JPH09150425A - Anisotropically conductive film - Google Patents

Anisotropically conductive film

Info

Publication number
JPH09150425A
JPH09150425A JP31179095A JP31179095A JPH09150425A JP H09150425 A JPH09150425 A JP H09150425A JP 31179095 A JP31179095 A JP 31179095A JP 31179095 A JP31179095 A JP 31179095A JP H09150425 A JPH09150425 A JP H09150425A
Authority
JP
Japan
Prior art keywords
film
degree
weight
anisotropic conductive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31179095A
Other languages
Japanese (ja)
Other versions
JP3418492B2 (en
Inventor
Tetsuya Miyamoto
哲也 宮本
Michio Kobayashi
道雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP31179095A priority Critical patent/JP3418492B2/en
Publication of JPH09150425A publication Critical patent/JPH09150425A/en
Application granted granted Critical
Publication of JP3418492B2 publication Critical patent/JP3418492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PROBLEM TO BE SOLVED: To realize the connection of this film in a short period of time, have excellent storage stability at normal temperature and excellent adhesion within wide temperature range after curing under heat and pressure, and, addition, realize extremely small residual strain at a joint and separation and re-fixing by pressure by heating films fixed by pressure up to the predetermined temperature or higher. SOLUTION: The essential components of this film are polyvinyl butyral resin A having characteristics such as the degree of polymerization of 1,500-2,500, the degree of acetylation of 3mol.% or less, the degree of butyralation of 65mol.% or more, the flow softening point of 200 deg.C or higher, epoxy resin B, microcapsulated imidazole derivative epoxy compound C, solvent D and electroconductive particle E prepared by putting metal covering onto the surface of polymer spherical nuclear material. A paste-like mixture, the mixing ratio in weight of the above components of which satisfies the relationship: A/(B+C)=(10-50)/1,000, is cast on a releasing film and turned into a film by volatilizing solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微細な回路同志の
電気的接続、更に詳しくはLCD(液晶デイスプレイ)
とフレキシブル回路基板やTABフィルムとの接続や、
半導体ICとIC搭載回路基板のマイクロ接合に用いる
異方導電フィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrical connection between minute circuits, and more particularly to LCD (liquid crystal display).
Connection with a flexible circuit board or TAB film,
The present invention relates to an anisotropic conductive film used for micro-joining a semiconductor IC and an IC-mounted circuit board.

【0002】[0002]

【従来の技術】最近の電子機器の小型化、薄型化に伴
い、微細な回路同志の接続、微小部品と微細回路の接続
等の必要性が飛躍的に増大してきており、その接続方法
として、異方性の導電性接着剤やフィルムが使用され始
めている。(例えば、特開昭59− 120436、6
0−191228、61−274394、61−287
974 、62−244242、63−153534、
63ー305591、64−81878、特開平1−4
6549、1−25178各号公報等)。更なる部品の
微細化が進み、それに伴う異方性導電フィルムによる回
路同志の接続作業において位置ずれ等の理由によって一
度接続した被接続部材を破損または損傷せずに剥離し再
圧着すること(所謂“リペア”)が可能であることへの
要求や、異方導電フィルムの熱硬化反応時の硬化収縮や
種々の雰囲気中での樹脂自体の歪み応力に基づき、被着
体が損傷(例えばLCDに用いられるガラス基板のクラ
ックや基板の反り)するという問題が生じてきている。
これらの問題を解決するために、速硬化、長ライフ、耐
湿性、更には、低歪みの高信頼性熱硬化タイプの異方導
電フィルムが強く要求されている。
2. Description of the Related Art With the recent miniaturization and thinning of electronic devices, the necessity of connecting minute circuits to each other, connecting minute parts to minute circuits, etc. has been dramatically increasing. Anisotropic conductive adhesives and films are beginning to be used. (For example, JP-A-59-120436, 6
0-191228, 61-274394, 61-287
974, 62-244242, 63-153534,
63-305591, 64-81878, JP-A 1-4
6549, 1-25178, etc.). Due to the further miniaturization of parts, the connected members that have been connected once due to misalignment or the like in the connection work between the circuits using anisotropic conductive films are peeled and re-pressed without being damaged or damaged (so-called. "Adhesion" is required, the shrinkage of the anisotropic conductive film during the thermosetting reaction and the strain stress of the resin itself in various atmospheres damage the adherend (eg LCD Problems such as cracks in the glass substrate used and warpage of the substrate have arisen.
In order to solve these problems, there is a strong demand for a highly reliable thermosetting anisotropic conductive film having fast curing, long life, moisture resistance, and low distortion.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の熱硬
化型では得られなかった短時間での接続が可能であり、
また、常温での貯蔵安定性に優れ、加熱加圧して硬化
後、広範囲の温度域(−40℃〜100℃)において優
れた接着性を有し、しかも接合部に残る歪み(応力)が
極めて小さく、更に一度圧着したものを所定温度以上に
加熱することによって剥離・再圧着可能である熱硬化型
異導電フィルムを提供するものである。
SUMMARY OF THE INVENTION The present invention enables connection in a short time, which was not possible with the conventional thermosetting type,
In addition, it has excellent storage stability at room temperature, has excellent adhesiveness in a wide temperature range (-40 ° C to 100 ° C) after being heated and pressed and cured, and has very little strain (stress) remaining in the joint. It is intended to provide a thermosetting type different conductive film which is small and which can be peeled and re-bonded by heating a pressure-bonded product to a predetermined temperature or higher.

【0004】[0004]

【課題を解決するための手段】本発明は、ポリビニルブ
チラール樹脂(A)、ナフタレン骨格を有するエポキシ
樹脂(B)、マイクロカプセル化イミダゾール誘導体エ
ポキシ化合物(C)、溶剤(D)及び高分子球状核材の
表面に金属被覆を有する導電粒子(E)よりなるペース
ト状混合物を離形フィルムに流延し、溶剤を揮散させ製
膜されてなる異方導電フィルムにおいて、重量割合で
(A)/[(B)+(C)]=(10〜50)/100
であり、該ポリビニルブチラール樹脂の重合度が150
0〜2500、アセチル化度が3 mol%以下、ブチラー
ル化度が65 mol%以上、フロー軟化点が200℃以上
であることを特徴とする異方導電フィルムである。
The present invention provides a polyvinyl butyral resin (A), an epoxy resin (B) having a naphthalene skeleton, a microencapsulated imidazole derivative epoxy compound (C), a solvent (D) and a polymer spherical nucleus. In a anisotropic conductive film formed by casting a paste-like mixture composed of conductive particles (E) having a metal coating on the surface of a material on a release film and volatilizing the solvent to form a film, the weight ratio of (A) / [ (B) + (C)] = (10-50) / 100
And the degree of polymerization of the polyvinyl butyral resin is 150
An anisotropic conductive film having a acetylation degree of 0 to 2500, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 200 ° C. or more.

【0005】[0005]

【発明の実施の形態】本発明に用いるポリビニルブチラ
ール樹脂の重合度は1500〜2500、アセチル化度
は3 mol%以下、ブチラール化度は65 mol%以上、及
びフロー軟化点は200℃以上である。重合度が150
0以下であると加熱・加圧時の樹脂流動性が大きく接着
力が不十分となる。また、重合度が2500以上である
と樹脂の流動性が不足し、従って導電粒子が端子と接触
できず導通性が得られない。アセチル化度が3 mol%以
上であると被着体(LCDガラス基板やTABフィル
ム)との相性が悪くなり接着力が不足する。またブチラ
ール化度が65 mol%以下であると分子中のポリビニル
アルコール及びポリ酢酸ビニル含有割合が増加し接着力
が不足する。更にフロー軟化点が200℃未満であると
加熱・加圧時の樹脂流動性が大きく気泡の抱き込みが大
きくなり接着力が不足する。
BEST MODE FOR CARRYING OUT THE INVENTION The polyvinyl butyral resin used in the present invention has a polymerization degree of 1500 to 2500, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 200 ° C. or more. . Degree of polymerization is 150
When it is 0 or less, the resin fluidity at the time of heating and pressurization is large and the adhesive force becomes insufficient. Further, when the degree of polymerization is 2500 or more, the fluidity of the resin is insufficient, and therefore the conductive particles cannot contact the terminals, and the conductivity cannot be obtained. If the degree of acetylation is 3 mol% or more, the compatibility with the adherend (LCD glass substrate or TAB film) deteriorates and the adhesive strength becomes insufficient. If the degree of butyralization is 65 mol% or less, the content of polyvinyl alcohol and polyvinyl acetate in the molecule increases and the adhesive strength becomes insufficient. Further, if the flow softening point is less than 200 ° C., the resin fluidity at the time of heating and pressurization will be large and the inclusion of air bubbles will become large, resulting in insufficient adhesive strength.

【0006】本発明に用いるエポキシ樹脂は、一分子中
に少なくとも二個以上のエポキシ基を有するエポキシ樹
脂は、具体例として、ビスフェノールA型エポキシ樹
脂、ビスフェノールF型エポキシ樹脂、ビスフェノール
S型エポキシ樹脂 、フェノールノボラック型エポキシ
樹脂、クレゾールノボラック型エポキシ樹脂等が挙げら
れ、これらに限定されるものではなく、単独でも混合し
てもちいても差し支えない。更に、加熱、加圧して硬化
後広範囲の温度域(−40〜100℃)で高い接着性及
び優れた接続信頼性を得るために、これらのエポキシ樹
脂に分子中にナフタレン骨格を有するエポキシ樹脂を1
0〜80重量%配合することが好ましい。具体的には、
1、6−ビス(2、3−エポキシプロポキシ)ナフタレ
ン、2,7−ジヒドロキシナフタレンとホルムアルデヒ
ドとの縮合物とエピクドルヒドリンとの反応物、2−ヒ
ドロキシナフタレンと2,7−ジヒドロキシナフタレン
とホルムアルデヒドとの縮合物とエピクドルヒドリンと
の反応物等が挙げられる。その配合量が10重量%未満
であると硬化物のガラス転移点が低く高温領域(60〜
100℃)での接着性及び接続信頼性が低下し、80重
量%超えると硬化物の弾性率が初期の時点で十分な接着
力が得られない。
The epoxy resin used in the present invention is, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, which has at least two epoxy groups in one molecule. Examples thereof include phenol novolac type epoxy resin and cresol novolac type epoxy resin, which are not limited to these and may be used alone or in combination. Furthermore, in order to obtain high adhesiveness and excellent connection reliability in a wide temperature range (-40 to 100 ° C) after heating and pressurizing and curing, an epoxy resin having a naphthalene skeleton in the molecule is added to these epoxy resins. 1
It is preferable to add 0 to 80% by weight. In particular,
1,6-bis (2,3-epoxypropoxy) naphthalene, a condensate of 2,7-dihydroxynaphthalene and formaldehyde and a reaction product of epicudolhydrin, 2-hydroxynaphthalene and 2,7-dihydroxynaphthalene Examples thereof include a reaction product of a condensate with formaldehyde and epicudolhydrin. If the compounding amount is less than 10% by weight, the glass transition point of the cured product is low and the high temperature region (60 to
Adhesiveness and connection reliability at 100 ° C.) decrease, and when it exceeds 80% by weight, sufficient adhesive strength cannot be obtained at the initial elastic modulus of the cured product.

【0007】本発明に用いるマイクロカプセル化イミダ
ゾール誘導体エポキシ化合物は、イミダゾール誘導体と
エポキシ化合物との反応生成物を微粉末とし、イソシア
ネート化合物を反応させ、マイクロカプセル化したもの
で、市場より入手できるものである。このものは耐薬品
性および貯蔵安定性を高めたものも好適である。ここで
用いるエポキシ化合物としては、例えば、ビスフェノー
ルA、フェノールノボラック、ビスフェノールFおよび
ブロム化ビスフェノールA等のグリシジルエーテル型エ
ポキシ樹脂、ダイマー酸ジグリシジルエステル、フタル
酸ジグリシジルエステル等が挙げられる。また、イミダ
ゾール誘導体としては、例えば、イミダゾール、2−メ
チルイミダゾール,2−エチルイミダゾ−ル、2−エチ
ル−4−メチルイミダゾール、2−フェニルイミダゾー
ル、2−フェニル−4−メチルイミダゾール、1−ベン
ジル−2−メチルイミダゾール、1−ベンジル−2−エ
チルイミダゾール、1−ベンジル−2−エチル−5−メ
チルイミダゾール、2−フェニル−4−メチル−5−ヒ
ドロシキジメチルイミダゾール、2−フェニル−4,5
ジヒドロキシメチルイミダゾール等が挙げられる。
The microencapsulated imidazole derivative epoxy compound used in the present invention is a microencapsulated product obtained by reacting an isocyanate compound with a reaction product of an imidazole derivative and an epoxy compound, and is commercially available. is there. It is also preferable that this has improved chemical resistance and storage stability. Examples of the epoxy compound used here include glycidyl ether type epoxy resins such as bisphenol A, phenol novolac, bisphenol F, and brominated bisphenol A, diglyceryl dimer acid, diglycidyl phthalate ester, and the like. Examples of the imidazole derivative include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and 1-benzyl-. 2-methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-ethyl-5-methylimidazole, 2-phenyl-4-methyl-5-hydroxydimethylimidazole, 2-phenyl-4,5
Examples thereof include dihydroxymethylimidazole.

【0008】本発明の、エポキシ樹脂(B)及び潜在性
硬化剤であるマイクロカプセル化イミダゾール誘導体エ
ポキシ化合物(C)とポリビニルブチラール樹脂(A)
の重量割合(A)/[(B)+(C)]=(10〜5
0)/100であり、目標とする作業性、信頼性等によ
って異なるが、ポリビニルブチラール樹脂が10重量部
未満だと、初期接着力(粘着力)が不足し、更に異方導
電フィルムにしたとき、溶融時の流動性が大きく気泡の
抱き込みが大きい。又、最近その必要性が高まってきて
いる所謂リペア性についても、10重量部未満だと、硬
化後の樹脂軟化温度が高く、剥離時に高温を必要とし、
被着体に残る樹脂成分を除去することが困難になる。5
0重量部を越えると接着力は十分であるが、溶融時の粘
度が高く、樹脂の流動性が不足し、従って導電性粒子が
端子と接触できず導電性が得られない恐れが生じる。さ
らに、リペア性等の作業性は比較的良好であるが、エポ
キシ樹脂系成分との相溶性、耐熱性、耐湿性が不足す
る。
The epoxy resin (B) of the present invention and the microencapsulated imidazole derivative epoxy compound (C) which is a latent curing agent and the polyvinyl butyral resin (A).
Weight ratio (A) / [(B) + (C)] = (10-5
0) / 100, which varies depending on the target workability, reliability, etc., but when the polyvinyl butyral resin is less than 10 parts by weight, the initial adhesive force (adhesive force) is insufficient, and when an anisotropic conductive film is used. , The fluidity at the time of melting is large, and the inclusion of bubbles is large. Also, regarding the so-called repairability, which has recently become more necessary, if it is less than 10 parts by weight, the resin softening temperature after curing is high and a high temperature is required at the time of peeling,
It becomes difficult to remove the resin component remaining on the adherend. 5
If the amount exceeds 0 parts by weight, the adhesive strength is sufficient, but the viscosity at the time of melting is high and the fluidity of the resin is insufficient, so that the conductive particles may not be able to contact the terminals and the conductivity may not be obtained. Furthermore, although workability such as repairability is relatively good, compatibility with epoxy resin components, heat resistance, and moisture resistance are insufficient.

【0009】高分子球状核材の表面に金属被覆を有する
導電粒子は、高分子球状核材の表面にニッケル膜を有
し、該ニッケル膜の更に外層に金膜を有し、該ニッケル
膜中の燐含有量が2〜20重量%である導電粒子であ
る。導電粒子表面の金膜、ニッケル膜は、ニッケル中の
燐含有量が2〜20重量%であること以外は、特に限定
されるものではない。例えば、皮膜の厚さは特に限定し
ないが、薄すぎると導電性が不安定になり、厚すぎると
粒子変形が困難になったり凝集などが生じるため、各々
皮膜の厚さは0.01〜1μmが好ましい。又皮膜の形
成方法では、この皮膜と中心核となる高分子球状核材と
の密着力・導通性などを考慮し、均一に形成されている
ことがよく、従来から用いられている無電解メッキなど
が望ましい。ニッケル膜中の燐の含有量が0.5重量%
未満のもので被覆形成された導電粒子を用いて、異方導
電フィルムにした場合導電粒子の分散性が悪くなり凝集
が発生し、この導電粒子により隣接端子間の絶縁性が低
下し短絡に至る場合もあり、微細な回路接続には制約が
ある。逆に、20重量%を超える場合には、分散性は良
くなるが導電率が低下し、接続抵抗値が高くなり、長期
の接続信頼性も低下してくる問題が生じる。
The conductive particles having a metal coating on the surface of the polymeric spherical core material have a nickel film on the surface of the polymeric spherical core material, and a gold film as an outer layer of the nickel film. Is a conductive particle having a phosphorus content of 2 to 20% by weight. The gold film and the nickel film on the surface of the conductive particles are not particularly limited except that the phosphorus content in nickel is 2 to 20% by weight. For example, the thickness of the film is not particularly limited, but if it is too thin, the conductivity becomes unstable, and if it is too thick, particle deformation becomes difficult or agglomeration occurs. Therefore, the thickness of each film is 0.01 to 1 μm. Is preferred. In addition, in the method of forming the film, it is preferable that the film is formed uniformly in consideration of the adhesion force and conductivity between the film and the polymeric spherical core material serving as the central nucleus. Is desirable. Phosphorus content in nickel film is 0.5% by weight
When an anisotropic conductive film is formed using conductive particles coated with less than less than the conductive particles, the dispersibility of the conductive particles deteriorates and agglomeration occurs, and the conductive particles reduce the insulation between adjacent terminals and lead to a short circuit. In some cases, there are restrictions on fine circuit connections. On the other hand, when it exceeds 20% by weight, the dispersibility is improved, but the conductivity is lowered, the connection resistance value is increased, and the long-term connection reliability is also lowered.

【0010】また、本発明に用いる高分子球状核材の表
面に金属被覆を有する導電粒子の粒径は3〜15μm、
平均粒径は5〜10μmであることが好ましい。粒径が
3μm未満および平均粒径が5μm未満だと、接続する
回路表面の凹凸の大きさに近く、熱圧着時に回路厚みの
バラツキを吸収できず、接続抵抗増やオープン不良の原
因となる。また粒径が15μmを越え、かつ平均粒径1
0μmを越えると回路ピッチ(回路幅+回路間隔)が
0.1mm以下に適用した際に隣接回路間で粒子が接触
し、隣接回路間での絶縁性が低下したり、ショートを起
こす危険性がある。これらの範囲内で接続する回路端子
ピッチ、端子厚さバラツキ等により最適値を選択すれば
よい。例えば、異方導電フィルムの主要な用途である液
晶デイスプレイパネルとフレキシブル回路基板(以下F
PC)との接続では、金属被覆を有する導電粒子の粒径
は3〜15μm程度で、かつ絶縁性接着剤に対する配合
量は、0.5〜10体積%が好ましい。
The diameter of the conductive particles having a metal coating on the surface of the polymeric spherical core material used in the present invention is 3 to 15 μm,
The average particle size is preferably 5 to 10 μm. If the particle size is less than 3 μm and the average particle size is less than 5 μm, it is close to the size of the irregularities on the surface of the circuit to be connected, and variations in the circuit thickness cannot be absorbed during thermocompression bonding, which causes an increase in connection resistance and open defects. Also, the particle size exceeds 15 μm, and the average particle size is 1
If it exceeds 0 μm, when the circuit pitch (circuit width + circuit interval) is 0.1 mm or less, particles may come into contact with each other between adjacent circuits, resulting in deterioration of insulation between adjacent circuits and a risk of short circuit. is there. The optimum value may be selected depending on the circuit terminal pitch, terminal thickness variation, etc., to be connected within these ranges. For example, liquid crystal display panels and flexible circuit boards (hereinafter referred to as F
In the case of connection with PC), the particle diameter of the conductive particles having a metal coating is about 3 to 15 μm, and the compounding amount with respect to the insulating adhesive is preferably 0.5 to 10% by volume.

【0011】又、高分子球状核材の表面に金属被覆を有
する導電粒子の圧縮破壊強度は10〜100kg/mm2
圧縮弾性率は100〜1000kg/mm2である。圧縮破
壊強度が10kg/mm2未満および圧縮弾性率が100kg
/mm2未満であると電気的接続を得る前に粒子が破壊さ
れてしまい接続できない。また圧縮破壊強度が100kg
/mm2を越え、かつ圧縮弾性率が1000kg/mm2を越え
る場合には、端子と端子の接続に充分な面積を得るには
過大な圧力をかけなくてはならなく被着体を破損する原
因となる。熱圧着後の金属被覆粒子のつぶれ具合が接続
信頼性等の諸特性に影響を及ぼすため、圧縮破壊強度は
10〜100kg/mm2、圧縮弾性率は100〜1000k
g/mm2である必要がある。
The conductive particles having a metal coating on the surface of the polymeric spherical core material have a compressive fracture strength of 10 to 100 kg / mm 2 .
The compressive elastic modulus is 100 to 1000 kg / mm 2 . Compressive fracture strength less than 10 kg / mm 2 and compressive elastic modulus 100 kg
If it is less than / mm 2 , the particles will be destroyed before electrical connection can be made and connection cannot be made. The compressive breaking strength is 100kg
/ Mm 2 and the compression elastic modulus exceeds 1000 kg / mm 2 , excessive pressure must be applied to obtain a sufficient area for connecting terminals and the adherend will be damaged. Cause. Since the degree of crushing of the metal-coated particles after thermocompression bonding affects various characteristics such as connection reliability, the compressive fracture strength is 10 to 100 kg / mm 2 , and the compressive elastic modulus is 100 to 1000 k.
Must be g / mm 2 .

【0012】高分子球状核材の組成は特に限定しない
が、例えばエポキシ樹脂、ウレタン樹脂、メラミン樹
脂、フェノール樹脂、アクリル樹脂、ポリエステル樹
脂、スチレン樹脂、スチレン−ブタジエン共重合体等の
ポリマーが挙げられ、これらは単独でも混合して用いて
も差し支えない。又金属被覆には、Au,Ni,Ag,
Cu,Zn,Sn,In,Al,Pd等が挙げられ、こ
れらは組み合わせてもよい。これらの高分子球状核材と
金属被覆は、両者の密着力など考慮して適切なものを選
択すればよい。金属被覆の厚さは、特に限定しないが、
薄すぎると導電性が不安定となり厚すぎると粒子変形が
困難となったり凝集等を生じるため、0.01〜1μm
程度が好ましい。又、無電解メッキなどにより均一に被
覆されていることが望ましい。導電粒子の添加量は、全
樹脂配合量に対して、0.1〜10体積%が好ましい。
0.1体積%未満であると接続面積が少なくなるため接
続信頼性が低下し、逆に10体積%を超えると隣接端子
間の絶縁性が低下し短絡の発生につながる。
The composition of the polymeric spherical core material is not particularly limited, but examples thereof include polymers such as epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, styrene resin and styrene-butadiene copolymer. These may be used alone or as a mixture. For metal coating, Au, Ni, Ag,
Cu, Zn, Sn, In, Al, Pd and the like are mentioned, and these may be combined. Appropriate materials may be selected for the polymeric spherical core material and the metal coating in consideration of the adhesion between the two. The thickness of the metal coating is not particularly limited,
If it is too thin, the conductivity becomes unstable, and if it is too thick, it becomes difficult to deform the particles or agglomerates occur.
The degree is preferred. Further, it is desirable that it is uniformly coated by electroless plating or the like. The amount of conductive particles added is preferably 0.1 to 10% by volume with respect to the total amount of the resin.
If it is less than 0.1% by volume, the connection area is reduced, so that the connection reliability is lowered, and conversely, if it is more than 10% by volume, the insulating property between the adjacent terminals is reduced, which causes a short circuit.

【0013】本発明に用いる溶剤は、アセトン、メチル
エチルケトン、メチルイソブチルケトン、ベンゼン、ト
ルエン、キシレン、n−ブチルアルコール、酢酸エチ
ル、酢酸ブチル、テトラヒドロフラン、メチルセロソル
ブ、エチルセロソルブ、ジアセトンエーテル、メチルセ
ロソルブアセテート、エチルセロソルブアセテート、ジ
メチルホルムアミド、等が挙げられるが、極性の大きさ
によって配合後の樹脂安定性に影響を及ぼすため配合処
方ごとに安定性を調べ、単独あるいは混合して用いる。
The solvent used in the present invention is acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, n-butyl alcohol, ethyl acetate, butyl acetate, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, diacetone ether, methyl cellosolve acetate. , Ethyl cellosolve acetate, dimethylformamide, etc. are used, but the stability of each compounding formulation is examined because the size of the polarity affects the resin stability after compounding, and the compounds are used alone or as a mixture.

【0014】次に異方導電フィルムの担体となる離形フ
ィルムに要求される特性は、耐熱性、離形性、離形性と
バランスしたある程度の密着性等であるが異方導電フィ
ルムの作業性を大きく左右するため、配合処方を合わせ
て適宜選択することが必要である。離形フィルムとして
はポリエステル系フィルム、ポリメチルペンテン系フィ
ルム、フッソ系フィルム等がありこれらのうちではフッ
ソ系フィルムが使用条件下において十分な耐熱性を有
し、また密着性の強いエポキシ樹脂の塗膜に対して、十
分な密着性と離形性を保持するので好ましい。接着剤の
組成によっては、更に各種のフッソ系フィルムの中か
ら、作業性の良好なものを適宜選択して使用する。
Next, the characteristics required of the release film which is a carrier of the anisotropic conductive film are heat resistance, releasability, and a certain degree of adhesion which balances with the releasability. Since it greatly affects the properties, it is necessary to select the compounding formulation appropriately. As the release film, there are polyester film, polymethylpentene film, fluorine film, etc. Among them, the fluorine film has sufficient heat resistance under the use conditions and is coated with an epoxy resin having strong adhesion. It is preferable because it maintains sufficient adhesion and releasability to the film. Depending on the composition of the adhesive, one having a good workability is appropriately selected and used from various fluorine-based films.

【0015】以上のようにして選択、調整した樹脂配合
物と導電粒子を適宜配合し、配合・撹拌し、離形フィル
ム上に流延することによって異方導電フィルムを作成す
るが、樹脂の相溶性、安定性、離形フィルムとの濡れ性
等の作業性や、フィルム形成時の表面粘度、密着性等の
各種性能上を狙って、各種添加剤、例えば、非反応性希
釈剤、反応性希釈剤、揺変性付与剤、増粘剤、無機充填
剤等を適宜添加しても差し支えない。
An anisotropic conductive film is prepared by appropriately mixing the resin mixture selected and adjusted as described above and conductive particles, mixing and stirring, and casting on a release film. Various additives, such as non-reactive diluents and reactivity, aiming at various properties such as solubility, stability, workability such as wettability with release film, surface viscosity during film formation, adhesion, etc. Diluents, thixotropic agents, thickeners, inorganic fillers and the like may be added appropriately.

【0016】[0016]

【実施例】以上本発明を実施例で具体的に説明する。 《実施例1》反応性エラストマーとして、重合度170
0、アセチル化度3 mol%以下、ブチラール化度65 m
ol%以上、フロー軟化点が225℃のポリビニルブチラ
ール樹脂をトルエン/酢酸エチル=5:1(重量比)混
合溶液に溶解して得られた10重量%溶液175重量部
と、ビスフェノールA型エポキシ樹脂(エポキシ当量
4,000g/eq)のトルエン/酢酸ブチル=3:1
混合溶液50重量%溶液35重量部と、1、6−ビス
(2、3−エポキシプロポキシ)ナフタレン15重量部
と、マイクロカプセル化イミダゾール誘導体エポキシ化
合物100重量部{(A)/[(B)+(C)]=13.2/10
0}を速やかに撹拌・混合し、これにポリスチレン球状
核材にNi/Auメッキした導電粒子(平均粒子5μ
m、ニッケル膜中燐含有量10D重量%)を4g添加、
均一分散せしめ、更に、トルエンを添加し、4−フッ化
エチレン−パーフルオロアルキルビニルエーテル共重合
体フィルム上に乾燥後の厚みが25μmになるよう流延
・乾燥し異方導電フィルムを得た。
EXAMPLES The present invention will be specifically described with reference to Examples. Example 1 As a reactive elastomer, a polymerization degree of 170
0, acetylation degree 3 mol% or less, butyralization degree 65 m
175 parts by weight of a 10 wt% solution obtained by dissolving a polyvinyl butyral resin having an ol% or more and a flow softening point of 225 ° C. in a toluene / ethyl acetate = 5: 1 (weight ratio) mixed solution, and a bisphenol A type epoxy resin (Epoxy equivalent 4,000 g / eq) toluene / butyl acetate = 3: 1
35 parts by weight of mixed solution 50 parts by weight solution, 15 parts by weight of 1,6-bis (2,3-epoxypropoxy) naphthalene, 100 parts by weight of microencapsulated imidazole derivative epoxy compound {(A) / [(B) + (C)] = 13.2 / 10
0} is rapidly stirred and mixed, and conductive particles (average particle 5 μm) obtained by plating polystyrene spherical core material with Ni / Au
m, phosphorus content in nickel film 10D wt%) 4g,
After being uniformly dispersed, toluene was added, and the mixture was cast and dried on a 4-fluoroethylene-perfluoroalkylvinylether copolymer film so that the thickness after drying was 25 μm to obtain an anisotropic conductive film.

【0017】《実施例2、3》ナフタレン骨格を有する
エポキシ樹脂として、実施例2では2,7−ジヒドロキ
シナフタレンとホルムアルデヒドとの縮合物とエピクド
ルヒドリンとの反応物、実施例3では2−ヒドロキシナ
フタレンと2,7−ジヒドロキシナフタレンとホルムア
ルデヒドとの縮合物とエピクドルヒドリンとの反応物を
用いた以外は実施例1と同様にして異方導電フィルムを
得た。
<Examples 2 and 3> As an epoxy resin having a naphthalene skeleton, in Example 2, a reaction product of a condensate of 2,7-dihydroxynaphthalene and formaldehyde and epicudorhydrin, and in Example 3, 2 An anisotropic conductive film was obtained in the same manner as in Example 1 except that a condensate of -hydroxynaphthalene, 2,7-dihydroxynaphthalene and formaldehyde, and a reaction product of epicudrhydrin were used.

【0018】《実施例4》反応性エラストマーとして、
重合度1700、アセチル化度3 mol%以下、ブチラー
ル化度65 mol%以上、フロー軟化点が225℃のポリ
ビニルブチラール樹脂をトルエン/酢酸エチル=5:1
(重量比)混合溶液に溶解して得られた10重量%溶液
100重量部を、ビスフェノールA型エポキシ樹脂(エ
ポキシ当量4,000g/eq)のトルエン/酢酸ブチ
ル=3:1混合溶液50重量%溶液108重量部と、
1、6−ビス(2、3エポキシプロポキシ)ナフタレン
46重量部と、マイクロカプセル化イミダゾール誘導体
エポキシ化合物100重量部{(A)/[(B)+(C)]=
5.0/100}を用いた以外は実施例1と同様にして異方導
電フィルムを得た。 《実施例5》反応性エラストマーとして、重合度170
0、アセチル化度3 mol%以下、ブチラール化度65 m
ol%以上、フロー軟化点が225℃のポリビニルブチラ
ール樹脂をトルエン/酢酸エチル=5:1(重量比)混
合溶液に溶解して得られた10重量%溶液500重量部
を、ビスフェノールA型エポキシ樹脂(エポキシ当量
4,000g/eq)のトルエン/酢酸ブチル=3:1
混合溶液50重量%溶液34重量部と、1、6−ビス
(2、3エポキシプロポキシ)ナフタレン15重量部
と、マイクロカプセル化イミダゾール誘導体エポキシ化
合物70重量部{(A)/[(B)+(C)]=49.0/100}
を用いた以外は実施例1と同様にして異方導電フィルム
を得た。 《実施例6、7》実施例6では、導電粒子としてポリス
チレン球状核材にNi/Auメッキしたもの(ニッケル
膜中燐含有量5重量%)、実施例7ではニッケル膜中燐
含有量20wt%を用いた以外は実施例1と同様にして
異方導電フィルムを得た。
Example 4 As a reactive elastomer,
Polyvinyl butyral resin having a degree of polymerization of 1700, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 225 ° C. is toluene / ethyl acetate = 5: 1.
(Weight ratio) 100 parts by weight of a 10% by weight solution obtained by dissolving in a mixed solution, 50% by weight of a mixed solution of bisphenol A type epoxy resin (epoxy equivalent: 4,000 g / eq) in toluene / butyl acetate = 3: 1 108 parts by weight of solution,
46 parts by weight of 1,6-bis (2,3 epoxypropoxy) naphthalene and 100 parts by weight of microencapsulated imidazole derivative epoxy compound {(A) / [(B) + (C)] =
An anisotropic conductive film was obtained in the same manner as in Example 1 except that 5.0 / 100} was used. Example 5 As a reactive elastomer, a polymerization degree of 170
0, acetylation degree 3 mol% or less, butyralization degree 65 m
500 parts by weight of a 10 wt% solution obtained by dissolving a polyvinyl butyral resin having a flow softening point of 225 ° C. or more in a toluene / ethyl acetate = 5: 1 (weight ratio) mixed solution is added to a bisphenol A type epoxy resin. (Epoxy equivalent 4,000 g / eq) toluene / butyl acetate = 3: 1
50 parts by weight of mixed solution 34 parts by weight solution, 15 parts by weight 1,6-bis (2,3 epoxypropoxy) naphthalene, 70 parts by weight microcapsulated imidazole derivative epoxy compound {(A) / [(B) + ( C)] = 49.0 / 100}
An anisotropic conductive film was obtained in the same manner as in Example 1 except that was used. << Examples 6 and 7 >> In Example 6, polystyrene spherical core material as conductive particles was plated with Ni / Au (phosphorus content in nickel film was 5% by weight). In Example 7, phosphorus content in nickel film was 20% by weight. An anisotropic conductive film was obtained in the same manner as in Example 1 except that was used.

【0019】《比較例1、2》反応性エラストマーとし
て比較例1で重合度300、アセチル化度3 mol%以
上、ブチラール化度63±3 mol%、フロー軟化点11
5℃のポリビニルブチラールを、比較例2で重合度1,
000、アセチル化度3 mol%以下、ブチラール化度7
0 mol%、フロー軟化点160℃のポリビニルブチラー
ル樹脂を用いた以外は実施例1と同様にして異方導電フ
ィルムを得た。 《比較例3》反応性エラストマーは使用せず、ビスフェ
ノールA型エポキシ樹脂(エポキシ当量4,000 g/
eq)のトルエン/酢酸ブチル=3:1混合溶液50重量
%溶液34重量部と、1、6−ビス(2、3−エポキシ
プロポキシ)ナフタレン15重量部と、マイクロカプセ
ル化イミダゾール誘導体エポキシ化合物70重量部
{(A)/[(B)+(C)]=0/100}を用いた以外は実施
例1と同様にして異方導電フィルムを得た。
Comparative Examples 1 and 2 In Comparative Example 1 as a reactive elastomer, the polymerization degree is 300, the acetylation degree is 3 mol% or more, the butyralization degree is 63 ± 3 mol%, and the flow softening point is 11.
Polyvinyl butyral at 5 ° C. was used in Comparative Example 2 to obtain a polymerization degree of 1,
000, degree of acetylation 3 mol% or less, degree of butyral 7
An anisotropic conductive film was obtained in the same manner as in Example 1 except that polyvinyl butyral resin having 0 mol% and a flow softening point of 160 ° C. was used. << Comparative Example 3 >> A reactive elastomer was not used, and a bisphenol A type epoxy resin (epoxy equivalent: 4,000 g /
eq) toluene / butyl acetate = 3: 1 mixed solution 50% by weight 34 parts by weight solution, 1,6-bis (2,3-epoxypropoxy) naphthalene 15 parts by weight, microencapsulated imidazole derivative epoxy compound 70 parts by weight An anisotropic conductive film was obtained in the same manner as in Example 1 except that the parts {(A) / [(B) + (C)] = 0/100} were used.

【0020】《比較例4》反応性エラストマーとして、
重合度1700、アセチル化度3 mol%以下、ブチラー
ル化度65 mol%以上、フロー軟化点が225℃のポリ
ビニルブチラール樹脂をトルエン/酢酸エチル=5:1
(重量比)混合溶液に溶解して得られた10重量%溶液
600重量部を、ビスフェノールA型エポキシ樹脂(エ
ポキシ当量4,000 g/eq)のトルエン/酢酸ブチル
=3:1混合溶液50重量%溶液34重量部と、1、6
−ビス(2、3−エポキシプロポキシ)ナフタレン15
重量部と、マイクロカプセル化イミダゾール誘導体エポ
キシ化合物70重量部{(A)/[(B)+(C)]=58.8/
100}を用いた以外は実施例1と同様にして異方導電フ
ィルムを得た。 《比較例5》ナフタレン骨格を有するエポキシ樹脂の代
わりにビスフェノールA型エポキシ樹脂(エポキシ当量
500 g/eq)を15重量部を用いた以外は実施例1と
同様にして異方導電フィルムを得た。 《比較例6、7》比較例5では、導電粒子としてポリス
チレン球状核材にNi/Auメッキしたもの(ニッケル
膜中燐含有量0重量%)、比較例6ではニッケル膜中燐
含有量30重量%を用いた以外は実施例1と同様にして
異方導電フィルムを得た。
Comparative Example 4 As a reactive elastomer,
Polyvinyl butyral resin having a degree of polymerization of 1700, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 225 ° C. is toluene / ethyl acetate = 5: 1.
(Weight ratio) 600 parts by weight of a 10% by weight solution obtained by dissolving in a mixed solution was mixed with 50 parts by weight of a mixed solution of bisphenol A type epoxy resin (epoxy equivalent: 4,000 g / eq) in toluene / butyl acetate = 3: 1. % Solution of 34 parts by weight and 1,6
-Bis (2,3-epoxypropoxy) naphthalene 15
And 70 parts by weight of the microcapsulated imidazole derivative epoxy compound {(A) / [(B) + (C)] = 58.8 /
An anisotropic conductive film was obtained in the same manner as in Example 1 except that 100} was used. Comparative Example 5 An anisotropic conductive film was obtained in the same manner as in Example 1 except that 15 parts by weight of bisphenol A type epoxy resin (epoxy equivalent of 500 g / eq) was used instead of the epoxy resin having a naphthalene skeleton. . << Comparative Examples 6 and 7 >> In Comparative Example 5, polystyrene spherical core material as conductive particles was plated with Ni / Au (phosphorus content in nickel film: 0% by weight). In Comparative Example 6, phosphorus content in nickel film: 30% by weight. An anisotropic conductive film was obtained in the same manner as in Example 1 except that% was used.

【0021】《評価方法》これらの実施例及び比較例で
得られた異方導電フィルムについて、貯蔵安定性、接着
力、リペア性、長期信頼性の評価を実施した結果を表
1、表2に示す。試験片として用いた異方導電フィルム
の厚みはすべて25μmであり、被着体は、銅箔/ポリ
イミド=35/75μmに0.4μmの錫メッキを施し
たTAB(ピッチ0.10mm、端子数200本)とシ
ート抵抗値30Ωのインジウム/錫酸化導電皮膜を全面
に形成した厚さ1.1mmのガラス(以下ITOガラ
ス)を用いた。 ・貯蔵安定性:異方導電フィルムを室温(23℃)及び
40℃に放置後、120℃の熱盤上で溶融することを確
認し、更に、そのサンプルを用いてTABとITOガラ
スを接続した場合に初期接続抵抗値が全ての端子におい
て2Ω以下であれば○、2Ωを越えるものであれば×と
した。 ・接着力:90゜剥離試験によって評価を行った。 ・リペア性:一度熱圧着によって接合した試験片を熱盤
上で150℃に加熱して引き剥し、被接続部材を損傷な
く剥離できるか否か観察した。※は全く損傷なく剥離さ
れたもの、○は損傷なく剥離されたもの、×は剥離する
と損傷したもの。 ・接続信頼性:−40℃/30分、25℃/5分、80
℃/30分、25℃/5分の温度サイクル試験を250
サイクル行った後、隣接する端子間の接続抵抗を測定し
た。抵抗測定のできないものを導通不良(OPEN)と
した。
<< Evaluation Method >> The anisotropic conductive films obtained in these Examples and Comparative Examples were evaluated for storage stability, adhesive strength, repairability and long-term reliability. The results are shown in Tables 1 and 2. Show. The anisotropic conductive films used as the test pieces all had a thickness of 25 μm, and the adherends were TAB (pitch 0.10 mm, number of terminals 200 with tin plating of 0.4 μm on copper foil / polyimide = 35/75 μm). And an indium / tin oxide conductive film having a sheet resistance value of 30 Ω and having a thickness of 1.1 mm (hereinafter referred to as ITO glass). -Storage stability: After the anisotropic conductive film was left at room temperature (23 ° C) and 40 ° C, it was confirmed that the anisotropic conductive film was melted on a hot plate of 120 ° C, and the sample was used to connect TAB and ITO glass. In this case, if the initial connection resistance value was 2Ω or less at all terminals, it was evaluated as ○, and if it exceeded 2Ω, it was evaluated as ×. -Adhesive strength: evaluated by a 90 ° peel test. Repairability: A test piece that was once joined by thermocompression bonding was heated to 150 ° C. on a hot plate and peeled off, and it was observed whether the connected member could be peeled off without damage. *: Peeled without any damage, ○: Peeled without damage, X: Damaged when peeled.・ Connection reliability: -40 ° C / 30 minutes, 25 ° C / 5 minutes, 80
250 ° C / 30 minutes, 25 ° C / 5 minutes temperature cycle test
After cycling, the connection resistance between adjacent terminals was measured. Those whose resistance could not be measured were regarded as poor conduction (OPEN).

【0022】 表 1 実 施 例 1 2 3 4 5 6 7 貯蔵安定性 室温 ○ ○ ○ ○ ○ ○ ○ 40℃ ○ ○ ○ ○ ○ ○ ○ 接着力 室温 790 730 680 640 930 810 800 (g/cm) 60℃ 830 870 840 740 820 720 840 リペア性 ○ ○ ○ ○ ※ ○ ○ 接続信頼性 初期 1.4 1.5 1.4 1.3 1.9 1.7 1.6 (Ω) 処理後 1.8 1.8 2.0 1.7 2.6 2.1 2.0 Table 1 Example 1 2 3 4 5 6 7 Storage stability Room temperature ○ ○ ○ ○ ○ ○ ○ 40 ℃ ○ ○ ○ ○ ○ ○ ○ Adhesion room temperature 790 730 680 640 930 810 800 (g / cm) 60 ℃ 830 870 840 740 820 720 840 Repairability ○ ○ ○ ○ ※ ○ ○ Connection reliability Initial 1.4 1.5 1.4 1.3 1.9 1.7 1.6 (Ω) After processing 1.8 1.8 2.0 1.7 2.6 2.1 2.0

【0023】 表 2 比 較 例 1 2 3 4 5 6 7 貯蔵安定性 室温 ○ ○ ○ × ○ ○ ○ 40℃ ○ ○ ○ × ○ ○ ○ 接着力 室温 400 890 820 470 520 740 760 (g/cm) 60℃ 430 680 540 280 300 820 790 リペア性 ○ ○ ○ ※ ○ ○ ○ 接続信頼性 初期 1.7 3.9 1.8 2.4 3.1 OPEN OPEN (Ω) 処理後 2.4 OPEN 2.7 OPEN OPEN OPEN OPEN Table 2 Comparative Example 1 2 3 4 5 6 7 Storage stability Room temperature ○ ○ ○ × ○ ○ ○ 40 ℃ ○ ○ ○ × ○ ○ ○ Adhesive strength Room temperature 400 890 820 470 520 740 760 (g / cm) 60 ℃ 430 680 540 280 300 820 790 Repairability ○ ○ ○ ※ ○ ○ ○ Connection reliability Initial 1.7 3.9 1.8 2.4 3.1 OPEN OPEN (Ω) After processing 2.4 OPEN 2.7 OPEN OPEN OPEN OPEN OPEN

【0025】[0025]

【発明の効果】本発明によれば、0.05ピッチ以下の
微細なマイクロ接合に使用可能であり、かつ密着性、作
業性のバランスが極めてよく、信頼性が高く、更には、
低接続抵抗の異方導電フィルムが得られた。
EFFECTS OF THE INVENTION According to the present invention, it can be used for fine micro-bonding with a pitch of 0.05 or less, and has a very good balance of adhesion and workability and high reliability.
An anisotropic conductive film having a low connection resistance was obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09J 163/00 JFP C09J 163/00 JFP H01B 5/16 H01B 5/16 H01R 4/04 H01R 4/04 // H05K 3/36 H05K 3/36 A B29K 25:00 303:06 B29L 7:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C09J 163/00 JFP C09J 163/00 JFP H01B 5/16 H01B 5/16 H01R 4/04 H01R 4 / 04 // H05K 3/36 H05K 3/36 A B29K 25:00 303: 06 B29L 7:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重合度が1500〜2500、アセチル
化度が3 mol%以下、ブチラール化度が65 mol%以
上、フロー軟化点200℃以上の特性を有するポリビニ
ルブチラール樹脂(A)、エポキシ樹脂(B)、マイク
ロカプセル化イミダゾール誘導体エポキシ化合物
(C)、溶剤(D)及び高分子球状核材の表面に金属被
覆を有する導電粒子(E)を必須成分とし、かつ重量配
合割合が(A)/[(B)+(C)]=(10〜50)
/100であるペースト状混合物を離形フィルム上に流
延し溶剤を揮散させ製膜されてなることを特徴とする異
方導電フィルム。
1. A polyvinyl butyral resin (A), an epoxy resin (A) having a polymerization degree of 1500 to 2500, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 200 ° C. or more. B), the microcapsulated imidazole derivative epoxy compound (C), the solvent (D), and the conductive particles (E) having a metal coating on the surface of the polymeric spherical core material as essential components, and the weight ratio is (A) / [(B) + (C)] = (10 to 50)
An anisotropic conductive film, characterized in that a paste-like mixture of 100/100 is cast on a release film to volatilize a solvent to form a film.
【請求項2】 導電粒子が高分子球状核材の表面にニッ
ケル膜を有し、該ニッケル膜の更に外層に金膜を有し、
該ニッケル膜中の燐含有量が2〜20重量%である請求
項1記載の異方導電フィルム。
2. The conductive particles have a nickel film on the surface of the polymeric spherical core material, and further have a gold film on the outer layer of the nickel film,
The anisotropic conductive film according to claim 1, wherein the phosphorus content in the nickel film is 2 to 20% by weight.
【請求項3】 エポキシ樹脂が、分子中にナフタレン骨
格を有するエポキシ樹脂を10〜80重量%含む請求項
1又は2記載の異方導電フィルム。
3. The anisotropic conductive film according to claim 1, wherein the epoxy resin contains 10 to 80% by weight of an epoxy resin having a naphthalene skeleton in the molecule.
JP31179095A 1995-11-30 1995-11-30 Anisotropic conductive film Expired - Fee Related JP3418492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31179095A JP3418492B2 (en) 1995-11-30 1995-11-30 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31179095A JP3418492B2 (en) 1995-11-30 1995-11-30 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH09150425A true JPH09150425A (en) 1997-06-10
JP3418492B2 JP3418492B2 (en) 2003-06-23

Family

ID=18021494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31179095A Expired - Fee Related JP3418492B2 (en) 1995-11-30 1995-11-30 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3418492B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204153A (en) * 1997-01-24 1998-08-04 Fujitsu Ltd Adhesive
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
JP2004189938A (en) * 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part
KR100485949B1 (en) * 2001-11-06 2005-04-28 엘에스전선 주식회사 Production Method Of ACF For Low Mobility
JP2005325161A (en) * 2004-05-12 2005-11-24 Hitachi Chem Co Ltd Anisotropically conductive adhesive film, method for producing the same and circuit connection structure using the same
JP2006291220A (en) * 2006-06-05 2006-10-26 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive and anisotropically conductive adhesive film
JP2008094908A (en) * 2006-10-10 2008-04-24 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2008308519A (en) * 2007-06-12 2008-12-25 Sumitomo Electric Ind Ltd Adhesive for connecting electrode
JP2009161751A (en) * 2007-12-12 2009-07-23 Hitachi Chem Co Ltd One-pack epoxy resin composition
US7632369B2 (en) * 2003-01-29 2009-12-15 Tdk Corporation Green sheet slurry, green sheet, production method of green sheet slurry, production method of green sheet, and production method of electronic device
JP2012033954A (en) * 2006-10-10 2012-02-16 Sumitomo Electric Ind Ltd Wiring board connecting body and wiring board module
JP2014531495A (en) * 2011-09-20 2014-11-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Conductive adhesive containing silver-coated particles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204153A (en) * 1997-01-24 1998-08-04 Fujitsu Ltd Adhesive
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
KR100485949B1 (en) * 2001-11-06 2005-04-28 엘에스전선 주식회사 Production Method Of ACF For Low Mobility
JP2004189938A (en) * 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part
US7632369B2 (en) * 2003-01-29 2009-12-15 Tdk Corporation Green sheet slurry, green sheet, production method of green sheet slurry, production method of green sheet, and production method of electronic device
JP2005325161A (en) * 2004-05-12 2005-11-24 Hitachi Chem Co Ltd Anisotropically conductive adhesive film, method for producing the same and circuit connection structure using the same
JP4654599B2 (en) * 2004-05-12 2011-03-23 日立化成工業株式会社 Anisotropic conductive adhesive film, method for producing the same, and circuit connection structure using the same
JP2006291220A (en) * 2006-06-05 2006-10-26 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive and anisotropically conductive adhesive film
JP2008094908A (en) * 2006-10-10 2008-04-24 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2012033954A (en) * 2006-10-10 2012-02-16 Sumitomo Electric Ind Ltd Wiring board connecting body and wiring board module
JP2008308519A (en) * 2007-06-12 2008-12-25 Sumitomo Electric Ind Ltd Adhesive for connecting electrode
JP2009161751A (en) * 2007-12-12 2009-07-23 Hitachi Chem Co Ltd One-pack epoxy resin composition
JP2014531495A (en) * 2011-09-20 2014-11-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Conductive adhesive containing silver-coated particles

Also Published As

Publication number Publication date
JP3418492B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
JP3885896B2 (en) Repairable electrode connecting adhesive composition and electrode connecting connecting member comprising the composition
JP3418492B2 (en) Anisotropic conductive film
JP3344886B2 (en) Anisotropic conductive film
JP3391870B2 (en) Anisotropic conductive film
JP3522634B2 (en) Anisotropic conductive adhesive
JP2842051B2 (en) Adhesive composition
JP3620751B2 (en) Anisotropic conductive film
JPH06295617A (en) Anithotropic conductive adhesive compound
JP2509773B2 (en) Method for producing anisotropic conductive film
JP2500826B2 (en) Anisotropic conductive film
JP3480754B2 (en) Method for producing anisotropic conductive film
JP2680412B2 (en) Anisotropic conductive film
JPH09165435A (en) Anisotropic conductive film
JPH09291259A (en) Low-temperature heating curable type anisotropic electroconductive adhesive
JP2894093B2 (en) Adhesive composition and laminated film
JP2006022230A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
JP2010024384A (en) Anisotropically electroconductive composition
JP2500819B2 (en) Anisotropic conductive film
JP3981341B2 (en) Anisotropic conductive adhesive
JP3075742B2 (en) Anisotropic conductive film
JP3046081B2 (en) Anisotropic conductive film
JP3447201B2 (en) Anisotropic conductive adhesive
JPH0521094A (en) Anisotropic electric conductive adhesive agent
JP3565343B2 (en) Adhesive composition for circuit connection
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees