JP3046081B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JP3046081B2
JP3046081B2 JP2419188A JP41918890A JP3046081B2 JP 3046081 B2 JP3046081 B2 JP 3046081B2 JP 2419188 A JP2419188 A JP 2419188A JP 41918890 A JP41918890 A JP 41918890A JP 3046081 B2 JP3046081 B2 JP 3046081B2
Authority
JP
Japan
Prior art keywords
epoxy resin
anisotropic conductive
film
conductive film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2419188A
Other languages
Japanese (ja)
Other versions
JPH04215209A (en
Inventor
泰雄 松井
寿郎 小宮谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2419188A priority Critical patent/JP3046081B2/en
Publication of JPH04215209A publication Critical patent/JPH04215209A/en
Application granted granted Critical
Publication of JP3046081B2 publication Critical patent/JP3046081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微細な回路同志の電気
的接続、より詳しくは、LCD(液晶ディスプレイ)と
フレキシブル回路基板の接続や、半導体ICとIC搭載
用回路基板のマイクロ接合に用いる事のできる異方導電
フィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for electrical connection between fine circuits, more specifically, for connection between an LCD (Liquid Crystal Display) and a flexible circuit board, and micro-joining between a semiconductor IC and a circuit board for mounting an IC. The present invention relates to an anisotropic conductive film that can be used.

【0002】[0002]

【従来の技術】最近の電子機器の小型化、薄型化に伴
い、微細な回路同志の接続、微小部品と微細回路の接続
等の必要性が飛躍的に増大してきており、その接続方法
として、異方性の導電性接着剤やフィルムが使用され始
めている。(例えば、特開昭 59−120436、6
0−191228、61−274394、61−287
974、62−244142、63−153534、6
3−305591、64−47084、64−8187
8、特開平 1−46549、1−251787、各号
公報)
2. Description of the Related Art With the recent miniaturization and thinning of electronic devices, the necessity of connection between minute circuits, connection between minute components and minute circuits, etc. has been dramatically increased. Anisotropic conductive adhesives and films have begun to be used. (For example, see JP-A-59-120436, 6
0-191228, 61-274394, 61-287
974, 62-244142, 63-153534, 6
3-3055591, 64-47084, 64-8187
8, JP-A-1-46549, 1-251787, each gazette)

【0003】この方法は、接続しようとする回路間に、
所定量の導電粒子を含有する接着剤またはフィルムをは
さみ、所定の温度、圧力、時間により熱圧着することに
よって、回路間の電気的接続を行うと同時に隣接する回
路間には絶縁性を確保させるものである。
[0003] In this method, between circuits to be connected,
By sandwiching an adhesive or film containing a predetermined amount of conductive particles and thermocompression bonding at a predetermined temperature, pressure, and time, an electrical connection between the circuits is made and at the same time insulation between adjacent circuits is ensured. Things.

【0004】従来、この異方導電接着剤ないしは異方導
電フィルムには、大別して熱可塑性樹脂を接着剤成分と
した熱可塑タイプと、熱硬化性樹脂を接着剤成分とした
熱硬化タイプが有り、LCDパネルのドライバーICと
LCD基板の接続を始めとして、多数の而も微細な回路
端子同志を一括接続する用途に急速に採用が進んでい
る。
Conventionally, this anisotropic conductive adhesive or anisotropic conductive film is roughly classified into a thermoplastic type using a thermoplastic resin as an adhesive component and a thermosetting type using a thermosetting resin as an adhesive component. For example, the connection between a driver IC of an LCD panel and an LCD substrate, and the use of connecting a large number of fine circuit terminals at once are rapidly increasing.

【0005】最近ではLCDパネルのカラー化・大型化
に伴い、熱可塑タイプに替わって、より高い信頼性が得
られるエポキシ系樹脂を中心とした熱硬化タイプの異方
導電フィルムの採用が増えつつある。
In recent years, with the increase in color and size of LCD panels, the use of thermosetting anisotropic conductive films centered on epoxy resins, which provide higher reliability, has been increasing in place of thermoplastic types. is there.

【0006】熱可塑タイプについては、SBS(スチレ
ン−ブタジエン−スチレン),SIS(スチレン−イソ
プレン−スチレン),SEBS(スチレン−エチレン−
ブタジエン−スチレン)等スチレン系共重合体が主とし
て用いられてきているが、これら熱可塑タイプの使用方
法は、基本的には溶融融着方式であり、その作業性は一
般的に条件を選べば熱硬化タイプのものに比べて比較的
低温・短時間での適用が可能であり、良好であると考え
られるが、接合部分に求められる耐熱性、接着力等今後
益々強くなる高信頼性への要求に応えられなくなってき
ている。
For the thermoplastic type, SBS (styrene-butadiene-styrene), SIS (styrene-isoprene-styrene), SEBS (styrene-ethylene-styrene) are used.
Styrene-based copolymers such as (butadiene-styrene) have been mainly used. However, these thermoplastic types are basically used in a melt-fusion type, and the workability is generally selected by selecting conditions. It can be applied at a relatively low temperature and in a short time compared with the thermosetting type, and it is considered to be good. It is no longer meeting demands.

【0007】一方熱硬化タイプのものについても、作業
性については被着体(LCDパネル、基板等)の耐熱性
に基く加熱温度の上限があり、又サイクル時間の短縮
等、作業効率向上への強い要求から、通常200℃以下
の温度で30秒前後或いはそれ以下の時間で硬化しなけ
ればならない。又同時に通常の使用条件下では室温で3
ケ月以上の貯蔵安定性を必要とする。
On the other hand, in the case of the thermosetting type as well, the workability has an upper limit of the heating temperature based on the heat resistance of the adherend (LCD panel, substrate, etc.). Due to strong demands, curing must usually be performed at a temperature of 200 ° C. or less for about 30 seconds or less. At the same time, under normal use conditions
Requires storage stability for more than a month.

【0008】これらの要求特性を満たす異方導電フィル
ムは既に上市されているが、LCDパネルやプリント回
路基板等、被着体の大型化が進むに従って、異方導電フ
ィルムの熱硬化反応時の硬化収縮や種々の雰囲気中での
樹脂自体の歪み応力に基づき、被着体が損傷(例えば基
板のクラックや反り)するという問題が新たに生じてき
ている。
Although anisotropic conductive films satisfying these required characteristics are already on the market, as an adherend such as an LCD panel or a printed circuit board increases in size, curing of the anisotropic conductive film during a thermosetting reaction. A new problem has arisen in that the adherend is damaged (eg, cracks or warp of the substrate) based on shrinkage and strain stress of the resin itself in various atmospheres.

【0009】即ち、速硬化、長ライフに加えて、接合部
分に残存する歪みが小さい、従って長期間高信頼性を有
する熱硬化タイプの異方導電フィルムは未だ得られてい
ないのが現状である。
That is, in addition to rapid curing and long life, a thermosetting anisotropic conductive film which has a small distortion remaining at a joint portion and therefore has high reliability for a long time has not yet been obtained. .

【0010】[0010]

【発明が解決しようとする課題】異方導電フィルムは主
として、多数の微細な回路端子を一括接続するために用
いられるが、被着体(液晶ディスプレイーパネル等)の
大型化によって、接合端子数も増加し、従って接続部分
も長く大きくなり、接合部分に残る歪みもこれに比例し
て大きくなっている。
The anisotropic conductive film is mainly used for connecting a large number of fine circuit terminals at once, but the number of bonding terminals is increased due to an increase in the size of an adherend (such as a liquid crystal display panel). Therefore, the connection portion becomes longer and larger, and the distortion remaining at the connection portion becomes proportionally larger.

【0011】このため所定の加熱加圧条件で接合した場
合においても、基板(例えばガラス基板)が反ったり、
基板端面の小さな瑕疵を始めとして、基板(パネル)全
面にクラックを生じる。このことを防ぐ方法として、接
合幅を細くして、トータルの応力量を減らす等の対策を
講じているが、応力集中に基づく歪みは減少するもの
の、結局接合信頼性を低下させることになっている。
Therefore, even when bonding is performed under predetermined heating and pressing conditions, the substrate (for example, a glass substrate) warps,
Cracks occur on the entire surface of the substrate (panel), including small defects on the end surface of the substrate. As a method to prevent this, measures such as reducing the total stress amount by reducing the joint width have been taken.However, although the distortion due to the stress concentration is reduced, the joint reliability is eventually reduced. I have.

【0012】異方導電フィルムに必要な特性は長期の信
頼性等の他に、造膜性(フィルム形成性)、加熱加圧時
の適度の流動性、被着体への適度の粘着性、キャリアフ
ィルムとの密着性、キャリアフィルムからの離型性等々
の特性が満たされていなければならない。
The properties required for the anisotropic conductive film include, in addition to long-term reliability, film forming properties (film forming properties), appropriate fluidity at the time of heating and pressing, moderate adhesiveness to an adherend, Characteristics such as adhesion to the carrier film and releasability from the carrier film must be satisfied.

【0013】本発明は、これらの基本特性に加えて、従
来の熱硬化タイプでは得られなかった、極めて歪み(応
力)の小さい、高信頼性の異方導電フィルムを提供せん
とするものである。
The present invention is to provide a highly reliable anisotropic conductive film having extremely small distortion (stress), which cannot be obtained by the conventional thermosetting type, in addition to these basic characteristics. .

【0014】[0014]

【課題を解決するための手段】従来の熱硬化タイプの異
方導電フィルムはエポキシ樹脂を主成分とし、潜在性硬
化剤、溶剤、導電性粒子を混合し、離型性の良好なフィ
ルム、例えばフッ素樹脂系フィルムやシリコン処理を施
したポリエステルフィルム上に流延・乾燥して作製され
ている。
Means for Solving the Problems A conventional thermosetting type anisotropic conductive film contains an epoxy resin as a main component, a latent curing agent, a solvent, and conductive particles, and is mixed with a film having good releasability. It is manufactured by casting and drying on a fluororesin-based film or a silicon-treated polyester film.

【0015】しかし、これらの系では硬化収縮や硬化後
の熱膨張係数等に起因する応力が大きく、残留歪みとし
て、例えばLCD基板とドライバーIC搭載ガラスエポ
キシ樹脂回路基板を、通常の条件で3mm×50mmの
大きさで接合を行った場合0.5〜2.0kg/mm
の応力が接合ガラス部分に加わっており、この応力が信
頼性を低下させることになっている。これを低減する方
法として、各種の可塑剤、添加物等の混合が考えられる
が、硬化性、保存性、接着力、粘着性等の特性の一部が
損なわれ、結果として信頼性の良好なフィルムは得られ
ない。
However, in these systems, stresses due to curing shrinkage and thermal expansion coefficient after curing are large, and as residual strain, for example, an LCD substrate and a glass epoxy resin circuit board on which a driver IC is mounted are 3 mm.times. 0.5 to 2.0 kg / mm 2 when joining with a size of 50 mm
Is applied to the bonded glass portion, and this stress reduces reliability. As a method of reducing this, mixing of various plasticizers, additives and the like can be considered, but curability, preservability, adhesive strength, a part of properties such as adhesiveness are impaired, and as a result, good reliability is obtained. No film is obtained.

【0016】本発明は、樹脂の硬化収縮や被着体との熱
膨張係数の差に基づく応力を減らすべく樹脂処方面から
種々検討を行ない、エポキシ樹脂およびシリコン変性エ
ポキシ樹脂と潜在性硬化剤とを樹脂成分として、これに
溶剤および導電粒子を配合して作製した異方導電フィル
ムが、従来のフィルムに比べて樹脂硬化後の弾性率が低
く、残留応力が極めて小さいことを見出した。
According to the present invention, various studies are made from the viewpoint of resin formulation in order to reduce the stress caused by the curing shrinkage of the resin and the difference in the coefficient of thermal expansion between the resin and the adherend. It has been found that an anisotropic conductive film prepared by blending a solvent and conductive particles with the resin component as a resin component has a lower elastic modulus after curing of the resin and an extremely lower residual stress than conventional films.

【0017】また、シリコン変性エポキシ樹脂の配合比
率が、残留応力の多寡を決定するが、シリコン変性エポ
キシ樹脂の配合量が多くなれば、残留応力は減少する
が、密着性他の熱硬化性の特性の一部が損なわれ、少な
すぎる場合は残留応力を減少させる効果は少ない。シリ
コン変性エポキシ樹脂の配合量が20〜50重量%、さ
らに好ましくは25〜40重量%の場合に、各種特性を
保持しながら、残留応力が大幅に低減することを見いだ
し本発明に到達した。
Further, the proportion of the silicon-modified epoxy resin determines the amount of the residual stress. As the proportion of the silicon-modified epoxy resin increases, the residual stress decreases, but the adhesion and other thermosetting properties are reduced. If some of the properties are impaired and too little, the effect of reducing the residual stress is small. It has been found that when the blending amount of the silicon-modified epoxy resin is 20 to 50% by weight, more preferably 25 to 40% by weight, the residual stress is greatly reduced while maintaining various properties, and the present invention has been reached.

【0018】本発明におけるシリコン変性エポキシ樹脂
は、一分子中に少なくとも二個以上のエポキシ基とシロ
キサン構造とを有するエポキシ樹脂が用いられる。具体
例としては、ビスフェノールA型エポキシ樹脂中で、ポ
リシラノールと架橋剤のメトキシシラン誘導体を加熱攪
拌し、橋架けしたシリコーン相をエポキシ樹脂中に分散
させたものや、同じくビスフェノールA型エポキシ樹脂
と両末端シラノールポリジメチルシロキサン、架橋剤と
してシランカップリング剤、及び触媒を加えて加熱攪拌
したもの、或いはエポキシ樹脂中に相溶化剤としてポリ
エーテル変性シリコーンオイルを用いてRTVシリコン
ゴムを分散させたもの等が挙げられ、単独或いは二種以
上を混合して用いられる。シリコン変性率は50%(重
量%、以下同じ)程度のもの迄使用可能であるが、樹脂
の溶解性・相溶性・応力等全ての特性についてバランス
の良いフィルムを得るためには、5〜20%の変性率の
範囲が好んで用いられる。
As the silicon-modified epoxy resin in the present invention, an epoxy resin having at least two or more epoxy groups and a siloxane structure in one molecule is used. As a specific example, a bisphenol A type epoxy resin in which polysilanol and a methoxysilane derivative of a crosslinking agent are heated and stirred to disperse a bridged silicone phase in the epoxy resin, or a bisphenol A type epoxy resin Silanol polydimethylsiloxane at both ends, a silane coupling agent as a cross-linking agent, and a catalyst with heating and stirring, or an RTV silicone rubber dispersed in an epoxy resin using polyether-modified silicone oil as a compatibilizer And the like, alone or as a mixture of two or more. The silicon modification rate can be used up to about 50% (% by weight, the same applies hereinafter). However, in order to obtain a film having a good balance with respect to all properties such as resin solubility, compatibility and stress, 5 to 20% is required. A range of% modification is preferably used.

【0019】潜在性硬化剤とは、ジシアンジアミド及び
その誘導体、三フッ化ホウ素アミンコンプレックス、イ
ミダゾール及びその誘導体等、エポキシ樹脂の潜在性硬
化剤として広く用いられるものはすべて使用可能である
が、主として硬化性・保存安定性等の作業性の点からイ
ミダゾール及びその誘導体化合物が好んで用いられる。
As the latent curing agent, any of those widely used as a latent curing agent for epoxy resins, such as dicyandiamide and its derivatives, boron trifluoride amine complex, imidazole and its derivatives, can be used. Imidazole and its derivative compounds are preferably used in view of workability such as properties and storage stability.

【0020】そのイミダゾール化合物としては、イミダ
ゾール、2−メチルイミダゾール、2−エチルイミダゾ
ール、2−エチル−4−メチルイミダゾール、2−フェ
ニルイミダゾール、2−フェニル−4−メチルイミダゾ
ール、1−べンジル−2−メチルイミダゾール、1−ベ
ンジル−2−エチルイミダゾール、1−ベンジル−2−
エチル−5−メチルイミダゾール、2−フェニル−4−
メチル−5−ヒドロキシメチルイミダゾール、2−フェ
ニル−4,5−ジヒドロキシメチルイミダゾール、2−
メチルイミダゾールアジン、2−ヘプタデシルイミダゾ
ール、2−ウンデシルイミダゾール、2,4−ジアミノ
−6{2’−メチルイミダゾール−(1)’}エチル−
S−トリアジン・イソシアヌール酸付加物、N,N’−
{2−メチルイミダゾリル−(1)−エチル}ドデカン
ジオイルジアジド、N,N’−{2−メチルイミダゾリ
ル−(1)−エチル}−エイコンサンジオイルジアジド
などが使用可能であり、またこれらイミダゾールとエポ
キシ樹脂の反応生成物もエポキシ樹脂用の潜在性硬化剤
として使用可能である。
The imidazole compound includes imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2 -Methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-
Ethyl-5-methylimidazole, 2-phenyl-4-
Methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-
Methylimidazole azine, 2-heptadecylimidazole, 2-undecylimidazole, 2,4-diamino-6 {2'-methylimidazole- (1) '} ethyl-
S-triazine / isocyanuric acid adduct, N, N'-
{2-methylimidazolyl- (1) -ethyl} dodecandioyldiazide, N, N '-{2-methylimidazolyl- (1) -ethyl} -aconsandioildiazide and the like can be used, and these imidazoles can be used. The reaction product of epoxy resin and epoxy resin can also be used as a latent curing agent for epoxy resin.

【0021】イミダゾールとエポキシ化合物の反応生成
物は、微粉末として市販されている。さらにはイソシア
ネート化合物と混合したり、マイクロカプセル化して貯
蔵安定性を高め、潜在性硬化剤として使用されているも
のもあるが、エポキシ樹脂との配合物の保存安定性と短
時間での急速硬化が可能であることからマイクロカプセ
ル化したものが好んで用いられる。
The reaction product of the imidazole and the epoxy compound is commercially available as a fine powder. In addition, some are mixed with isocyanate compounds or microencapsulated to increase storage stability and are used as latent curing agents.However, storage stability of compounds with epoxy resins and rapid curing in a short time Since microcapsulation is possible, microencapsulated products are preferably used.

【0022】溶剤としては、シリコン変性エポキシ樹脂
とエポキシ樹脂を溶解し、且つ前記潜在性硬化剤と混合
したときに均一な溶液となるものであれば全て使用可能
である。
As the solvent, any solvent can be used as long as it dissolves the silicon-modified epoxy resin and the epoxy resin and becomes a uniform solution when mixed with the latent curing agent.

