JP2001028280A - Circuit connection member - Google Patents

Circuit connection member

Info

Publication number
JP2001028280A
JP2001028280A JP11199538A JP19953899A JP2001028280A JP 2001028280 A JP2001028280 A JP 2001028280A JP 11199538 A JP11199538 A JP 11199538A JP 19953899 A JP19953899 A JP 19953899A JP 2001028280 A JP2001028280 A JP 2001028280A
Authority
JP
Japan
Prior art keywords
substrate
conductive particles
connecting member
circuit connecting
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11199538A
Other languages
Japanese (ja)
Inventor
Masayuki Osada
誠之 長田
Toshihiko Kumada
利彦 熊田
Kenichi Horie
賢一 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThreeBond Co Ltd
Original Assignee
ThreeBond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThreeBond Co Ltd filed Critical ThreeBond Co Ltd
Priority to JP11199538A priority Critical patent/JP2001028280A/en
Publication of JP2001028280A publication Critical patent/JP2001028280A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a circuit connection member for mutually connecting a soft substrates such as a plastic liquid crystal or film liquid crystal, and a soft substrate such as a flexible board. SOLUTION: This circuit connection member connects electrodes of substrates, each having a wiring pattern formed on a base material with a pencil hardness of 3B-5H. The circuit connection member is composed of an organic binder and electroconductive particles, each having a compressibility range of 40-80% per load (gf) and a recovery of 1-20%. By using the circuit connection member, a connection method which does not damage the substrates, and is high in connection reliability can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子部品と回路基板
の接続などに使用される回路接続部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit connecting member used for connecting an electronic component to a circuit board.

【0002】[0002]

【従来の技術】従来から、液晶表示パネルと集積回路基
板など、電子部品と回路基板の接続に回路接続部材が使
用されている。回路接続部材は表面に配線パターンが形
成された配線基板を接続することができるものであり、
接続される各基板の間に回路接続部材を介在させて両基
板の配線パターンが対面した状態で接続される。
2. Description of the Related Art Conventionally, circuit connecting members have been used to connect electronic components such as a liquid crystal display panel and an integrated circuit board to a circuit board. The circuit connecting member is capable of connecting a wiring board having a wiring pattern formed on a surface thereof,
The circuit connection members are interposed between the substrates to be connected, and the wiring patterns of the two substrates are connected to face each other.

【0003】上記回路接続部材は絶縁性バインダー中
に、適量の導電性粒子を分散してなるものであり、接続
される基板上に直接塗布されたり、フィルム状に加工さ
れたりして接続間に介在される。そして、加熱圧着など
により接続され、接続後は、厚み方向には導電性をも
ち、面方向には絶縁性を与えることができるものであ
り、異方導電性接着剤と称されることもある。
The above-mentioned circuit connecting member is made by dispersing an appropriate amount of conductive particles in an insulating binder, and is directly applied on a substrate to be connected or processed into a film shape to form a circuit connecting member. Intervened. Then, they are connected by heat compression bonding or the like, and after connection, they have conductivity in the thickness direction and can provide insulation in the plane direction, and are sometimes referred to as anisotropic conductive adhesives. .

【0004】回路接続部材は例えば、特開昭58−23
174号公報などに提案されているように加熱加圧下で
組成流動する接着性有機材料に錫、鉛、銀、金、銅、ア
ルミなどの金属粒子を混合し、これをフィルム化、また
は、シート化し使用することが記されている。
A circuit connecting member is disclosed, for example, in Japanese Patent Laid-Open No. 58-23 / 1983.
No. 174, the metal particles such as tin, lead, silver, gold, copper, aluminum, etc. are mixed with an adhesive organic material which flows under heat and pressure and formed into a film or a sheet. And use it.

【0005】また、特開昭62−165886号公報や
特開昭62−177082号公報では上記金属の代わり
にガラスやセラミックなどの無機微粒子や有機樹脂など
の有機ポリマー粒子に金属薄膜を被覆した導電性粒子の
使用の提案がなされている。
Japanese Patent Application Laid-Open Nos. Sho 62-165886 and Sho 62-177082 disclose a method in which a metal thin film is coated on an inorganic fine particle such as glass or ceramic or an organic polymer particle such as an organic resin instead of the above-mentioned metal. Proposals have been made for the use of conductive particles.

【0006】[0006]

【発明が解決しようとする課題】これら従来の回路接続
部材はガラス基板やエポキシガラス基板など硬質なもの
の接続には安定して使用することができる。また、ガラ
ス基板やエポキシ基板などの硬質基板とフレキシブル基
板などのフィルム状基板を接続する場合にも、圧着の圧
力や温度を調節することにより、従来の回路接続部材で
使用可能であった。しかし、フレキシブル基板同士の接
続など硬度の低い基板同士を接続することはできなかっ
た。
These conventional circuit connecting members can be used stably for connection of a hard one such as a glass substrate or an epoxy glass substrate. Also, when connecting a hard substrate such as a glass substrate or an epoxy substrate to a film-like substrate such as a flexible substrate, it can be used as a conventional circuit connecting member by adjusting the pressure and temperature of the pressure bonding. However, it was not possible to connect substrates having low hardness, such as connecting flexible substrates.

【0007】さらに、近年では軽量化や割れ防止の目的
で、液晶表示装置の液晶パネルは従来のガラス製からプ
ラスチック基材やフィルム基材による液晶パネルの開発
が進められている。これらのプラスチック基材やフィル
ム基材からなる液晶パネル基板に上述した従来の回路接
続部材を使用して加熱圧着にて接続を行うと、回路接続
部材に含有される導電性粒子が基板上に形成されている
配線パターンなどの電極や液晶パネル基板そのものに埋
まってしまうなど、電極部を破壊してしまう現象が起こ
り、良好な接続信頼性が確保できないという問題があっ
た。
Further, in recent years, for the purpose of weight reduction and crack prevention, development of a liquid crystal panel of a liquid crystal display from a conventional glass substrate to a plastic substrate or a film substrate has been advanced. When connection is made to the liquid crystal panel substrate made of these plastic base materials or film base materials by heating and pressure bonding using the above-described conventional circuit connection member, conductive particles contained in the circuit connection member are formed on the substrate. In such a case, the electrodes may be buried in the electrodes such as wiring patterns or the liquid crystal panel substrate itself, causing a phenomenon of destruction of the electrode portions, and there is a problem that good connection reliability cannot be ensured.

