JPH02288019A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH02288019A
JPH02288019A JP1106045A JP10604589A JPH02288019A JP H02288019 A JPH02288019 A JP H02288019A JP 1106045 A JP1106045 A JP 1106045A JP 10604589 A JP10604589 A JP 10604589A JP H02288019 A JPH02288019 A JP H02288019A
Authority
JP
Japan
Prior art keywords
film
parts
melting point
epoxy resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1106045A
Other languages
Japanese (ja)
Other versions
JP2680412B2 (en
Inventor
Yasuo Matsui
松井 泰雄
Toshirou Komiyadani
小宮谷 寿郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP1106045A priority Critical patent/JP2680412B2/en
Publication of JPH02288019A publication Critical patent/JPH02288019A/en
Application granted granted Critical
Publication of JP2680412B2 publication Critical patent/JP2680412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To make a connecting material for a microcircuit have high workability and reliability by pouring a solution containing a specific elastomer, an epoxy resin, and a conductive powder upon a separation-type film to give a film and making the film become in B-stage so as to peel the film by heat or an organic solvent. CONSTITUTION:A solvent-soluble and thermally elastic polymer with <=150 deg.C of melting point, an epoxy resin, and their hardening agent are mixed with acrylonitrile-butadiene-based copolymer. A conductive powder of a solder powder having average grain size of 5-15mum, the largest grain size of <=25mum, the smallest grain size >=1mum, and 110 deg.C of melting point, and containing >=50% of indium in a specified amount is added to the mixed solution. The resulting mixed solution is poured upon a separation-type film and dried to give a film with <=50mum thickness which is then made to become in B-stage. By this way, a connecting material having high workability and durability and able to be peeled off by heat or an organic solvent is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LCD (液晶デイスプレー)とフレキシブ
ルプリント回路板の接続や、半導体ICとIC搭載用回
路基板のマイクロ接合等の、微細な回路同志の電気的接
続に用いる事の出来る異方性導電フィルムに関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to fine circuits such as connection between an LCD (liquid crystal display) and a flexible printed circuit board, and micro-bonding between a semiconductor IC and a circuit board for mounting an IC. The present invention relates to an anisotropic conductive film that can be used for electrical connection between devices.

〔従来の技術〕[Conventional technology]

最近の電子m器の小型化・薄型化に伴い、微細な回路と
微細な回路の接続や、微小部品と微細回路基板の接続の
必要性が飛躍的に増大してきており、その接合方法とし
て、半田接合技術の進展と共に、新しい材料として、縞
状に導電部と絶縁部分を配したいわゆる“エラスチック
コネクターや、異方性の導電性接着剤やシートが使用さ
れ始めている。(例えば、特開昭59−120436.
60−84718.60−191228.61−558
09.61−274394.61−287974各号公
報等) しかし、その多くは基本的には熱硬化性樹脂或いは熱可
塑性樹脂に分類され、それぞれの特徴を活かした使用方
法が提案されている。即ち、熱硬化性樹脂系では、その
耐熱性に基づく高信頼性を活かし、又、熱可塑性樹脂系
のものではその粘着性と繰り返しの圧着・剥離が可能で
あり、良好な作業性を有していることを活かして使い分
けられ、。
With the recent miniaturization and thinning of electronic equipment, the need to connect microcircuits to microcircuits and to connect microcomponents to microcircuit boards has increased dramatically. With the advancement of solder bonding technology, new materials such as so-called "elastic connectors" in which conductive and insulating parts are arranged in a striped pattern, and anisotropic conductive adhesives and sheets are beginning to be used. 59-120436.
60-84718.60-191228.61-558
09.61-274394.61-287974, etc.) However, most of them are basically classified as thermosetting resins or thermoplastic resins, and methods of use that take advantage of the characteristics of each have been proposed. In other words, thermosetting resins take advantage of their high reliability based on their heat resistance, while thermoplastic resins have good workability due to their adhesiveness and the ability to be repeatedly bonded and peeled. You can use it to your advantage.

主として、液晶デイスプレーとフレキシブルプリント回
路基板の接合を中心とした微細回路の接合や、耐熱性の
不足から半田付は接合方法を採用出来ない回路同志の接
合に用いられる。しかし、上記のような特性をすべて合
わせ持つ異方性導電フィルムは未だなく、これを用いた
電子機器の高信頼性化の足抛となっているのが現状であ
る。
It is mainly used for joining microcircuits, such as joining liquid crystal displays and flexible printed circuit boards, and for joining circuits where soldering cannot be used due to lack of heat resistance. However, there is still no anisotropic conductive film that has all of the above characteristics, and this is currently hindering efforts to improve the reliability of electronic devices using this film.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記従来技術では得られなかった、良好な作
業性と、高信頼性とを合わせ持つ新規な異方性導電フィ
ルムを提供せんとするものである。
The present invention aims to provide a novel anisotropic conductive film that has both good workability and high reliability that could not be obtained with the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

アクリロニトリル・ブタジェン系コポリマースチレン・
ブタジェン系コポリマー等の、融点が150 ’C以下
で溶剤に可溶性の熱可塑性ポリマー100ffi量部、
及びエポキシ樹脂とこれを硬化するのに用いる常温で固
形のイミダゾール系化合物を主成分とする硬化剤合計2
5〜400重量部を均一に分散混合した樹脂溶液と、平
均粒子径が5〜15μmの範囲にあり、且つ、最大粒子
径が25μm以下、最小粒子径がlIJm以上であり、
インジウムを50%以上含有し融点が110°C以上で
ある半田粉からなる導電性粒子を、前記樹脂溶液の固形
分に対して0.5〜20体積%添加混合し均一に分散せ
しめた混合溶液を、離型フィルム上に流延・乾燥して厚
さ50μm以下のフィルム状に形成しBステージ化して
得られる、1度熱圧着後、再度熱または有機溶剤によっ
て剥離できることを特徴とする異方性導電フィルムに関
するものである。
Acrylonitrile/butadiene copolymer styrene/
100 ffi parts of a thermoplastic polymer having a melting point below 150'C and soluble in a solvent, such as a butadiene copolymer;
and a hardening agent whose main components are an epoxy resin and an imidazole compound that is solid at room temperature and used to harden it.
A resin solution in which 5 to 400 parts by weight are uniformly dispersed and mixed, the average particle size is in the range of 5 to 15 μm, the maximum particle size is 25 μm or less, and the minimum particle size is lIJm or more,
A mixed solution in which conductive particles made of solder powder containing 50% or more of indium and having a melting point of 110°C or more are added and mixed in an amount of 0.5 to 20% by volume based on the solid content of the resin solution and uniformly dispersed. is casted and dried on a release film to form a film with a thickness of 50 μm or less and B-staged, and is characterized in that it can be peeled off again by heat or an organic solvent after being bonded by heat once. The present invention relates to a conductive film.

本発明において用いられる熱可塑性エラストマーは、ア
クリロニトリル・ブタジェン系コポリマ、スチレン・ブ
タジェン系コポリマー等より選ばれた、融点が150℃
以下で且つ溶剤に可溶性の、所謂ゴム系ポリマーが1種
又は2種以上組合せて用いられ、又同時に用いられるエ
ポキシ樹脂及びイミダゾール系硬化剤と相溶性の良い材
料が、適宜選択される。
The thermoplastic elastomer used in the present invention is selected from acrylonitrile-butadiene copolymers, styrene-butadiene copolymers, etc., and has a melting point of 150°C.
A so-called rubber-based polymer which is soluble in a solvent is used alone or in combination, and a material having good compatibility with the epoxy resin and imidazole curing agent used at the same time is appropriately selected.

エポキシ樹脂は、通常のビスフェノール系の他、脂肪族
系、或いは多官能芳香族系を用いても良い。
As the epoxy resin, in addition to the usual bisphenol type, an aliphatic type or a polyfunctional aromatic type may be used.

硬化剤としては、作業性、保存性、信頼性の点から、イ
ミダゾール系の硬化剤、例えば、2−メチルイミダゾー
ル、2−フェニルイミダゾール、2−フェニル−4メチ
ルイミダゾール、2−フェニル−45−ジヒドロキシメ
チルイミダゾール、2−フェニル−4メチル−5−ヒド
ロキシメチルイミダゾール、N、N〔2−メチルイミダ
ゾリル−(1)−エチル〕−アジポイルジアミド、2.
4−ジアミノ−6−(2’−メチルイミダゾリル−1”
)エチル−3−)リアジン・イソシアヌール酸付加物等
の常温で固体のイミダゾール系化合物等から選ばれた、
1種又は2種以上の混合物が用いられ、エポキシ樹脂と
混合して保存性が良好(常温で3力月以上、冷蔵で6力
月以上)であり、且つ、加熱速硬化性(120°C〜2
00°Cで5秒〜1分で初期密着性を与える)の組成物
が好んで用いられる。その他、促進剤や酸化防止剤、カ
ップリング剤等導電性フィラーとの密着性向上、或いは
通明導電ガラス回路基板やフレキシブル回路基板との密
着性向上の為に、各種添加剤を適宜併用して用いる事が
出来る。
As the curing agent, from the viewpoint of workability, storage stability, and reliability, imidazole-based curing agents, such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4methylimidazole, 2-phenyl-45-dihydroxy Methylimidazole, 2-phenyl-4methyl-5-hydroxymethylimidazole, N,N[2-methylimidazolyl-(1)-ethyl]-adipoyldiamide, 2.
4-diamino-6-(2'-methylimidazolyl-1"
) Ethyl-3-) selected from imidazole compounds that are solid at room temperature, such as riazine/isocyanuric acid adducts,
One type or a mixture of two or more types is used, and when mixed with epoxy resin, it has good storage stability (3 months or more at room temperature, 6 months or more when refrigerated), and has fast curing property (120°C ~2
A composition that provides initial adhesion in 5 seconds to 1 minute at 00°C is preferably used. In addition, various additives are used in combination as appropriate to improve adhesion with conductive fillers such as accelerators, antioxidants, and coupling agents, or to improve adhesion with Tongmei conductive glass circuit boards and flexible circuit boards. I can do things.

エポキシ樹脂及び硬化剤は、低温短時間硬化等の接合条
件、リペア−性等の作業性や、前記熱可塑性エラストマ
ーとの相溶性、さらには圧着・硬化後の耐熱性、耐湿熱
性等の信鯨性要求特性に基づいて適宜選択される0通常
の異方性導電フィルムに要求される所謂リペア−性、即
ち、1度熱圧着した後にそのフィルムを熱又は有機溶剤
等で剥離し、新たに用意したフィルムを用いて再度位置
合わせし、接合出来ることが特に作業性上欠かせない重
要な特性である。
The epoxy resin and curing agent are determined by bonding conditions such as low-temperature and short-time curing, workability such as repairability, compatibility with the thermoplastic elastomer, and reliability such as heat resistance and moist heat resistance after crimping and curing. The so-called repairability required for normal anisotropic conductive films, that is, the film is peeled off with heat or an organic solvent after being bonded under heat once, and a new one is prepared. The ability to reposition and bond using the film that has been prepared is an important characteristic that is essential for workability.

熱可塑性エラストマー100重量部に対する、エポキシ
樹脂および硬化剤の混合物の配合量について種々検討を
行なった所、その配合量が25重量部以下では、圧着後
の樹脂マトリックスが熱可塑性エラストマーによって形
成され、島状に分布するエポキシ樹脂は殆ど密着強度に
関与しない。
We conducted various studies on the blending amount of the mixture of epoxy resin and curing agent with respect to 100 parts by weight of the thermoplastic elastomer, and found that if the blending amount is 25 parts by weight or less, the resin matrix after pressure bonding will be formed by the thermoplastic elastomer, resulting in islands. The epoxy resin distributed in a shape has almost no effect on adhesion strength.

この為、被着体との密着強度は熱可塑性エラストマーの
持つ粘着(タッキネス)性が中心となり、エポキシ樹脂
が本来有する被着体との高い接着強度や高倍転性が得ら
れなかった。また、400重量部以上では、圧着後の樹
脂マトリックスがエポキシ樹脂の網目構造で形成され、
高い密着強度、耐熱性に裏付けられた高信鎖性が期待さ
れるが、圧着作業で樹脂の硬化が進みすぎ、この為一度
の圧着で密着強度が発現してしまい、圧着した被着体を
破損すること無く剥離することは不可能で、リペア−性
が失なわれた。従って、エポキシ樹脂及び硬化剤混合物
の熱可塑性エラストマー100重量部に対する配合量は
、25重量部以上400重量部以下、更に好ましくは4
0重量部以上150重量部以下の範囲とするのが良い。
For this reason, the adhesion strength with the adherend is mainly due to the tackiness of the thermoplastic elastomer, and the high adhesive strength with the adherend and high convertibility that epoxy resins inherently have cannot be obtained. In addition, when the amount is 400 parts by weight or more, the resin matrix after pressure bonding is formed with a network structure of epoxy resin,
High adhesion strength and high reliability backed by heat resistance are expected, but the resin hardens too much during the crimping process, resulting in the adhesive strength being developed with just one crimping process and damaging the crimped adherend. It was impossible to remove the film without causing damage, and the repairability was lost. Therefore, the amount of the epoxy resin and curing agent mixture based on 100 parts by weight of the thermoplastic elastomer is 25 parts by weight or more and 400 parts by weight or less, more preferably 4 parts by weight.
It is preferably in the range of 0 parts by weight or more and 150 parts by weight or less.

異方性導電フィルムは主として、液晶パネルとフレキシ
ブルプリント回路基板の接合用に実用化されており、被
着体となる透明導電性ガラス基板、即ちインジウム−ス
ズ系酸化物皮膜が形成されたガラス基板との密着性は欠
かせない特性の1つである。この為、導電性粒子につい
ても種々検討した結果、インジウムを50%以上含み、
且つ、融点が110℃以上である2種以上の金属からな
る低融点半田が優れた接続安定性を示すことを見出した
Anisotropic conductive films are mainly used for bonding liquid crystal panels and flexible printed circuit boards, and are applied to transparent conductive glass substrates as adherends, that is, glass substrates on which indium-tin oxide films are formed. Adhesion with the material is one of the essential characteristics. For this reason, as a result of various studies on conductive particles, we found that they contain more than 50% indium,
Furthermore, it has been found that a low melting point solder made of two or more metals having a melting point of 110° C. or higher exhibits excellent connection stability.

低融点半田を得る方法は、インジウムのほか、例えばビ
スマス、カドミウム等をスズ/鉛系に添加する方法が知
られているが、ビスマス系、カドミウム系では圧着後の
引き剥がし試験で強度が低く、一方、インジウム系を用
いた場合は剥離後のガラス板表面に半田粉が凝集破壊し
て残留しており強度も高い結果であった。更に又、ビス
マス系は接合後の電気的接続信軌性においても不足し、
カドミウム系はその毒性から使用は避ける方が好ましい
A known method for obtaining low melting point solder is to add indium, for example, bismuth, cadmium, etc. to tin/lead based solders, but bismuth and cadmium based solders have low strength in peel tests after crimping. On the other hand, when indium was used, solder powder remained on the surface of the glass plate after peeling due to cohesive failure, and the strength was also high. Furthermore, the bismuth type is insufficient in electrical connection reliability after bonding,
It is preferable to avoid using cadmium based materials due to their toxicity.

インジウムの含有量は50%以下では密着性・信較性に
おいてその添加効果は少ない、インジウムの含有量が5
0%以上であっても、融点が110°C以下の場合、圧
着後の耐熱性に不足するだけでなく、圧着時に半田が熔
融してしまい、半田粒子の凝集がおこり、隣接する回路
間の絶縁信鎖性を下げることになる。半田粉の融点はそ
の組成によって自由に変えられるが、110℃以上、更
に好ましくは120℃以上160″C以下の範囲にある
ことが好適である。
If the indium content is less than 50%, the effect of adding it on adhesion and reliability is small.
Even if the melting point is 0% or more, if the melting point is 110°C or less, not only will the heat resistance after crimping be insufficient, but the solder will melt during crimping, causing agglomeration of solder particles, and causing damage between adjacent circuits. This will lower the insulation chain properties. The melting point of the solder powder can be freely changed depending on its composition, but it is preferably in the range of 110°C or higher, more preferably 120°C or higher and 160''C or lower.

導電性粒子としての半田粉の大きさは、接合する回路の
パターン精度によって、又、導電メカニズムによって、
それぞれ好適な範囲があるが、現状接合に用いられる回
路幅/回路間隔=0.110゜1園に適合するためには
、最大粒子径25μm以下、最小粒子径1μm以上の範
囲にあり、而も平均粒子径が5〜15μmであることが
必要である。
The size of solder powder as a conductive particle depends on the pattern accuracy of the circuit to be joined and the conductive mechanism.
Each has a suitable range, but in order to comply with the circuit width/circuit spacing = 0.110°1 used for current bonding, the maximum particle diameter should be in the range of 25 μm or less and the minimum particle diameter of 1 μm or more. It is necessary that the average particle diameter is 5 to 15 μm.

25μm以上の場合、粒子同志が凝集した時や、圧着時
に2〜3倍に押しつぶされた際に、隣接する回路同志が
短絡する恐れがある。又、1μm以下の場合には、粒子
の凝集が著しくなったり、異方性導電フィルム全体とし
ての誘電特性にも影響が出てくる。平均粒子径について
は断面観察によるその導電メカニズムから、厚み方向に
単一の粒子で電気的に接合されていることが望ましく、
5〜15μmの場合が最も安定した接合状態を示す。
If the particle size is 25 μm or more, there is a risk that adjacent circuits may be short-circuited when the particles aggregate or are crushed 2 to 3 times in size during crimping. Furthermore, if the particle size is 1 μm or less, agglomeration of particles becomes significant, and the dielectric properties of the anisotropic conductive film as a whole are affected. Regarding the average particle diameter, it is desirable that the particles be electrically bonded as a single particle in the thickness direction, based on the conductive mechanism observed in the cross section.
The most stable bonding state is obtained when the thickness is 5 to 15 μm.

前記樹脂固形分に対する添加量については、0.5体積
%以下では導電性が得られず、又20%以上では隣接回
路間の絶縁信転性が不良である。
Regarding the amount added to the resin solid content, if it is less than 0.5% by volume, conductivity cannot be obtained, and if it is more than 20%, the insulation conductivity between adjacent circuits is poor.

以下、実施例をもとに本発明を説明する。The present invention will be explained below based on Examples.

〔実施例1〜5〕 アクリロニトリル・ブタジェン共重合体(NBR)15
部(重量部、以下同様)(日本合成ゴム■製)を85部
のメチルエチルケトンに溶解し、15部濃度の溶液■を
作製した。同様にして、スチレン・ブタジェン共重合体
(SBR)についても15部濃度のトルエン溶液■を作
製した。
[Examples 1 to 5] Acrylonitrile-butadiene copolymer (NBR) 15
(parts by weight, the same applies hereinafter) (manufactured by Nippon Synthetic Rubber (■)) was dissolved in 85 parts of methyl ethyl ketone to prepare a solution (2) with a concentration of 15 parts. Similarly, a 15 parts toluene solution (2) of styrene-butadiene copolymer (SBR) was prepared.

次に、常温で固形のエポキシ樹脂(油化シェルエポキシ
■製 EP−1001) 33部とイミダゾール系硬化
剤(2−フェニル−4−メチルイミダゾール)2部をメ
チルエチルケトン65部に溶解し、エポキシ樹脂溶液■
を作製した。又、常温で液状のエポキシ樹脂としてビス
フェノール系エポキシ樹脂(油化シェルエポキシ■製 
EP−828) 96部に、ジシアンジアミド1.5部
を溶解したメチルセロソルブ溶液15部、および2−フ
ェニル−4−メチルイミダゾール2.5部を溶解したメ
チルエチルケトン溶液25部を、添加混合し均一な樹脂
溶液■を作製した。
Next, 33 parts of an epoxy resin (EP-1001 manufactured by Yuka Shell Epoxy ■), which is solid at room temperature, and 2 parts of an imidazole curing agent (2-phenyl-4-methylimidazole) were dissolved in 65 parts of methyl ethyl ketone, and the epoxy resin solution was ■
was created. In addition, bisphenol-based epoxy resin (manufactured by Yuka Shell Epoxy ■) is used as an epoxy resin that is liquid at room temperature.
EP-828) 15 parts of a methyl cellosolve solution in which 1.5 parts of dicyandiamide was dissolved and 25 parts of a methyl ethyl ketone solution in which 2.5 parts of 2-phenyl-4-methylimidazole were dissolved were added and mixed to 96 parts to form a homogeneous resin. A solution (■) was prepared.

■及び■の熱可塑性エラストマー溶液と、■及び■のエ
ポキシ樹脂溶液とを第1表に示す割合で比率を変えて混
合した。
The thermoplastic elastomer solutions (1) and (2) and the epoxy resin solutions (2) and (2) were mixed at different ratios as shown in Table 1.

次に、このようにして得た樹脂混合溶液に、インジウム
合金粒子(In65重量%、Pb2O重量%、5n15
重量%、平均粒子径13μm、最大粒子径17μm、最
小粒子径2μm)を、樹脂固形分に対して5体積%投入
混合し、攪拌混合機によって10分間混合した。このも
のをアプリケーターを用いて離型フィルム(ポリエチレ
ンテレフタレートフィルム、厚さ25μm)上に、乾燥
後のフィルム厚みが20//mになるように流延し、8
0℃で5分間乾燥し、異方性導電フィルムを得得られた
異方性導電フィルムを用いて、インジウム−スズ酸化物
で回路形成した透明導電回路とフレキシブルプリント回
路板(ポリイミド25μm、銅箔1Bμm、回路中0.
1 mm、ピッチ0.1 mrs )を回路端子部を位
置合わせした後、150°Cで30秒熱圧着することに
より接続した。このようにして接続した試験片について
、初期特性と、150°C,1000Hr処理した後の
特性比較を行なった。結果は第1表に示した通りであっ
た。
Next, indium alloy particles (In65 wt%, Pb2O wt%, 5n15
(wt%, average particle size 13 μm, maximum particle size 17 μm, minimum particle size 2 μm) was added in an amount of 5% by volume based on the resin solid content, and mixed for 10 minutes using an agitating mixer. This material was cast onto a release film (polyethylene terephthalate film, thickness 25 μm) using an applicator so that the film thickness after drying was 20//m.
Dry at 0°C for 5 minutes to obtain an anisotropic conductive film.Using the obtained anisotropic conductive film, a transparent conductive circuit formed of indium-tin oxide and a flexible printed circuit board (polyimide 25 μm, copper foil 1Bμm, 0.
After aligning the circuit terminal portions (1 mm, pitch 0.1 mrs), they were connected by thermocompression bonding at 150° C. for 30 seconds. For the test pieces connected in this way, the initial characteristics and the characteristics after being treated at 150° C. for 1000 hours were compared. The results were as shown in Table 1.

〔比較例1〜3〕 実施例に示した樹脂溶液■〜■、及び、導電性粒子とし
ての通常の6八半田(Sn60%、Pn40%、500
 messパス)を用いて、他は実施例と全く同様にし
て試験片を作製し、信転性評価を行なった。樹脂配合及
び評価結果を第1表に示した。
[Comparative Examples 1 to 3] Resin solutions 1 to 3 shown in Examples and ordinary 68 solder (60% Sn, 40% Pn, 500% Pn) as conductive particles
Mess Pass) was used to prepare a test piece in exactly the same manner as in the Example except for the test piece, and reliability evaluation was performed. The resin formulation and evaluation results are shown in Table 1.

実施例ではいずれも優れたりペア性を示した。All of the examples showed excellent pairability.

即ち、150°Cで30秒圧着後、顕微鏡観察の結果、
被着体の端子間にズレが発生した試験片について、再度
加熱して直ちに引き剥がしたところ、フィルムの破断も
無く剥離することができた。又、信較性試験を終了した
試験片について、フレキシブルプリント回路板を剥離し
、透明導電ガラス表面の顕微鏡観察を行なった結果、ガ
ラス表面の金属粒子の凝集破壊した跡が観察され、優れ
た密着性が確認できた。密着強度測定の結果からも、処
理後強度がいずれも若干上昇しており、抵抗値の上昇も
わずかなものであった。
That is, after 30 seconds of pressure bonding at 150°C, as a result of microscopic observation,
When a test piece in which misalignment occurred between the terminals of the adherend was heated again and immediately peeled off, the film was able to be peeled off without any breakage. In addition, after the reliability test was completed, the flexible printed circuit board was peeled off from the test piece, and the surface of the transparent conductive glass was observed under a microscope. As a result, traces of cohesive failure of metal particles on the glass surface were observed, indicating excellent adhesion. I was able to confirm the gender. The results of adhesion strength measurement also showed that the strength after treatment increased slightly, and the increase in resistance value was also slight.

これに対して、比較例1では、優れた密着強度と抵抗値
安定性を示したが、リペア性は全く無く、一度圧着した
後、剥離を試みたところ、フレキシブルプリント回路板
が破断した。又、熱可塑性エラストマーのエポキシ樹脂
に対する配合比率が大きくなるほど初期値、処理後のい
ずれも密着強度が低く、抵抗値安定性は得られなかった
On the other hand, Comparative Example 1 showed excellent adhesion strength and resistance value stability, but had no repairability at all, and when attempting to peel it off after being crimped once, the flexible printed circuit board broke. Furthermore, as the blending ratio of the thermoplastic elastomer to the epoxy resin increases, the adhesion strength both at the initial value and after treatment decreases, and resistance value stability cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の異方性導電フィルムは、回路板に対する接着力
、接続抵抗等の特性が長時間の加熱処理後でも安定して
いて信頬性に優れると共に、再加熱によって容易に引き
剥がすことが出来てリペア性に優れ、作業性に優れ高信
頼性の微小回路の接続材料として有用である。
The anisotropic conductive film of the present invention has stable characteristics such as adhesive strength and connection resistance to a circuit board even after long-term heat treatment, and has excellent reliability, and can be easily peeled off by reheating. It has excellent repairability and is useful as a connection material for microcircuits with excellent workability and high reliability.

Claims (1)

【特許請求の範囲】[Claims] (1)融点が150℃以下で溶剤に可溶性の熱可塑性エ
ラストマー100重量部、およびエポキシ樹脂とこれを
硬化するのに用いる常温で固形のイミダゾール系化合物
を主成分とする硬化剤合計25〜400重量部を均一に
分散混合した樹脂溶液と、平均粒子径が5〜15μmの
範囲にあり、且つ、最大粒子径が25μm以下、最小粒
子径が1μm以上であり、インジウムを50%以上含有
し融点が110℃以上である半田粉からなる導電性粒子
を、前記樹脂溶液の固形分に対して0.5〜20体積%
添加混合し均一に分散せしめた混合溶液を、離型フィル
ム上に流延・乾燥して厚さ50μm以下のフィルム状に
形成しBステージ化して得られる、一度熱圧着した後、
再度熱又は有機溶剤によって剥離できることを特徴とす
る異方性導電フィルム。
(1) 100 parts by weight of a thermoplastic elastomer with a melting point of 150°C or lower and soluble in a solvent, and a curing agent whose main components are an epoxy resin and an imidazole compound that is solid at room temperature and is used to cure this, totaling 25 to 400 parts by weight. and a resin solution in which the average particle size is in the range of 5 to 15 μm, the maximum particle size is 25 μm or less, the minimum particle size is 1 μm or more, contains 50% or more of indium, and has a melting point. Conductive particles made of solder powder having a temperature of 110°C or higher are added in an amount of 0.5 to 20% by volume based on the solid content of the resin solution.
A mixed solution that has been added and mixed and uniformly dispersed is cast on a release film and dried to form a film with a thickness of 50 μm or less and B-staged. After once thermocompression bonding,
An anisotropic conductive film characterized in that it can be peeled off again using heat or an organic solvent.
JP1106045A 1989-04-27 1989-04-27 Anisotropic conductive film Expired - Fee Related JP2680412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106045A JP2680412B2 (en) 1989-04-27 1989-04-27 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106045A JP2680412B2 (en) 1989-04-27 1989-04-27 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH02288019A true JPH02288019A (en) 1990-11-28
JP2680412B2 JP2680412B2 (en) 1997-11-19

Family

ID=14423665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106045A Expired - Fee Related JP2680412B2 (en) 1989-04-27 1989-04-27 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2680412B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532799A (en) * 1991-07-31 1993-02-09 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JPH05117419A (en) * 1991-10-30 1993-05-14 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JPH05154857A (en) * 1991-12-05 1993-06-22 Sumitomo Bakelite Co Ltd Anisotropic conductive film
US6680517B2 (en) * 2000-08-23 2004-01-20 Tdk Corporation Anisotropic conductive film, production method thereof, and display apparatus using anisotropic film
JP2006298954A (en) * 2005-04-15 2006-11-02 Tatsuta System Electronics Kk Electroconductive adhesive sheet and circuit board
US7888604B2 (en) 2005-04-11 2011-02-15 3M Innovative Properties Company Connection method of a flexible printed circuit board with two printed circuit boards, and electric or electronic component with parts connected by the connection method
JP2019119820A (en) * 2018-01-09 2019-07-22 住友ベークライト株式会社 Encapsulation film, encapsulation film coated electronic component loading substrate and re-detachment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532799A (en) * 1991-07-31 1993-02-09 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JPH05117419A (en) * 1991-10-30 1993-05-14 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JPH05154857A (en) * 1991-12-05 1993-06-22 Sumitomo Bakelite Co Ltd Anisotropic conductive film
US6680517B2 (en) * 2000-08-23 2004-01-20 Tdk Corporation Anisotropic conductive film, production method thereof, and display apparatus using anisotropic film
US7888604B2 (en) 2005-04-11 2011-02-15 3M Innovative Properties Company Connection method of a flexible printed circuit board with two printed circuit boards, and electric or electronic component with parts connected by the connection method
JP2006298954A (en) * 2005-04-15 2006-11-02 Tatsuta System Electronics Kk Electroconductive adhesive sheet and circuit board
JP2019119820A (en) * 2018-01-09 2019-07-22 住友ベークライト株式会社 Encapsulation film, encapsulation film coated electronic component loading substrate and re-detachment method

Also Published As

Publication number Publication date
JP2680412B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US7736541B2 (en) Anisotropic conductive adhesive
JP2008094908A (en) Adhesive for electrode connection
KR100989535B1 (en) Adhesive material
JPH07157720A (en) Film having anisotropic electrical conductivity
JP3418492B2 (en) Anisotropic conductive film
JP2007056209A (en) Adhesive for circuit connection
JP2007317563A (en) Circuit connecting adhesive
JP2680412B2 (en) Anisotropic conductive film
JP3391870B2 (en) Anisotropic conductive film
US20060261315A1 (en) Insulation-coated electroconductive particles
JP4867805B2 (en) Adhesive for electrode connection
JP2500826B2 (en) Anisotropic conductive film
JP3981341B2 (en) Anisotropic conductive adhesive
JPH10273635A (en) Connecting member for circuit and production of circuit board
JP2680430B2 (en) Anisotropic conductive film
JP2009084307A (en) Adhesive for connecting electrodes
JP5273514B2 (en) Electrode connecting adhesive and method for producing the same
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP3480754B2 (en) Method for producing anisotropic conductive film
JPH10251606A (en) Conductive adhesive
JPH07118618A (en) Adhesive for fine pitch having anisotropic electrical conductivity
WO2015098059A1 (en) Material for bonding electronic component, and method for bonding electronic component
JP3046081B2 (en) Anisotropic conductive film
JPH07252460A (en) Adhesive
JP3080972B2 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees