JP3480754B2 - Method for producing anisotropic conductive film - Google Patents

Method for producing anisotropic conductive film

Info

Publication number
JP3480754B2
JP3480754B2 JP32818494A JP32818494A JP3480754B2 JP 3480754 B2 JP3480754 B2 JP 3480754B2 JP 32818494 A JP32818494 A JP 32818494A JP 32818494 A JP32818494 A JP 32818494A JP 3480754 B2 JP3480754 B2 JP 3480754B2
Authority
JP
Japan
Prior art keywords
film
weight
degree
conductive film
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32818494A
Other languages
Japanese (ja)
Other versions
JPH08185713A (en
Inventor
哲也 宮本
政和 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP32818494A priority Critical patent/JP3480754B2/en
Publication of JPH08185713A publication Critical patent/JPH08185713A/en
Application granted granted Critical
Publication of JP3480754B2 publication Critical patent/JP3480754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、微細な回路同志の電気
的接続、更に詳しくはLCD(液晶デイスプレイ)とフ
レキシブル回路基板やTABフィルムとの接続や、半導
体ICとIC搭載回路基板のマイクロ接合に用いる異方
導電フィルムの製造方法に関するものである。 【0002】 【従来の技術】最近の電子機器の小型化、薄型化に伴
い、微細な回路同志の接続、微小部品と微細回路の接続
等の必要性が飛躍的に増大してきており、その接続方法
として、異方性の導電性接着剤やフィルムが使用され始
めている(例えば、特開昭59−120436、60−
191228、61−274394、61−28797
4、62−244242、63−153534、63−
305591、64−81878、特開平1−4654
9、1−25178各号公報等)。更なる部品の微細化
が進み、それに伴う異方性導電フィルムによる回路同志
の接続作業において位置ずれ等の理由によって一度接続
した被接続部材を破損または損傷せずに剥離し再圧着す
ること(所謂“リペア”)が可能であることへの要求
や、異方導電フィルムの熱硬化反応時の硬化収縮や種々
の雰囲気中での樹脂自体の歪み応力に基づき、被着体が
損傷(例えばLCDに用いられるガラス基板のクラック
や基板の反り)するという問題が生じてきている。これ
らの問題を解決するために、速硬化、長ライフ、耐湿
性、更には低歪みの高信頼性熱硬化タイプの異方導電フ
ィルムが強く要求されている。 【0003】 【発明が解決しようとする課題】本発明は、従来の熱硬
化型では得られなかった短時間での接続が可能であり、
又常温での貯蔵保存性に優れ、加熱加圧して硬化後、広
範囲の温度域(−40℃〜100℃)において優れた接
着性を有し、しかも接合部に残る歪み(応力)が極めて
小さく、更に一度圧着したものを所定温度以上に加熱す
ることによって剥離・再圧着可能である熱硬化型異方導
電フィルムの製造方法を提供するものである。 【0004】 【課題を解決するための手段】本発明は、重合度が15
00〜2500、アセチル化度が3mol%以下、ブチ
ラール化度が65mol%以上、フロー軟化点が200
℃以上の特性を有するポリビニルブチラール樹脂
(A)、エポキシ樹脂(B)、マイクロカプセル化イミ
ダゾール誘導体エポキシ化合物(C)、溶剤(D)及び
高分子球状核材の表面にニッケル膜を有し、該ニッケル
膜の更に外層に金膜を有し、該ニッケル膜中の燐含有量
が2〜20重量%である導電粒子(F)を必須成分し、
かつ重量配合割合が(A)/((B)+(C))=(1
0〜50)/100であるペースト状混合物を離形フィ
ルム上に流延し溶剤を揮散させ製膜する異方導電フィル
の製造方法である。 【0005】本発明に用いるポリビニルブチラール樹脂
の重合度は、1500〜2500であるが、重合度が1
500未満だと加熱・加圧時の樹脂の流動性が大きく接
着力が不十分となる。又、重合度が2500を越えると
樹脂の流動性が不足し、従って導電粒子が端子と接触で
きず導通性が得られない。又、ポリビニルブチラール樹
脂のアセチル化度は、3mol%以下であるが3mol
%を越えると被着体(LCDガラス基板やTABフィル
ム)との相溶性が悪くなり接着力が不足する。ブチラー
ル化度は、65mol%以上であるが65mol%未満
だと分子中のポリビニルアルコール及びポリ酢酸ビニル
の含有割合が増加し接着力が不足する。更に、ポリビニ
ルブチラール樹脂のフロー軟化点は、200℃以上であ
るが、200℃未満だと加熱・加圧時の樹脂の流動性が
大きく気泡の抱き込みが大きくなり接着力が不足する。
フロー軟化点の測定は、高化式フロテスター(島津製作
所・製CFT−500型)を用いて、試料1gを80℃
のシリンダーに充填し、荷重100Kg/cm2、オリ
フィス1mmφ×10mm、昇温速度6±0.5℃であ
り、試料の流れ値が1.0×10-3ml/secになっ
た温度を読み取りフロー軟化点とする。 【0006】ポリビニルブチラール樹脂(A)、エポキ
シ樹脂(B)及び潜在性硬化剤であるマイクロカプセル
化イミダゾール誘導体エポキシ化合物(C)の重量割合
は(A)/((B)+(C))=(10〜50)/10
0であり、目標とする作業性、信頼性等によって異なる
が、ポリビニルブチラール樹脂が10重量部未満だと、
初期接着力(粘着力)が不足し、更に異方導電フィルム
にしたとき、溶融時の流動性が大きく気泡の抱き込みが
大きい。又、最近その必要性が高まってきている所謂リ
ペア性についても、10重量部未満だと、硬化後の樹脂
軟化温度が高く、剥離時に高温を必要とし、被着体に残
る樹脂成分を除去することが困難になる。50重量部を
越えると接着力は十分であるが、溶融時の粘度が高く、
樹脂の流動性が不足し、従って導電性粒子が端子と接触
できず導電性が得られない恐れが生じる。更にリペア性
等の作業性は比較的良好であるが、エポキシ樹脂系成分
との相溶性、耐熱性、耐湿性が不足する。 【0007】本発明に用いるエポキシ樹脂は、1分子中
に少なくとも2個以上のエポキシ基を有し、例えばビス
フェノールA型エポキシ樹脂、ビスフェノールF型エポ
キシ樹脂、ビスフェノールS型エポキシ樹脂、フェノー
ルノボラック型エポキシ樹脂、クレゾールノボラック型
エポキシ樹脂等が挙げられ、これらに限定されるもので
はなく、単独でも混合して用いても差し支えない。 【0008】本発明に用いるマイクロカプセル化イミダ
ゾール誘導体エポキシ化合物は、イミダゾール誘導体と
エポキシ化合物との反応生成物をマイクロカプセル化し
微粉末としたもので、市場より入手できるものである。
更にマイクロカプセル化イミダゾール誘導体エポキシ化
合物とイソシアネート化合物とを反応させ、耐薬品性及
び貯蔵保存性を高めたものも好適である。ここで用いる
エポキシ化合物としては、例えば、フェノールノボラッ
ク樹脂、ビスフェノールA、ビスフェノールF及びブロ
ム化ビスフェノールA等のグリシジルエーテル型エポキ
シ樹脂、ダイマー酸ジグリシジルエステル、フタル酸ジ
グリシジルエステル等が挙げられる。又イミダゾール誘
導体としては、例えばイミダゾール、2−メチルイミダ
ゾール、2−エチルイミダゾール、2−エチル−4−メ
チルイミダゾール、2−フェニルイミダゾール、2−フ
ェニル−4−メチルイミダゾール、1−ベンジル−2−
メチルイミダゾール、1−ベンジル−2−エチルイミダ
ゾール、1−ベンジル−2−エチル−5−メチルイミダ
ゾール、2−フェニル−4−メチル−5−ヒドロシキジ
メチルイミダゾール、2−フェニル−4,5−ジヒドロ
キシメチルイミダゾール等が挙げられる。 【0009】本発明で用いる導電粒子は、高分子球状核
材の表面にニッケル膜を有し、該ニッケル膜の更に外層
に金膜を有し、該ニッケル膜中の燐含有量が2〜20重
量%である。導電粒子表面の金膜、ニッケル膜は、ニッ
ケル中の燐含有量が2〜20重量%であること以外は、
特に限定されるものではない。例えば、皮膜の厚さは特
に限定しないが、薄すぎると導電性が不安定になり、厚
すぎると粒子変形が困難になったり凝集等が生じるた
め、各々の皮膜の厚さは0.01〜1μmが好ましい。
又、被覆の形成方法では、この被覆と中心核となる高分
子球状核材との密着力・導電性などを考慮し、均一に形
成されていること好ましく、従来から用いられている無
電解メッキなどが望ましい。ニッケル膜中の燐の含有量
が2重量%未満のもので被覆形成された導電粒子を用い
て、異方導電フィルムにした場合導電粒子の分散性が悪
くなり凝集が発生し、この導電粒子により隣接端子間の
絶縁性が低下し短絡に至る場合もあり、微細な回路接続
には制約がある。逆に、20重量%を超える場合には、
分散性は良くなるが導電率が低下し、接続抵抗値が高く
なり、長期の接続信頼性も低下してくる問題が生じる。 【0010】本発明に用いる導電粒子の粒径は3〜15
μm、平均粒径は5〜10μmであり、粒径は3μm未
満及び平均粒径が5μm未満だと、接続する回路表面の
凹凸の大きさに近く、熱圧着時に回路厚みのバラキツを
吸収できず、接続抵抗増やオープン不良の原因となる。
又粒径が15μmを越え、かつ平均粒径10μmを越え
ると回路ピッチ(回路幅+回路間隔)が0.1mm以下
に適用した際に隣接回路間で粒子が接触し、隣接回路間
での絶縁性が低下したり、ショートを起こす危険性があ
る。これらの範囲内で接続する回路端子ピッチ、端子厚
さバラキツ等により最適値を選択すればよい。例えば、
異方導電フィルムの主要な用途である液晶ディスプレイ
パネルとフレキシブル回路基板(以下FPCという)と
の接続では、金属被覆を有する導電粒子の粒径は3〜1
5μm程度で、かつペースト状混合物に対する配合量
は、0.5〜10体積%が好ましい。 【0011】又、導電粒子の圧縮破壊強度は10〜10
0kg/mm2、圧縮弾性率は100〜1000kg/
mm2である。圧縮破壊強度が、10kg/mm2未満及
び圧縮弾性率が100kg/mm2未満であると電気的
接続を得る前に粒子が破壊されてしまい接続できない。
又圧縮破壊強度が100kg/mm2を越え、かつ圧縮
弾性率が1000kg/mm2を越える場合には、端子
と端子の接続に充分な面積を得るには過大な圧力をかけ
なくてはらなく被着体を破損する原因となる。熱圧着後
の金属被覆粒子のつぶれ具合が接続信頼性等の諸特性に
影響を及ぼすため、圧縮破壊強度は10〜100kg/
mm2、圧縮弾性率は100〜1000kg/mm2であ
る必要がある。 【0012】高分子球状核材の組成は特に限定しない
が、例えばエポキシ樹脂、ウレタン樹脂、メラミン樹
脂、フェノール樹脂、アクリル樹脂、ポリエステル樹
脂、ポリスチレン樹脂、スチレン−ブタジエン共重合体
等のポリマーが挙げられ、これらは単独でも混合して用
いても差し支えない。本発明に用いる溶剤は、アセト
ン、メチルエチルケント、メチルイソブチルケトン、ト
ルエン、キシレン、n−ブチルアルコール、酢酸エチ
ル、酢酸ブチル、テトラヒドロフラン、メチルセロソル
ブ、エチルセロソルブ、ジアセトンエーテル、メチルセ
ロソルブアセテート、エチルセロソルブアセテート、ジ
メチルホルムアミド等が挙げられるが、極性の大きさに
よって配合後の樹脂安定性に影響を及ぼすため配合処方
ごとに安定性を調べ、単独あるいは混合して用いる。次
に異方導電フィルムの担体となる離形フィルムに要求さ
れる特性は、耐熱性、離形性、離形性とバランスしたあ
る程度の密着性等であるが異方導電フィルムの作業性を
大きく左右するため、配合処方を合わせて適宜選択する
ことが必要である。離形フィルムとしてはポリエステル
系フィルム、ポリメチルペンテン系フィルム、フッソ系
フィルム等があり、これらの内ではフッソ系フィルムが
使用条件下において十分な耐熱性を有し、又密着性の強
いエポキシ樹脂の塗膜に対して、十分な密着性と離形性
を保持するので好ましい。接着剤の組成によっては、更
に各種のフッソ系フィルムの中から、作業性の良好なも
のを適宜選択して使用する。以上のようにして選択、調
整した樹脂配合物と導電粒子を適宜配合し、配合・攪拌
し、離形フィルム上に流延することによって異方導電フ
ィルムを作成するが、樹脂の相溶性、安定性、離形フィ
ルムとの濡れ性等の作業性や、フィルム形成時の表面粘
度、密着性等の各種性能を狙って、各種添加剤、例えば
非反応性希釈剤、反応性希釈剤、揺変性付与剤、増粘
剤、無機充填剤等を適宜添加しても差し支えない。 【0013】以上本発明を実施例で具体的に説明する。 実施例1 反応性エラストマーとして、重合度1700、アセチル
化度3mol%以下、ブチラール化度65mol%以
上、フロー軟化点が225℃のポリビニルブチラール樹
脂をトルエン/酢酸エチル=5:1(重量比)混合溶液
に溶解して得られた10重量%溶液100重量部を、ビ
スフェノールA型エポキシ樹脂(エポキシ当量4000
/eq)のトルエン/酢酸ブチル=3:1(重量比)の
混合溶液50重量%溶液20重量部と、マイクロカプセ
ル化イミダゾール誘導体エポキシ化合物50重量部を速
やかに攪拌・混合し、これにポリスチレン球状核材にニ
ッケル/金メッキした導電粒子(ニッケル膜中の燐含有
量10重量%)を3重量部添加、均一分散せしめ、更に
トルエンを添加し、4−フッ化エチレン−パーフルオロ
アルキルビニルエーテル共重合体フィルム上に、乾燥後
の厚みが25μmになるよう流延・乾燥し異方導電フィ
ルムを得た。 実施例2 反応性エラストマーとして、重合度2350、アセチル
化度3mol%以下、ブチラール化度65mol%以
上、フロー軟化点が230℃のポリビニルブチラール樹
脂を酢酸エチルに溶解して得られた10重量%溶液10
0重量部を用いた以外は、実施例1と同様にして異方導
電フィルムを得た。 実施例3 反応性エラストマーとして、重合度1700、アセチル
化度3mol%以下、ブチラール化度65mol%以
上、フロー軟化点225℃のポリビニルブチラール樹脂
をトルエン/酢酸エチル=5:1(重量比)混合溶液に
溶解して得られた10重量%溶液100重量部を、ビス
フェノールA型エポキシ樹脂(エポキシ当量4000g
/eq)のトルエン/酢酸ブチル=3:1(重量比)混
合溶液50重量%溶液100重量部と、マイクロカプセ
ル化イミダゾール誘導体エポキシ化合物50重量部を用
いた以外は、実施例1と同様にして異方導電フィルムを
得た。 実施例4 反応性エラストマーとして、重合度1700、アセチル
化度3mol%以下、ブチラール化度65mol%以
上、フロー軟化点が225℃のポリビニルブチラール樹
脂をトルエン/酢酸エチル=5:1(重量比)混合溶液
に溶解して得られた10重量%溶液500重量部を、ビ
スフェノールA型エポキシ樹脂(エポキシ当量4000
/eq)のトルエン/酢酸ブチル=3:1(重量比)の
混合溶液50重量%溶液100重量部と、マイクロカプ
セル化イミダゾール誘導体エポキシ化合物50重量部を
用いた以外は、実施例1と同様にして異方導電フィルム
を得た。 実施例5、6 実施例5では、導電粒子としてポリスチレン球状核材に
ニッケル/金メッキしたもの(ニッケル膜中の燐含有量
5重量%)、実施例6ではニッケル膜中の燐含有量20
重量%を用いた以外は、実施例1と同様にして異方導電
フィルムを得た。 【0014】比較例1、2 比較例1では、反応性エラストマーとして、重合度30
0、アセチル化度3mol%を越えたもの、ブチラール
化度63mol%、フロー軟化点が115℃のポリビニ
ルブチラール樹脂を、比較例2では重合度1000、ア
セチル化度3mol%以下、ブチラール化度70mol
%、フロー軟化点が160℃のポリビニルブチラール樹
脂を用いた以外は、実施例1と同様にして異方導電フィ
ルムを得た。 比較例3 反応性エラストマーとして、重合度1700、アセチル
化度3mol%以下、ブチラール化度65mol%以
上、フロー軟化点が225℃のポリビニルブチラール樹
脂をトルエン/酢酸エチル=5:1(重量比)混合溶液
に溶解して得られた10重量%溶液50重量部を、ビス
フェノールA型エポキシ樹脂(エポキシ当量4000/
eq)のトルエン/酢酸ブチル=3:1(重量比)の混
合溶液50重量%溶液100重量部と、マイクロカプセ
ル化イミダゾール誘導体エポキシ化合物50重量部を用
いた以外は、実施例1と同様にして異方導電フィルムを
得た。 比較例4 反応性エラストマーとして、重合度1700、アセチル
化度3mol%以下、ブチラール化度65mol%以
上、フロー軟化点が225℃のポリビニルブチラール樹
脂をトルエン/酢酸エチル=5:1(重量比)混合溶液
に溶解して得られた10重量%溶液1000重量部を、
ビスフェノールA型エポキシ樹脂(エポキシ当量400
0/eq)のトルエン/酢酸ブチル=3:1(重量比)
の混合溶液50重量%溶液100重量部と、マイクロカ
プセル化イミダゾール誘導体エポキシ化合物50重量部
を用いた以外は、実施例1と同様にして異方導電フィル
ムを得た。 比較例5、6 比較例5では、導電粒子としてポリスチレン球状核材に
ニッケル/金メッキしたもの(ニッケル膜中の燐含有量
0重量%)、比較例6ではニッケル膜中の燐含有量30
重量%を用いた以外は、実施例1と同様にして異方導電
フィルムを得た。 これらの実施例及び比較例で得られ
た異方導電フィルムについて、貯蔵保存性、接着力、リ
ペア性、接続信頼性の評価を実施した結果を表1、表2
に示す。 【0015】評価方法 試験片として用いた異方導電フィルムの厚みは全て25
μm。 貯蔵保存性:異方導電フィルムを室温(23℃)及び4
0℃に放置後、120℃の熱盤上で溶融することを確認
し、更にこの試験片を用いてTABとシート抵抗値30
Ωのインジウム/錫酸化導電皮膜を全面に形成した厚さ
1.1mmのガラス(以下ITOガラスという)を接続
した場合に、初期接続抵抗値が全ての端子において、2
Ω以下であれば○,2Ωを越えるものであれば×とし
た。 接着力:90°剥離試験によって評価を行った。被着体
としては、銅箔/ポリイミド=35/75μmに0.4
μmの錫メッキを施したTAB(ピッチ0.10mm、
端子数200本)とITOガラスを用いた。 リペア性:一度熱圧着によって接合した試験片を熱盤上
で150℃に加熱して引き剥し、被接続部材を損傷なく
剥離できるか否かを観察した。 接続信頼性:−40℃/30分、25℃/5分、80℃
/30分、25℃/5分の温度リサクル試験を250サ
イクル行った後、隣接する端子間の接続抵抗を測定し
た。 【0016】 【表1】 【0017】 【表2】 【0018】 【発明の効果】本発明によれば、密着性、作業性のバラ
ンスが極めてよく、信頼性が高く、かつ低接続抵抗の異
方導電フィルムを得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical connection between fine circuits, more specifically, a connection between an LCD (Liquid Crystal Display) and a flexible circuit board or a TAB film. The present invention relates to a method for manufacturing an anisotropic conductive film used for micro-joining a semiconductor IC and an IC-mounted circuit board. 2. Description of the Related Art With the recent miniaturization and thinning of electronic equipment, the necessity of connection between minute circuits, connection between minute parts and minute circuits, etc. has been dramatically increased. As a method, anisotropic conductive adhesives and films have begun to be used (for example, see JP-A-59-120436, 60-A).
191228, 61-274394, 61-28797
4, 62-244242, 63-153534, 63-
305591, 64-81878, JP-A-1-4654
9, 1-25178, etc.). Further miniaturization of parts has progressed, and in connection work between circuits using an anisotropic conductive film associated therewith, the connected members once connected without being damaged or damaged due to misalignment or the like are separated and re-pressed (so-called). Damage to the adherend (for example, LCDs) due to the need for “repair”), cure shrinkage during the thermosetting reaction of the anisotropic conductive film, and the strain stress of the resin itself in various atmospheres. There is a problem that the glass substrate used is cracked or the substrate is warped. In order to solve these problems, there is a strong demand for a highly reliable thermosetting anisotropic conductive film having fast curing, long life, moisture resistance and low distortion. [0003] The present invention enables connection in a short time, which cannot be obtained with the conventional thermosetting type,
It also has excellent storage stability at room temperature, has excellent adhesion in a wide temperature range (-40 ° C to 100 ° C) after curing by heating and pressing, and has extremely small distortion (stress) remaining at the joint. Another object of the present invention is to provide a method for producing a thermosetting anisotropic conductive film which can be peeled off and re-pressed by heating the once-pressed one to a predetermined temperature or higher. According to the present invention, a polymerization degree of 15 is provided.
00 to 2500, acetylation degree is 3 mol% or less, butyralization degree is 65 mol% or more, and flow softening point is 200
Having a nickel film on the surface of a polyvinyl butyral resin (A), an epoxy resin (B), a microencapsulated imidazole derivative epoxy compound (C), a solvent (D), and a polymer spherical nucleus material having a characteristic of not less than ℃. A conductive film (F) having a gold film as an outer layer of the nickel film and having a phosphorus content of 2 to 20% by weight in the nickel film as an essential component;
And the weight ratio is (A) / ((B) + (C)) = (1)
0-50) is a method for producing the anisotropic conductive film of pasty mixture film made to volatilize cast solvent flow on releasing the film is / 100. The degree of polymerization of the polyvinyl butyral resin used in the present invention is from 1500 to 2500.
If it is less than 500, the fluidity of the resin at the time of heating and pressurizing is large, and the adhesive strength becomes insufficient. On the other hand, if the degree of polymerization exceeds 2500, the fluidity of the resin is insufficient, so that the conductive particles cannot come into contact with the terminals and the conductivity cannot be obtained. The acetylation degree of the polyvinyl butyral resin is 3 mol% or less, but 3 mol%.
%, The compatibility with the adherend (LCD glass substrate or TAB film) becomes poor, and the adhesive strength becomes insufficient. The butyralization degree is 65 mol% or more, but if it is less than 65 mol%, the content of polyvinyl alcohol and polyvinyl acetate in the molecule increases, and the adhesive strength becomes insufficient. Further, the flow softening point of the polyvinyl butyral resin is 200 ° C. or higher, but if it is lower than 200 ° C., the fluidity of the resin at the time of heating and pressurization is large, so that bubbles are entrapped and the adhesive strength is insufficient.
The flow softening point was measured by using a Koka type flotte tester (CFT-500, manufactured by Shimadzu Corporation) and measuring 1 g of the sample at 80 ° C.
And the temperature at which the flow rate of the sample reaches 1.0 × 10 -3 ml / sec is read with a load of 100 kg / cm 2 , an orifice of 1 mmφ × 10 mm, a heating rate of 6 ± 0.5 ° C. Let it be the flow softening point. The weight ratio of the polyvinyl butyral resin (A), the epoxy resin (B) and the microencapsulated imidazole derivative epoxy compound (C) as a latent curing agent is (A) / ((B) + (C)) = (10-50) / 10
0, depending on the target workability, reliability, etc., but when the polyvinyl butyral resin is less than 10 parts by weight,
When the initial adhesive strength (adhesive strength) is insufficient and the anisotropic conductive film is further formed, the flowability at the time of melting is large and the inclusion of bubbles is large. In addition, the so-called repairability, whose necessity has been increasing recently, is less than 10 parts by weight, so that the resin softening temperature after curing is high, a high temperature is required at the time of peeling, and the resin component remaining on the adherend is removed. It becomes difficult. If it exceeds 50 parts by weight, the adhesive strength is sufficient, but the viscosity at the time of melting is high,
The fluidity of the resin is insufficient, so that the conductive particles may not be able to come into contact with the terminals, and thus the conductivity may not be obtained. Furthermore, workability such as repairability is relatively good, but compatibility with epoxy resin components, heat resistance, and moisture resistance are insufficient. The epoxy resin used in the present invention has at least two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin And cresol novolak type epoxy resin, and the like, but not limited thereto, and they may be used alone or in combination. The microencapsulated imidazole derivative epoxy compound used in the present invention is a product obtained by microencapsulating a reaction product of an imidazole derivative and an epoxy compound into a fine powder, which is commercially available.
Further, those obtained by reacting a microencapsulated imidazole derivative epoxy compound with an isocyanate compound to enhance chemical resistance and storage stability are also suitable. Examples of the epoxy compound used herein include phenol novolak resins, glycidyl ether type epoxy resins such as bisphenol A, bisphenol F and brominated bisphenol A, diglycidyl dimer acid ester, and diglycidyl phthalate ester. Examples of the imidazole derivative include, for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-
Methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-ethyl-5-methylimidazole, 2-phenyl-4-methyl-5-hydroxydimethylimidazole, 2-phenyl-4,5-dihydroxymethyl And imidazole. The conductive particles used in the present invention have a nickel film on the surface of a polymer spherical core material, a gold film on the outer layer of the nickel film, and a phosphorous content in the nickel film of 2 to 20. % By weight. The gold film and the nickel film on the surface of the conductive particles have a phosphorous content in nickel of 2 to 20% by weight,
There is no particular limitation. For example, the thickness of the film is not particularly limited, but if it is too thin, the conductivity becomes unstable, and if it is too thick, particle deformation becomes difficult or agglomeration occurs. 1 μm is preferred.
In addition, in the method of forming the coating, it is preferable that the coating is uniformly formed in consideration of the adhesive force and conductivity between the coating and the polymer spherical core material serving as the central nucleus. Is desirable. When conductive particles coated with a phosphorous content of less than 2% by weight in a nickel film are used to form an anisotropic conductive film, dispersibility of the conductive particles deteriorates and aggregation occurs. Insulation between adjacent terminals may be reduced, resulting in a short circuit, and there is a restriction on fine circuit connection. Conversely, if it exceeds 20% by weight,
Although the dispersibility is improved, the conductivity is reduced, the connection resistance value is increased, and there is a problem that the long-term connection reliability is reduced. The particle size of the conductive particles used in the present invention is 3 to 15
If the average particle size is less than 3 μm and the average particle size is less than 5 μm, it is close to the size of the irregularities on the surface of the circuit to be connected, and the variation in the circuit thickness cannot be absorbed during thermocompression bonding. This causes an increase in connection resistance and an open defect.
If the particle size exceeds 15 μm and the average particle size exceeds 10 μm, the particles will contact between adjacent circuits when the circuit pitch (circuit width + circuit interval) is applied to 0.1 mm or less, and insulation between adjacent circuits will occur. There is a danger of deterioration or short circuit. An optimum value may be selected depending on the circuit terminal pitch, terminal thickness variation and the like to be connected within these ranges. For example,
In connection between a liquid crystal display panel and a flexible circuit board (hereinafter, referred to as FPC), which is a main use of an anisotropic conductive film, the conductive particles having a metal coating have a particle size of 3-1.
It is preferably about 5 μm, and the blending amount with respect to the paste mixture is preferably 0.5 to 10% by volume. The compressive breaking strength of the conductive particles is 10 to 10
0 kg / mm 2 , compression modulus is 100-1000 kg /
mm 2 . If the compression breaking strength is less than 10 kg / mm 2 and the compression modulus is less than 100 kg / mm 2 , the particles are broken before electrical connection is obtained, and connection cannot be made.
If the compression breaking strength exceeds 100 kg / mm 2 and the compression modulus exceeds 1000 kg / mm 2 , excessive pressure must be applied to obtain a sufficient area for connecting the terminals. This may damage the body. Since the degree of crushing of the metal-coated particles after thermocompression bonding affects various characteristics such as connection reliability, the compression breaking strength is 10 to 100 kg /
mm 2 , and the compression modulus is required to be 100 to 1000 kg / mm 2 . The composition of the polymer spherical core material is not particularly limited, and examples thereof include polymers such as epoxy resins, urethane resins, melamine resins, phenol resins, acrylic resins, polyester resins, polystyrene resins, and styrene-butadiene copolymers. These may be used alone or as a mixture. Solvents used in the present invention include acetone, methyl ethyl kent, methyl isobutyl ketone, toluene, xylene, n-butyl alcohol, ethyl acetate, butyl acetate, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, diacetone ether, methyl cellosolve acetate, and ethyl cellosolve. Acetate, dimethylformamide and the like can be mentioned, but the stability of the resin after compounding is influenced by the magnitude of the polarity. Next, the properties required for the release film as the carrier of the anisotropic conductive film are heat resistance, release properties, and a certain degree of adhesion balanced with the release properties, but the workability of the anisotropic conductive film is greatly increased. Since it depends, it is necessary to appropriately select the compounding formulation. Examples of the release film include a polyester film, a polymethylpentene film, a fluorine film, and the like.Among these, the fluorine film has sufficient heat resistance under use conditions, and also has a strong adhesive epoxy resin. It is preferable because sufficient adhesion and releasability are maintained for the coating film. Depending on the composition of the adhesive, a material having good workability is appropriately selected and used from various fluorine-based films. The anisotropic conductive film is prepared by appropriately blending the resin composition and the conductive particles selected and adjusted as described above, mixing and stirring, and casting the mixture on a release film. Various additives such as non-reactive diluent, reactive diluent, and thixotropic, aiming at various properties such as workability such as wettability with the release film and wettability with the release film, and surface viscosity and adhesion during film formation. An imparting agent, a thickening agent, an inorganic filler and the like may be appropriately added. The present invention will be described in detail with reference to embodiments. Example 1 As a reactive elastomer, a polyvinyl butyral resin having a degree of polymerization of 1700, a degree of acetylation of 3 mol% or less, a degree of butyralization of 65 mol% or more, and a flow softening point of 225 ° C. was mixed with toluene / ethyl acetate = 5: 1 (weight ratio). 100 parts by weight of a 10% by weight solution obtained by dissolving in a solution is mixed with a bisphenol A-type epoxy resin (epoxy equivalent: 4000).
/ Eq) of toluene / butyl acetate = 3: 1 (weight ratio), 50 parts by weight of a 50% by weight solution, and 50 parts by weight of a microencapsulated imidazole derivative epoxy compound are rapidly stirred and mixed, and the resulting mixture is mixed with a polystyrene sphere. Addition of 3 parts by weight of nickel / gold plated conductive particles (phosphorus content in nickel film: 10% by weight) to the core material, uniform dispersion, further addition of toluene, 4-fluoroethylene-perfluoroalkyl vinyl ether copolymer The film was cast and dried to a thickness of 25 μm after drying to obtain an anisotropic conductive film. Example 2 As a reactive elastomer, a 10% by weight solution obtained by dissolving a polyvinyl butyral resin having a degree of polymerization of 2350, a degree of acetylation of 3 mol% or less, a degree of butyralization of 65 mol% or more, and a flow softening point of 230 ° C. in ethyl acetate. 10
An anisotropic conductive film was obtained in the same manner as in Example 1 except that 0 parts by weight was used. Example 3 A mixed solution of a polyvinyl butyral resin having a degree of polymerization of 1700, a degree of acetylation of 3 mol% or less, a degree of butyralization of 65 mol% or more, and a flow softening point of 225 ° C. as toluene / ethyl acetate = 5: 1 (weight ratio) as a reactive elastomer. 100 parts by weight of a 10% by weight solution obtained by dissolving in a bisphenol A type epoxy resin (an epoxy equivalent of 4000 g).
/ Eq) of toluene / butyl acetate = 3: 1 (weight ratio) 50% by weight of a mixed solution 100 parts by weight of a solution and a microencapsulated imidazole derivative epoxy compound 50 parts by weight were used in the same manner as in Example 1. An anisotropic conductive film was obtained. Example 4 As a reactive elastomer, a polyvinyl butyral resin having a degree of polymerization of 1700, a degree of acetylation of 3 mol% or less, a degree of butyralization of 65 mol% or more, and a flow softening point of 225 ° C. was mixed with toluene / ethyl acetate = 5: 1 (weight ratio). 500 parts by weight of a 10% by weight solution obtained by dissolving in a solution is mixed with a bisphenol A type epoxy resin (an epoxy equivalent of 4000).
/ Eq) of toluene / butyl acetate = 3: 1 (weight ratio): 50 parts by weight of a 50% by weight solution and 50 parts by weight of a microencapsulated imidazole derivative epoxy compound were used in the same manner as in Example 1. Thus, an anisotropic conductive film was obtained. Examples 5 and 6 In Example 5, nickel / gold plating was performed on polystyrene spherical core material as conductive particles (phosphorus content in nickel film: 5% by weight). In Example 6, phosphorus content in nickel film was 20%.
An anisotropic conductive film was obtained in the same manner as in Example 1 except that the weight% was used. Comparative Examples 1 and 2 In Comparative Example 1, as the reactive elastomer, a degree of polymerization of 30 was used.
0, a polyvinyl butyral resin having a degree of acetylation exceeding 3 mol%, a butyral degree of 63 mol%, and a flow softening point of 115 ° C. In Comparative Example 2, a polymerization degree of 1000, an acetylation degree of 3 mol% or less, and a butyral degree of 70 mol
%, And an anisotropic conductive film was obtained in the same manner as in Example 1, except that a polyvinyl butyral resin having a flow softening point of 160 ° C. was used. Comparative Example 3 As a reactive elastomer, a polyvinyl butyral resin having a degree of polymerization of 1700, a degree of acetylation of 3 mol% or less, a degree of butyralization of 65 mol% or more, and a flow softening point of 225 ° C. was mixed with toluene / ethyl acetate = 5: 1 (weight ratio). 50 parts by weight of a 10% by weight solution obtained by dissolving in a solution was mixed with a bisphenol A type epoxy resin (epoxy equivalent 4000 /
eq) 100 parts by weight of a 50% by weight solution of a mixed solution of toluene / butyl acetate = 3: 1 (weight ratio) and 50 parts by weight of a microencapsulated imidazole derivative epoxy compound were used in the same manner as in Example 1. An anisotropic conductive film was obtained. Comparative Example 4 As a reactive elastomer, a polyvinyl butyral resin having a degree of polymerization of 1700, a degree of acetylation of 3 mol% or less, a degree of butyralization of 65 mol% or more, and a flow softening point of 225 ° C. was mixed with toluene / ethyl acetate = 5: 1 (weight ratio). 1000 parts by weight of a 10% by weight solution obtained by dissolving in a solution,
Bisphenol A type epoxy resin (epoxy equivalent 400
0 / eq) toluene / butyl acetate = 3: 1 (weight ratio)
An anisotropic conductive film was obtained in the same manner as in Example 1 except that 100 parts by weight of a mixed solution of 50% by weight of the above solution and 50 parts by weight of a microencapsulated imidazole derivative epoxy compound were used. Comparative Examples 5 and 6 In Comparative Example 5, nickel / gold plating was performed on a polystyrene spherical core material as conductive particles (phosphorus content in nickel film: 0% by weight). In Comparative Example 6, phosphorus content in nickel film was 30%.
An anisotropic conductive film was obtained in the same manner as in Example 1 except that the weight% was used. With respect to the anisotropic conductive films obtained in these Examples and Comparative Examples, the results of evaluating the storage stability, adhesive strength, repairability, and connection reliability are shown in Tables 1 and 2.
Shown in Evaluation method The thickness of the anisotropic conductive film used as the test piece was 25
μm. Storage preservation: Anisotropic conductive film is kept at room temperature (23 ° C.)
After leaving at 0 ° C., it was confirmed that the sample melted on a hot plate at 120 ° C. Further, using this test piece, TAB and sheet resistance 30
When a 1.1 mm-thick glass (hereinafter referred to as ITO glass) having an indium / tin oxide conductive film of Ω formed on the entire surface is connected, the initial connection resistance value is 2 at all terminals.
If it was less than Ω, it was evaluated as ○, and if it exceeded 2 Ω, it was evaluated as ×. Adhesion: Evaluated by a 90 ° peel test. As an adherend, copper foil / polyimide = 35/75 μm 0.4
TAB with tin plating of μm (pitch 0.10 mm,
(200 terminals) and ITO glass were used. Repairability: The test piece once bonded by thermocompression was heated to 150 ° C. on a hot plate and peeled off, and it was observed whether the connected member could be peeled off without damage. Connection reliability: -40 ° C / 30 minutes, 25 ° C / 5 minutes, 80 ° C
After 250 cycles of a temperature recycle test at 25 ° C. for 5 minutes, the connection resistance between adjacent terminals was measured. [Table 1] [Table 2] According to the present invention, it is possible to obtain an anisotropic conductive film having an extremely good balance between adhesion and workability, high reliability and low connection resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 5/16 H01B 5/16 H01R 11/01 501 H01R 11/01 501E (58)調査した分野(Int.Cl.7,DB名) H01B 13/00 501 H01B 5/16 H01B 5/00 H01B 1/22 B29C 41/30 C08J 5/18 CFC H01R 11/01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification symbol FI H01B 5/16 H01B 5/16 H01R 11/01 501 H01R 11/01 501E (58) Fields surveyed (Int.Cl. 7 , DB Name) H01B 13/00 501 H01B 5/16 H01B 5/00 H01B 1/22 B29C 41/30 C08J 5/18 CFC H01R 11/01

Claims (1)

(57)【特許請求の範囲】 【請求項1】 重合度が1500〜2500、アセチル
化度が3mol%以下、ブチラール化度が65mol%
以上、フロー軟化点が200℃以上の特性を有するポリ
ビニルブチラール樹脂(A)、エポキシ樹脂(B)、マ
イクロカプセル化イミダゾール誘導体エポキシ化合物
(C)、溶剤(D)及び高分子球状核材の表面にニッケ
ル膜を有し、該ニッケル膜の更に外層に金膜を有し、該
ニッケル膜中の燐含有量が2〜20重量%である導電粒
子(F)を必須成分し、かつ重量配合割合が(A)/
((B)+(C))=(10〜50)/100であるペ
ースト状混合物を離形フィルム上に流延し溶剤を揮散さ
せ製膜することを特徴とする異方導電フィルムの製造方
(57) [Claims 1] A polymerization degree is 1500 to 2500, an acetylation degree is 3 mol% or less, and a butyralization degree is 65 mol%.
As described above, the surface of the polyvinyl butyral resin (A), the epoxy resin (B), the microencapsulated imidazole derivative epoxy compound (C), the solvent (D), and the polymer spherical core material having a flow softening point of 200 ° C. or more are described. A conductive film (F) having a nickel film, a gold film as an outer layer of the nickel film, and a phosphorus content of 2 to 20% by weight in the nickel film as an essential component; (A) /
((B) + (C) ) = (10~50) pasty mixture production side of the anisotropic conductive film, characterized in that the membrane manufactured to volatilize cast solvent flow on releasing the film is / 100
Law .
JP32818494A 1994-12-28 1994-12-28 Method for producing anisotropic conductive film Expired - Fee Related JP3480754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32818494A JP3480754B2 (en) 1994-12-28 1994-12-28 Method for producing anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32818494A JP3480754B2 (en) 1994-12-28 1994-12-28 Method for producing anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH08185713A JPH08185713A (en) 1996-07-16
JP3480754B2 true JP3480754B2 (en) 2003-12-22

Family

ID=18207413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32818494A Expired - Fee Related JP3480754B2 (en) 1994-12-28 1994-12-28 Method for producing anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3480754B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1448033A1 (en) * 1996-12-27 2004-08-18 Matsushita Electric Industrial Co., Ltd. Method and device for mounting electronic component on a circuit board
KR100430626B1 (en) * 1997-01-20 2004-07-30 주식회사 코오롱 Thermofusion epoxy film having rapid curability and excellent storage stability at room temperature and method for manufacturing the same
US6574114B1 (en) 2002-05-02 2003-06-03 3M Innovative Properties Company Low contact force, dual fraction particulate interconnect
JP5998018B2 (en) * 2012-11-12 2016-09-28 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same
JP5998032B2 (en) * 2012-12-06 2016-09-28 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same

Also Published As

Publication number Publication date
JPH08185713A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
JP5010990B2 (en) Connection method
EP2377903A1 (en) Film adhesive and anisotropic conductive adhesive
JP4556936B2 (en) Adhesive for electrode connection
EP1944346A1 (en) Anisotropic conductive adhesive
JP3418492B2 (en) Anisotropic conductive film
JP3516379B2 (en) Anisotropic conductive film
JP3391870B2 (en) Anisotropic conductive film
JPH07157720A (en) Film having anisotropic electrical conductivity
JP2842051B2 (en) Adhesive composition
JP3620751B2 (en) Anisotropic conductive film
JP7020029B2 (en) Conductive adhesive film
JP3480754B2 (en) Method for producing anisotropic conductive film
JP2500826B2 (en) Anisotropic conductive film
JP2509773B2 (en) Method for producing anisotropic conductive film
JP3947532B2 (en) Anisotropic conductive adhesive film
JP4867805B2 (en) Adhesive for electrode connection
JP2680412B2 (en) Anisotropic conductive film
JP2894093B2 (en) Adhesive composition and laminated film
JPH09165435A (en) Anisotropic conductive film
JP2629490B2 (en) Anisotropic conductive adhesive
JP2010024384A (en) Anisotropically electroconductive composition
JP4730215B2 (en) Anisotropic conductive adhesive film
JP3981341B2 (en) Anisotropic conductive adhesive
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP3046081B2 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees