface of the core particle by the electroless Ni plating method, and the P content in the thickness direction of the Ni coating is greater than that of the core particle side. Is also less on the Ni coating surface side
Providing plated particles.

【0013】また、本発明は、貴金属触媒を担持させた
芯材粒子の水性懸濁液に、Ni塩、リン系還元剤、pH
調整剤を含むNiメッキ液を添加することにより無電界
Niメッキ反応を行い、芯材粒子表面にNi被膜を形成
するNiメッキ粒子の製造方法において、Niメッキ液
を添加した水性懸濁液のpHを、反応開始時よりも反応
終了時で高くすることを特徴とするNiメッキ粒子の製
造方法を提供する。
Further, the present invention provides an aqueous suspension of core material particles carrying a noble metal catalyst, a Ni salt, a phosphorus-based reducing agent and a pH.
In the method for producing Ni-plated particles in which an electroless Ni-plating reaction is performed by adding a Ni-plating solution containing a regulator to form a Ni coating film on the surface of core material particles, the pH of an aqueous suspension containing the Ni-plating solution is added. Is provided at the end of the reaction rather than at the start of the reaction.

【0014】[0014]

【発明の実施の形態】以下、本発明の一態様を、図面を
参照しつつ詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

【0015】図1に示すように、本発明のNiメッキ粒
子1は、芯材粒子2の表面に無電界Niメッキ法により
Ni被膜3を設けたものであり、Ni被膜3中の厚み方
向のP含有量が、芯材粒子2側よりもNi被膜表面3x
側で少ないことを特徴としている。
As shown in FIG. 1, the Ni-plated particles 1 of the present invention are obtained by forming a Ni coating film 3 on the surface of a core material particle 2 by an electroless Ni plating method. The P content is 3x more than the core material particle 2 side Ni coating surface 3
It is characterized by a small number on the side.

【0016】特に、EDX(Energy Dispersing X-ray
analyzer:エネルギー分散型X線分析装置)により求め
られる、Ni被膜中に含有されるPとNiの原子数の比
P/Niを、芯材粒子側界面からNi被膜3の厚みの1
0%以下の領域Aで0.15<P/Ni<0.40、N
i被膜表面3xからNi被膜3の厚みの10%以下の領
域Cで、0.00<P/Ni<0.15とすることが好
ましく、特に、この領域Aと領域Cに挟まれたNi被膜
3の中央部の領域Bで0.05<P/Ni<0.20と
し、領域Aでは領域BよりもP/Niを大きくし、領域
Cでは領域BよりもP/Niを小さくすることが好まし
い。これにより、Niメッキ粒子1の表面のNi純度を
高めて電気導電率を高め、かつNiメッキ粒子1の凝集
性を抑制することができる。
In particular, EDX (Energy Dispersing X-ray)
analyzer: energy dispersive X-ray analyzer), the ratio P / Ni of the number of P and Ni atoms contained in the Ni coating is calculated from the core particle side interface to the thickness of the Ni coating 3 of 1
0.15 <P / Ni <0.40, N in the area A of 0% or less
It is preferable to set 0.00 <P / Ni <0.15 in a region C that is 10% or less of the thickness of the Ni coating 3 from the i coating surface 3x, and in particular, the Ni coating sandwiched between the region A and the region C. It is possible to set 0.05 <P / Ni <0.20 in the region B at the center of 3 and make P / Ni larger than the region B in the region A and smaller than P / Ni in the region C in the region C. preferable. As a result, the Ni purity of the surface of the Ni plated particles 1 can be increased, the electric conductivity can be increased, and the cohesiveness of the Ni plated particles 1 can be suppressed.

【0017】このようなNiメッキ粒子1は、本発明の
Niメッキ粒子の製造方法により容易に製造することが
できる。
Such Ni plated particles 1 can be easily manufactured by the method for manufacturing Ni plated particles of the present invention.

【0018】本発明のNiメッキ粒子の製造方法は、初
めに芯材粒子の表面にパラジウム、銀等の貴金属触媒を
担持させ、次いでNiメッキ液を適用する点では公知の
無電界Niメッキ法と同様である。
The method for producing Ni-plated particles of the present invention is different from the known electroless Ni-plating method in that a noble metal catalyst such as palladium or silver is first supported on the surface of core material particles and then a Ni plating solution is applied. It is the same.

【0019】パラジウム等の貴金属触媒を担持させた芯
材粒子を得るためには、まず、表面にパラジウムイオン
等の貴金属イオンをキレート又は塩として捕捉できる芯
材粒子、即ち、貴金属イオンの捕捉能を有する芯材粒子
を用意し、それに貴金属イオンを担持させ、次いで還元
剤を適用することにより、芯材粒子の表面に貴金属触媒
を担持させることが好ましい。
In order to obtain core material particles supporting a noble metal catalyst such as palladium, first, core material particles capable of capturing precious metal ions such as palladium ions as chelates or salts on the surface, that is, the ability to capture precious metal ions. It is preferable to prepare the core material particles having the same, support the precious metal ions thereon, and then apply a reducing agent to support the precious metal catalyst on the surface of the core particles.

【0020】表面に貴金属触媒を担持させた芯材粒子と
しては、通常の分散手法により水中に懸濁させることが
できる限り、形状、大きさ等について特に制限はない。
例えば、芯材粒子の形状としては、球状、繊維状、中空
状、針状等の特定形状でもよく、又は不特定形状でもよ
い。また、粒径50μm以下の微粒子であってもよい。
The core particles having a precious metal catalyst supported on the surface are not particularly limited in shape, size, etc. as long as they can be suspended in water by an ordinary dispersion method.
For example, the shape of the core material particles may be a specific shape such as a spherical shape, a fibrous shape, a hollow shape, or a needle shape, or may be an unspecified shape. Further, it may be fine particles having a particle size of 50 μm or less.

【0021】また、貴金属イオンの捕捉能の有無を別と
した芯材粒子の材質としては、有機系、無機系のいずれ
でもよく、結晶性、非結晶性のいずれでもよい。より具
体的には、芯材粒子を構成する無機系材料としては、金
属(合金)、ガラス、セラミックス、金属酸化物、金属
珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫
酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロ
ゲン化物、炭素等をあげることができ、また、有機系材
料としては、天然繊維、天然樹脂、ポリエチレン、ポリ
プロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテ
ン、ポリアミド、ポリアクリル酸エステル、ポリアクリ
ロニトリル、ポリアセタール、ポリエステル等の熱可塑
性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、
メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキ
シ樹脂、ジアリルフタレート樹脂、ベンゾグアナミン樹
脂等の熱硬化性樹脂等をあげることができる。芯材粒子
は、これらのうち1種から形成してもよく、2種以上の
混合物あるいは共重合物から形成してもよい。
Further, the material of the core material particles with or without the ability to capture the noble metal ions may be organic or inorganic, and may be crystalline or amorphous. More specifically, examples of the inorganic material forming the core material particles include metals (alloys), glass, ceramics, metal oxides, metal silicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, Examples thereof include metal phosphates, metal sulfides, metal salts, metal halides, carbon, and the like. Examples of organic materials include natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene. , Thermoplastic resins such as polyamide, polyacrylic ester, polyacrylonitrile, polyacetal, polyester, alkyd resin, phenol resin, urea resin,
Examples thereof include thermosetting resins such as melamine resin, xylene resin, silicone resin, epoxy resin, diallyl phthalate resin, and benzoguanamine resin. The core material particles may be formed of one kind among them, or may be formed from a mixture or copolymer of two or more kinds.

【0022】芯材粒子に貴金属イオンの捕捉能をもたせ
るためには、その表面にアミノ基、イミノ基、アミド
基、イミド基、シアノ基、水酸基、ニトリル基、カルボ
キシル基等を存在させる。芯材粒子の表面がアミノ系樹
脂、ニトリル系樹脂、アミノ硬化剤で硬化したエポキシ
樹脂等からなる場合、この芯材粒子は、貴金属イオンの
捕捉能を有する粒子として使用することができる。一
方、芯材粒子が貴金属イオンの捕捉能を持たない場合、
そのような芯材粒子は、例えば、アミノ基置換オルガノ
シラン系カップリング剤やアミン系硬化剤で硬化したエ
ポキシ系樹脂等の表面改質剤の溶液で撹拌処理し、分散
させ、その後に真空乾燥することにより、表面に貴金属
イオンの捕捉能を付与する。
In order to make the core material particles have the ability to capture noble metal ions, amino groups, imino groups, amide groups, imide groups, cyano groups, hydroxyl groups, nitrile groups, carboxyl groups and the like are present on the surface thereof. When the surface of the core material particle is made of an amino resin, a nitrile resin, an epoxy resin cured with an amino curing agent, or the like, the core particle can be used as a particle having a capturing ability of noble metal ions. On the other hand, when the core material particles do not have the ability to capture precious metal ions,
Such core material particles are, for example, stirred with a solution of a surface modifier such as an epoxy resin cured with an amino group-substituted organosilane coupling agent or an amine curing agent, dispersed, and then vacuum dried. By so doing, the ability to capture precious metal ions is imparted to the surface.

【0023】貴金属イオンの捕捉能を有する芯材粒子に
貴金属イオンを捕捉させる方法としては、貴金属イオン
の捕捉能を有する芯材粒子を貴金属塩の希薄な酸性水溶
液に分散させ、芯材粒子に貴金属イオンを捕捉させる。
この場合、酸性水溶液中の貴金属イオン濃度は、例え
ば、貴金属塩として塩化パラジウムを使用する場合、
0.05〜1.0g/Lとすることが好ましい。
As a method for capturing the noble metal ions in the core material particles having the ability to capture the precious metal ions, the core material particles having the ability to capture the precious metal ions are dispersed in a dilute acidic aqueous solution of the precious metal salt, and the precious metal particles are added to the core material particles. Capture ions.
In this case, the noble metal ion concentration in the acidic aqueous solution is, for example, when using palladium chloride as the noble metal salt,
It is preferably 0.05 to 1.0 g / L.

【0024】次に、芯材粒子に捕捉させた貴金属イオン
を貴金属触媒とするためには、貴金属イオンを捕捉させ
た後の酸性水溶液に、Niメッキに用いる還元剤(例え
ば、次亜リン酸ナトリウム)を滴下し、貴金属イオンを
還元して貴金属触媒とする。
Next, in order to use the noble metal ions captured by the core material particles as a noble metal catalyst, the reducing agent used for Ni plating (for example, sodium hypophosphite) is added to the acidic aqueous solution after capturing the noble metal ions. ) Is added dropwise to reduce the noble metal ion to obtain a noble metal catalyst.

【0025】本発明のNiメッキ粒子の製造方法におい
ては、貴金属触媒を担持させた芯材粒子の水性懸濁液
(以下、スラリーと称する)を調製する。このスラリー
では、凝集が起きないように、芯材粒子を一次粒子に近
い状態とする。そのために、スラリー中の芯材粒子の濃
度は、0.5〜2重量%とすることが好ましい。
In the method for producing Ni-plated particles of the present invention, an aqueous suspension (hereinafter referred to as slurry) of core material particles carrying a noble metal catalyst is prepared. In this slurry, the core material particles are in a state close to the primary particles so that agglomeration does not occur. Therefore, the concentration of the core material particles in the slurry is preferably 0.5 to 2% by weight.

【0026】このスラリーには、界面活性剤、還元剤、
錯化剤を添加することが好ましい。
The slurry contains a surfactant, a reducing agent,
It is preferred to add a complexing agent.

【0027】ここで、界面活性剤としては、ノニオン系
界面活性剤等を使用する。スラリー中の界面活性剤の濃
度は、0.5〜5重量%とすることが好ましい。
Here, a nonionic surfactant or the like is used as the surfactant. The concentration of the surfactant in the slurry is preferably 0.5 to 5% by weight.

【0028】還元剤としては、コスト及び実績の点か
ら、次亜リン酸ナトリウム等を使用する。スラリー中の
還元剤の濃度は、P含有量を少なくするために、0.5
〜5重量%とすることが好ましい。
As the reducing agent, sodium hypophosphite or the like is used in terms of cost and performance. The concentration of the reducing agent in the slurry is 0.5 in order to reduce the P content.
It is preferable to set it to ˜5% by weight.

【0029】錯化剤としては、従来の無電界Niメッキ
では、Niイオンに対して錯化作用を有する種々の化合
物、例えば、リンゴ酸、乳酸、酒石酸、クエン酸、グル
コン酸、ヒドロキシ酢酸等のカルボン酸又はそのアルカ
リ金属塩、アンモニウム塩等のカルボン酸塩、グリシン
等のアミノ酸、エチレンジアミン、アルキルアミン等の
アミノ類、その他のアンモニウム、EDTA、ピロリン
酸塩等を使用するが、本発明においては、Niメッキ反
応終了時のpHを5.8〜6.2とするために、pH調
整剤との緩衝系のpHがそのような値をとるものを使用
することが好ましく、例えば、酒石酸ナトリウム、酢酸
アンモニウム、リンゴ酸ナトリウム、グルコン酸ナトリ
ウム等を使用する。スラリー中の錯化剤の濃度は、0.
5〜5重量%とすることが好ましい。
As the complexing agent, in the conventional electroless Ni plating, various compounds having a complexing effect on Ni ions, such as malic acid, lactic acid, tartaric acid, citric acid, gluconic acid, hydroxyacetic acid, etc., can be used. Carboxylic acid or an alkali metal salt thereof, carboxylate such as ammonium salt, amino acid such as glycine, aminos such as ethylenediamine and alkylamine, other ammonium, EDTA, and pyrophosphate are used, but in the present invention, In order to adjust the pH at the end of the Ni plating reaction to 5.8 to 6.2, it is preferable to use one having a pH of the buffer system with the pH adjuster having such a value, for example, sodium tartrate, acetic acid. Ammonium, sodium malate, sodium gluconate, etc. are used. The concentration of complexing agent in the slurry is 0.
It is preferably 5 to 5% by weight.

【0030】さらに、スラリーには、Niメッキ反応の
開始時の反応液のpHを3.8〜4.2に調整するた
め、硫酸、塩酸等を添加する。
Further, sulfuric acid, hydrochloric acid or the like is added to the slurry in order to adjust the pH of the reaction solution at the start of the Ni plating reaction to 3.8 to 4.2.

【0031】一方、Niメッキ液を調製する。Niメッ
キ液は、例えば、硫酸ニッケル、塩化ニッケル等のニッ
ケル塩水溶液と、次亜リン酸ナトリウム等の還元剤と水
酸化ナトリウム、水酸化カリウム等のpH調整剤とを含
有させた水溶液との二液に調製することが好ましい。こ
の場合、ニッケル塩水溶液中のニッケル塩の濃度は、メ
ッキの厚みに応じて定めるが、比表面積1m2/g、粒
径5μmの芯材粒子に厚さ150〜200nmのメッキ
被膜を形成するの場合、20〜30重量%とすることが
好ましい。また、還元剤とpH調整剤を含む水溶液中の
還元剤の濃度は、P含有量に応じて定めるが、比表面積
1m2/g、粒径5μmの芯材粒子に厚さ150〜20
0nmのメッキ被膜を形成するの場合、15〜25重量
%とすることが好ましい。
On the other hand, a Ni plating solution is prepared. The Ni plating solution is, for example, a nickel salt aqueous solution such as nickel sulfate or nickel chloride, and an aqueous solution containing a reducing agent such as sodium hypophosphite and a pH adjusting agent such as sodium hydroxide or potassium hydroxide. It is preferable to prepare a liquid. In this case, the concentration of the nickel salt in the nickel salt aqueous solution is determined according to the thickness of the plating, but a plating film with a thickness of 150 to 200 nm is formed on core material particles with a specific surface area of 1 m 2 / g and a particle size of 5 μm. In this case, it is preferably 20 to 30% by weight. The concentration of the reducing agent in the aqueous solution containing the reducing agent and the pH adjusting agent is determined according to the P content, but the core material particles having a specific surface area of 1 m 2 / g and a particle size of 5 μm have a thickness of 150 to 20.
In the case of forming a 0 nm plating film, it is preferably set to 15 to 25% by weight.

【0032】なお、スラリーやNiメッキ液の調製に際
しては、必要に応じて撹拌や超音波分散処理をし、温度
が50〜80℃となるように温度制御する。
When preparing the slurry or the Ni plating solution, stirring or ultrasonic dispersion treatment is carried out if necessary, and the temperature is controlled to be 50 to 80 ° C.

【0033】次に、Niメッキ液を前述のスラリー中に
徐々に添加し、Niメッキ反応を行うことにより、芯材
粒子の表面にNi被膜を形成する。Niメッキ液を2液
に調整した場合には、これらを同時に添加する。本発明
においては、こうして形成するNi被膜中のP含有量
を、芯材側よりもNi被膜表面側で少なくすることを特
徴としている。
Next, the Ni plating solution is gradually added to the above-mentioned slurry and the Ni plating reaction is performed to form a Ni coating film on the surface of the core material particles. When the Ni plating solution is adjusted to two solutions, these are added at the same time. The present invention is characterized in that the P content in the Ni coating thus formed is smaller on the Ni coating surface side than on the core side.

【0034】Ni被膜中のP含有量を制御する手法とし
ては、還元剤である次亜リン酸ナトリウムの濃度制御、
メッキ温度制御等が考えられるが、特に、Niメッキ反
応中のpHの制御によることが好ましく、より具体的に
は、Niメッキ反応の開始時にはpHを3.8〜4.2
とし、Niメッキ反応終了時には、pHを5.8〜6.
2とすることが好ましい。
As a method of controlling the P content in the Ni coating, the concentration control of the reducing agent sodium hypophosphite,
Although control of the plating temperature and the like are conceivable, it is particularly preferable to control the pH during the Ni plating reaction. More specifically, the pH is 3.8 to 4.2 at the start of the Ni plating reaction.
At the end of the Ni plating reaction, the pH was adjusted to 5.8-6.
It is preferably 2.

【0035】このようにNiメッキ反応中のpHを制御
するためには、上述のようにスラリーのpHを予め3.
8〜4.2に調整し、Niメッキ反応時に徐々に添加し
ていくpH調整剤(アルカリ)によってNiメッキ反応
中にpHが上昇するようにすることが好ましく、特に、
このpH調整剤と、当初よりスラリー中に含有させてい
た錯化剤とで、pH5.8〜6.2の緩衝系が形成され
るようにすることが、反応終了時のpHを所定の値に制
御しやすいので好ましい。
In order to control the pH during the Ni plating reaction in this way, the pH of the slurry is set to 3.
It is preferable to adjust the pH to 8 to 4.2 so that the pH is raised during the Ni plating reaction by a pH adjusting agent (alkali) that is gradually added during the Ni plating reaction.
The pH at the end of the reaction can be adjusted to a predetermined value by allowing the pH adjusting agent and the complexing agent contained in the slurry from the beginning to form a buffer system having a pH of 5.8 to 6.2. It is preferable because it can be easily controlled.

【0036】上述のようにNiメッキ中のpHを制御す
ることにより、反応初期においてはpHが低いため、芯
材粒子表面ではNiの沈着速度が遅く、副生成物である
Pの生成が速いため、PがNi被膜中に多く取り込まれ
てP含有量の高いNi被膜が形成される。また、このよ
うなNi被膜が形成された粒子は、スラリー中で高い分
散性を維持する。その後、pHが徐々に上昇し、pHが
緩衝系のpHである5.8〜6.2になると、Niメッ
キ反応が急速に進み、Ni被膜では副生成物であるPの
取り込みよりもNiの沈着が優先し、Ni純度の高いN
i被膜が形成される。こうして、Ni被膜中の厚み方向
のPとNiの含有比P/Niが、EDXによる値とし
て、Ni被膜の芯材粒子側界面からNi被膜の厚みの1
0%以下の領域で0.15<P/Ni<0.40とな
り、Ni被膜表面からNi被膜の厚みの10%以下の領
域で、0.00<P/Ni<0.15となるように、N
i被膜中のP含有量を芯材粒子側からNi被膜表面側に
向かって連続的に漸減させることができる。
By controlling the pH during Ni plating as described above, since the pH is low in the initial stage of the reaction, the deposition rate of Ni on the surface of the core material particles is slow and the production of P, which is a by-product, is fast. , P is taken in a large amount in the Ni coating to form a Ni coating having a high P content. Further, the particles having such a Ni coating film maintain high dispersibility in the slurry. After that, when the pH gradually rises and the pH becomes 5.8 to 6.2 which is the pH of the buffer system, the Ni plating reaction rapidly proceeds, and the Ni coating film contains more Ni than the incorporation of P as a by-product. Deposition has priority, N with high Ni purity
An i-coat is formed. Thus, the P / Ni content ratio P / Ni in the thickness direction of the Ni coating is 1 as the value of EDX from the core particle side interface of the Ni coating to the thickness of the Ni coating.
0.15 <P / Ni <0.40 in the region of 0% or less, and 0.00 <P / Ni <0.15 in the region of 10% or less of the thickness of the Ni coating from the surface of the Ni coating. , N
The P content in the i coating can be gradually reduced from the core particle side toward the Ni coating surface side.

【0037】なお、本発明のNiメッキ粒子において
は、Ni被膜中のP含有量を不連続的に変化させてもよ
く、その場合のNiメッキ粒子の製造方法としては、例
えば、pH調整剤の多量投入や不連続投入を行えばよ
い。
In the Ni-plated particles of the present invention, the P content in the Ni-coating may be varied discontinuously. In this case, the Ni-plated particles may be produced, for example, by using a pH adjusting agent. A large amount of charge or discontinuous charge may be performed.

【0038】Niメッキ反応の終了時点は、当該Niメ
ッキ粒子に必要とされるNi被膜の純度、必要とされる
生産量、生産コスト等に応じて適宜定める。例えば、N
iメッキ粒子に次工程で置換金メッキがなされる場合、
Niメッキ粒子の表面のNi被膜の純度が高いほどNi
と金との置換反応が進むため、Ni被膜表面の純度が非
常に重要となるので、Niメッキ反応は、高純度のNi
被膜がNiメッキ粒子の表面に所定の厚さで形成される
まで十分に行う。また、Niメッキ粒子が導電フィラー
として使用される場合、Ni被膜の表面に所定の電気導
電率が得られればよい。
The end point of the Ni plating reaction is appropriately determined according to the purity of the Ni coating required for the Ni plated particles, the required production amount, the production cost, and the like. For example, N
When the replacement gold plating is applied to the i-plated particles in the next step,
The higher the purity of the Ni coating on the surface of the Ni plated particles, the more Ni
Since the substitution reaction of gold with gold proceeds, the purity of the Ni coating surface is very important.
Sufficiently until a coating is formed on the surface of the Ni-plated particles with a predetermined thickness. When Ni plated particles are used as the conductive filler, it suffices that a predetermined electric conductivity is obtained on the surface of the Ni coating.

【0039】ただし、Ni純度の高いNi被膜が表面に
形成された粒子は、急激に凝集し易くなるので、本発明
においては、Niメッキ反応に伴う水素の発生が認めら
れなくなった後、Niメッキ粒子の凝集が著しく生じる
前にNiメッキ反応を終了させる。
However, since particles having a Ni coating film of high Ni purity formed on the surface thereof are likely to agglomerate rapidly, in the present invention, after the generation of hydrogen due to the Ni plating reaction is no longer recognized, the Ni plating is performed. The Ni plating reaction is terminated before the particles agglomerate significantly.

【0040】Niメッキ反応の終了後は、なお撹拌を1
0〜20分程度続けて熟成させ、その後に粒子を濾過
し、アルコール、温水等で洗浄し、乾燥する。
After completion of the Ni plating reaction, stirring is continued to 1
Aging is continued for about 0 to 20 minutes, and then the particles are filtered, washed with alcohol, warm water, etc., and dried.

【0041】こうし得られたNiメッキ粒子は、芯材粒
子上にNi被膜が凹凸なく均一に形成されているので、
Ni被膜と芯材粒子との接合強度が高い。したがって、
Niメッキ粒子を合成樹脂等と混練分散しても、メッキ
被膜が剥がれ落ちることが無い。また、Ni被膜表面
は、Ni純度が高く、高い電気導電率を有する。したが
って、このNiメッキ粒子は、導電性接着剤又は異方導
電性接着剤用の導電フィラー等として有用となる。ま
た、金メッキを施すための粒子としても有用となる
In the Ni-plated particles thus obtained, since the Ni coating film is uniformly formed on the core material particles,
The bonding strength between the Ni coating and the core particles is high. Therefore,
Even if the Ni-plated particles are kneaded and dispersed with a synthetic resin or the like, the plated coating does not peel off. In addition, the Ni coating surface has high Ni purity and high electric conductivity. Therefore, the Ni-plated particles are useful as a conductive filler for a conductive adhesive or an anisotropic conductive adhesive. It is also useful as particles for gold plating.

【0042】[0042]

【実施例】実施例1 真比重1.4、平均粒径4.6μm、比表面積0.95
2/gのベンゾグアナミン系樹脂粒子(日本触媒社
製、エポスターGP−H46S)を、イオン吸着剤(奥
野製薬工業社製、コンディライザーSP)の10%溶液
で5分間処理し、その後、塩化パラジウムの0.01%
水溶液で5分間処理し、さらに次亜リン酸ナトリウムの
5%溶液を加えて還元処理し、さらに、界面活性剤(ケ
ミカル電子社製、CE−80W)をこれらの溶液に対し
て1%程度添加して20分間撹拌処理し、濾過、洗浄す
ることにより、パラジウムを担持した芯材粒子を得た。
EXAMPLES Example 1 True specific gravity 1.4, average particle size 4.6 μm, specific surface area 0.95
m 2 / g benzoguanamine-based resin particles (Nippon Shokubai Co., Ltd., Eposter GP-H46S) were treated with a 10% solution of an ion adsorbent (Okuno Pharmaceutical Co., Ltd., Condilator SP) for 5 minutes, and then palladium chloride. 0.01% of
Treated with an aqueous solution for 5 minutes, further reduced by adding a 5% solution of sodium hypophosphite, and further added a surfactant (Chemical Electronics Co., CE-80W) at about 1% to these solutions. Then, the mixture was stirred for 20 minutes, filtered, and washed to obtain core material particles carrying palladium.

【0043】次に、酒石酸ナトリウム(錯化剤)1%、
界面活性剤(日信化学工業社製、サーフィノールTG)
2%を含むイオン交換水500mlと、上述の芯材粒子
10gとを混合してスラリーを調製し、さらに硫酸を添
加してスラリーのpHを4に調整した。
Next, sodium tartrate (complexing agent) 1%,
Surfactant (Surfynol TG, manufactured by Nissin Chemical Industry Co., Ltd.)
500 ml of ion-exchanged water containing 2% was mixed with 10 g of the above core material particles to prepare a slurry, and sulfuric acid was further added to adjust the pH of the slurry to 4.

【0044】一方、Niメッキ液として、硫酸ニッケル
の22.4%溶液と、次亜リン酸ナトリウム22.4%
と水酸化ナトリウム6%を含む溶液の2液を調製した。
On the other hand, as a Ni plating solution, a 22.4% solution of nickel sulfate and 22.4% sodium hypophosphite are used.
And 2% of a solution containing 6% of sodium hydroxide were prepared.

【0045】前述のスラリーを70℃にし、これに2液
のNiメッキ液を構成する、硫酸ニッケル溶液と還元剤
溶液を同時に連続的に添加し、約1時間撹拌することに
よりメッキ反応させた。このメッキ反応の開始時のpH
は4であった。メッキ反応が進行するにつれて還元剤で
ある次亜リン酸ナトリウムが消費され、H+が生成され
るが、常に水酸化ナトリウム溶液が適性濃度で供給滴下
されるので、徐々にpHは上昇し、反応終了近くでは酒
石酸ナトリウムと水酸化ナトリウムで形成される緩衝系
に固有のpH6に近づいた。
The above-mentioned slurry was heated to 70 ° C., and a nickel sulfate solution and a reducing agent solution, which compose a two-liquid Ni plating solution, were continuously added simultaneously, and a plating reaction was performed by stirring for about 1 hour. PH at the start of this plating reaction
Was 4. As the plating reaction proceeds, sodium hypophosphite, which is a reducing agent, is consumed and H + is produced, but since the sodium hydroxide solution is constantly supplied and added at an appropriate concentration, the pH gradually rises and the reaction Near the end, the pH approached the pH 6 inherent in the buffer system formed by sodium tartrate and sodium hydroxide.

【0046】このメッキ反応中、著しい凝集はなく、仕
込んだNiイオンが全て芯材粒子上に沈着したことを市
販のNiイオンテスターで確認し、さらに、水素の発生
がなくなることを確認してメッキ反応を終了させた。そ
の後、メッキした粒子を濾過し、洗浄し、80℃で乾燥
させた。
During this plating reaction, it was confirmed by a commercially available Ni ion tester that there was no significant agglomeration and that all of the charged Ni ions were deposited on the core material particles. The reaction was completed. The plated particles were then filtered, washed and dried at 80 ° C.

【0047】こうして得られたNiメッキ粒子の断面を
ミクロトームで切り出し、20万倍の透過型電子顕微鏡
で観察すると共に、Ni被膜中のP含有量をEDXで分
析した。その結果、このNiメッキ粒子1のNi被膜3
の厚みは180nmであり、Ni被膜3におけるPとN
iの含有比P/Niは、図1に示すように、その芯材粒
子2側の界面からNi被膜3の厚みの約10%の部位a
で0.25であり、Ni被膜3の厚みの中央部bで0.
1であり、Ni被膜表面3xからNi被膜3の厚みの約
10%の部位cで0.05であった。また、このNiメ
ッキ粒子1は、図2に示すように、均質で微細なNi粒
子が緻密に沈着している、良好な表面状態を有してい
た。
The cross section of the Ni-plated particles thus obtained was cut out with a microtome, observed under a transmission electron microscope at 200,000 times, and the P content in the Ni coating was analyzed by EDX. As a result, the Ni coating 3 of the Ni plated particles 1
Has a thickness of 180 nm, and P and N in the Ni coating 3 are
The content ratio P / Ni of i is about 10% of the thickness of the Ni coating 3 from the interface on the core material particle 2 side as shown in FIG.
Is 0.25 and the Ni coating 3 has a thickness of 0.
It was 1, and was 0.05 at the portion c from the Ni coating surface 3x to about 10% of the thickness of the Ni coating 3. Further, as shown in FIG. 2, the Ni-plated particles 1 had a good surface condition in which homogeneous and fine Ni particles were densely deposited.

【0048】実施例2 実施例1と同様にしてパラジウムを担持した芯材粒子の
スラリー(pH4)を調製した。
Example 2 A slurry (pH 4) of core material particles supporting palladium was prepared in the same manner as in Example 1.

【0049】一方、Niメッキ液として、硫酸ニッケル
の22.4%溶液と、次亜リン酸ナトリウム22.4%
と水酸化ナトリウム12%を含む溶液の2液を調製し、
このNiメッキ液を用いて実施例1と同様にメッキ反応
を行った。
On the other hand, as a Ni plating solution, a 22.4% solution of nickel sulfate and 22.4% sodium hypophosphite are used.
And 2 solutions of a solution containing 12% sodium hydroxide,
A plating reaction was performed in the same manner as in Example 1 using this Ni plating solution.

【0050】本実施例においてもメッキ反応中、著しい
凝集はなかった。仕込んだNiイオンが全て芯材粒子上
に沈着したことを市販のNiイオンテスターで確認し、
さらに、水素の発生がなくなることを確認してメッキ反
応を終了させた。メッキ反応終了時のpHは6であっ
た。次いで、実施例1と同様にして、粒子を濾過し、洗
浄し、乾燥することによりNiメッキ粒子を得た。
Also in this example, no significant aggregation was observed during the plating reaction. It was confirmed by a commercially available Ni ion tester that all the charged Ni ions were deposited on the core material particles,
Furthermore, the plating reaction was terminated after confirming that hydrogen was not generated. The pH at the end of the plating reaction was 6. Then, in the same manner as in Example 1, the particles were filtered, washed, and dried to obtain Ni-plated particles.

【0051】得られたNiメッキ粒子の断面をミクロト
ームで切り出し、20万倍の透過型電子顕微鏡で観察す
ると共に、Ni被膜中のP含有量をEDXで分析した。
その結果、このNiメッキ粒子のNi被膜の厚みは17
0nmであり、このNi被膜におけるPとNiの含有比
P/Niは、その芯材粒子側の界面からNi被膜の厚み
の約10%の部位aで0.15であり、Ni被膜の厚み
の中央部bで0.05であり、Ni被膜の表面からNi
被膜の厚みの約10%の部位cで0.02であった。ま
た、このNiメッキ粒子は、均質で微細なNi粒子が緻
密に沈着している、良好な表面状態を有していた。
The cross section of the obtained Ni-plated particles was cut out with a microtome, observed with a transmission electron microscope at 200,000 times, and the P content in the Ni coating was analyzed by EDX.
As a result, the thickness of the Ni coating of the Ni plated particles was 17
The content ratio P / Ni of P and Ni in this Ni coating is 0.15 at a portion a which is about 10% of the thickness of the Ni coating from the interface on the core material particle side. It is 0.05 in the central part b, and Ni from the surface of the Ni coating
The value was 0.02 at the portion c which was about 10% of the thickness of the coating. Further, the Ni-plated particles had a good surface condition in which homogeneous and fine Ni particles were densely deposited.

【0052】実施例3 実施例1と同様にしてパラジウムを担持した芯材粒子の
スラリー(pH4)を調製した。
Example 3 A slurry (pH 4) of core particles carrying palladium was prepared in the same manner as in Example 1.

【0053】一方、Niメッキ液として、硫酸ニッケル
の22.4%溶液と、次亜リン酸ナトリウム22.4%
と水酸化ナトリウム3%を含む溶液の2液を調製し、こ
のNiメッキ液を用いて実施例1と同様にメッキ反応を
行った。
On the other hand, as a Ni plating solution, a 22.4% nickel sulfate solution and 22.4% sodium hypophosphite are used.
And 2% of a solution containing 3% of sodium hydroxide were prepared, and a plating reaction was performed in the same manner as in Example 1 using this Ni plating solution.

【0054】本実施例においてもメッキ反応中、著しい
凝集はなかった。仕込んだNiイオンが全て芯材粒子上
に沈着したことを市販のNiイオンテスターで確認し、
さらに、水素の発生がなくなることを確認してメッキ反
応を終了させた。メッキ反応終了時のpHは6であっ
た。次いで、実施例1と同様にして、粒子を濾過し、洗
浄し、乾燥することによりNiメッキ粒子を得た。
Also in this example, no significant aggregation occurred during the plating reaction. It was confirmed by a commercially available Ni ion tester that all the charged Ni ions were deposited on the core material particles,
Furthermore, the plating reaction was terminated after confirming that hydrogen was not generated. The pH at the end of the plating reaction was 6. Then, in the same manner as in Example 1, the particles were filtered, washed, and dried to obtain Ni-plated particles.

【0055】得られたNiメッキ粒子の断面をミクロト
ームで切り出し、20万倍の透過型電子顕微鏡で観察す
ると共に、Ni被膜中のP含有量をEDXで分析した。
その結果、このNiメッキ粒子のNi被膜の厚みは18
0nmであり、このNi被膜におけるPとNiの含有比
P/Niは、その芯材粒子側の界面からNi被膜の厚み
の約10%の部位aで0.40であり、Ni被膜の厚み
の中央部bで0.20であり、Ni被膜の表面からNi
被膜の厚みの約10%の部位cで0.15であった。ま
た、このNiメッキ粒子は、均質で微細なNi粒子が緻
密に沈着している、良好な表面状態を有していた。
The cross section of the obtained Ni-plated particles was cut out with a microtome, observed with a 200,000-fold transmission electron microscope, and the P content in the Ni coating was analyzed by EDX.
As a result, the thickness of the Ni coating of the Ni plated particles was 18
The content ratio P / Ni of P and Ni in this Ni coating is 0.40 at a portion a of about 10% of the thickness of the Ni coating from the interface on the side of the core material particles, which is 0.40 of the thickness of the Ni coating. It is 0.20 in the central part b, and Ni from the surface of the Ni coating
It was 0.15 at the portion c which was about 10% of the thickness of the coating. Further, the Ni-plated particles had a good surface condition in which homogeneous and fine Ni particles were densely deposited.

【0056】比較例1 硫酸でpH調整をしない以外は実施例1と同様にしてパ
ラジウムを担持した芯材粒子のスラリーを調製した(p
H6)。
Comparative Example 1 A slurry of core material particles supporting palladium was prepared in the same manner as in Example 1 except that the pH was not adjusted with sulfuric acid (p.
H6).

【0057】一方、Niメッキ液として、硫酸ニッケル
の22.4%溶液と、次亜リン酸ナトリウム22.4%
と水酸化ナトリウム12%を含む溶液の2液を調製し、
このNiメッキ液を用いて実施例1と同様にメッキ反応
を行った。
On the other hand, as a Ni plating solution, a 22.4% solution of nickel sulfate and 22.4% sodium hypophosphite are used.
And 2 solutions of a solution containing 12% sodium hydroxide,
A plating reaction was performed in the same manner as in Example 1 using this Ni plating solution.

【0058】メッキ反応は、終始pH6前後で進行し
た。メッキ反応初期から凝集が著しく、界面活性剤をさ
らに数%添加したが、凝集を完全に防止することはでき
なかった。
The plating reaction proceeded around pH 6 all the time. Aggregation was remarkable from the initial stage of the plating reaction, and a few percent of a surfactant was added, but it was not possible to completely prevent aggregation.

【0059】仕込んだNiイオンが全て芯材粒子上に沈
着したことを市販のNiイオンテスターで確認し、さら
に、水素の発生がなくなることを確認してメッキ反応を
終了させた。
It was confirmed by a commercially available Ni ion tester that all of the charged Ni ions were deposited on the core material particles, and further, it was confirmed that hydrogen was not generated, and the plating reaction was terminated.

【0060】実施例1と同様にして、粒子を濾過し、洗
浄し、乾燥することによりNiメッキ粒子を得た。
In the same manner as in Example 1, the particles were filtered, washed and dried to obtain Ni plated particles.

【0061】得られたNiメッキ粒子の断面をミクロト
ームで切り出し、20万倍の透過型電子顕微鏡で観察す
ると共に、Ni被膜中のP含有量をEDXで分析した。
その結果、このNiメッキ粒子のNi被膜の厚みは17
0nmであり、このNi被膜におけるPとNiの含有比
P/Niは、その芯材粒子側の界面からNi被膜の厚み
の約10%の部位a、Ni被膜の厚みの中央部b、Ni
被膜の表面からNi被膜の厚みの約10%の部位cのい
ずれでも0.05という低い値となっていた。また、N
i被膜の表面状態は、滑らかではなく、粗い状態であっ
た。
The cross section of the obtained Ni-plated particles was cut out with a microtome, observed with a 200,000-fold transmission electron microscope, and the P content in the Ni coating was analyzed by EDX.
As a result, the thickness of the Ni coating of the Ni plated particles was 17
The content ratio P / Ni of P and Ni in the Ni coating is about 10% of the thickness of the Ni coating from the interface on the core material particle side, the central portion b of the thickness of the Ni coating, and Ni.
The value was as low as 0.05 in any of the portions c from the surface of the coating film to about 10% of the thickness of the Ni coating film. Also, N
The surface state of the i coating was not smooth but rough.

【0062】比較例2 硫酸でpH調整をしない以外は実施例1と同様にしてパ
ラジウムを担持した芯材粒子のスラリーを調製した(p
H6)。
Comparative Example 2 A slurry of palladium-supported core material particles was prepared in the same manner as in Example 1 except that the pH was not adjusted with sulfuric acid (p.
H6).

【0063】一方、Niメッキ液として、硫酸ニッケル
の22.4%溶液と、次亜リン酸ナトリウム22.4%
と水酸化ナトリウム8%を含む溶液の2液を調製し、こ
のNiメッキ液を用いて実施例1と同様にメッキ反応を
行った。
On the other hand, as a Ni plating solution, a 22.4% nickel sulfate solution and 22.4% sodium hypophosphite are used.
And 2% of sodium hydroxide were prepared, and a plating reaction was performed in the same manner as in Example 1 using this Ni plating solution.

【0064】メッキ反応は、終始pH6前後で進行し
た。比較例1に比して、メッキ液中の水酸化ナトリウム
の濃度が低いのでメッキ反応の速度が遅かった。また、
凝集の状態は、比較的少なかった。
The plating reaction proceeded around pH 6 throughout. Compared with Comparative Example 1, the concentration of sodium hydroxide in the plating solution was low, so the plating reaction rate was slow. Also,
The state of aggregation was relatively low.

【0065】仕込んだNiイオンが全て芯材粒子上に沈
着したことを市販のNiイオンテスターで確認し、さら
に、水素の発生がなくなることを確認してメッキ反応を
終了させた。
It was confirmed by a commercially available Ni ion tester that all of the charged Ni ions were deposited on the core material particles, and further, it was confirmed that hydrogen was not generated, and the plating reaction was terminated.

【0066】実施例1と同様にして、粒子を濾過し、洗
浄し、乾燥することによりNiメッキ粒子を得た。
In the same manner as in Example 1, the particles were filtered, washed and dried to obtain Ni plated particles.

【0067】得られたNiメッキ粒子の断面をミクロト
ームで切り出し、20万倍の透過型電子顕微鏡で観察す
ると共に、Ni被膜中のP含有量をEDXで分析した。
その結果、このNiメッキ粒子のNi被膜の厚みは17
0nmであり、このNi被膜におけるPとNiの含有比
P/Niは、その芯材粒子側の界面からNi被膜の厚み
の約10%の部位a、Ni被膜の厚みの中央部b、Ni
被膜の表面からNi被膜の厚みの約10%の部位cのい
ずれでも0.15であった。また、Ni被膜の表面状態
は、比較的滑らかであった。
The cross section of the obtained Ni-plated particles was cut out with a microtome, observed with a transmission electron microscope at 200,000 times, and the P content in the Ni coating was analyzed by EDX.
As a result, the thickness of the Ni coating of the Ni plated particles was 17
The content ratio P / Ni of P and Ni in the Ni coating is about 10% of the thickness of the Ni coating from the interface on the core material particle side, the central portion b of the thickness of the Ni coating, and Ni.
The value was 0.15 in any of the portions c from the surface of the coating film to about 10% of the thickness of the Ni coating film. The surface state of the Ni coating was relatively smooth.

【0068】[0068]

【発明の効果】本発明のNiメッキ粒子の製造方法によ
れば、Niメッキ反応の初期ではpHを低くして、Ni
被膜に取り込まれるPを多くし、それによりNiメッキ
粒子の凝集を防止し、反対に、Niメッキ反応の終期で
はpHをあげることによりNi被膜中のP含有量を低下
させて被膜中のNi純度を向上させ、Niメッキ粒子の
凝集が著しく生じる前にNiメッキ反応を終了させる。
したがって、凝集の問題を生じさせることなく、表面に
高純度のNi被膜が形成されたNiメッキ粒子を生産性
高く製造することができる。
According to the method for producing Ni-plated particles of the present invention, the pH is lowered at the initial stage of the Ni-plating reaction,
By increasing the amount of P taken into the coating, thereby preventing the agglomeration of the Ni plating particles, and conversely, by raising the pH at the end of the Ni plating reaction, the P content in the Ni coating is lowered and the Ni purity in the coating is reduced. And the Ni plating reaction is terminated before the agglomeration of Ni plating particles significantly occurs.
Therefore, Ni-plated particles having a high-purity Ni coating film formed on the surface thereof can be produced with high productivity without causing the problem of aggregation.

【0069】こうして得られたNiメッキ粒子は、芯材
粒子上にNi被膜が凹凸なく均一に形成されているの
で、Ni被膜と芯材粒子との接合強度が高い。したがっ
て、Niメッキ粒子を合成樹脂等と混練分散しても、メ
ッキ被膜が剥がれ落ちることが無い。また、Ni被膜表
面は、Ni純度が高く、高い電気導電率を有する。した
がって、このNiメッキ粒子は、導電フィラー等として
有用となる。また、金メッキを施すための粒子としても
有用となる。
In the Ni-plated particles thus obtained, the Ni coating film is uniformly formed on the core material particles without unevenness, and therefore the bonding strength between the Ni coating film and the core material particles is high. Therefore, even if the Ni-plated particles are kneaded and dispersed with the synthetic resin or the like, the plated coating does not peel off. In addition, the Ni coating surface has high Ni purity and high electric conductivity. Therefore, the Ni-plated particles are useful as a conductive filler or the like. It is also useful as particles for gold plating.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のNiメッキ粒子における、Ni被膜
中のP含有量の測定部位の説明図である。
FIG. 1 is an explanatory diagram of a measurement site of P content in a Ni coating in Ni plated particles of an example.

【図2】 実施例のNiメッキ粒子の表面の電子顕微鏡
写真の模式図である。
FIG. 2 is a schematic diagram of an electron micrograph of the surface of Ni-plated particles of an example.

【符号の説明】[Explanation of symbols]

1…Niメッキ粒子、 2…芯材粒子、 3…Ni被膜、 3x…Ni被膜表面 1 ... Ni plated particles, 2 ... Core particles, 3 ... Ni coating, 3x ... Ni coating surface

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K022 AA01 AA02 AA03 AA04 AA11 AA12 AA13 AA14 AA15 AA16 AA18 AA21 AA24 AA35 BA14 BA16 CA06 CA20 CA21 DA01 DB01 DB02 DB04 DB07 DB08   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K022 AA01 AA02 AA03 AA04 AA11                       AA12 AA13 AA14 AA15 AA16                       AA18 AA21 AA24 AA35 BA14                       BA16 CA06 CA20 CA21 DA01                       DB01 DB02 DB04 DB07 DB08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 芯材粒子の表面に無電界Niメッキ法に
よりNi被膜を設けたNiメッキ粒子であって、Ni被
膜中の厚み方向のP含有量が、芯材粒子側よりもNi被
膜表面側で少ないことを特徴とするNiメッキ粒子。
1. A Ni-plated particle in which a Ni coating is provided on the surface of a core particle by an electroless Ni plating method, wherein the P content in the thickness direction of the Ni coating is higher than that of the core particle side. Ni-plated particles characterized by being less on the side.
【請求項2】 Ni被膜中の厚み方向のP含有量が、芯
材粒子側からNi被膜表面側に漸減している請求項1記
載のNiメッキ粒子。
2. The Ni-plated particles according to claim 1, wherein the P content in the thickness direction of the Ni coating gradually decreases from the core material particle side to the Ni coating surface side.
【請求項3】 EDXにより求めた、Ni被膜中のPと
Niの含有比P/Niが、芯材粒子側界面からNi被膜
の厚みの10%以下の領域で0.15<P/Ni<0.
40、Ni被膜表面からNi被膜の厚みの10%以下の
領域で、0.00<P/Ni<0.15である請求項1
記載のNiメッキ粒子。
3. The content ratio P / Ni of P and Ni in the Ni coating film obtained by EDX is 0.15 <P / Ni <in the region of 10% or less of the thickness of the Ni coating film from the core material particle side interface. 0.
40, 0.00 <P / Ni <0.15 in a region from the surface of the Ni coating to 10% or less of the thickness of the Ni coating.
The described Ni-plated particles.
【請求項4】 貴金属触媒を担持させた芯材粒子の水性
懸濁液に、Ni塩、リン系還元剤、pH調整剤を含むN
iメッキ液を添加することにより無電界Niメッキ反応
を行い、芯材粒子表面にNi被膜を形成するNiメッキ
粒子の製造方法において、Niメッキ液を添加した水性
懸濁液のpHを、反応開始時よりも反応終了時で高くす
ることを特徴とするNiメッキ粒子の製造方法。
4. N containing a Ni salt, a phosphorus-based reducing agent, and a pH adjusting agent in an aqueous suspension of core material particles carrying a noble metal catalyst.
In the method for producing Ni-plated particles in which the electroless Ni-plating reaction is performed by adding the i-plating solution to form the Ni coating on the surface of the core material particles, the reaction is started by adjusting the pH of the aqueous suspension containing the Ni-plating solution. A method for producing Ni-plated particles, wherein the temperature is higher at the end of the reaction than at the time.
【請求項5】 メッキ反応開始時のpHを3.8〜4.
2とし、メッキ反応終了時pHを5.8〜6.2とする
請求項4記載のNiメッキ粒子の製造方法。
5. The pH at the start of the plating reaction is 3.8 to 4.
5. The method for producing Ni-plated particles according to claim 4, wherein the pH is 2 and the pH at the end of the plating reaction is 5.8 to 6.2.
【請求項6】 水性懸濁液に、pH調整剤との緩衝系の
pHが5.8〜6.2となる錯化剤を含有させ、かつ該
水性懸濁液のpHを3.8〜4.2にする請求項4記載
のNiメッキ粒子の製造方法。
6. The aqueous suspension contains a complexing agent which makes the pH of the buffer system with the pH adjusting agent 5.8 to 6.2, and the pH of the aqueous suspension is 3.8 to 3.8. The method for producing Ni-plated particles according to claim 4, wherein the method is 4.2.
JP2001225823A 2001-07-26 2001-07-26 Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR Pending JP2003034879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225823A JP2003034879A (en) 2001-07-26 2001-07-26 Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225823A JP2003034879A (en) 2001-07-26 2001-07-26 Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011115127A Division JP5293771B2 (en) 2011-05-23 2011-05-23 Ni plated particles and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003034879A true JP2003034879A (en) 2003-02-07

Family

ID=19058750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225823A Pending JP2003034879A (en) 2001-07-26 2001-07-26 Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2003034879A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052460A (en) * 2004-07-15 2006-02-23 Sekisui Chem Co Ltd Conductive microparticle, process for producing the same, and anisotropic conductive material
WO2006025485A1 (en) 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material
CN100347337C (en) * 2004-09-24 2007-11-07 桂林工学院 Formular and process of polymer powder chemical Co-plating
US7507477B2 (en) 2004-07-15 2009-03-24 Sekisui Chemical Co., Ltd. Conductive microparticle, process for producing the same and anisotropic conductive material
JP2010073681A (en) * 2009-07-16 2010-04-02 Sony Chemical & Information Device Corp Conductive particles, anisotropic conductive film, assembly, and connection method
EP2282314A1 (en) * 2009-08-06 2011-02-09 Hitachi Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material
JP4812834B2 (en) * 2005-07-05 2011-11-09 チェイル インダストリーズ インコーポレイテッド Conductive fine particles comprising a composite metal layer having a density gradient, a method for producing the conductive fine particles, and an anisotropic conductive adhesive composition comprising the conductive fine particles
JP2012018967A (en) * 2010-07-06 2012-01-26 Sony Chemical & Information Device Corp Demagnetization method of magnetic powder
KR101191970B1 (en) * 2011-12-09 2012-10-17 한화케미칼 주식회사 Phosphorous-doped nickel nano-particles and process for preparing the same
JP2013010984A (en) * 2011-06-29 2013-01-17 Tocalo Co Ltd Cermet thermal-sprayed film coated member excellent in corrosion resistance and plasma erosion resistance and method for manufacturing the same
JP2013010986A (en) * 2011-06-29 2013-01-17 Tocalo Co Ltd Cermet thermal-sprayed powder material excellent in corrosion resistance and plasma erosion resistance and method for manufacturing the same
JP2013014813A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Porous metal particle, and manufacturing method thereof
WO2016063684A1 (en) * 2014-10-24 2016-04-28 日立金属株式会社 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215176A (en) * 1988-07-04 1990-01-18 Nippon Chem Ind Co Ltd Magnetic electroless-plated powder
JPH05311466A (en) * 1992-05-13 1993-11-22 Hashimoto Chem Corp Industrial material with formed fluorinated passive state film
JPH06213070A (en) * 1993-01-20 1994-08-02 Unisia Jecs Corp Piston of internal combustion engine
JPH06240437A (en) * 1993-02-16 1994-08-30 Mitsubishi Electric Corp Surface hardened al alloy and its production
JPH0696771B2 (en) * 1988-03-24 1994-11-30 日本化学工業株式会社 Electroless plating powder, conductive filler and method for producing the same
JPH08167328A (en) * 1994-10-13 1996-06-25 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP2001152045A (en) * 1999-11-29 2001-06-05 Shin Etsu Chem Co Ltd Gold-plated silica and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696771B2 (en) * 1988-03-24 1994-11-30 日本化学工業株式会社 Electroless plating powder, conductive filler and method for producing the same
JPH0215176A (en) * 1988-07-04 1990-01-18 Nippon Chem Ind Co Ltd Magnetic electroless-plated powder
JPH05311466A (en) * 1992-05-13 1993-11-22 Hashimoto Chem Corp Industrial material with formed fluorinated passive state film
JPH06213070A (en) * 1993-01-20 1994-08-02 Unisia Jecs Corp Piston of internal combustion engine
JPH06240437A (en) * 1993-02-16 1994-08-30 Mitsubishi Electric Corp Surface hardened al alloy and its production
JPH08167328A (en) * 1994-10-13 1996-06-25 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP2001152045A (en) * 1999-11-29 2001-06-05 Shin Etsu Chem Co Ltd Gold-plated silica and method for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052460A (en) * 2004-07-15 2006-02-23 Sekisui Chem Co Ltd Conductive microparticle, process for producing the same, and anisotropic conductive material
US7507477B2 (en) 2004-07-15 2009-03-24 Sekisui Chemical Co., Ltd. Conductive microparticle, process for producing the same and anisotropic conductive material
WO2006025485A1 (en) 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material
EP1796106A1 (en) * 2004-09-02 2007-06-13 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material
EP1796106A4 (en) * 2004-09-02 2010-04-14 Sekisui Chemical Co Ltd Electroconductive fine particle and anisotropically electroconductive material
CN100347337C (en) * 2004-09-24 2007-11-07 桂林工学院 Formular and process of polymer powder chemical Co-plating
JP4812834B2 (en) * 2005-07-05 2011-11-09 チェイル インダストリーズ インコーポレイテッド Conductive fine particles comprising a composite metal layer having a density gradient, a method for producing the conductive fine particles, and an anisotropic conductive adhesive composition comprising the conductive fine particles
JP2010073681A (en) * 2009-07-16 2010-04-02 Sony Chemical & Information Device Corp Conductive particles, anisotropic conductive film, assembly, and connection method
EP2282314A1 (en) * 2009-08-06 2011-02-09 Hitachi Chemical Co., Ltd. Conductive fine particles and anisotropic conductive material
CN101996696A (en) * 2009-08-06 2011-03-30 日立化成工业株式会社 Conductive fine particles and anisotropic conductive material
US8383016B2 (en) 2009-08-06 2013-02-26 Hitachi Chemical Company, Ltd. Conductive fine particles and anisotropic conductive material
JP2012018967A (en) * 2010-07-06 2012-01-26 Sony Chemical & Information Device Corp Demagnetization method of magnetic powder
JP2013010984A (en) * 2011-06-29 2013-01-17 Tocalo Co Ltd Cermet thermal-sprayed film coated member excellent in corrosion resistance and plasma erosion resistance and method for manufacturing the same
JP2013010986A (en) * 2011-06-29 2013-01-17 Tocalo Co Ltd Cermet thermal-sprayed powder material excellent in corrosion resistance and plasma erosion resistance and method for manufacturing the same
JP2013014813A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Porous metal particle, and manufacturing method thereof
KR101191970B1 (en) * 2011-12-09 2012-10-17 한화케미칼 주식회사 Phosphorous-doped nickel nano-particles and process for preparing the same
WO2013085249A1 (en) * 2011-12-09 2013-06-13 Hanwha Chemical Corporation Phosphorus-doped nickel nanoparticle and method of manufacturing the same
CN104039688A (en) * 2011-12-09 2014-09-10 韩化石油化学株式会社 Phosphorus-doped nickel nanoparticle and method of manufacturing the same
JP2015505904A (en) * 2011-12-09 2015-02-26 ハンワ ケミカル コーポレイション Phosphorus-doped nickel nanoparticles and method for producing the same
EP2788281A4 (en) * 2011-12-09 2015-12-30 Hanwha Chemical Corp Phosphorus-doped nickel nanoparticle and method of manufacturing the same
CN104039688B (en) * 2011-12-09 2016-05-04 韩化石油化学株式会社 Mix nano nickel particles and the manufacture method thereof of phosphorus
US9339870B2 (en) 2011-12-09 2016-05-17 Hanwha Chemical Corporation Phosphorus-doped nickel nanoparticle and method of manufacturing the same
WO2016063684A1 (en) * 2014-10-24 2016-04-28 日立金属株式会社 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
CN107073577A (en) * 2014-10-24 2017-08-18 日立金属株式会社 Conductive particle, electric conduction powder, conductive polymer composition and anisotropic conductive sheet

Similar Documents

Publication Publication Date Title
JP4728665B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP5512306B2 (en) Method for producing conductive particles
KR101922575B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
WO2010044388A1 (en) Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles
JP2003034879A (en) Ni-PLATED PARTICLE AND MANUFACTURING METHOD THEREFOR
WO2006006688A1 (en) Conductive microparticle, process for producing the same and anisotropic conductive material
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
JP5941328B2 (en) Conductive particles and conductive material containing the same
WO2006025485A1 (en) Electroconductive fine particle and anisotropically electroconductive material
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP2016096031A (en) Silver coated particle and manufacturing method therefor
JP5293771B2 (en) Ni plated particles and method for producing the same
JP5695768B2 (en) Conductive powder and conductive material including the same
CN114210345B (en) Homologous heterogeneous interface structure composite material and preparation method thereof
JP2602495B2 (en) Manufacturing method of nickel plating material
JP2008311141A (en) Manufacturing method of conductive particle, and conductive particle
JP3417699B2 (en) Conductive electroless plating powder
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JP5707247B2 (en) Method for producing conductive particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523