【0008】特に、プラスチック基材やフィルム基材は
熱圧着時に軟化しやすく、導電性粒子の形状に合わせて
変形しやすい。この結果、基材上に印刷された配線パタ
ーンを貫通して穴があいてしまったり、変形した部分の
周辺の配線パターンが剥がれてしまったりなどの電極部
の破壊が起きやすいものであった。
In particular, a plastic substrate or a film substrate is easily softened during thermocompression bonding and easily deformed according to the shape of the conductive particles. As a result, the electrode portion is liable to be broken, for example, a hole is formed through the wiring pattern printed on the base material, or the wiring pattern around the deformed portion is peeled off.

【0009】[0009]

【課題を解決するための手段】本発明は、上記問題を解
決すべく、軟質の基板上の配線パターンなどに変形や破
壊を与えることなく、きわめて良好な接続信頼性を得る
ことの可能な回路接続部材を提供することを目的として
いる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a circuit capable of obtaining extremely good connection reliability without causing deformation or destruction of a wiring pattern on a soft substrate. It is intended to provide a connecting member.

【0010】すなわち、本発明は鉛筆硬度が3B〜5H
の基材に配線パターンが形成された基板の電極同士を接
続する回路接続部材において、回路接続部材が有機バイ
ンダーと導電性粒子1個の加重1gfにおける圧縮率が
40〜80%の範囲であり、かつ、復元率が1〜20%
である導電性粒子からなる回路接続部材である。
That is, the present invention has a pencil hardness of 3B to 5H.
In the circuit connecting member for connecting the electrodes of the substrate having the wiring pattern formed on the base material thereof, the circuit connecting member has an organic binder and one conductive particle, and the compression ratio at a load of 1 gf is in the range of 40 to 80%; And the restoration rate is 1-20%
And a circuit connecting member made of conductive particles.

【0011】さらに、前記導電性粒子はプラスチック材
料を核体とし、核体を金属または金属酸化物で被覆して
なり、さらに、常温下で導電性粒子1個の加重が0.1
〜1.5gfの加重値において導電性粒子の加重−変位
量相関関係に急激に変位を生じる点をもつものであるこ
とがさらに好ましい形態である。
Further, the conductive particles are made of a plastic material as a core, and the core is coated with a metal or a metal oxide.
It is more preferable that the conductive particles have a point at which a sudden change occurs in the weight-displacement amount correlation of the conductive particles at a weight value of 1.5 gf.

【0012】本発明の回路接続部材に使用することので
きる有機バインダーとしては、特定のものに限定される
ものではなく、熱硬化性樹脂、熱可塑性樹脂、光硬化性
樹脂、電子線硬化性樹脂など公知の樹脂が使用できる。
例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹
脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、フ
ェノキシ樹脂、ポリビニルブチラール樹脂、SBR、S
BS、SEBS、SIS、NBR、ポリエーテルサルフ
ァン樹脂、ポリエーテルテレフタレート樹脂、ポリフェ
ニレンスルフィド樹脂、ポリアミド樹脂、ポリエーテル
オキシド樹脂、ポリアセタール樹脂、ポリスチレン樹
脂、ポリエチレン樹脂、ポリイソブチレン樹脂、アルキ
ルフェノール樹脂、スチレンブタジエン樹脂、ポリカー
ボネート樹脂、ポリエステル樹脂、アクリルゴム、メラ
ミン樹脂、やその変性樹脂。また水酸基、カルボキシル
基、グリシジル基、ビニル基、アミノ基、などの極性を
もつ官能基などを有する樹脂、ゴム、エラストマーなど
があげられる。
The organic binder which can be used in the circuit connecting member of the present invention is not limited to a specific one, but may be a thermosetting resin, a thermoplastic resin, a photo-curable resin, an electron beam-curable resin. For example, a known resin can be used.
For example, epoxy resin, phenol resin, silicone resin, urethane resin, acrylic resin, polyimide resin, phenoxy resin, polyvinyl butyral resin, SBR, S
BS, SEBS, SIS, NBR, polyether sulfane resin, polyether terephthalate resin, polyphenylene sulfide resin, polyamide resin, polyether oxide resin, polyacetal resin, polystyrene resin, polyethylene resin, polyisobutylene resin, alkylphenol resin, styrene butadiene resin , Polycarbonate resin, polyester resin, acrylic rubber, melamine resin, and modified resins thereof. In addition, resins, rubbers, elastomers, and the like having a polar functional group such as a hydroxyl group, a carboxyl group, a glycidyl group, a vinyl group, an amino group, and the like can be given.

【0013】また、硬化性樹脂の場合は加熱硬化や光硬
化など様々な方法により硬化するように公知の硬化剤を
添加することができる。また、有機バインダー中には、
カップリング剤、分散材、レベリング材、酸化防止剤、
消泡材、滑剤、帯電防止剤、イオン吸着剤、顔料、充填
材、可塑剤、添加剤、溶剤などを必要に応じて添加する
ことができる。
In the case of a curable resin, a known curing agent can be added so as to be cured by various methods such as heat curing and light curing. Also, in the organic binder,
Coupling agents, dispersants, leveling materials, antioxidants,
An antifoaming material, a lubricant, an antistatic agent, an ion adsorbent, a pigment, a filler, a plasticizer, an additive, a solvent and the like can be added as required.

【0014】本発明の回路接続部材に添加される導電性
粒子は導電性粒子1個の加重1gfにおける圧縮率(変
位量/変形前の粒径)が40〜80%の範囲であり、か
つ復元率が1〜20%であるものを使用することができ
る。ただし、圧縮率の測定は島津製作所製微小圧縮試験
機を用いて、平面圧子50μm径をもちいてガラス板上
に分散させた導電性粒子の1つを1gfで圧縮変形させ
たときの変位量を測定し、圧縮前の粒子径と比較したも
のである。このとき圧縮率が40%未満であると、熱圧
着時の圧力が1〜2MPaの低圧においても、プラスチ
ック基材やフィルム基材に損傷を与える場合があり、十
分な信頼性を得られない。
The conductive particles added to the circuit connecting member of the present invention have a compression ratio (displacement / particle size before deformation) at a weight of 1 gf of one conductive particle in the range of 40 to 80%, and are restored. Those having a ratio of 1 to 20% can be used. However, the compression ratio was measured using a Shimadzu Micro Compression Tester to measure the amount of displacement when one of the conductive particles dispersed on a glass plate with a plane indenter diameter of 50 μm was compressed and deformed at 1 gf. It is measured and compared with the particle size before compression. At this time, if the compression ratio is less than 40%, even if the pressure at the time of thermocompression bonding is as low as 1 to 2 MPa, the plastic substrate or the film substrate may be damaged, and sufficient reliability cannot be obtained.

【0015】導電性粒子の圧縮率が80%を越えるもの
は仮圧着時に導電性粒子の変形が著しく起こり、仮圧着
後の本圧着時において有機バインダーの押し出しの不足
や、潰れた導電性粒子と電極間の接触面にクリアランス
が生じ導通性が不安定になる可能性が高くなる。
When the compression ratio of the conductive particles exceeds 80%, the conductive particles are significantly deformed during the temporary compression, and the organic binder is not sufficiently extruded during the final compression after the temporary compression, or the conductive particles may not be crushed. There is a high possibility that a clearance is generated at the contact surface between the electrodes and the conductivity becomes unstable.

【0016】また、復元率は1〜20%である必要があ
る。復元率が1%以下であると潰れた導電性粒子と電極
間の接触面にクリアランスが生じ導通性が不安定になる
可能性が高くなり、復元率が20%以上であると、プラ
スチック基材やフィルム基材の電極部を圧迫して損傷を
与える可能性があり、接続信頼性が低下する原因とな
る。
The restoration rate needs to be 1 to 20%. If the restoration rate is 1% or less, there is a high possibility that a clearance is generated at the contact surface between the crushed conductive particles and the electrode and the conductivity becomes unstable, and if the restoration rate is 20% or more, the plastic substrate Or the electrode portion of the film base material may be compressed to cause damage, thereby reducing connection reliability.

【0017】本発明に使用される基板類は3B〜5Hの
表面硬度を有しており、例えばポリイミドやポリエーテ
ルサルフォンやポリカーボネートなどが挙げられる。ま
た、前記基板は硬度が前記硬度範囲に入ればプラスチッ
クやフィルムなどの表面に何層かのコーティング層を形
成することができる。コーティング材の種類は、シラン
系やUV硬化型多官能アクリルなど公知のものを使用す
る事ができ、コーティング層の厚みや層数も任意に調整
する事ができる。表面にコーティング層を設けること
は、特に、液晶表示パネルに使用した場合、表面の傷つ
きやその傷に入り込んだ汚れなどの美観的汚染を防ぐこ
とができたり表示に起因する水分の混入を防止すること
ができるため有効である。
The substrates used in the present invention have a surface hardness of 3B to 5H, and examples thereof include polyimide, polyethersulfone, and polycarbonate. Further, if the hardness of the substrate falls within the hardness range, several coating layers can be formed on the surface of a plastic or a film. As the kind of the coating material, a known material such as a silane-based or UV-curable polyfunctional acrylic can be used, and the thickness and the number of coating layers can be arbitrarily adjusted. Providing a coating layer on the surface, especially when used in a liquid crystal display panel, can prevent aesthetic contamination such as surface scratches and dirt that has entered the scratches, and also prevent the incorporation of moisture due to display. It is effective because it can.

【0018】上記の基材形成される配線パターンは銅箔
や導電ペースト、ITOなどがエッチングやスクリーン
印刷などにより形成されたものを挙げることができる。
The wiring pattern formed on the base material may be a wiring pattern formed by etching or screen printing a copper foil, a conductive paste, ITO, or the like.

【0019】また、本発明の導電性粒子は、プラスチッ
ク材料を核体とし、核体に金属や金属酸化物を被覆して
なるものを挙げることができる。また、本発明の導電性
粒子は常温下で導電性粒子1個の加重が0.1〜1.5
gfの加重値において導電性粒子の加重−変位量相関関
係に急激に変位を生じる点をもつものであるとさらに好
ましい。
Further, the conductive particles of the present invention include those obtained by using a plastic material as a core and coating the core with a metal or metal oxide. The conductive particles of the present invention have a weight of one conductive particle of 0.1 to 1.5 at room temperature.
It is more preferable that the weight value of gf has a point at which a sudden change occurs in the weight-displacement amount correlation of the conductive particles.

【0020】導電粒性子の核体としては特開平9−14
3441に記載のように、回路接続時にかかる温度、圧
力、時間内で破壊、溶解、流動、分解、炭化などの変化
を起こさないものであれば、特に限定されない。例え
ば、PMMA誘導体などのアクリル系樹脂やポリスチレ
ン樹脂や金属酸化物、カーボン、グラファイト、ガラス
やセラミックなどがあげられる。また、それを被覆する
導電性のある金属としては、ニッケル、鉄、銅、アルミ
ニウム、はんだ、パラジウム、錫、鉛、クロム、コバル
ト、銀、金などが挙げられ、被覆方法としては、無電解
メッキ、電解メッキなどのメッキやスパッタリングによ
る蒸着などにより形成される。金属酸化物としては、酸
化錫や酸化インジウムなどが挙げられ、これらを1種ま
たは、2種以上使用する事ができる。
Japanese Patent Application Laid-Open No. 9-14 / 1999
As described in 3441, there is no particular limitation as long as it does not cause changes such as breakage, melting, flow, decomposition, and carbonization within the temperature, pressure, and time applied when connecting the circuit. For example, acrylic resins such as PMMA derivatives, polystyrene resins, metal oxides, carbon, graphite, glass, ceramics, and the like can be used. In addition, as a conductive metal for coating it, nickel, iron, copper, aluminum, solder, palladium, tin, lead, chromium, cobalt, silver, gold, and the like are mentioned, and as a coating method, electroless plating is used. It is formed by plating such as electrolytic plating or vapor deposition by sputtering. Examples of the metal oxide include tin oxide and indium oxide, and one or more of these can be used.

【0021】本発明による回路接続部材は、以下のよう
に作成される。導電性粒子及び有機バインダー、硬化剤
を適量混合する。この際、必要に応じて溶剤による希釈
をすることができる。混合には、一般的に知られている
撹拌装置を用いて、均一に分散あるいは溶解するまで撹
拌し、回路接続部材を得る。
The circuit connecting member according to the present invention is prepared as follows. An appropriate amount of the conductive particles, the organic binder, and the curing agent are mixed. At this time, dilution with a solvent can be performed if necessary. In the mixing, stirring is performed using a generally known stirring device until the components are uniformly dispersed or dissolved to obtain a circuit connecting member.

【0022】液状の回路接続部材は接続される基板上の
端子や電極に直接ディスペンサーやスクリーン印刷など
により塗工することができる。この際、必要に応じてモ
ノマーや溶剤を乾燥する事ができ、基板上に薄膜を直接
形成し使用できる。また、フィルム状の回路接続部材を
得る場合は、バーコーターなどでPETフィルム上に塗
布し、必要に応じて、40〜100℃にて乾燥すること
ができる。このとき、フィルム状回路接続部材は5〜1
00μm位の厚さに調整し、必要な幅に調整、スリット
して使用する。
The liquid circuit connecting member can be applied directly to terminals and electrodes on a substrate to be connected by a dispenser, screen printing, or the like. At this time, the monomer and the solvent can be dried if necessary, and a thin film can be directly formed on a substrate and used. When a film-like circuit connecting member is obtained, it can be applied on a PET film using a bar coater or the like, and dried at 40 to 100 ° C. as necessary. At this time, the film-like circuit connecting member is 5 to 1
Adjust to a thickness of about 00 μm, adjust to the required width, slit and use.

【0023】従来の接続条件としては、温度160〜2
00℃、圧力2〜5MPaを必要としていた。しかし、
フィルム基板やプラスチック基板等の軟質基材を使用し
た場合、温度による歪みが生じ、接続不安定の原因なり
うる。また、圧力も高すぎると基板に損傷を与えたり、
基板上に形成されたITO電極の破壊を生じうるもので
ある。そのため、低温低圧で接続可能な回路接続部材が
必要になってきている。これに対し、本発明の回路接続
部材は、導電性粒子に適度な変形性と硬さを合わせ持つ
ために、低温低圧においても充分な接続信頼性有した優
れた特性を発揮するものである。
Conventional connection conditions include a temperature of 160 to 2
00 ° C and a pressure of 2 to 5 MPa were required. But,
When a soft substrate such as a film substrate or a plastic substrate is used, distortion due to temperature occurs, which may cause connection instability. Also, if the pressure is too high, it may damage the substrate,
This can cause the destruction of the ITO electrode formed on the substrate. Therefore, a circuit connecting member that can be connected at low temperature and low pressure is required. On the other hand, the circuit connecting member of the present invention exhibits excellent characteristics with sufficient connection reliability even at a low temperature and a low pressure, since the conductive particles have appropriate deformability and hardness.

【0024】本発明ではフィルム基板やプラスチック基
板等の軟質基板を接続する場合において、回路接続部材
含有の導電性粒子の硬さの挙動を数値化することに着目
した結果、従来から使用されている熱硬化型の回路接続
部材に比べ、基板に損傷を与えることのない低圧にて接
続可能であることを見いだした。これより、PESやP
CやPETなどの比較的安価な基材を基板に転換するこ
とも可能になる。
According to the present invention, when connecting a flexible substrate such as a film substrate or a plastic substrate, the behavior of the hardness of the conductive particles contained in the circuit connecting member is quantified, and as a result, it has been conventionally used. It has been found that connection can be made at a low pressure without damaging the substrate, as compared with a thermosetting circuit connection member. From this, PES and P
It is also possible to convert a relatively inexpensive base material such as C or PET into a substrate.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明に係わる導電性粒子
の構成を示す図(断面図)である。図1に示すように、
本発明の導電性粒子1は、プラスチックの核体2と、核
体2の表面に形成された導電性被覆3により構成されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram (cross-sectional view) showing the configuration of the conductive particles according to the present invention. As shown in FIG.
The conductive particles 1 of the present invention include a plastic core 2 and a conductive coating 3 formed on the surface of the core 2.

【0026】本発明の回路接続部材中に分散される導電
性粒子1は、これに1gfの圧縮加重をかけた時の圧縮
率ならびに復元率に特徴がある。
The conductive particles 1 dispersed in the circuit connecting member of the present invention are characterized by a compression ratio and a restoration ratio when a compression load of 1 gf is applied thereto.

【0027】[圧縮率の測定方法]島津製作所製圧縮試
験機を用いて、導電性粒子1個を圧縮し、1gf加重し
たときの圧縮変位量及び圧縮率を検出した。
[Method of Measuring Compressibility] Using a compression tester manufactured by Shimadzu Corporation, one conductive particle was compressed, and the amount of compression displacement and the compression ratio when 1 gf was loaded were detected.

【0028】なお、負荷速度は0.15gf/secと
し、原点用加重は0.01gfとした。
The load speed was 0.15 gf / sec, and the weight for the origin was 0.01 gf.

【0029】図2には、圧縮加重を加える前の導電性粒
子の状態と、1gfの圧縮加重を加えたときの状態を示
している。圧縮加重を加える前の粒子径をX0とし、圧
縮方向の圧縮変位量をXとするとき、圧縮率=(X
/X0)×100(%)として求められる。
FIG. 2 shows the state of the conductive particles before the compression load is applied and the state when the compression load of 1 gf is applied. When the particle diameter before applying compression load is X 0 and the amount of compression displacement in the compression direction is X 1 , the compression ratio = (X 1
/ X 0 ) × 100 (%).

【0030】[復元率の測定方法]前述の圧縮率の測定
方法と同様に、島津製作所製圧縮試験機を用いて、1個
の導電性粒子を圧縮する。圧縮時は一定の負荷速度で圧
縮加重を徐々に上げていき、この時の圧縮変位を検出し
ていく。そして圧縮加重値が反転加重値まで到達した
後、今度は同じ一定の負荷速度で除加重を行っていき、
後述の原点用加重値までの加重−圧縮変位関係を測定す
る。
[Method of Measuring Restoration Ratio] In the same manner as the method of measuring the compression ratio, one conductive particle is compressed using a compression tester manufactured by Shimadzu Corporation. During compression, the compression load is gradually increased at a constant load speed, and the compression displacement at this time is detected. After the compression weight reaches the reversal weight, de-weighting is performed at the same constant load speed,
The relationship between the weight and the compression displacement up to the weight value for the origin described later is measured.

【0031】図3には、圧縮加重を加える前の導電性粒
子の状態、次に反転加重値(1gf)まで圧縮加重を加
えたときの導電性粒子の状態、さらに原点加重値まで圧
縮加重を減少させたときの状態を示すものである。圧縮
加重を加える前の粒子径をX 0とし、反転加重値まで圧
縮加重を加えたときの圧縮変位量をXとし、原点加重
値まで圧縮加重を減少させたときの圧縮変位量をX
するとき、導電性粒子の復元量(μm)=X−X
と求められ、元の粒子径に対する復元量の比を百分率で
表した値を復元率と定義するとき、復元率(%)=(X
−X)/X 0として求められる。
FIG. 3 shows the conductive particles before the compression load is applied.
Child weight, then apply compression weight to inversion weight value (1gf)
The state of the conductive particles at the time of
It shows a state when the compression load is reduced. compression
X is the particle size before applying weight. 0And pressurize to the reversal weight.
X is the amount of compressive displacement when compressive weight is applied.1And origin weight
The amount of compression displacement when the compression load is reduced to the value2When
, The restoration amount of the conductive particles (μm) = X1-X2,
And the ratio of the restoration amount to the original particle diameter is expressed as a percentage.
When the expressed value is defined as the restoration rate, the restoration rate (%) = (X
1-X2) / X 0Is required.

【0032】このときの測定条件は、反転加重値を1.
0gf、負荷速度を0.15gf/sec、原点用加重
値を0.01gfとした。
The measurement conditions at this time are as follows.
0 gf, the load speed was 0.15 gf / sec, and the weight for the origin was 0.01 gf.

【0033】また本発明の回路接続部材中に分散される
導電性粒子1は、常温下で導電性粒子1個の加重が0.
1〜1.5gfの加重値において導電性粒子が潰れ、加
重−圧縮変位量相関関係に急激に変位を生じる点をもつ
ものであるとさらに好ましい。
The conductive particles 1 dispersed in the circuit connecting member of the present invention have a weight of one conductive particle at room temperature of 0.3.
More preferably, the conductive particles have a point at which the conductive particles are crushed at a weight value of 1 to 1.5 gf and a sudden displacement occurs in the weight-compression displacement correlation.

【0034】図4は、本発明の回路接続部材中に分散さ
れる導電性粒子1の加重−圧縮変位線図A、ならびに既
存の導電性粒子の加重−圧縮変位線図BあるいはCを示
している図である。
FIG. 4 shows a weight-compression displacement diagram A of the conductive particles 1 dispersed in the circuit connecting member of the present invention, and a weight-compression displacement diagram B or C of the existing conductive particles. FIG.

【0035】図4に示される加重−圧縮変位線図Bの既
存の導電性粒子は、圧縮加重の増加に比例して圧縮変位
量が増加しており、すなわち弾性体であるが、圧縮加重
に対する圧縮変位量は大きく、この導電性粒子が軟らか
い弾性体であることを示している。
The existing conductive particles of the load-compression displacement diagram B shown in FIG. 4 have an increase in the amount of compression displacement in proportion to the increase in the compression load. The amount of compressive displacement is large, indicating that the conductive particles are a soft elastic body.

【0036】また加重−圧縮変位線図Cの導電性粒子
は、圧縮加重が2gf程度の加重までは圧縮変位量の小
さいすなわち硬い弾性体であるが、ある圧縮加重値に達
した時点で導電性粒子が潰れ、すなわち破壊され圧縮変
位量が急激に大きくなることを示している。
The conductive particles in the load-compression displacement diagram C are small elastic members, ie, hard elastic bodies, until the compression load reaches a load of about 2 gf. This indicates that the particles are crushed, that is, broken, and the amount of compressive displacement increases rapidly.

【0037】これに対し、加重−圧縮変位線図Aの本発
明の回路接続部材中に分散される導電性粒子は圧縮加重
の小さい時は軟らかい弾性体であるが、0.1〜1.5
gfの加重値において導電性粒子が潰れ、加重−圧縮変
位相関関係に急激に変位を生じる点を有している。
On the other hand, the conductive particles dispersed in the circuit connecting member of the present invention shown in the load-compression displacement diagram A are soft elastic bodies when the compression load is small, but are 0.1 to 1.5.
At the weighted value of gf, the conductive particles are crushed and have a point where a sudden displacement occurs in the weight-compression displacement correlation.

【実施例】【Example】

【0038】以下実施例を用いて本発明を詳細に説明す
るが、この実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0039】[サンプルの作成]以下に示す配合比を有
する絶縁性バインダーを調製した。なお添加量はすべて
重量部で表している。 バインダー配合:ビスフェノールA型エポキシ樹脂EP
−828(油化シェルエポキシ社製)100部、高分子
量エポキシ樹脂エピコート1010(油化シェルエポキ
シ社製)100部、硬化剤としてイミダゾール化合物と
エポキシ化合物との反応生成物表面をイソシアネート処
理したものをエポキシ樹脂中に分散させたマスターバッ
チ型硬化剤ノバキュアHX3772(旭化成社製)50
部を混練し絶縁性を有するバインダーを得た。
[Preparation of Sample] An insulating binder having the following compounding ratio was prepared. In addition, all the addition amounts are represented by parts by weight. Binder composition: bisphenol A type epoxy resin EP
100 parts of -828 (manufactured by Yuka Shell Epoxy), 100 parts of high molecular weight epoxy resin Epicoat 1010 (manufactured by Yuka Shell Epoxy), and the surface of a reaction product of an imidazole compound and an epoxy compound as a curing agent, which was subjected to isocyanate treatment. Masterbatch type curing agent Novacur HX3772 (made by Asahi Kasei Corporation) 50 dispersed in epoxy resin
The parts were kneaded to obtain an insulating binder.

【0040】上記バインダー100重量部に対し、表1
に記載の導電性粒子を4重量部混合し、さらにこれに固
形分が65%となるようトルエンを加え、混合した塗工
液を離型PETフィルム上にバーコーターを用いて乾燥
膜厚25μmになるようにフィルムを作成した。このフ
ィルムを幅2mmにスリット切断して得る回路接続部材
を、以下の実施例及び比較例のサンプルとした。
With respect to 100 parts by weight of the binder, Table 1
4 parts by weight of the conductive particles described in 1) above, toluene was added thereto so that the solid content became 65%, and the mixed coating solution was dried on a release PET film to a dry film thickness of 25 μm using a bar coater. A film was prepared as follows. Circuit connection members obtained by slit-cutting this film into a width of 2 mm were used as samples of the following examples and comparative examples.

【0041】実施例及び比較例のサンプルとして使用し
た導電性粒子について以下の表1に示す。
The conductive particles used as samples of the examples and comparative examples are shown in Table 1 below.

【0042】[0042]

【表1】 [Table 1]

【0043】次に上述のサンプルを用い、以下の方法に
より、フィルム基板とTCP(テープキャリアパッケー
ジ)との圧着を行った。このTCPとしては厚みが75
μmのポリイミド基材上に、厚み18μmの錫メッキさ
れた銅箔により70μmピッチの電極を形成したものを
用いた。またフィルム基板としては厚み100μmのP
C(ポリカーボネート)の片面にITO電極が形成され
た鉛筆硬度がB〜2Hのものを用いた。
Next, using the above-mentioned sample, a film substrate and a TCP (tape carrier package) were pressure-bonded by the following method. This TCP has a thickness of 75
An electrode having a pitch of 70 μm formed of a 18 μm thick tin-plated copper foil on a μm polyimide substrate was used. As a film substrate, a 100 μm thick P
An ITO electrode formed on one surface of C (polycarbonate) having a pencil hardness of B to 2H was used.

【0044】[圧着方法]温度150℃、圧力2MP
a、20秒の条件で圧着を行った。
[Crimping Method] Temperature 150 ° C., Pressure 2MP
a, Pressure bonding was performed under the conditions of 20 seconds.

【0045】[接続性及び信頼性試験]前述の方法で接
続した試験片について、隣接する電極間の抵抗値を測定
した。また接続信頼性については測定後の試験片を温度
85℃、相対湿度85%の条件下で500時間エージン
グ後、隣接する電極間の抵抗値を測定した。信頼性試験
結果については表2にまとめる。また、その時の判断と
して初期接続抵抗値の2倍以内を○とする。
[Connectivity and Reliability Test] With respect to the test pieces connected by the above-described method, the resistance value between adjacent electrodes was measured. Regarding connection reliability, the test piece after measurement was aged at a temperature of 85 ° C. and a relative humidity of 85% for 500 hours, and then the resistance value between adjacent electrodes was measured. Table 2 summarizes the reliability test results. In addition, as a judgment at that time, a circle within two times the initial connection resistance value is indicated by a circle.

【0046】[圧着後フィルム観察]また同時に基板に
対する導電性粒子の影響を確認するために、フィルム基
板の圧着部分を走査型電子顕微鏡にて観察を行った。フ
ィルム及びフィルム基板上のITO電極膜に問題のない
ものを○、フィルム基板に導電性粒子がめり込んでフィ
ルム基板やITO電極にクラックなどのダメージや損傷
を与えていることが確認できるものを×とした。
[Observation of Film After Compression] At the same time, in order to confirm the influence of the conductive particles on the substrate, the compression portion of the film substrate was observed with a scanning electron microscope. If the film and the ITO electrode film on the film substrate have no problem, then ○ indicates that there is no problem, and x indicates that the conductive particles are embedded in the film substrate and that the film substrate or ITO electrode can be damaged or damaged such as cracks. did.

【0047】上記の試験結果を表2に示す。Table 2 shows the test results.

【0048】[0048]

【表2】 [Table 2]

【0049】以上の結果より、実施例1,2の導電性粒
子を分散させてえたの回路接続部材は接続性、接続信頼
性ともに良好である。
From the above results, the circuit connecting members obtained by dispersing the conductive particles of Examples 1 and 2 have good connectivity and connection reliability.

【0050】また、これらの信頼性の結果は図5〜7に
よって説明ができる。
The reliability results can be explained with reference to FIGS.

【0051】図中11a及び11bは基材であり、12
aおよび12bは基材状に形成された電極である。14
は有機バインダー、13は導電性粒子である。実施例1
及び2の導電性粒子は、図5のようなフィルム基板や基
板上に形成されるITO電極に損傷を与えず理想的な復
元率によって接続され、信頼性をえている。
In the figure, 11a and 11b are base materials,
Reference numerals a and 12b denote electrodes formed on a substrate. 14
Is an organic binder, and 13 is conductive particles. Example 1
The conductive particles are connected at an ideal recovery rate without damaging the film substrate or the ITO electrode formed on the substrate as shown in FIG.

【0052】また、比較例4の導電性粒子は、図6に示
すように、非常に弾性がありフィルム基板や基板上に形
成されるITO電極に損傷は与えないが、復元率が小さ
いため、電極の接続面にクリアランスが生じてしまい、
上下導通の信頼性が得られない。
As shown in FIG. 6, the conductive particles of Comparative Example 4 are very elastic and do not damage the film substrate or the ITO electrode formed on the substrate. Clearance occurs on the connection surface of the electrode,
The reliability of vertical conduction cannot be obtained.

【0053】また、比較例1〜3の導電性粒子は、図7
で示される。
The conductive particles of Comparative Examples 1 to 3 are shown in FIG.
Indicated by

【0054】比較例1の導電性粒子は、圧縮率は理想的
である弾性を示すが復元率が高く、実施例1,2に比べ
硬いことがいえる。このため、フィルム基板や基板上に
形成されるITO電極にめり込んで接続信頼性に不安が
ある。
The conductive particles of Comparative Example 1 exhibit elasticity with an ideal compressibility, but have a high restoration rate, and can be said to be harder than Examples 1 and 2. For this reason, the connection reliability is uneasy because it sinks into the film substrate or the ITO electrode formed on the substrate.

【0055】比較例2、3の導電性粒子は圧縮率が低
く、硬いため比較例1と同様にフィルム基板や基板上に
形成されたITO電極に損傷を与え、接続信頼性に不安
がある。以上のような、理由により、実施例1及び2の
導電性粒子を用いることによりフィルム基板や基板上に
形成されたITO電極に損傷を与えることなく、信頼性
の高い回路接続部材を提供することができることを見い
だした。
The conductive particles of Comparative Examples 2 and 3 have a low compression ratio and are hard, so that they damage the film substrate and the ITO electrodes formed on the substrate similarly to Comparative Example 1, and are concerned about the connection reliability. For the reasons described above, it is possible to provide a highly reliable circuit connecting member without damaging a film substrate or an ITO electrode formed on a substrate by using the conductive particles of Examples 1 and 2. I found that I can do it.

【0056】[0056]

【発明の効果】以上のように、本発明の回路接続部材を
用いることにより、基板類に損傷を与えず、接続信頼性
の高い接続方法を得ることができる。
As described above, by using the circuit connecting member of the present invention, it is possible to obtain a connection method having high connection reliability without damaging the substrates.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性粒子の構成を示す断面図FIG. 1 is a cross-sectional view showing a configuration of a conductive particle of the present invention.

【図2】圧縮率の測定法の説明図FIG. 2 is an explanatory diagram of a method of measuring a compression ratio.

【図3】復元率の測定法の説明図FIG. 3 is an explanatory diagram of a method of measuring a restoration rate.

【図4】導電性粒子の加重−圧縮変位線図FIG. 4 is a load-compression displacement diagram of a conductive particle.

【図5】実施例1及び実施例2の接続状態を示す図FIG. 5 is a diagram illustrating a connection state of the first and second embodiments.

【図6】比較例4の接続状態を示す図FIG. 6 is a diagram showing a connection state of Comparative Example 4;

【図7】比較例1〜3の接続状態を示す図FIG. 7 is a diagram showing connection states of Comparative Examples 1 to 3;

【符号の説明】[Explanation of symbols]

1 導電性粒子 2 核体 3 導電性被膜 11a、11b 基材 12a、12b 電極 13 導電性粒子 14 有機バインダー DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Nucleus 3 Conductive film 11a, 11b Base material 12a, 12b Electrode 13 Conductive particle 14 Organic binder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/22 H01B 1/22 D Fターム(参考) 4J004 AA05 AA07 AA08 AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA18 AA19 AB04 CA06 CC02 FA05 4J040 DB032 DF052 EC061 HA026 HA036 HA066 HA136 HA346 HA366 HC24 JA09 JB02 JB07 JB08 JB10 KA03 KA07 KA16 KA32 LA09 NA20 5G301 DA02 DA42 DA60 DD03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/22 H01B 1/22 DF Term (Reference) 4J004 AA05 AA07 AA08 AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA18 AA19 AB04 CA06 CC02 FA05 4J040 DB032 DF052 EC061 HA026 HA036 HA066 HA136 HA346 HA366 HC24 JA09 JB02 JB07 JB08 JB10 KA03 KA07 KA16 KA32 LA09 NA20 5G301 DA02 DA42 DA60 DD03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鉛筆硬度が3B〜5Hの基材に配線パター
ンが形成された基板の電極同士を接続する回路接続部材
において、回路接続部材が有機バインダーと導電性粒子
1個の加重1gfにおける圧縮率が40〜80%の範囲
であり、かつ、復元率が1〜20%である導電性粒子か
らなるものであることを特徴とする回路接続部材。
In a circuit connecting member for connecting electrodes of a substrate having a wiring pattern formed on a base material having a pencil hardness of 3B to 5H, the circuit connecting member is formed by compressing an organic binder and one conductive particle under a load of 1 gf. A circuit connecting member comprising conductive particles having a ratio in the range of 40 to 80% and a restoration ratio of 1 to 20%.
【請求項2】前記導電性粒子はプラスチック材料を核体
とし、核体に金属または金属酸化物で被覆してなり、さ
らに、常温下で導電性粒子1個の加重が0.1〜1.5
gfの加重値において導電性粒子の加重−変位量相関関
係に急激に変位を生じる点をもつことを特徴とする請求
項1に記載の回路接続部材。
2. The conductive particles are made of a plastic material as a nucleus, and the nucleus is coated with a metal or metal oxide. Further, the weight of one conductive particle is 0.1-1. 5
2. The circuit connection member according to claim 1, wherein the circuit connection member has a point where a sudden change occurs in the weight-displacement amount correlation of the conductive particles at the weight value of gf.
【請求項3】前記鉛筆硬度が3B〜5Hの基材に配線パ
ターンが形成された基板の一方がプラスチック液晶また
はフィルム液晶に使用される基板である請求項1に記載
の回路接続部材。
3. The circuit connecting member according to claim 1, wherein one of the substrates having a wiring pattern formed on a substrate having a pencil hardness of 3B to 5H is a substrate used for a plastic liquid crystal or a film liquid crystal.
【請求項4】前記鉛筆硬度が3B〜5Hの基材に配線パ
ターンが形成された基板がポリエーテルサルフォンまた
はポリカーボネートに表面コーティングされてなる基板
である請求項1に記載の回路接続部材。
4. The circuit connecting member according to claim 1, wherein the substrate having a wiring pattern formed on a substrate having a pencil hardness of 3B to 5H is a substrate obtained by surface-coating polyethersulfone or polycarbonate.
JP11199538A 1999-07-13 1999-07-13 Circuit connection member Pending JP2001028280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11199538A JP2001028280A (en) 1999-07-13 1999-07-13 Circuit connection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11199538A JP2001028280A (en) 1999-07-13 1999-07-13 Circuit connection member

Publications (1)

Publication Number Publication Date
JP2001028280A true JP2001028280A (en) 2001-01-30

Family

ID=16409508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11199538A Pending JP2001028280A (en) 1999-07-13 1999-07-13 Circuit connection member

Country Status (1)

Country Link
JP (1) JP2001028280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081928A (en) * 2012-09-25 2014-05-08 Sekisui Chem Co Ltd Conductive particle for touch panel, conductive material for touch panel, and connection structure for touch panel
JP2015086249A (en) * 2013-10-28 2015-05-07 スリーボンドファインケミカル株式会社 Microcapsule type thermosetting resin composition
WO2017170412A1 (en) * 2016-03-31 2017-10-05 デクセリアルズ株式会社 Anisotropic conductive connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH0829765A (en) * 1994-07-20 1996-02-02 Fujimori Kogyo Kk Production of optical sheet
JPH09199206A (en) * 1996-01-19 1997-07-31 Sony Chem Corp Anisotropic conductive bonding film
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH0829765A (en) * 1994-07-20 1996-02-02 Fujimori Kogyo Kk Production of optical sheet
JPH09199206A (en) * 1996-01-19 1997-07-31 Sony Chem Corp Anisotropic conductive bonding film
JPH1173818A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081928A (en) * 2012-09-25 2014-05-08 Sekisui Chem Co Ltd Conductive particle for touch panel, conductive material for touch panel, and connection structure for touch panel
JP2015086249A (en) * 2013-10-28 2015-05-07 スリーボンドファインケミカル株式会社 Microcapsule type thermosetting resin composition
WO2017170412A1 (en) * 2016-03-31 2017-10-05 デクセリアルズ株式会社 Anisotropic conductive connection structure
US10602619B2 (en) 2016-03-31 2020-03-24 Dexerials Corporation Anisotropic conductive connection structure body

Similar Documents

Publication Publication Date Title
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
KR930002935B1 (en) Composition for circuit connection method for connection using the same and connected structure of semiconductor chips
JP5316410B2 (en) Circuit member connection structure
KR101163436B1 (en) Insulation-coated electroconductive particles
JP2000195339A (en) Anisotropic conductive adhesive film
KR101375298B1 (en) Conductive microspheres and an anisotropic conductive film comprising the same
JP2001049228A (en) Low-temperature-curing adhesive and anisotropically conductive adhesive film using the same
KR20170036721A (en) Conductive material
JP2001189171A (en) Anisotropic conductive connection material
JP2001081438A (en) Connecting material
JP2005209491A (en) Conductive particle and anisotropic conductive adhesive using this
JP2001332136A (en) Anisotropic conductive connecting material
JPH0855514A (en) Conductive particle and anisotropic conductive adhesive using it
EP1657725B1 (en) Insulation-coated electroconductive particles
JPH11209714A (en) Anisotropically electroconductive adhesive
JP4236856B2 (en) Anisotropic conductive adhesive and heat seal connector
JP2001028280A (en) Circuit connection member
JPH08193186A (en) Conductive particle for anisotropically conductive adhesive and anisotropically conductive adhesive containing same
JP2000040418A (en) Anisotropic conductive adhesive film
JP2001164210A (en) Anisotropic conductive film and electronic equipment using the same
JP4207838B2 (en) Connecting material
KR101000798B1 (en) Anisotropic conductive film adhesive and flat panel display device produced with the same
JPS63231889A (en) Circuit connection member
JP3449889B2 (en) Anisotropic conductive adhesive
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080306