【0023】具体的には、アセトン、メチルエチルケト
ン、メチルイソブチルケトン、ベンゼン、トルエン、キ
シレン、メチルアルコール、エチルアルコール、イソプ
ロピルアルコール、n−ブチルアルコール、酢酸エチ
ル、テトラヒドロフラン、メチルセロソルブ、エチルセ
ロソルブ、ジアセトンエーテル、メチルセロソルブアセ
テート、エチルセロソルブアセテート、ジメチルホルム
アミド、ジメチルアセトアミドなどが挙げられ、溶解性
・作業性を考慮して単独あるいは二種以上を混合して用
いられる。
Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, ethyl acetate, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, diacetone ether And methyl cellosolve acetate, ethyl cellosolve acetate, dimethylformamide, dimethylacetamide, etc., and these are used alone or in combination of two or more in consideration of solubility and workability.

【0024】導電粒子としては、ニッケル、鉄、銅、ア
ルミニウム、錫、鉛、クロム、コバルト、銀、金などの
金属および金属酸化物、半田をはじめとする合金や、カ
ーボン、グラファイト、あるいはガラスやセラミック、
プラスチックなどの核材にメッキなどの方法によって金
属をコーティングした導電粒子などが挙げられる。耐候
性・信頼性の点からは、金、ニッケル、半田合金などの
金属をコーティングしたものが好ましい。
The conductive particles include metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold, metal oxides, alloys such as solder, carbon, graphite, glass, and the like. ceramic,
Conductive particles obtained by coating a core material such as plastic with a metal by plating or the like can be used. From the viewpoints of weather resistance and reliability, those coated with a metal such as gold, nickel, or a solder alloy are preferable.

【0025】本発明に用いられる導電粒子の径は、接合
される回路の精度によっても変える必要があるが、隣接
する回路間の絶縁性を確保するためと接続の信頼性を確
保するためには、1〜10μmの範囲であることが必要
であり、さらに好ましくは3〜8μmの範囲で粒度分布
がシャープなものがより良好な信頼性を示す。
Although the diameter of the conductive particles used in the present invention must be changed depending on the precision of the circuit to be joined, in order to ensure insulation between adjacent circuits and to ensure reliability of connection. It is necessary that the particle size is in the range of 1 to 10 μm, and more preferably, the one having a sharp particle size distribution in the range of 3 to 8 μm shows better reliability.

【0026】導電粒子の配合量は、3〜10体積%が良
く、このましくは4〜6%の間で用いられる。配合量が
3体積%以下の場合、接合後安定した導通信頼性が得ら
れず、10体積%以上では隣接回路間の絶縁信頼性が劣
る場合が生じるので好ましくない。
The compounding amount of the conductive particles is preferably 3 to 10% by volume, more preferably 4 to 6%. If the amount is less than 3% by volume, stable conduction reliability after bonding cannot be obtained, and if it is more than 10% by volume, insulation reliability between adjacent circuits may be inferior.

【0027】以上のようにして、選択準備した樹脂材料
及び導電粒子を用いて異方導電フィルムを作製するが、
さらに樹脂溶液の安定性・相溶性、導電粒子の分散性向
上のために各種界面活性剤、消泡剤や、安定剤を適宜添
加してもよい。
As described above, an anisotropic conductive film is produced by using the resin material and the conductive particles selected and prepared.
Further, various surfactants, defoaming agents, and stabilizers may be appropriately added for improving the stability and compatibility of the resin solution and the dispersibility of the conductive particles.

【0028】異方導電フィルムの作製方法は、次に示す
方法によって行なう。先ず、シリコン変性エポキシ樹脂
及びエポキシ樹脂を溶剤に溶解し、均一な樹脂溶液を作
製する。次に潜在性硬化剤を添加混合し、この中に、導
電粒子を秤取し、樹脂溶液中に均一に分散する迄十分攪
拌混合する。更に必要に応じて各種の添加剤を加え、溶
剤で調整して固形分20〜30%の異方導電フィルム用
樹脂溶液を作製する。次に、この樹脂溶液を離型処理を
施したポリエステル系フィルム若しくはフッ素樹脂系フ
ィルムの上に流延・乾燥し、乾燥後の厚みが20〜50
μmの異方導電フィルムを得る。
The anisotropic conductive film is produced by the following method. First, a silicon-modified epoxy resin and an epoxy resin are dissolved in a solvent to prepare a uniform resin solution. Next, a latent curing agent is added and mixed, and the conductive particles are weighed and sufficiently stirred and mixed until uniformly dispersed in the resin solution. Further, if necessary, various additives are added and adjusted with a solvent to prepare a resin solution for an anisotropic conductive film having a solid content of 20 to 30%. Next, this resin solution is cast and dried on a polyester-based film or a fluororesin-based film subjected to a release treatment, and the thickness after drying is 20 to 50.
A μm anisotropic conductive film is obtained.

【0029】[0029]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。
The present invention will be described below in detail with reference to examples.

【0030】 〔実施例1〕 エポキシ当量340のビスフェノールA型エポキシ樹脂
および平均分子量2,500両末端シラノールポリジメ
チルシロキサンと、架橋剤としてシランカップリング剤
及び触媒を加えて、MEK中で80℃で加熱攪拌し、1
5%シリコン変性エポキシ樹脂の60%溶液を作製し
た。この樹脂溶液100重量部(以下、添加量は全て重
量部数を表す)と、エポキシ当量340のビスフェノー
ルA型エポキシ樹脂40部と潜在性硬化剤として2−ウ
ンデシルイミダゾールの12部を混合した。
Example 1 A bisphenol A-type epoxy resin having an epoxy equivalent of 340, a silanol polydimethylsiloxane having an average molecular weight of 2,500 at both ends, and a silane coupling agent and a catalyst as a crosslinking agent were added. Heat and stir 1
A 60% solution of 5% silicon-modified epoxy resin was prepared. 100 parts by weight of this resin solution (hereinafter, all added amounts represent parts by weight), 40 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 340, and 12 parts of 2-undecylimidazole as a latent curing agent were mixed.

【0031】次に導電粒子として、平均径10μm,最
大粒径20μm、最小粒径2μmの半田アトマイズ粉6
5gを均一分散させ、更にMEKによって全固形分が2
2%となるように希釈、樹脂溶液を得た。これをシリコ
ン樹脂で離型処理をほどこしたポリエチレンテレフタレ
ートフィルム上に、乾燥後の厚みが25μmになるよう
に塗膜を形成し、50℃で1時間乾燥させ(キャリアフ
ィルム付き)異方導電フィルムを得た。
Next, as the conductive particles, solder atomized powder 6 having an average diameter of 10 μm, a maximum diameter of 20 μm, and a minimum diameter of 2 μm.
5 g, and the total solid content was 2 by MEK.
It was diluted to 2% to obtain a resin solution. A coating film is formed on a polyethylene terephthalate film which has been subjected to a release treatment with a silicone resin so that the thickness after drying becomes 25 μm, and dried at 50 ° C. for 1 hour (with a carrier film) to form an anisotropic conductive film. Obtained.

【0032】 〔実施例2〕 実施例1と同様にして、エポキシ当量195のビスフェ
ノールA型エポキシ樹脂および平均分子量3200の末
端シラノールポリジメチルシロキサンと、シランカップ
リング剤と触媒を添加し、トルエン中で100℃で3時
間加熱反応させ、変性率7%のシリコン変性エポキシ樹
脂を得、更にトルエンを加えて65%樹脂溶液を調整し
た。この樹脂溶液100部に同じくエポキシ当量195
のビスフェノールA型エポキシ樹脂35部と、エポキシ
当量195のビスフェノールA型エポキシ樹脂とN,
N’−{2−メチルイミダゾリル−(1)−エチル}−
エイコサンジオイルジアジドとの反応生成物55部を混
合し均一に分散する。
Example 2 In the same manner as in Example 1, a bisphenol A type epoxy resin having an epoxy equivalent of 195, a terminal silanol polydimethylsiloxane having an average molecular weight of 3,200, a silane coupling agent and a catalyst were added, and toluene was added. Heat reaction was performed at 100 ° C. for 3 hours to obtain a silicon-modified epoxy resin having a modification rate of 7%, and toluene was further added to prepare a 65% resin solution. An epoxy equivalent of 195 was added to 100 parts of the resin solution.
35 parts of a bisphenol A type epoxy resin, and a bisphenol A type epoxy resin having an epoxy equivalent of 195 and N,
N '-{2-methylimidazolyl- (1) -ethyl}-
55 parts of the reaction product with eicosandioildiazide are mixed and uniformly dispersed.

【0033】ここに実施例1と同様の半田アトマイズ粉
80部を添加、均一分散せしめ、更にトルエンを添加し
て、22%溶液を得た。この樹脂溶液を厚み50μmの
FEP(4フッ化エチレン−6フッ化プロピレン共重合
体)フィルムの上に、流延・乾燥し、厚み25μm異方
導電フィルムを得た。
Here, 80 parts of the same solder atomized powder as in Example 1 was added, uniformly dispersed, and toluene was further added to obtain a 22% solution. This resin solution was cast and dried on a 50 μm-thick FEP (tetrafluoroethylene-6-fluoropropylene copolymer) film to obtain a 25 μm-thick anisotropic conductive film.

【0034】 〔比較例1〕 実施例1のシリコン変性エポキシ樹脂の代わりに、エポ
キシ当量340のビスフェノールA型エポキシ樹脂60
部を用いる以外は、全く同様にして異方導電フィルムを
作製した。
Comparative Example 1 Instead of the silicon-modified epoxy resin of Example 1, a bisphenol A type epoxy resin 60 having an epoxy equivalent of 340 was used.
An anisotropic conductive film was produced in exactly the same manner except that parts were used.

【0035】 〔比較例2〕 実施例2に用いたシリコン変性エポキシ樹脂の代わり
に、エポキシ当量195のビスフェノールA型エポキシ
樹脂を65gを用いた他は、実施例2と全く同様にして
異方導電フィルムを作製した。
Comparative Example 2 Anisotropically conducting in exactly the same manner as in Example 2 except that 65 g of bisphenol A type epoxy resin having an epoxy equivalent of 195 was used instead of the silicon-modified epoxy resin used in Example 2. A film was prepared.

【0036】以上のようにして得られた4種の異方導電
フィルムを、テストパターン(基板厚さ0.5mm、銅
箔厚さ18μm、回路幅0.1mm、回路間隔0.1m
m、パターン表面はNi/Au〔5/1μ〕メッキ)に
3mm×50mmの大きさに仮止めし、キャリアフィル
ムを剥がした後、全面にITO膜(インジウム/スズ酸
化膜)を形成した厚さ1.1mmのガラス板表面に、1
50℃で1分間圧着した。次にこれらの試験片を、光弾
性実験装置を用いて回路基板の圧着部について、ガラス
端面から光を入射して光路差をコンペンセーターで測定
し、圧着面にかかる応力値を測定した。その結果を表1
に示す。
The four types of anisotropic conductive films obtained as described above were tested with a test pattern (substrate thickness 0.5 mm, copper foil thickness 18 μm, circuit width 0.1 mm, circuit interval 0.1 m).
m, the pattern surface is temporarily fixed on Ni / Au [5 / 1μ] plating to a size of 3 mm × 50 mm, and after the carrier film is peeled off, the thickness of the ITO film (indium / tin oxide film) formed on the entire surface 1.1 mm on a glass plate surface
Crimping was performed at 50 ° C. for 1 minute. Next, these test pieces were measured for the optical path difference with a compensator by applying light from the glass end face to the crimped portion of the circuit board using a photoelasticity tester, and the stress applied to the crimped face was measured. Table 1 shows the results.
Shown in

【0037】また、異方導電フィルムに要求される基本
的な特性である、作業性および信頼性評価結果を表2に
示す。
Table 2 shows workability and reliability evaluation results, which are basic characteristics required for an anisotropic conductive film.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】表1に示すように、本発明による異方導電
フィルムは、その硬化後、接着界面に残留する応力値
は、従来のエポキシ樹脂単独系に替えてシリコン変性エ
ポキシ樹脂を併用することによって、従来品に比べて約
1/3〜1/4の大きさに大幅に減少させることが出来
た。
As shown in Table 1, in the anisotropic conductive film according to the present invention, after curing, the stress value remaining at the bonding interface can be determined by using a silicon-modified epoxy resin in combination with the conventional epoxy resin alone. However, the size was reduced to about 1/3 to 1/4 of that of the conventional product.

【0041】表2において、貯蔵安定性については、フ
ィルムを20〜25℃、50〜55%の雰囲気中で保存
し、3ヵ月後に初期の性能と同様の接合特性(導通抵
抗、接着強度等)を評価したが良好な保存性を示した。
In Table 2, regarding the storage stability, the film was stored in an atmosphere of 20 to 25 ° C. and 50 to 55%, and after 3 months, the same bonding characteristics as the initial performance (conductive resistance, adhesive strength, etc.) Was evaluated, and showed good storage stability.

【0042】硬化性については、いずれも150℃で1
分以内で硬化した時に良好な特性が得られている。
Regarding the curability, all of them were 1 at 150 ° C.
Good properties are obtained when cured within minutes.

【0043】接着強度については、FPCとガラス基板
を3×30mmの大きさに接合した時の90℃ピール
(引き剥がし)強度が500g/cm以上の場合を〇と
し、300g/cm以下の場合×とした。
Regarding the adhesive strength, when the peel strength at 90 ° C. when the FPC and the glass substrate are bonded to a size of 3 × 30 mm is 500 g / cm or more, it is regarded as Δ, and when it is 300 g / cm or less, And

【0044】信頼性試験については、TC(温度サイク
ルテスト、−30℃⇔RT⇔80℃)において、従来の
フィルムが100サイクル未満で不良(導電不良)を発
生したのに比較し、本発明によるフィルムによる場合5
00サイクル以上まで安定であった。
Regarding the reliability test, in the TC (temperature cycle test, −30 ° C.⇔RT⇔80 ° C.), according to the present invention, a defect (conduction defect) occurred in less than 100 cycles of the conventional film. Case 5 with film
It was stable up to 00 cycles or more.

【0045】また更に、−65℃⇔RT⇔150℃の条
件で温度サイクル試験を行なったところ、従来品では5
〜10サイクルで接続抵抗値が50%以上上昇するのに
対して、本発明によるフィルムを用いた場合30サイク
ルを越えても初期抵抗値は10%以下の変化に止まり、
良好な結果が得られた。
Further, a temperature cycle test was performed under the condition of -65 ° C.⇔RT⇔150 ° C.
While the connection resistance value increases by 50% or more in 10 cycles to 10 cycles, the initial resistance value of the film according to the present invention changes by 10% or less even when the cycle exceeds 30 cycles,
Good results were obtained.

【0046】[0046]

【発明の効果】以上に述べたように、本発明による異方
導電フィルムは、硬化後の残留応力(歪み)が小さく、
大きな接着強度を有し、信頼性に優れているだけでな
く、貯蔵安定性や硬化性などの作業特性にも優れ、益々
高度の信頼性を要求される微細な回路端子等の接続用途
に適したものである。
As described above, the anisotropic conductive film according to the present invention has a small residual stress (strain) after curing,
Not only has high bonding strength and excellent reliability, but also excellent work characteristics such as storage stability and curability, and is suitable for connection applications of fine circuit terminals etc. that require increasingly higher reliability. It is a thing.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 5/16 H01R 11/01 H05K 3/32 H05K 3/36 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 5/16 H01R 11/01 H05K 3/32 H05K 3/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 20〜50重量%のシリコン変性エポキ
シ樹脂エポキシ樹脂と潜在性硬化剤とこれらを溶解す
る溶剤と粒径が1〜10μmの範囲にある導電性粒子を
含む混合物を製膜してなることを特徴とする異方導電フ
ィルム。
1. A mixture comprising 20 to 50% by weight of a silicon-modified epoxy resin , an epoxy resin, a latent curing agent, a solvent for dissolving them, and conductive particles having a particle size in the range of 1 to 10 μm. An anisotropic conductive film, comprising:
JP2419188A 1990-12-13 1990-12-13 Anisotropic conductive film Expired - Fee Related JP3046081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419188A JP3046081B2 (en) 1990-12-13 1990-12-13 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419188A JP3046081B2 (en) 1990-12-13 1990-12-13 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH04215209A JPH04215209A (en) 1992-08-06
JP3046081B2 true JP3046081B2 (en) 2000-05-29

Family

ID=18526849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419188A Expired - Fee Related JP3046081B2 (en) 1990-12-13 1990-12-13 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3046081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255006B1 (en) * 2013-12-23 2021-05-24 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 An opening device for a container and a method for producing such opening device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662176B1 (en) * 2004-12-30 2006-12-27 제일모직주식회사 Anisotropic conductive film composition
JP5046689B2 (en) * 2007-03-09 2012-10-10 旭化成イーマテリアルズ株式会社 Anisotropic conductive adhesive film
JP5147263B2 (en) * 2007-03-09 2013-02-20 旭化成イーマテリアルズ株式会社 Anisotropic conductive adhesive film for circuit connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255006B1 (en) * 2013-12-23 2021-05-24 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 An opening device for a container and a method for producing such opening device

Also Published As

Publication number Publication date
JPH04215209A (en) 1992-08-06

Similar Documents

Publication Publication Date Title
JP5030196B2 (en) Adhesive for circuit connection
EP1944346B1 (en) Anisotropic conductive adhesive
WO2010073885A1 (en) Film adhesive and anisotropic conductive adhesive
JP2007056209A (en) Adhesive for circuit connection
JP3418492B2 (en) Anisotropic conductive film
JP3391870B2 (en) Anisotropic conductive film
JP2509773B2 (en) Method for producing anisotropic conductive film
JP3046081B2 (en) Anisotropic conductive film
JP2500826B2 (en) Anisotropic conductive film
JP3947532B2 (en) Anisotropic conductive adhesive film
JP2018131569A (en) Resin composition comprising conductive particles
JP4867805B2 (en) Adhesive for electrode connection
JP3981341B2 (en) Anisotropic conductive adhesive
JP2500819B2 (en) Anisotropic conductive film
JP3480754B2 (en) Method for producing anisotropic conductive film
JPH02288019A (en) Anisotropic conductive film
JP3085714B2 (en) Anisotropic conductive film
JP3075742B2 (en) Anisotropic conductive film
JP3080972B2 (en) Anisotropic conductive film
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
JPS6353234B2 (en)
JPH0329209A (en) Anisotropically conductive film
JPH0565348A (en) Anisotropically conductive film
JP3022980B2 (en) Thermosetting film adhesive
JP2008084545A (en) Adhesive for electrode connection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees