JPH0532799A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH0532799A
JPH0532799A JP19050591A JP19050591A JPH0532799A JP H0532799 A JPH0532799 A JP H0532799A JP 19050591 A JP19050591 A JP 19050591A JP 19050591 A JP19050591 A JP 19050591A JP H0532799 A JPH0532799 A JP H0532799A
Authority
JP
Japan
Prior art keywords
film
anisotropic conductive
conductive film
resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19050591A
Other languages
Japanese (ja)
Other versions
JP2500819B2 (en
Inventor
Toshirou Komiyatani
寿郎 小宮谷
Yasuo Matsui
泰雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3190505A priority Critical patent/JP2500819B2/en
Publication of JPH0532799A publication Critical patent/JPH0532799A/en
Application granted granted Critical
Publication of JP2500819B2 publication Critical patent/JP2500819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain an anisotropic conductive film having excellent storage stability at ordinary temperature, having high adhesion and high reliability in a wide range of temperature and small residual stress as well as moisture resistance and repair properties and suitable for connection between LCD and a flexible circuit board. CONSTITUTION:A mixture solution containing a reactive elastomer (e.g. carboxyl group-containing styrene-butadiene copolymer) in which a silane coupling agent is uniformly mixed, epoxy resin, solvent (e.g. acetone) for dissolving these compounds, encapsulated imidazole derivative and 3-10vol.% conductive particles (e.g. nickel) having 5-10mum particle diameter is cast onto a mold-releasable carrier film and dried and formed into film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細な回路同志の電気
的接続、更に詳しくはLCD(液晶ディスプレー)とフ
レキシブル回路基板の接続や、半導体ICとIC搭載用
回路基板のマイクロ接合に用いる異方導電フィルムに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical connection between minute circuits, more specifically, a connection between an LCD (liquid crystal display) and a flexible circuit board, and a micro connection between a semiconductor IC and an IC mounting circuit board. The present invention relates to a directional conductive film.

【0002】[0002]

【従来の技術】最近の電子機器の小型化、薄型化に伴
い、微細な回路同志の接続、微小部品と微細回路の接続
等の必要性が飛躍的に増大してきており、その接続方法
として、異方性の導電性接着剤やフィルムが使用され始
めている。(例えば、特開昭59−120436、60−191228、
61−274394、61−287974、62−244142、63−153534、63
−305591、64−47084 、64−81878 、平1−46549 、1
−251787各号公報等)
2. Description of the Related Art With the recent miniaturization and thinning of electronic devices, the necessity of connecting minute circuits to each other, connecting minute parts to minute circuits, etc. has been dramatically increasing. Anisotropic conductive adhesives and films are beginning to be used. (For example, JP-A-59-120436, 60-191228,
61-274394, 61-287974, 62-244142, 63-153534, 63
-305591, 64-47084, 64-81878, Flat 1-446549, 1
− 251787 Bulletins, etc.)

【0003】この方法は、接続しようとする回路間に所
定量の導電粒子を含有する接着剤またはフィルムをはさ
み、所定の温度、圧力、時間により熱圧着することによ
って、回路間の電気的接続を行うと同時に隣接する回路
間には絶縁性を確保させるものである。
According to this method, an adhesive or film containing a predetermined amount of conductive particles is sandwiched between the circuits to be connected, and thermocompression bonding is performed at a predetermined temperature, pressure and time to establish electrical connection between the circuits. At the same time, the insulation is secured between adjacent circuits.

【0004】従来、この異方導電接着剤ないしは異方導
電フィルムには大別して熱可塑性樹脂を接着剤成分とし
た熱可塑タイプと熱硬化性樹脂を接着剤成分とした熱硬
化タイプが有り、LCDパネルのドライバーICとLC
D基板の接続を始めとして、多数のしかも微細な回路端
子同志を一括接続する用途に採用が急速に進んでいる。
Conventionally, this anisotropic conductive adhesive or anisotropic conductive film is roughly classified into a thermoplastic type having a thermoplastic resin as an adhesive component and a thermosetting type having a thermosetting resin as an adhesive component. Panel driver IC and LC
Adoption is rapidly advancing in applications such as connecting D substrates, in which a large number of minute circuit terminals are connected together.

【0005】最近ではLCDパネルのカラー化・大型化
に伴い熱可塑タイプに代わって、より高い信頼性が得ら
れるエポキシ系樹脂を中心とした熱硬化タイプの異方導
電フィルムの採用が増えつつある。
Recently, with the colorization and size increase of LCD panels, instead of the thermoplastic type, the adoption of a thermosetting type anisotropic conductive film centering on an epoxy resin, which is more reliable, is increasing. ..

【0006】熱可塑タイプについては、スチレン−ブタ
ジエン−スチレン、スチレン−イソプレン−スチレン、
スチレン−エチレン−ブタジエン−スチレン等スチレン
系共重合体が主として用いられてきているが、これら熱
可塑タイプの使用方法は基本的には、熱融着方式であ
り、その作業性は一般的に条件を選べば比較的低温・短
時間での適用が可能であるが、接合部分に求められる耐
熱性、耐熱衝撃性、接着力など今後益々強くなる高信頼
性への要求に応えられなくなってきている。
For the thermoplastic type, styrene-butadiene-styrene, styrene-isoprene-styrene,
Styrene-based copolymers such as styrene-ethylene-butadiene-styrene have been mainly used, but the method of using these thermoplastic types is basically a heat fusion method, and the workability thereof is generally the If it is selected, it can be applied at a relatively low temperature for a short time, but it is no longer possible to meet the demands for high reliability such as heat resistance, thermal shock resistance, and adhesive strength required for the joint part in the future. ..

【0007】一方熱硬化タイプのものについても、作業
性については被着体(LCDパネル、基板等)の耐熱性
に基づく加熱温度の上限があり、又サイクル時間の短縮
等、作業効率向上への強い要求から、通常150〜20
0℃程度で30秒間前後或いはそれ以下の時間で硬化し
なければならない。同時に通常の使用条件下では室温で
3ケ月以上(〜6ケ月)の貯蔵安定性を必要とし、かつ
接続後は耐湿性をはじめとする信頼性に優れていなけれ
ばならない。
On the other hand, regarding the thermosetting type, there is an upper limit of the heating temperature based on the heat resistance of the adherend (LCD panel, substrate, etc.) in terms of workability, and the cycle time is shortened to improve work efficiency. Due to strong demand, usually 150-20
It should be cured at about 0 ° C. for about 30 seconds or less. At the same time, under normal use conditions, storage stability at room temperature for 3 months or more (up to 6 months) is required, and after connection, it must be excellent in reliability such as moisture resistance.

【0008】更に、異方導電フィルムによる回路同志の
接続作業において、位置ずれ等の理由によって、一度接
続した被接続部材を破損または損傷せずに剥離し再圧着
すること(所謂“リペア”)が可能である事への要求や
異方導電フィルムの熱硬化反応時の硬化収縮や種々の雰
囲気中での樹脂自体の歪み応力に基づき、被着体が損傷
(例えばLCDに用いられているガラス基板のクラック
や基板の反り)するという問題が生じてきている。即
ち、速硬化、長ライフ、リペア性、耐湿性、更には、低
歪みの高信頼性熱硬化タイプの異方導電フィルムが強く
要求されている。
Further, in the connection work between the circuits using the anisotropic conductive film, it is possible to peel and re-press the connected members once they have been connected without damaging or damaging them (so-called "repair") due to misalignment or the like. The adherend is damaged (for example, the glass substrate used in LCDs) based on the requirement of being able to do so, the curing shrinkage during the thermosetting reaction of the anisotropic conductive film, and the strain stress of the resin itself in various atmospheres. Problems such as cracks in the substrate and warpage of the substrate) are occurring. That is, there is a strong demand for a highly reliable thermosetting anisotropic conductive film having fast curing, long life, repairability, moisture resistance, and low distortion.

【0009】[0009]

【発明が解決しようとする課題】異方導電フィルムによ
る接続部には、しばしば、吸湿による接着力の低下を防
ぐ目的や機械的強度を増す補強のために、紫外線硬化型
樹脂、シリコンゴム系接着剤等をFPC側より覆うよう
に塗布し使用されている。広い温度範囲で高接着力を維
持し、吸湿による接着強度低下が起こらなければ、この
ような工程やこれらに係る設備等が必要でなくなる。
The anisotropic conductive film connecting portion is often bonded to an ultraviolet curable resin or a silicone rubber adhesive for the purpose of preventing a decrease in adhesive strength due to moisture absorption and for reinforcement to increase mechanical strength. It is used by applying the agent and the like so as to cover it from the FPC side. If the high adhesive strength is maintained in a wide temperature range and the adhesive strength is not lowered due to moisture absorption, such a process and equipment related thereto are not necessary.

【0010】異方導電フィルムは既述のように、多数の
微細な回路端子を一括接続するために用いられるが、被
着体(液晶ディスプレーパネル等)の大型化によって、
接合端子数も増加し、従って接続部分も長くなり、全体
に加わる異方導電フィルムの熱硬化による収縮や種々の
環境下における歪みも比例して大きくなっている。
As described above, the anisotropic conductive film is used for collectively connecting a large number of fine circuit terminals, but due to the increase in size of the adherend (liquid crystal display panel, etc.),
The number of joining terminals is also increasing, the connecting portion is also lengthening, and the shrinkage due to thermosetting of the anisotropic conductive film applied to the whole and the distortion under various environments are also proportionally increased.

【0011】このため所定の加熱加圧条件で接合した場
合においても、基板(例えばガラス基板)が反ったり、
基板端面の小さな傷がきっかけで、基板(パネル)全面
にクラックを生じる。このことを防ぐ方法として、接合
幅を細くして、トータルの応力量を減らしたり、連続し
た長尺部分の接合を無くし、短いフィルムで分割された
被接続体を個々に接合するといった対策を講じている
が、応力に基づく歪みは減少するものの、結局接合信頼
性を低下させることになっている。
For this reason, the substrate (for example, a glass substrate) may be warped even when bonded under a predetermined heating and pressurizing condition.
Small scratches on the edge of the substrate trigger cracks on the entire surface of the substrate (panel). As a method to prevent this, measures such as narrowing the joint width to reduce the total stress amount, eliminating the joining of continuous long parts, and joining the connected parts divided by short films individually are taken. However, although the strain due to the stress is reduced, the joint reliability is eventually lowered.

【0012】そこで我々は、樹脂本来の硬化歪み(応
力)を減少させるべく種々検討を行った結果、フィルム
に要求される各種特性を全く損なうことなく、接合後の
歪みが極めて小さく、耐湿性のある異方導電フィルムを
見出した。
[0012] Therefore, as a result of various studies to reduce the original curing strain (stress) of the resin, the strain after bonding is extremely small and the moisture resistance of the film is extremely low without impairing various properties required for the film. We have found an anisotropic conductive film.

【0013】即ち、本発明は、従来の熱硬化タイプでは
得られなかった、常温での保存安定性に優れ、加熱加圧
して硬化後、広範囲の温度域(−40〜100℃)にお
いて優れた接着力を有し、しかも接合部に残る歪み(応
力)が極めて小さく、更に加えて一度圧着したものを所
定の温度以上に加熱することによって剥離・再圧着可能
である熱硬化型異方導電フィルムを提供するものであ
る。
That is, the present invention has excellent storage stability at room temperature, which was not obtained by the conventional thermosetting type, and was excellent in a wide temperature range (-40 to 100 ° C.) after being cured by heating and pressing. Thermosetting anisotropic conductive film that has adhesive strength, has extremely small strain (stress) remaining at the joint, and can be peeled and re-bonded by heating the pressure-bonded product once above a specified temperature. Is provided.

