JPH11209714A - Anisotropically electroconductive adhesive - Google Patents

Anisotropically electroconductive adhesive

Info

Publication number
JPH11209714A
JPH11209714A JP1039998A JP1039998A JPH11209714A JP H11209714 A JPH11209714 A JP H11209714A JP 1039998 A JP1039998 A JP 1039998A JP 1039998 A JP1039998 A JP 1039998A JP H11209714 A JPH11209714 A JP H11209714A
Authority
JP
Japan
Prior art keywords
adhesive
particles
core
conductive particles
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1039998A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yoshida
一義 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP1039998A priority Critical patent/JPH11209714A/en
Publication of JPH11209714A publication Critical patent/JPH11209714A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Abstract

PROBLEM TO BE SOLVED: To obtain an anisotropically electroconductive adhesive that is useful for electric connection of LCD(liquid crystal display) or PDP(plasma display) to a circuit board having its driving circuits on the board. SOLUTION: This anistropically electrodconductive adhesive is characterized by dispersing electroconductive particles 2 that are made of an acrylic resin, each composed of a flexible core 21 and a shell 22 harder than the core 21 and plated with a metal on its surface, in an insulating adhesive composition. In addition, the electroconductive particles have a 10% compression strength of 0.2-5.0 kg/mm<2> and a recovery of 5-90%. Thus, this electroconductive adhesive has a low value of initial connection resistance and retains its performance of excellent reliability for a long period of time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LCD(Liquid C
rystal Display)やPDP(Plasma Display)とそれら
の駆動回路を搭載した回路基板との間の電気的接続等に
利用される異方導電接着剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LCD (Liquid C
The present invention relates to an anisotropic conductive adhesive used for electrical connection between a crystal display (PDP) or a PDP (Plasma Display) and a circuit board on which the driving circuits are mounted.

【0002】[0002]

【従来の技術】従来より異方導電接着剤は、LCDやP
DPなどの表示体とPCB(PrintedCircuit Board)、
FPC(Flexible Printed Circuit)との接続、あるい
はPCB、FPC間の接続などに用いられている。この
異方導電接着剤は、絶縁性接着剤中に導電粒子を分散さ
せたもので、その導電粒子としては、例えば、ファーネ
スブラック、チャンネルブラック、アセチレンブラック
などのカーボンブラックやグラファイトなどのカーボン
粒子、金、銀、銅、ニッケルアルミニウムなどの金属粒
子、表面を金属でメッキしたプラスチック粒子などが検
討されている。
2. Description of the Related Art Conventionally, anisotropic conductive adhesives have been used for LCDs and P-types.
Display body such as DP and PCB (Printed Circuit Board),
It is used for connection with an FPC (Flexible Printed Circuit) or connection between a PCB and an FPC. The anisotropic conductive adhesive is obtained by dispersing conductive particles in an insulating adhesive.Examples of the conductive particles include furnace black, channel black, carbon particles such as carbon black such as acetylene black, and graphite. Metal particles such as gold, silver, copper, and nickel aluminum, and plastic particles whose surfaces are plated with metal are being studied.

【0003】しかしながら、これらの導電粒子の中で、
金属粒子やカーボン粒子などのように圧力(5〜100
kgf/cm2、通常は20〜40kgf/cm2)によって変形し
にくいものは、熱圧着時の加熱、加圧による絶縁性接着
剤の物性の変位量に容易に追従できず、接続後の種々の
使用環境下において絶縁性接着剤の残存応力を受けて微
視的に動き、部分的な導通不良、高抵抗値化などを生じ
させるので電気的接続の長期信頼性に重大な悪影響を及
ぼしている。従って、これらの悪影響等を解消するた
め、金属粒子やカーボン粒子に比べ変形しやすいプラス
チック粒子を核としてその表面に金属メッキを施した導
電粒子を使用することが検討されている。
However, among these conductive particles,
Pressure (5 to 100) like metal particles or carbon particles
kgf / cm 2, usually those that hardly deformed by 20~40kgf / cm 2), heating during thermocompression bonding can not easily follow the displacement of the physical properties of the insulating adhesive by pressure, various post-connection Under the use environment, the microscopic movement due to the residual stress of the insulating adhesive causes partial conduction failure, high resistance value, etc., which has a serious adverse effect on the long-term reliability of the electrical connection. I have. Therefore, in order to eliminate these adverse effects and the like, the use of conductive particles whose core is made of plastic particles that are more easily deformed than metal particles or carbon particles and whose surface is plated with metal has been studied.

【0004】このプラスチック粒子を核に用いた導電粒
子は、熱圧着された状態で被着体と面接触し、この接触
面積が広いほど接触抵抗が低いものとなり、また、プラ
スチック粒子の復元性が高いほど、被着体に強い接触圧
で接触するために接触抵抗を一定に保ちやすくすること
ができるものである。ところが、接触面積は、プラスチ
ック核が柔軟なほど大きくなり、復元性は硬いほど強く
なるといった相反するものであった。即ち、接触面積を
大きくするために柔軟にすると、粒子は塑性変形しやす
くなり、弾性を持たないために、復元率が低くなり、逆
に、硬くすると復元率が大きくなり、接触圧は上がるも
のの接触面積は小さく、点接触に近くなり、どちらの場
合も電気的接続の長期信頼性に欠けるものとなってしま
うという課題がある。
The conductive particles using the plastic particles as nuclei come into surface contact with the adherend in a state of thermocompression bonding, and the larger the contact area, the lower the contact resistance and the more resilient the plastic particles. The higher the contact pressure, the higher the contact pressure with the adherend, so that the contact resistance can be easily kept constant. However, the contact area was contradictory in that the softer the plastic core, the stronger the resilience, and the stronger the resilience. That is, if the contact area is made softer to make it softer, the particles are more likely to undergo plastic deformation, and since they do not have elasticity, the restoration rate becomes lower.On the contrary, if the particles become harder, the restoration rate becomes larger, and the contact pressure increases. There is a problem that the contact area is small and close to a point contact, and in both cases, the long-term reliability of the electrical connection is lacking.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
課題に鑑み、これを解消しようとするものであり、特
に、温湿度サイクル、及び熱衝撃によっても電気的接続
を確実に且つ高信頼性に保つ異方導電接着剤を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made to solve the problem. In particular, the present invention ensures reliable and highly reliable electrical connection even by a temperature / humidity cycle and thermal shock. It is an object of the present invention to provide an anisotropic conductive adhesive which keeps the property.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記従来の
課題を解決する方法等について種々検討した結果、導電
粒子に2つの機能を持たせるべく、核と殻を持つ構成と
し、柔軟な核により接触面積を大きくするとともに、硬
質な殻により復元率を持たせることとし、これによって
電気的接続の信頼性についても温湿度サイクルや熱衝撃
での安定性が向上することを見い出し、これら構成材料
の成分の種類、硬度などについての研究を進め、本発明
を完成するに至ったのである。すなわち、本発明の異方
導電接着剤は、柔軟性を有する核と、この核よりも硬質
な殻とからなるアクリル系樹脂粒子の表面に金属メッキ
が施されてなる導電粒子を絶縁性接着剤中に分散してな
ることを特徴とし、更に該導電粒子の10%圧縮強度が
0.2〜5.0kg/mm2であり、かつ、復元率が5〜90
%であることを特徴とするものである。
As a result of various studies on a method for solving the above-mentioned conventional problems, the present inventor has adopted a structure having a core and a shell so that conductive particles have two functions, and has a flexible structure. The core is used to increase the contact area, and the hard shell is used to increase the restoration rate.This has also led to improvements in the reliability of electrical connections in temperature-humidity cycles and thermal shocks. Research on the types and hardness of the components of the material was advanced, and the present invention was completed. In other words, the anisotropic conductive adhesive of the present invention is an insulating adhesive in which conductive particles obtained by plating metal surfaces on acrylic resin particles composed of a core having flexibility and a shell harder than the core are used. Wherein the conductive particles have a 10% compressive strength of 0.2 to 5.0 kg / mm 2 and a recovery rate of 5 to 90 kg.
%.

【0007】[0007]

【発明の実施の形態】以下に、本発明の実施の形態を詳
しく説明する。本発明を構成する導電粒子の核として
は、後述する殻の成分との密着性を良好にして、核と殻
が熱圧着時やその後の熱衝撃などによって界面剥離を起
こさないように殻に用いる樹脂成分を含んでいることが
望ましい。従って、本発明では、核、殻ともに耐熱性に
優れ、硬度調節が容易で、懸濁重合しやすいアクリル系
樹脂を使用する。なお、アクリル系樹脂以外の樹脂で
核、殻を構成しても目的の異方導電接着剤が得られない
こととなる。
Embodiments of the present invention will be described below in detail. As the core of the conductive particles constituting the present invention, the core and the shell are used for the shell so that the adhesion between the core and the shell described below is improved and the core and the shell do not undergo interface separation due to thermal shock or subsequent thermal shock. It is desirable to include a resin component. Therefore, in the present invention, an acrylic resin having excellent heat resistance in both the core and the shell, easy hardness adjustment, and easy suspension polymerization is used. Even if the core and the shell are made of a resin other than the acrylic resin, the desired anisotropic conductive adhesive cannot be obtained.

【0008】核として使用されるアクリル系樹脂として
は、柔軟性を持たせるためにアルキル基が分子量の大き
めな炭素数(アルキル基)4〜18のアクリル酸エステ
ル、炭素数(アルキル基)4〜18のメタクリル酸エス
テルの1種または数種から適宜選択し、これを架橋させ
る多官能基モノマーとしてはエチレングリコールジメタ
クリレート、1,3ブチレングリコールジメタクリレー
ト、ネオペンチルグリコールジメタクリレート、ジエチ
レングリコールジメタクリレート、トリメチロールプロ
パントリメタクリレート、アリルグリシジルエーテル、
N−メチロールメタクリルアミド、ジアリルフタレート
等のモノマーが用いられる。また、柔軟性の調節のため
に、塩化ビニル、酢酸ビニル、ブタジエンゴム、アクリ
ロニトリルなどを共重合させてもよい。懸濁重合は、従
来公知の方法により行うことができる。
As the acrylic resin used as the core, an alkyl ester having an alkyl group having a large molecular weight of 4 to 18 carbon atoms (alkyl group) or an alkyl ester having 4 to 18 carbon atoms (alkyl group) for imparting flexibility. One or more of the methacrylate esters of No. 18 are appropriately selected, and as the polyfunctional group monomer for crosslinking this, ethylene glycol dimethacrylate, 1,3 butylene glycol dimethacrylate, neopentyl glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, Methylolpropane trimethacrylate, allyl glycidyl ether,
Monomers such as N-methylol methacrylamide and diallyl phthalate are used. Further, in order to adjust flexibility, vinyl chloride, vinyl acetate, butadiene rubber, acrylonitrile and the like may be copolymerized. The suspension polymerization can be performed by a conventionally known method.

【0009】本発明を構成する殻は、懸濁重合によって
得られた核の表面で、硬くするようにアルキル基の分子
量の小さめな炭素数(アルキル基)1〜7のアクリル酸
エステル、炭素数(アルキル基)1〜7のメタクリル酸
エステルなどを用い、適宜前記した共重合物を混合して
もよく、重合反応させ、核表面に殻を形成させることに
より得られる。核と殻の重量比は、後述する圧縮強度、
復元率に大きな影響を与えるが、これらを考慮しながら
調節し、殻/核が1/20〜2/1の重量比に設定され
る。殻/核が上記重量比の範囲外であると、後述する圧
縮強度、復元率の調整を上記した材料の選択によって行
うことが困難となる。すなわち、殻/核の重量比が1/
20よりも小さくなると、殻の性能としての復元率を持
たせることが困難になるし、2/1よりも大きくなる
と、核の性能としての圧縮強度を発現させることが困難
になる。上記した核の材料や重合反応によって得られる
核は、通常、核だけで0超〜3kg/mm2程度の圧縮強度
を持ち、0超〜40%の復元率を持つ。この核に上記し
た殻の材料や重合反応によって核より硬質な殻を形成す
ることによって目的とする導電粒子とほぼ同一の圧縮強
度、復元率を持つアクリル系樹脂粒子を得ることができ
る。つまり、このアクリル系樹脂粒子は、下記のように
表面に金属メッキを施すが、この金属メッキによって圧
縮強度、復元率が大きく変化することはなく、変化した
としても圧縮強度±0.3kg/mm2程度、復元率±3%
程度であるので、これを考慮して核を形成すればよい。
The shell constituting the present invention is an acrylic acid ester having 1 to 7 carbon atoms (alkyl group) having a small molecular weight of an alkyl group so as to be hard, on the surface of a nucleus obtained by suspension polymerization. (Alkyl group) The methacrylic acid ester of 1 to 7 or the like may be used, and the above-mentioned copolymer may be appropriately mixed, and it is obtained by performing a polymerization reaction and forming a shell on the core surface. The weight ratio between the core and the shell is determined by the compressive strength,
Although this greatly affects the restitution rate, it is adjusted in consideration of these factors, and the shell / core is set to a weight ratio of 1/20 to 2/1. If the shell / nucleus is out of the range of the above-mentioned weight ratio, it will be difficult to adjust the compressive strength and the recovery rate described later by selecting the above-mentioned materials. That is, the weight ratio of shell / core is 1 /
When it is smaller than 20, it becomes difficult to have a restoration rate as the performance of the shell, and when it is larger than 2/1, it becomes difficult to express the compressive strength as the performance of the core. The nucleus material obtained by the above-mentioned nucleus material or polymerization reaction usually has a compressive strength of more than 0 to 3 kg / mm 2 alone, and has a recovery rate of more than 0 to 40%. By forming a shell harder than the nucleus by the above-mentioned shell material or polymerization reaction on the nucleus, it is possible to obtain acrylic resin particles having almost the same compressive strength and recovery rate as the target conductive particles. In other words, the acrylic resin particles are subjected to metal plating on the surface as described below, but the metal plating does not significantly change the compressive strength and the recovery ratio, and even if they do, the compressive strength is ± 0.3 kg / mm. About 2 、 Restoration rate ± 3%
The nucleus may be formed in consideration of this.

【0010】こうして製造されたアクリル系樹脂粒子の
表面には、導通性を与えるために金属メッキが施され
る。良好な接続を得るために最表面は、貴金属メッキと
することが好ましく、例えば、Ni/Au、Ni/P
d、Ag/Au等の2層構造の貴金属メッキとされる。
このメッキ方法も従来公知の無電解めっき法等を用いる
ことにより形成することができる。メッキの厚さは、通
常、1層目のNi、Ag等で0.05〜0.5μm、2
層目のAu、Pd等で0.005〜0.05μmとすれ
ばよい。
[0010] The surface of the acrylic resin particles thus produced is subjected to metal plating in order to give conductivity. In order to obtain a good connection, the outermost surface is preferably made of noble metal plating, for example, Ni / Au, Ni / P
d, noble metal plating of a two-layer structure such as Ag / Au.
This plating method can also be formed by using a conventionally known electroless plating method or the like. The plating thickness is usually 0.05 to 0.5 μm for the first layer of Ni, Ag, or the like.
The thickness of the layer, such as Au and Pd, may be 0.005 to 0.05 μm.

【0011】得られた導電粒子の平均粒径は、接続すべ
き基板の端子ピッチにより変動するものであるが、通
常、1〜50μmの範囲である。基板の端子ピッチが小
さくなるほど、小さな平均粒径の導電粒子を使用しなけ
れば接続の信頼性、線間絶縁抵抗を両立できなくなる。
また、粒子径は、出来るだけ均一に揃っていることが望
ましく、CV値として40%以下がより好ましい。な
お、本発明で規定する「平均粒径」とは、市販のコール
ターカウンター(粒度分布測定器)による測定の重量分
布での平均粒径を示し、また、CV値は(標準偏差/平
均粒径)×100を示す。
The average particle size of the obtained conductive particles varies depending on the terminal pitch of the substrate to be connected, but is usually in the range of 1 to 50 μm. As the terminal pitch of the substrate becomes smaller, the connection reliability and line-to-line insulation resistance cannot be compatible unless conductive particles having a small average particle size are used.
Further, the particle diameter is desirably as uniform as possible, and more preferably 40% or less as the CV value. The “average particle size” defined in the present invention indicates an average particle size in a weight distribution measured by a commercially available Coulter counter (particle size distribution measuring device), and the CV value is (standard deviation / average particle size). ) × 100.

【0012】また、導電粒子の10%圧縮強度は、0.
2〜5.0kg/mm2、好ましくは、0.5〜3.5kg/mm
2とすることが望ましい。10%圧縮強度が0.2kg/mm
2未満であると、容易に変形し過ぎて、導電粒子の周囲
を覆う絶縁性接着剤の皮膜を突き破ることができず、接
続が不安定になったり、導電粒子間が短絡して線間絶縁
抵抗が保てなくなる等の不具合を生じ、好ましくない。
また、10%圧縮強度が5kg/mm2を越えると、前記した
ように被着体に面接触しづらくなり、点接触に近く、こ
れにより、長期にわたる接続信頼性に欠け、好ましくな
い。なお、本発明で規定する「10%圧縮強度」は、通
常使用される微小圧縮試験機(島津製作所:MCTM−
500など)を用いた場合の導電粒子の粒子径が10%
変位したときの強度を示すものである。
The 10% compressive strength of the conductive particles is 0.1%.
2 to 5.0 kg / mm 2 , preferably 0.5 to 3.5 kg / mm
It is desirable to set it to 2 . 10% compressive strength is 0.2kg / mm
If it is less than 2, it is easily deformed too much and cannot penetrate the insulating adhesive film covering the periphery of the conductive particles, and the connection becomes unstable or the conductive particles are short-circuited due to short circuit. Problems such as the inability to maintain the resistance occur, which is not preferable.
On the other hand, if the 10% compressive strength exceeds 5 kg / mm 2 , it becomes difficult to make surface contact with the adherend as described above, and it is close to point contact, which undesirably lacks long-term connection reliability. The “10% compressive strength” specified in the present invention is a commonly used micro compression tester (Shimadzu Corporation: MCTM-
500) is 10%.
It shows the strength when displaced.

【0013】さらに、導電粒子の復元率は、5〜90
%、好ましくは、10〜60%であることが望ましい。
復元率が5%未満であると、塑性変形に近く、接続に必
要な接触圧を高く保つことができず、また、90%を超
えると、前記圧縮強度との関係から製造的に困難とな
り、好ましくない。なお、本発明で規定する「復元率」
とは、前記した微小圧縮試験機によって測定されるもの
で、1gの荷重をかけた点から荷重を除去し、変位が戻
る程度を「%」で示したものである。詳細に説明すれ
ば、導電粒子に微小圧縮試験機で荷重をかけていくと荷
重−圧縮変位の関係は、図1に示すように、関係の増加
とともに圧縮変位が増加し、図中Aの点で荷重を除去す
ると変位が戻る。このときの圧縮量aに対する復元量b
の%、すなわち、(b/a)×100が復元率(%)で
ある。
Further, the restoration rate of the conductive particles is 5 to 90.
%, Preferably 10 to 60%.
If the restoration rate is less than 5%, the deformation is close to plastic deformation, and the contact pressure required for connection cannot be kept high. If the restoration rate exceeds 90%, it becomes difficult to manufacture due to the relationship with the compressive strength, Not preferred. The “restoration rate” defined in the present invention
Is measured by the above-mentioned micro compression tester, and the load is removed from the point where a load of 1 g is applied, and the degree to which the displacement returns is indicated by "%". More specifically, when a load is applied to the conductive particles with a micro compression tester, the load-compression displacement relationship increases as the relationship increases, as shown in FIG. When the load is removed with, the displacement returns. The restoration amount b with respect to the compression amount a at this time
%, That is, (b / a) × 100 is the restoration rate (%).

【0014】本発明の異方導電接着剤を構成する絶縁性
接着剤としては、通常用いられているものでよく、加熱
によって接着性を示すものであれば熱可塑性、熱硬化性
のいずれでもよい。具体的には、エチレン−酢酸ビニル
共重合体、カルボキシル変性エチレン−酢酸ビニル共重
合体、エチレン−イソブチルアクリレート共重合体、ポ
リアミド、ポリエステル、ポリメチルメタクリレート、
ポリビニルエーテル、ポリビニルブチラール、ポリウレ
タン、スチレン−ブチレン−スチレン(SBS)共重合
体、カルボキシル変性SBS共重合体、スチレン−イソ
プレン−スチレン(SIS)共重合体、スチレン−エチ
レン−ブチレン−スチレン(SEBS)共重合体、マレ
イン酸変性SBES共重合体、ポリブタジエンゴム、ク
ロロプレンゴム(CR)、カルボキシル変性CR、スチ
レン−ブタジエンゴム、イソブチレン−イソプレン共重
合体、アクリロニトリル−ブタジエンゴム(NBR)、
カルボキシル変性NBR、アミン変性NBR、エポキシ
樹脂、フェノール樹脂、シリコーンゴム、アクリルゴム
などから選ばれる1種または2種以上の組み合わせによ
り得られるものを主剤として調整されたものが挙げられ
る。
The insulating adhesive constituting the anisotropic conductive adhesive of the present invention may be a commonly used insulating adhesive, and may be either thermoplastic or thermosetting as long as it exhibits adhesiveness when heated. . Specifically, ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyester, polymethyl methacrylate,
Polyvinyl ether, polyvinyl butyral, polyurethane, styrene-butylene-styrene (SBS) copolymer, carboxyl-modified SBS copolymer, styrene-isoprene-styrene (SIS) copolymer, styrene-ethylene-butylene-styrene (SEBS) copolymer Polymer, maleic acid-modified SBES copolymer, polybutadiene rubber, chloroprene rubber (CR), carboxyl-modified CR, styrene-butadiene rubber, isobutylene-isoprene copolymer, acrylonitrile-butadiene rubber (NBR),
Examples include those prepared by using one or a combination of two or more selected from carboxyl-modified NBR, amine-modified NBR, epoxy resin, phenol resin, silicone rubber, and acrylic rubber as a main component.

【0015】この絶縁性接着剤には、上記した主剤に、
粘着付与剤としてのロジン、ロジン誘導体、テルペン樹
脂、テルペンフェノール樹脂、石油樹脂、クマロン−イ
ンデン樹脂、スチレン系樹脂、イソプレン系樹脂、アル
キルフェノール樹脂、キシレン樹脂などの1種または2
種以上;反応性助剤;架橋剤としてのポリオール、イソ
シアネート類、メラミン樹脂、尿素樹脂、ウトロピン
類、アミン類、酸無水物、過酸化物、金属酸化物、トリ
フルオロ酢酸クロム塩などの有機金属塩、チタン、ジル
コニア、アルミニウムなどのアルコキシド、ジブチル錫
ジオキサイドなどの有機金属化合物;2,2−ジエトキ
シアセトフェノン、ベンジルなどの光開始剤;アミン
類、燐化合物、塩素化合物などの増感剤などを添加する
ことは任意であり、これにはまた、硬化剤、加硫剤、劣
化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色
剤、各種カップリング剤、金属不活性剤などを適宜添加
してもよい。
[0015] The insulating adhesive includes the above-described main component,
One or two of rosin as a tackifier, rosin derivative, terpene resin, terpene phenol resin, petroleum resin, cumarone-indene resin, styrene resin, isoprene resin, alkylphenol resin, xylene resin, etc.
At least one kind; a reactive auxiliary; a polyol as a crosslinking agent, an isocyanate, a melamine resin, a urea resin, an utropine, an amine, an acid anhydride, a peroxide, a metal oxide, and a chromium trifluoroacetate salt. Salts, alkoxides such as titanium, zirconia and aluminum, organometallic compounds such as dibutyltin dioxide; photoinitiators such as 2,2-diethoxyacetophenone and benzyl; sensitizers such as amines, phosphorus compounds and chlorine compounds Is optional, and may also include a curing agent, a vulcanizing agent, a deterioration inhibitor, a heat-resistant additive, a heat conduction improver, a softener, a coloring agent, various coupling agents, a metal deactivator, and the like. May be appropriately added.

【0016】本発明の異方導電接着剤は、前記した絶縁
性接着剤中に前記した導電粒子を常法にしたがって分散
混合することによって得られる。導電粒子の配合量は、
前記絶縁性接着剤100容量部に対して、0.01〜1
00容量部、好ましくは、1〜10容量部の範囲であ
る。導電粒子の配合量が0.01容量部未満であると、
導通不良を起こしやすく、逆に100容量部を超えると
絶縁不良を起こしやすくなり、好ましくない。なお、こ
の絶縁性接着剤は、接着、粘着成分が常温で固形、或い
は高粘度液体の場合には、これをエステル系、ケトン
系、エーテルエステル系、エーテル系、アルコール系、
炭化水素系の溶剤、例えば、酢酸エチル、メチルエチル
ケトン、酢酸ブチルセロソルブ、酢酸エチルカルビトー
ル、ジイソアミルエーテル、シクロヘキサノール、石油
スピリット、トルエンなどの溶剤に溶解して溶液とし、
これを適宜の印刷法、コート法によって接続すべき電極
上の所望の位置に塗布すればよく、また、セパレーター
上に形成した後、所望の寸法にカットし、これを接続電
極上に転写して用いたり、或いは接着、粘着成分が液状
である場合には、接続作業時にこれを接続電極上に塗布
して用いることもできる。
The anisotropic conductive adhesive of the present invention can be obtained by dispersing and mixing the above-mentioned conductive particles in the above-mentioned insulating adhesive according to a conventional method. The compounding amount of the conductive particles is
0.01 to 1 with respect to 100 parts by volume of the insulating adhesive
It is in the range of 00 parts by volume, preferably 1 to 10 parts by volume. When the amount of the conductive particles is less than 0.01 parts by volume,
Continuity failure is likely to occur, and conversely, if it exceeds 100 parts by volume, insulation failure tends to occur, which is not preferable. In addition, when the adhesive and the adhesive component are solid at room temperature or a high-viscosity liquid, this insulating adhesive is used as an ester, ketone, ether ester, ether, alcohol,
Hydrocarbon solvents, for example, ethyl acetate, methyl ethyl ketone, butyl cellosolve acetate, ethyl carbitol, diisoamyl ether, cyclohexanol, petroleum spirit, dissolved in a solvent such as toluene, to form a solution,
This may be applied to a desired position on the electrode to be connected by an appropriate printing method, a coating method, and after being formed on the separator, cut to a desired size, and transferred to the connection electrode. When used, or when the adhesive or adhesive component is in a liquid state, it can be used by applying it to the connection electrode during the connection operation.

【0017】このようにして得られた本発明の異方導電
接着剤は、例えば、図2に示すように、柔軟性を有する
核21と、これよりも硬質な殻22と、表面の金属メッ
キ23とからなる導電粒子2を絶縁性接着剤3中に分散
させてなる異方導電接着剤1をLCD基板4とフレキシ
ブルプリント基板5との間に設けることによって使用さ
れる。なお、6は導体(回路)を示す。この異方導電接
着剤は、一般に2つの対向する電子、電気回路基板上の
電極群間に介在させ、一方の電子、電気回路基板の上方
から加圧し、同時に加熱、或いは光、電子線を照射して
接着剤を活性化させ、2つの回路基板を異方導電接着剤
で固定し、対向する電極群を導電粒子を介して電気的に
接続するものである。この回路基板としては、例えば、
表示パネルなどのガラス、LSIチップなどの金属、金
属酸化物、あるいはポリイミド樹脂、ポリエステル樹脂
などをベースとしたフレキシブルプリント回路などが使
用される。
The thus obtained anisotropic conductive adhesive of the present invention comprises, for example, as shown in FIG. 2, a flexible core 21, a harder shell 22, and a metal plating on the surface. This is used by providing an anisotropic conductive adhesive 1 obtained by dispersing conductive particles 2 composed of an insulating material 23 in an insulating adhesive 3 between an LCD substrate 4 and a flexible printed substrate 5. Reference numeral 6 denotes a conductor (circuit). This anisotropic conductive adhesive is generally interposed between two opposing electrons and an electrode group on an electric circuit board, and is pressed from above one of the electrons and the electric circuit board, and simultaneously heated or irradiated with light or an electron beam. To activate the adhesive, fix the two circuit boards with an anisotropic conductive adhesive, and electrically connect opposing electrode groups via conductive particles. As this circuit board, for example,
Glass such as a display panel, a metal such as an LSI chip, a metal oxide, a flexible printed circuit based on a polyimide resin, a polyester resin, or the like is used.

【0018】[0018]

【実施例】以下に、本発明を実施例及び比較例により詳
細に説明するが、本発明はこの実施例に限定されるもの
ではない。なお、実施例、比較例中の10%圧縮強度、
復元率の測定は微小圧縮試験機(島津製作所社製、MC
TM−500)を用い、10%圧縮強度は試験モード1
(圧縮試験)、試験荷重50.00gf、変位フルスケ
ール50μm、圧子平面50μmφ、負荷速度1.97
5gf/secという条件で測定し、また、復元率は試
験モード2(負荷、除荷試験)、反転荷重値1.00g
f、負荷速度0.455gf/sec、変位フルスケー
ル50μm、圧子平面50μmφ、原点用荷重値0.1
0gfという条件で測定した。
EXAMPLES The present invention will be described below in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, 10% compressive strength in Examples and Comparative Examples,
The restoration rate was measured using a micro compression tester (manufactured by Shimadzu Corporation, MC
Test mode 1
(Compression test), test load 50.00 gf, displacement full scale 50 μm, indenter plane 50 μm φ, load speed 1.97
The measurement was performed under the conditions of 5 gf / sec, and the restoration rate was determined in test mode 2 (load and unloading tests), and the reverse load value was 1.00 g.
f, load speed 0.455 gf / sec, displacement full scale 50 μm, indenter plane 50 μmφ, load value for origin 0.1
It was measured under the condition of 0 gf.

【0019】〔実施例1〕 (1)絶縁性接着剤溶液の調製 NBR100重量部、エポキシ当量1000〜1200
のビスフェノール型エポキシ樹脂150重量部、2−メ
チルイミダゾール20重量部、酸化チタン(TiO2
50重量部に、シクロヘキサノン300重量部を加えて
これを溶解して絶縁性接着剤溶液を調製した。
Example 1 (1) Preparation of Insulating Adhesive Solution NBR 100 parts by weight, epoxy equivalent 1000-1200
150 parts by weight of bisphenol type epoxy resin, 20 parts by weight of 2-methylimidazole, titanium oxide (TiO 2 )
To 50 parts by weight, 300 parts by weight of cyclohexanone was added and dissolved to prepare an insulating adhesive solution.

【0020】(2)導電粒子の作製 ステアリルアクリレート100重量部と、エチレングリ
コールジメタクリレート4重量部と、ブタジエンゴム3
0重量部と、過酸化ベンゾイル0.5重量部とを水20
0重量部中で100℃、1000rpmの回転下で2時間
懸濁重合し、平均粒径7μm、CV値28%の核を含む
懸濁液を得た。この核を少量取り圧縮強度と復元率を測
定したところ、圧縮強度0.8kg/mm2、復元率3
%であった。更に、この懸濁液の撹拌下にエチルメタク
リレート50重量部、エチレングリコールジメタクリレ
ート2重量部を加えて90℃で1000rpmの回転下で
2時間重合して表面に殻を形成し、冷却、水洗、乾燥し
て平均粒径10μm、CV値35%のアクリル樹脂粒子
を得た。このアクリル樹脂粒子を少量取り圧縮強度と復
元率を測定したところ、圧縮強度2.1kg/mm2
復元率50%であった。次いで、この粒子表面にニッケ
ルメッキ0.3μm、金メッキ0.02μmの順で無電
界メッキを施して導電粒子(平均粒径10μm、CV値
35%)を得た。この導電粒子の10%圧縮強度は、
2.2kg/mm2、復元率は50.1%であった。
(2) Preparation of conductive particles Stearyl acrylate 100 parts by weight, ethylene glycol dimethacrylate 4 parts by weight, butadiene rubber 3
0 parts by weight and 0.5 parts by weight of benzoyl peroxide in water 20
Suspension polymerization was carried out in 0 parts by weight at 100 ° C. under a rotation of 1000 rpm for 2 hours to obtain a suspension containing a core having an average particle diameter of 7 μm and a CV value of 28%. A small amount of this nucleus was taken and the compressive strength and the recovery rate were measured. The compressive strength was 0.8 kg / mm 2 and the recovery rate was 3
%Met. Further, 50 parts by weight of ethyl methacrylate and 2 parts by weight of ethylene glycol dimethacrylate were added to the suspension while stirring, and polymerized at 90 ° C. for 2 hours under a rotation of 1000 rpm to form a shell on the surface, followed by cooling, washing with water, After drying, acrylic resin particles having an average particle size of 10 μm and a CV value of 35% were obtained. When a small amount of the acrylic resin particles were taken and the compressive strength and the recovery rate were measured, the compressive strength was 2.1 kg / mm 2 ,
The restoration rate was 50%. Next, electroless plating was performed on the surface of the particles in the order of nickel plating 0.3 μm and gold plating 0.02 μm to obtain conductive particles (average particle diameter 10 μm, CV value 35%). The 10% compressive strength of the conductive particles is
2.2 kg / mm 2 and the restoration rate were 50.1%.

【0021】(3)異方導電接着剤の作製 上記(1)で調製した絶縁性接着剤溶液の固形分100容
量部に、上記(2)で作製した導電粒子を10容量部加え
て異方導電接着剤を作製した。
(3) Preparation of Anisotropic Conductive Adhesive 10 parts by volume of the conductive particles prepared in (2) above were added to 100 parts by volume of solid content of the insulating adhesive solution prepared in (1) above. A conductive adhesive was produced.

【0022】(4)異方導電接着剤付フレキシブルプリン
ト基板(FPC)の作製 厚さ25μmのPETフィルムよりなる可撓性基材の上
に、市販の銀ペースト(DW−250H−5、東洋紡績
製)をスクリーン印刷により印刷して0.2mmピッチの
導電ラインを形成したのち、130℃のオーブンで5時
間乾燥させ、硬化させた。次いで、上記接続端子部に上
記で作製した異方導電接着剤を溶媒を除去した後の厚み
が9μmとなるように、スクリーン印刷で塗布して異方
導電接着剤層を形成し、残る部位に市販の絶縁レジスト
(JEH−112、日本アチソン製)を設け、これを所
望の寸法に切断して異方導電接着剤付FPCを得た。次
に、このようにして得た異方導電接着剤付FPCを面積
抵抗率50Ω/□の透明導電酸化膜基板(ITO)の接
続端子とFPCの間に160℃、30kgf/cm2、12秒
の条件で熱圧着し、高温下110℃、30分〜低温下−
20℃、30分の環境試験を1000サイクル行って、
両接続端子間の抵抗値を測定したところ、下記表1に示
す結果が得られた。
(4) Preparation of Flexible Printed Circuit Board (FPC) with Anisotropic Conductive Adhesive A commercially available silver paste (DW-250H-5, Toyobo Co., Ltd.) was placed on a flexible substrate made of a PET film having a thickness of 25 μm. Was printed by screen printing to form conductive lines having a pitch of 0.2 mm, and then dried and cured in an oven at 130 ° C. for 5 hours. Next, the anisotropic conductive adhesive prepared above is removed from the solvent by removing the solvent to form a thickness of 9 μm on the connection terminal portion by screen printing to form an anisotropic conductive adhesive layer. A commercially available insulating resist (JEH-112, manufactured by Acheson Japan) was provided and cut into desired dimensions to obtain an FPC with an anisotropic conductive adhesive. Next, the FPC with the anisotropic conductive adhesive thus obtained was placed between a connection terminal of a transparent conductive oxide film substrate (ITO) having a sheet resistivity of 50Ω / □ and the FPC at 160 ° C., 30 kgf / cm 2 for 12 seconds. Thermocompression bonding under high temperature conditions, 110 ° C under high temperature, 30 minutes to low temperature
Perform an environmental test for 20 cycles at 20 ° C for 30 minutes.
When the resistance between the two connection terminals was measured, the results shown in Table 1 below were obtained.

【0023】〔比較例1〕導電粒子として、単一成分の
スチレン樹脂粒子にNi、Auメッキを行った導電粒子
(10%圧縮強度12kg/mm2、復元率49%、平均粒径
10μm、CV値35%)を用いた以外は、実施例1と
同様に異方導電接着剤付FPCを得た。実施例1と同様
に両接続端子間の抵抗値を測定したところ、下記表1に
示す結果が得られた。
Comparative Example 1 As conductive particles, conductive particles obtained by plating a single component styrene resin particles with Ni and Au (10% compressive strength 12 kg / mm 2 , recovery rate 49%, average particle diameter 10 μm, CV Except for using a value of 35%), an FPC with an anisotropic conductive adhesive was obtained in the same manner as in Example 1. When the resistance value between the two connection terminals was measured in the same manner as in Example 1, the results shown in Table 1 below were obtained.

【0024】〔比較例2〕導電粒子として単一成分のア
クリル樹脂粒子にNi、Auメッキを行った導電粒子
(10%圧縮強度1kg/mm2、復元率3%、平均粒径10
μm、CV値45%)を用いた以外は、上記実施例1と
同様に異方導電接着剤付FPCを得た。実施例1と同様
に両接続端子間の抵抗値を測定したところ、下記表1に
示す結果が得られた。
Comparative Example 2 Conductive particles obtained by plating Ni and Au on single-component acrylic resin particles as the conductive particles (10% compressive strength 1 kg / mm 2 , restoration rate 3%, average particle size 10%)
FPC with an anisotropic conductive adhesive was obtained in the same manner as in Example 1 except that μm and a CV value of 45% were used. When the resistance value between the two connection terminals was measured in the same manner as in Example 1, the results shown in Table 1 below were obtained.

【0025】〔比較例3〕導電粒子として10%圧縮強
度0.8kg/mm2、復元率3%、平均粒径7μmのアクリ
ル樹脂粒子を核とし、スチレン樹脂を殻として懸濁重合
して得た平均粒径10μmの樹脂粒子(10%圧縮強度
2.8kg/mm2、復元率53%)にNi、Auメッキを行
った導電粒子(10%圧縮強度2.8kg/mm2、復元率5
3%、平均粒径10μm)を用いた以外は、上記実施例
1と同様に異方導電接着剤付FPCを得た。実施例1と
同様に熱圧着を行い、両端子間の抵抗値を測定したとこ
ろ、熱圧着時に粒子の破壊が観察され、下記表1に示す
結果が得られた。
Comparative Example 3 Acrylic resin particles having 10% compressive strength of 0.8 kg / mm 2 , a restoration rate of 3%, and an average particle diameter of 7 μm were used as conductive particles as a core, and suspension polymerization was performed using styrene resin as a shell. Resin particles having an average particle size of 10 μm (10% compression strength 2.8 kg / mm 2 , restoration rate 53%) were subjected to Ni and Au plating on conductive particles (10% compression strength 2.8 kg / mm 2 , restoration rate 5).
An FPC with an anisotropic conductive adhesive was obtained in the same manner as in Example 1 except that 3% and an average particle size of 10 μm were used. When thermocompression bonding was performed in the same manner as in Example 1 and the resistance value between both terminals was measured, destruction of particles was observed during thermocompression bonding, and the results shown in Table 1 below were obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】(表1の考察)上記表1の結果から明らか
なように、本発明範囲となる実施例1は、本発明外範囲
となる比較例1〜3に較べて、初期の接続抵抗を低く、
かつ、高温下110℃、30分〜低温下−20℃、30
分の環境試験を1000サイクルにわたって行っても接
続端子間の抵抗値に変化かなく、長期にわたる接続の信
頼性に優れた性能を有する異方導電接着剤であることが
判明した。
(Consideration of Table 1) As is apparent from the results of Table 1, the initial connection resistance of the first embodiment, which falls within the scope of the present invention, is lower than that of Comparative Examples 1 to 3, which fall outside the scope of the invention. Low,
And 110 ° C. for 30 minutes at high temperature to −20 ° C. for 30 minutes at low temperature
The resistance test between the connection terminals did not change even when the environmental test was performed for 1000 cycles for a minute, and it was found that the adhesive was an anisotropic conductive adhesive having excellent performance for long-term connection reliability.

【0028】[0028]

【発明の効果】本発明によれば、導電粒子が柔軟性を有
し、且つ復元力を高く保てるため、初期の接続抵抗を低
く、かつ、長期にわたる接続の信頼性に優れた性能を有
する異方導電接着剤を提供することができる。
According to the present invention, since the conductive particles have flexibility and a high restoring force, the conductive particles have a low initial connection resistance and an excellent long-term connection reliability. One sided conductive adhesive can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】復元率を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining a restoration rate.

【図2】本発明の異方導電接着剤の一使用例を示す縦断
面図である。
FIG. 2 is a longitudinal sectional view showing one usage example of the anisotropic conductive adhesive of the present invention.

【符号の説明】[Explanation of symbols]

1 異方導電接着剤 2 導電粒子 3 絶縁性接着剤 4 LCD基板 5 FPC 21 核 22 殻 23 金属メッキ REFERENCE SIGNS LIST 1 anisotropic conductive adhesive 2 conductive particles 3 insulating adhesive 4 LCD substrate 5 FPC 21 nucleus 22 shell 23 metal plating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 柔軟性を有する核と、この核よりも硬質
な殻とからなるアクリル系樹脂粒子の表面に金属メッキ
が施されてなる導電粒子を絶縁性接着剤中に分散してな
ることを特徴とする異方導電接着剤。
An acrylic resin particle comprising a core having flexibility and a shell harder than the core is formed by dispersing conductive particles obtained by plating metal on the surface of the resin particle in an insulating adhesive. An anisotropic conductive adhesive.
【請求項2】 導電粒子の10%圧縮強度が0.2〜
5.0kg/mm2であり、かつ、復元率が5〜90%である
請求項1記載の異方導電接着剤。
2. The conductive particles have a 10% compressive strength of 0.2 to 0.2%.
2. The anisotropic conductive adhesive according to claim 1, wherein the adhesive is 5.0 kg / mm < 2 > and the recovery rate is 5 to 90%.
JP1039998A 1998-01-22 1998-01-22 Anisotropically electroconductive adhesive Pending JPH11209714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039998A JPH11209714A (en) 1998-01-22 1998-01-22 Anisotropically electroconductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039998A JPH11209714A (en) 1998-01-22 1998-01-22 Anisotropically electroconductive adhesive

Publications (1)

Publication Number Publication Date
JPH11209714A true JPH11209714A (en) 1999-08-03

Family

ID=11749070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039998A Pending JPH11209714A (en) 1998-01-22 1998-01-22 Anisotropically electroconductive adhesive

Country Status (1)

Country Link
JP (1) JPH11209714A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
US6352775B1 (en) 2000-08-01 2002-03-05 Takeda Chemical Industries, Ltd. Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
SG91372A1 (en) * 2000-07-13 2002-09-17 Mitsui Takeda Chemicals Inc Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
JP4491874B2 (en) * 1999-12-03 2010-06-30 株式会社ブリヂストン Anisotropic conductive film
US20100243022A1 (en) * 2007-11-02 2010-09-30 Nippon Kayaku Kabushiki Kaisha Dye-Sensitized Solar Cell Module
CN102136314A (en) * 2010-12-06 2011-07-27 苏州纳微生物科技有限公司 Preparation method of composite microspheres, anisotropy conducting material and anisotropy conducting film
JP2014116112A (en) * 2012-12-06 2014-06-26 Nippon Shokubai Co Ltd Electroconductive particulates and anisotropic electroconductive material using the same
JP2015046393A (en) * 2013-08-02 2015-03-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP2018006355A (en) * 2017-09-29 2018-01-11 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP4491874B2 (en) * 1999-12-03 2010-06-30 株式会社ブリヂストン Anisotropic conductive film
SG91372A1 (en) * 2000-07-13 2002-09-17 Mitsui Takeda Chemicals Inc Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
US6352775B1 (en) 2000-08-01 2002-03-05 Takeda Chemical Industries, Ltd. Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
US20100243022A1 (en) * 2007-11-02 2010-09-30 Nippon Kayaku Kabushiki Kaisha Dye-Sensitized Solar Cell Module
CN102136314A (en) * 2010-12-06 2011-07-27 苏州纳微生物科技有限公司 Preparation method of composite microspheres, anisotropy conducting material and anisotropy conducting film
JP2014116112A (en) * 2012-12-06 2014-06-26 Nippon Shokubai Co Ltd Electroconductive particulates and anisotropic electroconductive material using the same
JP2015046393A (en) * 2013-08-02 2015-03-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
JP2018006355A (en) * 2017-09-29 2018-01-11 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same

Similar Documents

Publication Publication Date Title
US5336443A (en) Anisotropically electroconductive adhesive composition
KR20010050058A (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
TW200422372A (en) Adhesive composition, adhesive composition for circuit connection, connected circuit structure, and semiconductor devices
KR20100075906A (en) Low temperature bonding electronic adhesives
JPH11209714A (en) Anisotropically electroconductive adhesive
JP3741841B2 (en) Anisotropic conductive adhesive
JPH06295617A (en) Anithotropic conductive adhesive compound
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JP2002201450A (en) Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JPH05279644A (en) Anisotropically conductive adhesive sheet
JP2842051B2 (en) Adhesive composition
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JP4107769B2 (en) Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
JPH09150425A (en) Anisotropically conductive film
JPH07173448A (en) Anisotropically conductive film
JP2001164210A (en) Anisotropic conductive film and electronic equipment using the same
JPH0521094A (en) Anisotropic electric conductive adhesive agent
JPH08167328A (en) Anisotropic conductive film
JP3480754B2 (en) Method for producing anisotropic conductive film
JP2001214149A (en) Anisotropic electrically conductive adhesive
JP2823799B2 (en) Anisotropic conductive adhesive
JP4112024B2 (en) Circuit connection member
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
KR20090073366A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same
JPH03101007A (en) Anisotropic conductive film