【0014】[0014]

【課題を解決するための手段】本発明は、シランカップ
リング剤を均一に混合した反応性エラストマーとエポキ
シ樹脂、これらを溶解する溶剤とマイクロカプセル化イ
ミダゾール誘導体と導電粒子を含む混合物溶液をキャリ
アフィルム上に流延・乾燥して製膜してなる異方導電フ
ィルムである。
According to the present invention, a reactive elastomer and an epoxy resin in which a silane coupling agent is uniformly mixed, a solvent for dissolving them, a mixture solution containing a microencapsulated imidazole derivative and conductive particles are used as a carrier film. An anisotropic conductive film formed by casting and drying on top.

【0015】熱硬化性エポキシ樹脂単独系では硬化収縮
に基づく硬化後の応力が大きく、残存歪みとして、例え
ばLCDガラス基板とフレキシブル回路基板を通常の条
件で3mm×50mmの大きさで接合を行った場合294.
1〜1470.7N/cm2 の応力が接合ガラス部分に加
わっている。これを低減する方法として、各種の可塑
剤、添加物等の混合が考えられるが、硬化性、保存性、
粘着性等の特性の一部が損なわれ、結果として信頼性の
良好なフィルムは得られていない。そこで樹脂の硬化収
縮による応力を減らすべく樹脂処方面から種々検討を行
ない、反応性エラストマーとエポキシ樹脂と、マイクロ
カプセル化イミダゾール誘導体の組合せによって異方導
電フィルムを硬化した場合に残留応力が極めて小さいこ
とを見出した。
In the case of the thermosetting epoxy resin alone, the stress after curing due to curing shrinkage is large, and as a residual strain, for example, an LCD glass substrate and a flexible circuit substrate were bonded under a normal condition with a size of 3 mm × 50 mm. Case 294.
A stress of 1-1470.7 N / cm 2 is applied to the bonded glass portion. As a method of reducing this, mixing of various plasticizers, additives, etc. can be considered, but curability, storability,
A part of properties such as tackiness is impaired, and as a result, a highly reliable film has not been obtained. Therefore, in order to reduce the stress due to curing shrinkage of the resin, various studies were conducted from the resin prescription side, and the residual stress was extremely small when the anisotropic conductive film was cured by the combination of the reactive elastomer, the epoxy resin, and the microencapsulated imidazole derivative. Found.

【0016】また、その反応性エラストマーに予めシラ
ンカップリング剤を均一に混合した後にエポキシ樹脂と
混合すると、非常に耐湿性が良くなることを見出し、本
発明に到達した。
Further, they have found that when the reactive elastomer is uniformly mixed with a silane coupling agent in advance and then mixed with an epoxy resin, the moisture resistance is extremely improved, and the present invention has been completed.

【0017】本発明において、この反応性エラストマー
の配合比が残留応力の多少を決定する。多くなればなる
ほど、残留応力は減少するが、熱硬化性の特性が損なわ
れ、少なすぎた場合は残留応力を減少させる硬化が得ら
れない。種々検討の結果、反応性エラストマーの配合比
は樹脂全体量の20〜50重量%、好ましくは25〜4
0重量%の範囲で用いられる。
In the present invention, the compounding ratio of the reactive elastomer determines the residual stress. The higher the amount, the lower the residual stress, but the thermosetting properties are impaired, and if too small, the residual stress-reducing hardening cannot be obtained. As a result of various studies, the compounding ratio of the reactive elastomer is 20 to 50% by weight, preferably 25 to 4% by weight based on the total amount of the resin.
Used in the range of 0% by weight.

【0018】上記反応エラストマーとは、カルボキシル
基含有スチレン−ブタジエン共重合体、カルボキシル基
含有スチレン−イソプレン共重合体、カルボキシル基含
有スチレン−ブタジエン飽和共重合体、カルボキシル基
含有スチレン−イソプレン飽和共重合体、カルボキシル
基含有スチレン−エチレン−ブテン−スチレン共重合
体、カルボキシル基含有スチレン−エチレン−ブテン−
スチレン飽和共重合体、カルボン酸末端アクリロニトリ
ル−ブタジエン共重合体、カルボン酸変性アクリロニト
リル−ブタジエン共重合体、水添カルボン酸変性アクリ
ロニトリル−ブタジエン共重合体、カルボン酸変性アク
リルゴム、ポリビニルブチラール樹脂、ポリビニルアセ
タール樹脂、ウレタン樹脂、セルロース誘導体、アミノ
基変性ポリオール樹脂、アミノ基変性フェノキシ樹脂、
ヒドロキシ末端飽和共重合ポリエステル樹脂、カルボキ
シ末端飽和共重合ポリエステル樹脂等が挙げられ、エポ
キシ樹脂のエポキシ基と反応性を有する樹脂で、しかも
相溶性が良好で共通の溶媒に均一に溶解するものを選択
して用いられる。これらのエラストマーは単独あるいは
2種以上混合して用いてもよい。
The above-mentioned reaction elastomer is a carboxyl group-containing styrene-butadiene copolymer, a carboxyl group-containing styrene-isoprene copolymer, a carboxyl group-containing styrene-butadiene saturated copolymer, a carboxyl group-containing styrene-isoprene saturated copolymer. Carboxyl group-containing styrene-ethylene-butene-styrene copolymer, carboxyl group-containing styrene-ethylene-butene-
Styrene saturated copolymer, carboxylic acid-terminated acrylonitrile-butadiene copolymer, carboxylic acid-modified acrylonitrile-butadiene copolymer, hydrogenated carboxylic acid-modified acrylonitrile-butadiene copolymer, carboxylic acid-modified acrylic rubber, polyvinyl butyral resin, polyvinyl acetal Resin, urethane resin, cellulose derivative, amino group-modified polyol resin, amino group-modified phenoxy resin,
Examples include hydroxy-terminated saturated copolyester resin, carboxy-terminated copolyester resin, etc., and select a resin that is reactive with the epoxy groups of the epoxy resin and that has good compatibility and is uniformly soluble in a common solvent. Used. You may use these elastomers individually or in mixture of 2 or more types.

【0019】本発明におけるシランカップリング剤は市
販されている一般的なもので良いが、後述するマイクロ
カプセル化イミダゾールを溶解したり、マイクロカプセ
ル内の反応成分を溶出するようなものであってはならな
い。
The silane coupling agent in the present invention may be a commercially available general one, but it is not a substance that dissolves the microcapsulated imidazole described below or elutes the reaction components in the microcapsules. I won't.

【0020】混合量は反応性エラストマーとエポキシ樹
脂の合計量に対し、0.2〜5%が好ましい。0.2%
未満であると効果が得られず、5%を超えると粘着性や
フィルムの硬さ、キャリヤーフィルムとの密着性に影響
を及ぼす。具体例としてはγ−メタクリロキシプロピル
トリメトキシシラン、β−(3,4エポキシシクロヘキ
シル)エチルトリメトキシシラン、γ−グリシドキシプ
ロピルメチルジエトキシシラン、γ−グリシドキシプロ
ピルトリメトキシシラン、N−β(アミノエチル)γ−
アミノプロピルトリメトキシシラン、N−β(アミノエ
チル)γ−アミノプロピルメチルジメトキシシラン、γ
−アミノプロピルトリエトキシシラン、N−フェニル−
γ−アミノプロピルトリメトキシシラン、γ−メルカプ
トプロピルトリメトキシシラン、ビニルトリエトキシシ
ラン、ビニルトリメトキシシラン、γ−ウレイドプロピ
ルトリエトキシシラン等が挙げられ、単独あるいは2種
以上を混合して用いられる。
The mixing amount is preferably 0.2 to 5% with respect to the total amount of the reactive elastomer and the epoxy resin. 0.2%
If it is less than 5%, the effect cannot be obtained, and if it exceeds 5%, the tackiness, the hardness of the film and the adhesion to the carrier film are affected. Specific examples include γ-methacryloxypropyltrimethoxysilane, β- (3,4epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, N- β (aminoethyl) γ-
Aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ
-Aminopropyltriethoxysilane, N-phenyl-
γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-ureidopropyltriethoxysilane and the like can be mentioned, and they can be used alone or in admixture of two or more.

【0021】本発明におけるエポキシ樹脂は、1分子中
に少なくとも2個以上のエポキシ基を有するエポキシ樹
脂が用いられる。具体例としては、ビスフェノールA型
エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビス
フェノールS型エポキシ樹脂、フェノールノボラック型
エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、
ダイマー酸ジグリシジルエステル、フタル酸ジグリシジ
ルエステル、テトラブロムビスフェノールAジグリシジ
ルエーテル、ビスフェノールヘキサフロロアセトンジグ
リシジルエーテル、トリグリシジルイソシアヌレート、
テトラグリシジルジアミノジフェニルメタン等が挙げら
れ、単独あるいは2種以上を混合して用いられる。
The epoxy resin used in the present invention is an epoxy resin having at least two epoxy groups in one molecule. Specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin,
Dimer acid diglycidyl ester, phthalic acid diglycidyl ester, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, triglycidyl isocyanurate,
Tetraglycidyl diaminodiphenylmethane and the like can be mentioned, and they can be used alone or in admixture of two or more.

【0022】溶剤としては、上記反応性エラストマー及
びエポキシ樹脂を共に溶解し、マイクロカプセル化イミ
ダゾール誘導体のマイクロカプセルを溶解または分解し
ない、あるいは、溶解または分解するのに長時間要する
溶剤であれば使用可能である。具体的には、アセトン、
メチルエチルケトン、メチルイソブチルケトン、ベンゼ
ン、トルエン、キシレン、メチルアルコール、エチルア
ルコール、イソプロピルアルコール、n−ブチルアルコ
ール、メチルセロソルブ、エチルセロソルブ、ジアセト
ンエーテル、メチルセロソルブアセテート、エチルセロ
ソルブアセテート、ブチルカルビトールアセテート等が
挙げられ、溶解性・作業性を考慮して単独あるいは2種
以上を混合して用いられる。好ましくはブチルカルビト
ールアセテートである。
As the solvent, any solvent can be used as long as it dissolves both the above-mentioned reactive elastomer and epoxy resin and does not dissolve or decompose the microcapsules of the microencapsulated imidazole derivative, or it takes a long time to dissolve or decompose. Is. Specifically, acetone,
Methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, methyl cellosolve, ethyl cellosolve, diacetone ether, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol acetate, etc. One of them may be used alone, or two or more thereof may be mixed in consideration of solubility and workability. Butyl carbitol acetate is preferred.

【0023】イミダゾール誘導体とは、イミダゾール化
合物とエポキシ化合物との付加物であり、そのイミダゾ
ール化合物としては、イミダゾール、2−メチルイミダ
ゾール、2−エチルイミダゾール、2−エチル−4−メ
チルイミダゾール、2−フェニルイミダゾール、2−フ
ェニル−4−メチルイミダゾール、1−ベンジル−2−
メチルイミダゾール、1−ベンジル−2−エチルイミダ
ゾール、1−ベンジル−2−エチル−5−メチルイミダ
ゾール、2−フェニル−4−メチル−5−ヒドロキシメ
チルイミダゾール、2−フェニル−4,5−ジヒドロキ
シメチルイミダゾール等が挙げられる。
The imidazole derivative is an adduct of an imidazole compound and an epoxy compound, and examples of the imidazole compound include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole and 2-phenyl. Imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-
Methyl imidazole, 1-benzyl-2-ethyl imidazole, 1-benzyl-2-ethyl-5-methyl imidazole, 2-phenyl-4-methyl-5-hydroxymethyl imidazole, 2-phenyl-4,5-dihydroxymethyl imidazole Etc.

【0024】また、エポキシ化合物としては、例えば、
ビスフェノールA、フェノールノボラック、ビスフェノ
ールF、ブロム化ビスフェノールA等のグリシジルエー
テル型エポキシ樹脂、ダイマー酸ジグリシジルエステ
ル、フタル酸ジグリシジルエステル等何れも使用可能で
あるが、樹脂混合物や、フィルム状態での保存性を考慮
して、イミダゾール化合物とビスフェノールA型エポキ
シ樹脂の付加物が好んで用いられる。
Further, as the epoxy compound, for example,
Glycidyl ether type epoxy resins such as bisphenol A, phenol novolac, bisphenol F, brominated bisphenol A, dimer acid diglycidyl ester, phthalic acid diglycidyl ester, etc. can all be used, but they can be stored as a resin mixture or in a film state. In consideration of the properties, an adduct of an imidazole compound and a bisphenol A type epoxy resin is preferably used.

【0025】イミダゾール誘導体とエポキシ化合物との
反応生成物は、微粉末として市販されており、適用可能
であるが、更にイソシアネート化合物と混合し、貯蔵安
定性を高めたものや、マイクロカプセル化したものも入
手・適用可能である。速硬化と長期の保存性を両立する
ためにはこれらマイクロカプセル化したものが好まし
い。しかし、これらの化合物は溶剤に対する安定性、他
の樹脂主成分である反応性エラストマー及びエポキシ樹
脂と組合せて適宜選択して用いる必要がある。
The reaction product of the imidazole derivative and the epoxy compound is commercially available as a fine powder and is applicable. However, it is further mixed with an isocyanate compound to improve the storage stability, or a microencapsulated product. Is also available and applicable. In order to achieve both fast curing and long-term storage stability, microcapsules of these types are preferable. However, it is necessary to appropriately select and use these compounds in combination with solvent stability and reactive elastomer and epoxy resin which are other resin main components.

【0026】導電粒子としては、ニッケル、鉄、銅、ア
ルミニウム、錫、鉛、クロム、コバルト、銀、金等の金
属、金属酸化物、半田を始めとする合金や、カーボン、
グラファイト、或いはガラスやセラミック、プラスチッ
ク等の核材にメッキ等の方法によって金属をコーティン
グした導電粒子等が挙げられる。信頼性の点からは、
金、ニッケル、半田合金、インジウム合金などが好まし
い。
The conductive particles include metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver and gold, metal oxides, alloys including solder, carbon, and the like.
Examples of the conductive particles include graphite, or a core material such as glass, ceramic, or plastic coated with a metal by a method such as plating. In terms of reliability,
Gold, nickel, solder alloy, indium alloy and the like are preferable.

【0027】本発明に用いられる導電粒子径は、隣接す
る回路間の絶縁性を確保するためと接続の高信頼性を確
保するために5〜10μmが好ましい。また、導電粒子
の配合量は、3〜10体積%が良い。3体積%未満であ
ると安定した導通信頼性が得られず、10体積%を超え
ると隣接回路間の絶縁信頼性が劣る。
The diameter of the conductive particles used in the present invention is preferably 5 to 10 μm in order to secure insulation between adjacent circuits and to secure high reliability of connection. Further, the compounding amount of the conductive particles is preferably 3 to 10% by volume. If it is less than 3% by volume, stable conduction reliability cannot be obtained, and if it exceeds 10% by volume, the insulation reliability between adjacent circuits is deteriorated.

【0028】以上のようにして、選択準備した樹脂材料
及び導電粒子を用いて異方導電フィルムを作製するが、
更に樹脂溶液の安定性・相溶性、導電粒子の分散性向上
のために各種界面活性剤、消泡剤や安定剤を適宜添加し
てもよい。
As described above, an anisotropic conductive film is produced using the resin material and the conductive particles that have been selected and prepared.
Further, various surfactants, antifoaming agents and stabilizers may be appropriately added in order to improve the stability / compatibility of the resin solution and the dispersibility of the conductive particles.

【0029】異方導電フィルムの作製方法は、以下に示
す方法によって行う。即ちエポキシ樹脂との反応性基を
有するエラストマーとシランカップリング剤を溶剤に溶
解しエラストマー溶液を作製する。エポキシ樹脂につい
ても同様に溶解し、樹脂溶液を作製する。これらの樹脂
溶液を所定の配合比で均一に混合し、この中に、予め表
面処理をした導電粒子を秤取し、樹脂溶液中に均一に分
散する迄十分撹拌混合する。次にマイクロカプセル化イ
ミダゾール誘導体を添加混合し、更に必要に応じて各種
の添加剤を加え、溶剤で調整して固形分20〜30%の
異方導電フィルム用樹脂溶液を作製する。次に、この樹
脂溶液を離型処理を施したポリエステル系フィルム若し
くはテフロン系フィルムの上に流延・乾燥し、乾燥後の
厚みが20〜50μmの異方導電フィルムを得る。
The anisotropic conductive film is produced by the following method. That is, an elastomer having a group reactive with an epoxy resin and a silane coupling agent are dissolved in a solvent to prepare an elastomer solution. Similarly, the epoxy resin is also dissolved to prepare a resin solution. These resin solutions are uniformly mixed at a predetermined mixing ratio, and the conductive particles which have been surface-treated in advance are weighed therein, and sufficiently stirred and mixed until uniformly dispersed in the resin solution. Next, the microencapsulated imidazole derivative is added and mixed, and if necessary, various additives are added and adjusted with a solvent to prepare a resin solution for an anisotropic conductive film having a solid content of 20 to 30%. Next, this resin solution is cast and dried on a polyester film or a Teflon film which has been subjected to a mold release treatment to obtain an anisotropic conductive film having a thickness after drying of 20 to 50 μm.

【0030】[0030]

【実施例】以下実施例を用いて本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to examples.

【0031】実施例1 カルボン酸変性アクリロニトリルーブタジエン共重合体
50重量部(以下添加量は全て重量部数を表す)をブチ
ルカルビトールアセテート200部に溶解し、γ−メル
カプトプロピルトリメトキシシラン1部を加え混合撹拌
した。この溶液100部にビスフェノールA型エポキシ
樹脂(エポキシ当量900g/eq)50部をトルエン
50部に溶解したものを混合撹拌した。これに、導電粒
子として、平均粒径10μm、最大粒径20μm、最小
粒径2μmの半田アトマイズ粉80gを均一分散させ、
そこへマイクロカプセル化イミダゾール誘導体30部を
混合、均一分散させた。この樹脂溶液を離型処理を施し
たポリエチレンテレフタレートフィルムに乾燥後の厚み
が25μmになるように塗膜を形成し、50℃で1時間
乾燥させ該異方導電フィルムを得た。
Example 1 50 parts by weight of a carboxylic acid-modified acrylonitrile-butadiene copolymer (all addition amounts below are parts by weight) was dissolved in 200 parts of butyl carbitol acetate, and 1 part of γ-mercaptopropyltrimethoxysilane was dissolved. The mixture was added and stirred. To 100 parts of this solution, 50 parts of bisphenol A type epoxy resin (epoxy equivalent: 900 g / eq) dissolved in 50 parts of toluene was mixed and stirred. 80 g of solder atomized powder having an average particle size of 10 μm, a maximum particle size of 20 μm, and a minimum particle size of 2 μm was uniformly dispersed therein.
Thereto, 30 parts of the microencapsulated imidazole derivative was mixed and uniformly dispersed. A coating film was formed on a polyethylene terephthalate film subjected to a mold release treatment with this resin solution so that the thickness after drying was 25 μm, and dried at 50 ° C. for 1 hour to obtain the anisotropic conductive film.

【0032】実施例2 アセチル化度3mol%以下、アセタール化度75mo
l%のポリビニルアセタール樹脂をトルエンに溶解して
得られた20%溶液250部とγ−アミノプロピルトリ
エトキシシラン1部を混合したものをビスフェノールA
型エポキシ樹脂(エポキシ当量900g/eq)のトル
エン50%溶液50部と、ビスフェノールA型エポキシ
樹脂(エポキシ当量200g/eq)80部とマイクロ
カプセル化イミダゾール誘導体30部とを速やかに撹拌
混合し、これに実施例1と同一の半田アトマイズ粉を7
0g添加、均一分散せしめ、更にトルエンを添加し、F
EP(4フッ化エチレン−6フッ化プロピレン共重合
体)フィルム上に乾燥後の厚みが25μmになるよう
に、流延・乾燥し、該異方導電フィルムを得た。
Example 2 Degree of acetylation of 3 mol% or less, Degree of acetalization of 75 mo
Bisphenol A was prepared by mixing 250 parts of a 20% solution obtained by dissolving 1% of polyvinyl acetal resin in toluene and 1 part of γ-aminopropyltriethoxysilane.
50 parts of a 50% toluene solution of epoxy resin of epoxy type (epoxy equivalent 900 g / eq), 80 parts of bisphenol A type epoxy resin (epoxy equivalent of 200 g / eq) and 30 parts of microencapsulated imidazole derivative are rapidly mixed with stirring, and To the same solder atomized powder as in Example 1
Add 0 g, disperse evenly, and then add toluene,
An anisotropic conductive film was obtained by casting and drying on an EP (tetrafluoroethylene-6 fluoropropylene copolymer) film so that the thickness after drying was 25 μm.

【0033】比較例1 カルボン酸変性アクリロニトリル−ブタジエン共重合体
15部をブチルカルビトールアセテート40部に溶解
し、実施例1と全く同様にその他のカップリング剤、樹
脂を混合撹拌し、半田アトマイズ粉を40g分散せし
め、同様にマイクロカプセル化イミダゾール誘導体30
部を混合分散させた。このものを実施例1と同様に乾燥
後の厚みが25μmになるように流延・乾燥し、異方導
電フィルムを得た。
Comparative Example 1 15 parts of a carboxylic acid-modified acrylonitrile-butadiene copolymer was dissolved in 40 parts of butyl carbitol acetate, and other coupling agents and resins were mixed and stirred in the same manner as in Example 1 to prepare a solder atomized powder. Dispersed in 40 g, and similarly microencapsulated imidazole derivative 30
Parts were mixed and dispersed. This was cast and dried in the same manner as in Example 1 so that the thickness after drying was 25 μm to obtain an anisotropic conductive film.

【0034】比較例2 実施例2と同様にポリビニルアセタール170部をトル
エンの20%溶液とし、実施例2と全く同様にその他の
カップリング剤、樹脂類、マイクロカプセル化イミダゾ
ール誘導体を撹拌混合し、実施例1と同様の半田アトマ
イズ粉を105g均一分散し乾燥後の厚みが25μmに
なるようにFEP上に流延・乾燥し、異方導電フィルム
を得た。
Comparative Example 2 As in Example 2, 170 parts of polyvinyl acetal was made into a 20% solution of toluene, and other coupling agents, resins and microencapsulated imidazole derivative were stirred and mixed in the same manner as in Example 2. 105 g of the same solder atomized powder as in Example 1 was uniformly dispersed and cast and dried on FEP so that the thickness after drying was 25 μm to obtain an anisotropic conductive film.

【0035】比較例3 実施例1において、シランカップリング剤γ−メルカプ
トプロピルトリメトキシシラン1部を加えない以外は全
く同様に異方導電フィルムを得た。
Comparative Example 3 An anisotropic conductive film was obtained in the same manner as in Example 1 except that 1 part of the silane coupling agent γ-mercaptopropyltrimethoxysilane was not added.

【0036】上記の実施例及び比較例に用いた試験片の
該異方導電フィルムの厚みは25μmであり、被着体は
銅箔35μmにニッケル5μm、金0.5μmのメッキ
を施したフレキシブル回路基板(ピッチ0.2mm、端子
数250本)と面抵抗30Ωの全面電極ITOガラスを
用いた。
The anisotropic conductive film of the test pieces used in the above Examples and Comparative Examples had a thickness of 25 μm, and the adherend was a flexible circuit in which 35 μm of copper foil was plated with 5 μm of nickel and 0.5 μm of gold. A substrate (pitch: 0.2 mm, number of terminals: 250) and a full-face electrode ITO glass having a surface resistance of 30 Ω were used.

【0037】貯蔵安定性の評価としては、室温及び40
℃に3カ月放置後、120℃熱板上で溶融することを確
認し、更に、上記被着体に所定の条件にて熱圧着後、隣
接する端子間の接続抵抗を測定し、その値がすべての端
子において2Ω以下であれば○とした。
Storage stability was evaluated at room temperature and 40
After being left at ℃ for 3 months, it was confirmed that it melted on a hot plate at 120 ℃, and after thermocompression bonding to the adherend under specified conditions, the connection resistance between adjacent terminals was measured. If all terminals had a resistance of 2Ω or less, it was rated as ◯.

【0038】信頼性試験としては、−30℃/30分→
25℃/5分→85℃/30分→25℃/5分を1サイ
クルとして温度サイクル試験を300サイクル行った後
の隣接する端子間の接続抵抗を測定した。
As a reliability test, -30 ° C./30 minutes →
The connection resistance between adjacent terminals was measured after 300 cycles of the temperature cycle test with 25 ° C./5 minutes → 85 ° C./30 minutes → 25 ° C./5 minutes as one cycle.

【0039】接着強度の測定は熱圧着した上記被着体の
ITOガラスを水平に固定し、フレキシブル回路基板を
ITOガラスに対して垂直方向に、引っ張り速度50mm
/min で引き剥がす90°ピール試験を行った。尚、耐
湿試験として85℃、85%の高温高湿試験を1000
Hr行った後、同様に接着強度を測定した。
The adhesive strength was measured by fixing the ITO glass of the adherend, which was thermocompression-bonded, horizontally, and pulling the flexible circuit board in the direction perpendicular to the ITO glass at a pulling speed of 50 mm.
A 90 ° peel test of peeling off at a speed of / min was performed. As a humidity resistance test, a high temperature and high humidity test of 85 ° C and 85% is 1000
After performing Hr, the adhesive strength was similarly measured.

【0040】また、残留応力の測定にはガラスエポキシ
銅張積層板(厚み0.2mm、銅箔35μm、ピッチ0.
25mm、端子数350本)を厚み1.1mm×30mm×1
50mmのITOガラスに圧着したものを試験片とした。
その圧着部中央付近にガラスの端面から光を入射し、光
路差を自動エリプソメーターDVA−36LS((株)
溝尻光学工業所)によって測定した。
For measuring the residual stress, a glass epoxy copper clad laminate (thickness 0.2 mm, copper foil 35 μm, pitch 0.
25mm, 350 terminals) thickness 1.1mm x 30mm x 1
A test piece was obtained by pressure-bonding to 50 mm ITO glass.
Light is incident on the vicinity of the center of the crimping portion from the end face of the glass, and the optical path difference is measured by an automatic ellipsometer DVA-36LS (Co., Ltd.).
(Mizojiri Optical Industry Co., Ltd.).

【0041】以上の結果を表1に示す。The above results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明によると熱硬化タイプのフィルム
の特長である高接着力、高信頼性を有し、更に従来の熱
硬化タイプでは得られなかった極めて小さい残留応力を
実現した。また、合わせて耐湿性、リペアー性があり保
存安定性の良い本発明の異方導電フィルムによって、液
晶ディスプレーパネル等の大型ガラス基板と駆動回路基
板(フレキシブル回路基板、ガラスエポキシ基板等)の
接続をはじめとする多数の微細な回路端子を一括接続し
ても信頼性、作業性ともに良く、接続後のガラス基板の
クラックや割れもなくなり歩留を向上せしめる優れた異
方導電フィルムを供給するものである。
EFFECTS OF THE INVENTION According to the present invention, the thermosetting type film has the high adhesive strength and high reliability which are the features of the film, and further, the extremely small residual stress which cannot be obtained by the conventional thermosetting type film is realized. In addition, the anisotropic conductive film of the present invention, which also has moisture resistance, repairability, and good storage stability, connects large glass substrates such as liquid crystal display panels to drive circuit substrates (flexible circuit substrates, glass epoxy substrates, etc.). It provides excellent anisotropic conductive film that has good reliability and workability even if a large number of minute circuit terminals are connected at once, and also eliminates cracks and breaks in the glass substrate after connection and improves yield. is there.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 63/00 NKU 8416−4J NLC 8416−4J H01B 5/16 7244−5G // B29K 63:00 105:16 B29L 7:00 4F C08L 63:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication C08L 63/00 NKU 8416-4J NLC 8416-4J H01B 5/16 7244-5G // B29K 63:00 105: 16 B29L 7:00 4F C08L 63:00

Claims (1)

【特許請求の範囲】 【請求項1】 シランカップリング剤を均一に混合した
反応性エラストマーとエポキシ樹脂、これらを溶解する
溶剤とマイクロカプセル化イミダゾール誘導体及び導電
性粒子を含む混合物溶液をキャリアフィルム上に流延・
乾燥して製膜してなる事を特徴とする異方導電フィル
ム。
Claim: What is claimed is: 1. A reactive elastomer in which a silane coupling agent is uniformly mixed, an epoxy resin, a solvent for dissolving the reactive elastomer, a mixture solution containing a microencapsulated imidazole derivative and conductive particles, on a carrier film. Casted on
An anisotropic conductive film characterized by being dried and formed into a film.
JP3190505A 1991-07-31 1991-07-31 Anisotropic conductive film Expired - Fee Related JP2500819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3190505A JP2500819B2 (en) 1991-07-31 1991-07-31 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3190505A JP2500819B2 (en) 1991-07-31 1991-07-31 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH0532799A true JPH0532799A (en) 1993-02-09
JP2500819B2 JP2500819B2 (en) 1996-05-29

Family

ID=16259212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3190505A Expired - Fee Related JP2500819B2 (en) 1991-07-31 1991-07-31 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2500819B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100305750B1 (en) * 1999-03-10 2001-09-24 윤덕용 Manufacturing Method for Anisotropic Conductive Adhesive for Flip Chip Interconnection on an Organic Substrate
US6309502B1 (en) 1997-08-19 2001-10-30 3M Innovative Properties Company Conductive epoxy resin compositions, anisotropically conductive adhesive films and electrical connecting methods
KR100398314B1 (en) * 2001-07-19 2003-09-19 한국과학기술원 High Adhesion Triple layered anisotropic conductive adhesive film
US7053133B2 (en) 2001-05-29 2006-05-30 Hiroaki Yamaguchi Ultraviolet activatable adhesive film
KR100622601B1 (en) * 2004-05-28 2006-09-19 엘에스전선 주식회사 Anisotropic conductive material using esterification of pendant group and the film using thereof
JP2011178840A (en) * 2010-02-26 2011-09-15 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet for connection of circuit member and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309206A (en) * 1988-06-06 1989-12-13 Hitachi Chem Co Ltd Adhesive composite for circuit connection
JPH02288019A (en) * 1989-04-27 1990-11-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JPH04323290A (en) * 1991-02-25 1992-11-12 Fuji Kobunshi Kogyo Kk Anisotropic electrically conductive adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309206A (en) * 1988-06-06 1989-12-13 Hitachi Chem Co Ltd Adhesive composite for circuit connection
JPH02288019A (en) * 1989-04-27 1990-11-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JPH04323290A (en) * 1991-02-25 1992-11-12 Fuji Kobunshi Kogyo Kk Anisotropic electrically conductive adhesive composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309502B1 (en) 1997-08-19 2001-10-30 3M Innovative Properties Company Conductive epoxy resin compositions, anisotropically conductive adhesive films and electrical connecting methods
KR100305750B1 (en) * 1999-03-10 2001-09-24 윤덕용 Manufacturing Method for Anisotropic Conductive Adhesive for Flip Chip Interconnection on an Organic Substrate
US7053133B2 (en) 2001-05-29 2006-05-30 Hiroaki Yamaguchi Ultraviolet activatable adhesive film
KR100398314B1 (en) * 2001-07-19 2003-09-19 한국과학기술원 High Adhesion Triple layered anisotropic conductive adhesive film
KR100622601B1 (en) * 2004-05-28 2006-09-19 엘에스전선 주식회사 Anisotropic conductive material using esterification of pendant group and the film using thereof
JP2011178840A (en) * 2010-02-26 2011-09-15 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet for connection of circuit member and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2500819B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP3503740B2 (en) Anisotropic conductive adhesive and electronic device using the same
JP3344886B2 (en) Anisotropic conductive film
JPH10168412A (en) Anisotropically conductive adhesive
JP3522634B2 (en) Anisotropic conductive adhesive
JPH10168413A (en) Anisotropically conductive adhesive
JP3418492B2 (en) Anisotropic conductive film
KR20180039608A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP2500819B2 (en) Anisotropic conductive film
JP2001126541A (en) Anisotropic-conductive film and electric/electronic parts
JP3391870B2 (en) Anisotropic conductive film
JP3449948B2 (en) Method of manufacturing anisotropic conductive adhesive and electronic device manufactured using adhesive manufactured by the method
JP2500826B2 (en) Anisotropic conductive film
JPH09291259A (en) Low-temperature heating curable type anisotropic electroconductive adhesive
JP3947532B2 (en) Anisotropic conductive adhesive film
JP3075742B2 (en) Anisotropic conductive film
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JPH05154857A (en) Anisotropic conductive film
JP2629490B2 (en) Anisotropic conductive adhesive
JPH09165435A (en) Anisotropic conductive film
JP3080972B2 (en) Anisotropic conductive film
JPH02288019A (en) Anisotropic conductive film
JP3480754B2 (en) Method for producing anisotropic conductive film
JP3363331B2 (en) Anisotropic conductive adhesive
JP4112024B2 (en) Circuit connection member
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees