JP3620751B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP3620751B2
JP3620751B2 JP28145395A JP28145395A JP3620751B2 JP 3620751 B2 JP3620751 B2 JP 3620751B2 JP 28145395 A JP28145395 A JP 28145395A JP 28145395 A JP28145395 A JP 28145395A JP 3620751 B2 JP3620751 B2 JP 3620751B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
mol
formula
epoxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28145395A
Other languages
Japanese (ja)
Other versions
JPH09124771A (en
Inventor
道雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28145395A priority Critical patent/JP3620751B2/en
Publication of JPH09124771A publication Critical patent/JPH09124771A/en
Application granted granted Critical
Publication of JP3620751B2 publication Critical patent/JP3620751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Description

【0001】
【発明の属する技術分野】
本発明は、微細な回路同士の電気的接続、更に詳しくはLCD(液晶ディスプレイ)とフレキシブル回路基板やTABフィルムとの接続や、半導体ICとIC搭載回路基板のマイクロ接合に用いる異方導電フィルムに関するものである。
【0002】
【従来の技術】
最近の電子機器の小型化、薄型化に伴い、微細な回路同士の接続、微小部品と微細回路の接続等の必要性が飛躍的に増大してきており、その接続方法として、異方性の導電性接着剤やフィルムが使用され始めている。(例えば、特開昭59−120436、60−191228、61−274394、61−287974、62−244242、63−153534、63−305591、64−81878、平1−46549、1−25178各号公報等)。
更なる部品の微細化が進み、それに伴う異方性導電フィルムによる回路同士の接続作業において、位置ずれ等の理由によって一度接続した被接続部材を破損または損傷せずに剥離し再圧着すること(所謂“リペア”)が可能であることへの要求や、異方導電フィルムの熱硬化反応時の硬化収縮や種々の雰囲気中での樹脂自体の歪み応力に基づき、被着体が損傷(例えば、LCDに用いられるガラス基板のクラックや基板の反り)するという問題が生じてきている。これらの問題を解決するために、速硬化、長ライフ、耐湿性、更には低歪みの高信頼性熱硬化タイプの異方導電フィルムが強く要求されている。
【0003】
【発明が解決しようとする課題】
本発明は、従来の熱硬化型では得られなかった、常温での貯蔵安定性に優れ、加熱加圧して硬化後、広範囲の温度領域(−40℃〜100℃)において優れた接着性を有し、しかも接合部に残る歪み(応力)が極めて小さく、更に温湿度サイクル試験のような厳しい処理後も接続抵抗の安定性が優れた熱硬化型異方導電フィルムを提供するものである。
【0004】
【課題を解決するための手段】
本発明は、重合度が1500〜2500、アセチル化度が3モル%以下、ブチラール化度が65モル%以上、フロー軟化点が200℃以上の特性を有するポリビニルブチラール樹脂(A)、エポキシ樹脂(B)、イミダゾール誘導体と式(1)で表わされるシリコーンエポキシ化合物との反応物(C)、及び高分子球状核材の表面に金属被覆を有する導電粒子(D)を必須成分とする異方導電フィルムである。
【0005】
【化3】

Figure 0003620751
(R、Rは2価の炭素数1〜5の脂肪族基、又は炭素数6以上の芳香族から2個の水素を除いた残基を示し、互いに同じであっても異なっていてもよい)
【0006】
【発明の実施の態様】
本発明に用いるポリビニルブチラール樹脂の重合度は1500〜2500であるが、重合度が1500未満だと加熱、加圧時の樹脂流動性が大きく接着力が不十分となる。また、重合度が2500を越えると樹脂の流動性が不足し、導電粒子が端子と接触できず導通性が得られない。
また、本発明に用いるポリビニルブチラール樹脂のアセチル化度は3モル%以下であるが、3モル%を越えると被着体(LCDガラス基板やTABフィルム)との相性が悪くなり接着力が不足し、ブチラール化度が65モル%未満だと分子中のポリビニルアルコール及びポリ酢酸ビニルの含有割合が増加し接着力が不足する。
更に、ポリビニルブチラール樹脂のフロー軟化点は、200℃以上であるが、200℃未満だと加熱、加圧時の樹脂流動性が大きく気泡の抱き込みが大きくなり接着力が不足する。
【0007】
本発明に用いるエポキシ樹脂は、1分子中に少なくとも2個以上のエポキシ基を有するものである。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等の他、分子中にナフタレン骨格を有するエポキシ樹脂としては、1,6−ビス−(2,3−エポキシプロポキシ)ナフタレン、または2,7−ジヒドロキシナフタレンとホルムアルデヒドとの縮合物をエピクドルヒドリンと反応した樹脂、2−ヒドロキシナフタレンと2,7−ジヒドロキシナフタレンとホルムアルデヒドとの縮合物をエピクドルヒドリンと反応した樹脂等が挙げられるが、これらのものに限定されるものではなく、また単独でも混合して用いても差し支えない。
【0008】
本発明に用いるイミダゾール誘導体としては、2−メチルイミダゾール、2−エチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタジシルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾールが挙げられる。本発明に用いるシリコーンエポキシ化合物は、式(1)で示されるが、R1、R2としてはプロピレン基である、式(2)で示される構造のものが工業的入手の容易さから好ましい。本発明に用いるイミダゾール誘導体とシリコーンエポキシ化合物との反応物は、イミダゾール誘導体とシリコーンエポキシ化合物とを仕込モル比1.5〜2.5の割合で混合し、必要により溶剤を加えて100℃以上の条件で1〜100時間反応させて得られる。仕込モル比が2.5を越えると、イミダゾール誘導体が未反応成分として残るため、これを用いた場合樹脂組成物の保存性が低下する。また、1.5未満だとシリコーンエポキシ化合物が未反応成分として残り、硬化性が低下するため好ましくない。該反応物は、イミダゾール誘導体の種類や仕込モル比によって常温で固形または液状の状態であり、エポキシ樹脂の硬化剤として用いる。この反応物は単独で用いても良いが、更に保存性を向上するために、固形の場合には微粉化し、少量のイソシアネート化合物と反応させて表面処理を行い、液状の場合にはポリウレタン樹脂等でマイクロカプセル化して用いても良い。反応物は、エポキシ樹脂100重量部に対して5〜200重量部用いられる。5重量部未満だと硬化性、耐湿性、応力性において効果が少なく、また200重量部を越えると保存性、接着強度が低下する。反応物以外の硬化剤としては、従来から用いられているエポキシ樹脂用硬化剤であれば良く、例えば、イミダゾール誘導体、アミン類、フェノール類酸無水物などを併用しても良い。
以上
【0009】
本発明では、式(1)で示される低鎖長シロキサンユニットを含むエポキシ化合物を用いるため、低温及び高温時における接着力の低下が少なく、吸湿性も少なく、更に適度の可撓性を有するため応力も少なくなるため、吸湿処理後及びヒートサイクル処理後の劣化の少ない異方導電フィルムが得られる。
【0010】
本発明で用いる高分子球状核材の表面に金属被覆を有する導電粒子は、高分子球状核材の表面にニッケル膜を有し、該ニッケル膜の更に外層に金膜を有する導電粒子であるが、導電粒子表面の金膜、ニッケル膜の皮膜の厚さは特に限定しないが、薄すぎると導電性が不安定になり、厚すぎると粒子変形が困難になったり凝集などが生じるため、金及びニッケル皮膜の厚さは0.01〜1μmが好ましい。また皮膜の形成方法では、この皮膜と中心核となる高分子球状核材との密着力、導通性などを考慮し、均一に形成されていることが良く、従来から用いられている無電解メッキなどが望ましい。
【0011】
また、本発明に用いる高分子球状核材の表面に金属被覆を有する導電粒子の粒径は3〜15μm、平均粒径は5〜10μmであることが好ましい。粒径が3μm未満および平均粒径が5μm未満だと、接続する回路表面の凹凸の大きさに近く、熱圧着時に回路厚みのバラツキを吸収できず、接続抵抗増やオープン不良の原因となる。また粒径が15μmを越え、かつ平均粒径10μmを越えると回路ピッチ(回路幅+回路間隔)が0.1mm以下に適用した際に隣接回路間で粒子が接触し、隣接回路間での絶縁性が低下したり、ショートを起こす危険性がある。
これらの範囲内で接続する回路端子ピッチ、端子厚さバラツキ等により最適値を選択すればよい。例えば、異方導電フィルムの主要な用途である液晶ディスプレイパネルとフレキシブル回路基板(以下FPC)との接続では、金属被覆を有する導電粒子の粒径は3〜15μm程度で、かつ絶縁性接着剤に対する配合量は、0.5〜10体積%が好ましい。
又、高分子球状核材の表面に金属被覆を有する導電粒子の圧縮破壊強度は10〜100kg/mm、圧縮弾性率は100〜1000kg/mmである。
圧縮破壊強度が10kg/mm未満および圧縮弾性率が100kg/mm未満であると電気的接続を得る前に粒子が破壊されてしまい接続できない。また圧縮破壊強度が100kg/mmを越え、かつ圧縮弾性率が1000kg/mmを越える場合には、端子と端子の接続に充分な面積を得るには過大な圧力をかけなくてはならなく被着体を破損する原因となる。
熱圧着後の金属被覆粒子をつぶれ具合が接続信頼性等の諸特性に影響を及ぼすため、圧縮破壊強度は10〜100kg/mm、圧縮弾性率は100〜1000kg/mmである必要がある。
【0012】
高分子球状核材の組成は特に限定しないが、例えばエポキシ樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレン−ブタジエン共重合体等のポリマーが挙げられ、これらは単独でも混合して用いても差し支えない。
又金属被覆には、Au、Ni、Ag、Cu、Zn、Sn、In、Al、Pd等が挙げられ、これらは組み合わせても良い。これらの高分子球状核材と金属被覆は、両者の密着力などを考慮して適切なものを選択すればよい。
【0013】
本発明の異方導電フィルムは、(A)〜(D)成分を適宜選択して、溶剤を使用して均一に溶解または分散させた後、離型処理をしたポリエステル系フィルムまたはフッ素系フィルム等に均一な厚みに流延して、熱処理で溶剤を揮散させることで得られる。
作業性や各種性能の向上を狙って、各種添加剤、例えば非反応性希釈剤、反応性希釈剤、揺変性付与剤、カップリング剤、増粘剤、無機充填材等を適宜添加しても差し支えない。
【0013】
反応物の製造例1
2−ウンデシルイミダゾール(分子量222)44.4g(0.2モル)を150℃に加温し撹拌しながら、前記の式(2)のシリコーンエポキシ化合物(分子量392)39.2g(0.1モル)を徐々に添加し、170℃に昇温して3時間反応させ、褐色で粘稠な生成物を得た。この生成物を反応生成物(1)とする。
反応物の製造例2
2−ヘプタデシルイミダゾール(分子量306)61.2g(0.2モル)を150℃に加温し撹拌しながら、前記の式(2)のシリコーンエポキシ化合物39.2g(0.1モル)を徐々に添加し、180℃に昇温し5時間反応させ、褐色で粘稠な生成物を得た。この生成物を反応生成物(2)とする。
【0014】
反応物の製造例3
2−ウンデシルイミダゾール44.4g(0.2モル)を150℃に加温し撹拌しながら、式(3)で表わされる長鎖シロキサンユニットを含有するエポキシ化合物(分子量660)66g(0.1モル)を徐々に添加し、180℃に昇温して10時間反応させて褐色で粘稠な生成物を得た。この生成物を反応生成物(3)とする。
【0015】
【化4】
Figure 0003620751
【0016】
反応物の製造例4
2−ウンデシルイミダゾール44.4g(0.2モル)を120℃に加温し撹拌しながら、式(4)で表わされるシロキサンユニットを含まないエポキシ化合物(分子量340)34.0g(0.1モル)を徐々に添加し更に120℃で5時間反応させて赤色で固形の生成物を得た。この生成物を20メッシュ程度に微粉砕したものを反応生成物(4)とする。
【0017】
【化5】
Figure 0003620751
【0018】
反応物の製造例5
2−ウンデシルイミダゾールを66.6g(0.3モル)を用いる以外は、製造例1と同様に反応して反応生成物(5)を得た。
反応物の製造例6
2−ウンデシルイミダゾールを22.2g(0.1モル)を用いる以外は、製造例1と同様に反応して反応生成物(6)を得た。
【0019】
以下本発明を実施例で具体的に説明する。
実施例1
反応性エラストマーとして、重合度1700、アセチル化度3モル%以下、ブチラール化度65モル%以上、フロー軟化点が225℃のポリビニルブチラール樹脂25重量部をトルエン/酢酸エチル=5:1(重量比)混合溶液に10重量%となるように溶解した溶液、高分子量ビスフェノールA型エポキシ樹脂(エポキシ当量4000)25重量部をトルエン/酢酸ブチル=3:1混合溶液に50重量%となるように溶解した溶液、低分子量ビスフェノールA型エポキシ樹脂(エポキシ当量200)40重量部、反応生成物(1)40重量部を速やかに撹拌混合し、これにポリスチレン球状核材にNi/Auメッキした導電粒子(平均粒径5μm)を4重量部添加し均一に分散し、更にトルエンを添加し、4−フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体フィルム上に流延・乾燥し厚みが25μmの異方導電フィルムを得た。
この異方導電フィルムについて保存性、接着力及び接続抵抗値の各種処理後の評価を実施した結果を表1に示す。
保存性は、フィルムを室温(23℃)で30日間、又は40℃で7日間放置後、TABとITOガラスを接続した場合の接続抵抗値が、初期の接続抵抗値に対して20%以上上昇しておれば×<20%未満の上昇であれば○とした。
接着力は、被着体として銅箔/ポリイミド=35/75μmに0.4μmの錫メッキを施したTAB(ピッチ0.10mm、端子数200本)とシート抵抗値30Ωのインジウム/錫酸化物導電皮膜を全面に形成した厚さ1.1mmのITOガラスを用いて、両者を2mm幅の異方導電フィルムを30kg/cmの圧力で、180℃で30秒間圧着したサンプルを90°剥離試験によって評価した。
接続抵抗値は上記のサンプルを用いて、200端子の端子間の接続抵抗値を測定して平均値を算出した。
【0020】
実施例2〜6
表1の配合に従い、実施例1と同一の方法で異方導電フィルムを調整し、実施例1と同一の試験を行った。評価結果を表1に示す。
比較例1、2
反応性エラストマーとして、比較例1では、重合度300、アセチル化度が3モル%を越え、ブチラール化度63±3モル%、フロー軟化点115℃のポリビニルブチラール樹脂を、比較例2では重合度1000、アセチル化度3モル%以下、ブチラール化度70モル%、フロー軟化点160℃のポリビニルブチラール樹脂を用いた以外は、実施例1と同様にして異方導電フィルムを得た。評価結果を表2に示す。
比較例3〜6
反応生成物(3)〜(6)を用いる以外は、実施例1と同じ方法で異方導電フィルムを調製した。評価結果を表2に示す。
【0021】
【表1】
Figure 0003620751
【0022】
【表2】
Figure 0003620751
【0023】
【発明の効果】
本発明によれば、0.05mmピッチ以下の微細なマイクロ接合に使用可能であり、かつ接着力に優れ、信頼性の高い異方導電フィルムを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anisotropic conductive film used for electrical connection between fine circuits, more particularly connection between an LCD (liquid crystal display) and a flexible circuit board or TAB film, or micro-joining between a semiconductor IC and an IC-mounted circuit board. Is.
[0002]
[Prior art]
With the recent miniaturization and thinning of electronic devices, the need for connections between minute circuits and connections between minute parts and minute circuits has increased dramatically. Adhesives and films are beginning to be used. (For example, JP-A-59-120436, 60-191228, 61-274394, 61-287974, 62-244242, 63-153534, 63-305591, 64-81878, Hei 1-446549, 1-225178, etc. ).
With further miniaturization of parts, in connection work between circuits using anisotropic conductive film, the connected member once separated due to misalignment or the like is peeled off without being damaged or damaged and re-pressed ( The so-called “repair”) is possible, the shrinkage of the anisotropic conductive film during the thermosetting reaction, and the distortion stress of the resin itself in various atmospheres. There has been a problem that the glass substrate used in the LCD is cracked or warped. In order to solve these problems, there is a strong demand for a highly reliable thermosetting anisotropic conductive film with fast curing, long life, moisture resistance, and low distortion.
[0003]
[Problems to be solved by the invention]
The present invention has excellent storage stability at room temperature, which could not be obtained with a conventional thermosetting type, and has excellent adhesiveness in a wide temperature range (−40 ° C. to 100 ° C.) after curing by heating and pressing. In addition, the present invention provides a thermosetting anisotropic conductive film in which distortion (stress) remaining in the joint is extremely small and the stability of connection resistance is excellent even after severe processing such as a temperature and humidity cycle test.
[0004]
[Means for Solving the Problems]
The present invention relates to a polyvinyl butyral resin (A) having an polymerization degree of 1500 to 2500, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 200 ° C. or more. B), an anisotropic conductive material containing, as an essential component, a reaction product (C) of an imidazole derivative and a silicone epoxy compound represented by the formula (1), and conductive particles (D) having a metal coating on the surface of a polymer spherical core material It is a film.
[0005]
[Chemical 3]
Figure 0003620751
(R 1 and R 2 represent a divalent aliphatic group having 1 to 5 carbon atoms, or a residue obtained by removing two hydrogen atoms from an aromatic group having 6 or more carbon atoms. Also good)
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The degree of polymerization of the polyvinyl butyral resin used in the present invention is 1500 to 2500, but if the degree of polymerization is less than 1500, the resin fluidity at the time of heating and pressurization is large and the adhesive strength is insufficient. On the other hand, if the polymerization degree exceeds 2500, the fluidity of the resin is insufficient, and the conductive particles cannot be brought into contact with the terminals, so that the conductivity cannot be obtained.
Further, the degree of acetylation of the polyvinyl butyral resin used in the present invention is 3 mol% or less. However, if it exceeds 3 mol%, the compatibility with the adherend (LCD glass substrate or TAB film) is deteriorated and the adhesive strength is insufficient. When the degree of butyralization is less than 65 mol%, the content ratio of polyvinyl alcohol and polyvinyl acetate in the molecule increases, resulting in insufficient adhesion.
Furthermore, the flow softening point of the polyvinyl butyral resin is 200 ° C. or higher, but if it is lower than 200 ° C., the resin fluidity at the time of heating and pressurization is large, and the entrapment of bubbles becomes large and the adhesive strength is insufficient.
[0007]
The epoxy resin used in the present invention has at least two epoxy groups in one molecule. Specifically, in addition to bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, etc., as an epoxy resin having a naphthalene skeleton in the molecule, 1,6-bis- (2,3-epoxypropoxy) naphthalene or a resin obtained by reacting a condensation product of 2,7-dihydroxynaphthalene and formaldehyde with epicudolhydrin, 2-hydroxynaphthalene and 2,7-dihydroxy Examples thereof include resins obtained by reacting a condensate of naphthalene and formaldehyde with epicudolhydrin, but are not limited to these, and may be used alone or in combination.
[0008]
Examples of the imidazole derivatives used in the present invention include 2 -methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadicylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl- 4-methyl imidazole, 2-phenyl-4-methyl-5-hydroxymethyl imidazole, 2-phenyl-4,5-dihydroxy methyl imidazole. The silicone epoxy compound used in the present invention is represented by the formula (1), but R 1 and R 2 are preferably propylene groups, and those having a structure represented by the formula (2) are preferable from the viewpoint of industrial availability. The reaction product of an imidazole derivative and a silicone epoxy compound used in the present invention is a mixture of an imidazole derivative and a silicone epoxy compound in a charge molar ratio of 1.5 to 2.5, and if necessary, a solvent is added to at least 100 ° C. It is obtained by reacting for 1 to 100 hours under conditions. When the charged molar ratio exceeds 2.5, the imidazole derivative remains as an unreacted component, and when this is used, the storage stability of the resin composition is lowered. On the other hand, if it is less than 1.5, the silicone epoxy compound remains as an unreacted component, and the curability is lowered. The reaction product is in a solid or liquid state at room temperature depending on the type of imidazole derivative and the charged molar ratio, and is used as a curing agent for the epoxy resin. This reaction product may be used alone, but in order to further improve the storage stability, it is finely pulverized in the case of a solid, subjected to a surface treatment by reacting with a small amount of an isocyanate compound, and in the case of a liquid, a polyurethane resin or the like. And may be used after microencapsulation. The reaction product is used in an amount of 5 to 200 parts by weight based on 100 parts by weight of the epoxy resin. If it is less than 5 parts by weight, the effect on curability, moisture resistance and stress is small, and if it exceeds 200 parts by weight, storage stability and adhesive strength are lowered. As the curing agent other than the reactant, any conventional epoxy resin curing agent may be used. For example, an imidazole derivative, an amine, a phenolic acid anhydride, or the like may be used in combination.
[0009]
In the present invention, since an epoxy compound containing a low-chain-length siloxane unit represented by the formula (1) is used, there is little decrease in adhesion at low and high temperatures, low hygroscopicity, and moderate flexibility. Since stress is also reduced, an anisotropic conductive film with little deterioration after moisture absorption treatment and heat cycle treatment is obtained.
[0010]
The conductive particles having a metal coating on the surface of the polymer spherical core material used in the present invention are conductive particles having a nickel film on the surface of the polymer spherical core material and a gold film on the outer layer of the nickel film. The thickness of the gold film or nickel film on the surface of the conductive particles is not particularly limited. However, if the thickness is too thin, the conductivity becomes unstable, and if the thickness is too thick, the deformation of the particles becomes difficult or aggregation occurs. The thickness of the nickel film is preferably 0.01 to 1 μm. Also, in the method of forming the film, it is preferable that the film is uniformly formed in consideration of the adhesion, conductivity, etc. between the film and the polymer spherical core material serving as the central core. Etc. are desirable.
[0011]
Moreover, it is preferable that the particle diameter of the electrically conductive particle which has a metal coating on the surface of the polymeric spherical nucleus material used for this invention is 3-15 micrometers, and an average particle diameter is 5-10 micrometers. If the particle size is less than 3 μm and the average particle size is less than 5 μm, the size of the circuit surface to be connected is close to the size of the concavities and convexities, and variations in circuit thickness cannot be absorbed during thermocompression bonding, resulting in increased connection resistance and open defects. In addition, when the particle size exceeds 15 μm and the average particle size exceeds 10 μm, when the circuit pitch (circuit width + circuit interval) is applied to 0.1 mm or less, the particles come into contact with each other and insulation between adjacent circuits There is a risk of loss of performance or short circuit.
What is necessary is just to select an optimal value by the circuit terminal pitch, terminal thickness dispersion | variation, etc. which are connected within these ranges. For example, in the connection between a liquid crystal display panel and a flexible circuit board (hereinafter referred to as FPC), which is the main application of anisotropic conductive film, the particle size of the conductive particles having a metal coating is about 3 to 15 μm, and for the insulating adhesive The blending amount is preferably 0.5 to 10% by volume.
Further, compressive fracture strength of the conductive particles with a metal coating on the surface of the polymer spherical nuclear material 10 to 100 kg / mm 2, compression modulus is 100 to 1000 / mm 2.
When the compression fracture strength is less than 10 kg / mm 2 and the compression modulus is less than 100 kg / mm 2 , the particles are broken before electrical connection is obtained, and connection cannot be made. If the compressive fracture strength exceeds 100 kg / mm 2 and the compression modulus exceeds 1000 kg / mm 2 , excessive pressure must be applied to obtain a sufficient area for connection between terminals. This may cause damage to the adherend.
For degree collapsed metal coated particles after thermal bonding affects the various properties such as connection reliability, compressive fracture strength is 10 to 100 kg / mm 2, compression modulus should be 100 to 1000 / mm 2 .
[0012]
The composition of the polymeric spherical core material is not particularly limited, and examples thereof include polymers such as epoxy resins, urethane resins, melamine resins, phenol resins, acrylic resins, polyester resins, styrene resins, styrene-butadiene copolymers, and the like. They can be used alone or in combination.
Examples of the metal coating include Au, Ni, Ag, Cu, Zn, Sn, In, Al, and Pd, and these may be combined. An appropriate polymer spherical core material and metal coating may be selected in consideration of the adhesion between them.
[0013]
The anisotropic conductive film of the present invention is a polyester-based film or a fluorine-based film that has been subjected to a release treatment after appropriately selecting components (A) to (D) and uniformly dissolving or dispersing them using a solvent. It is obtained by casting to a uniform thickness and volatilizing the solvent by heat treatment.
Various additives such as non-reactive diluents, reactive diluents, thixotropic agents, coupling agents, thickeners, inorganic fillers, etc. may be added as appropriate for the purpose of improving workability and various performances. There is no problem.
[0013]
Production Example 1 of Reactant
While heating and stirring 44.4 g (0.2 mol) of 2-undecylimidazole (molecular weight 222) at 150 ° C., 39.2 g (0.1) of the silicone epoxy compound of formula (2) (molecular weight 392) Mol) was gradually added, the temperature was raised to 170 ° C., and the mixture was reacted for 3 hours to obtain a brown and viscous product. This product is designated as reaction product (1).
Production Example 2 of Reactant
While heating 61.2 g (0.2 mol) of 2-heptadecylimidazole (molecular weight 306) to 150 ° C. and stirring, 39.2 g (0.1 mol) of the silicone epoxy compound of the above formula (2) was gradually added. The mixture was heated to 180 ° C. and reacted for 5 hours to obtain a brown and viscous product. This product is designated as reaction product (2).
[0014]
Production Example 3 of Reactant
While heating and stirring 44.4 g (0.2 mol) of 2-undecylimidazole at 150 ° C., 66 g of epoxy compound (molecular weight 660) containing a long-chain siloxane unit represented by the formula (3) (0.1%) Mol) was gradually added, the temperature was raised to 180 ° C., and the mixture was reacted for 10 hours to obtain a brown and viscous product. This product is designated as reaction product (3).
[0015]
[Formula 4]
Figure 0003620751
[0016]
Production Example 4 of Reactant
While heating and stirring 44.4 g (0.2 mol) of 2-undecylimidazole at 120 ° C., 34.0 g (0.1 wt.) Of an epoxy compound (molecular weight 340) represented by the formula (4) is not contained. Mol) was gradually added and further reacted at 120 ° C. for 5 hours to obtain a red solid product. A product obtained by pulverizing this product to about 20 mesh is defined as a reaction product (4).
[0017]
[Chemical formula 5]
Figure 0003620751
[0018]
Production Example 5 of Reactant
A reaction product (5) was obtained by reacting in the same manner as in Production Example 1 except that 66.6 g (0.3 mol) of 2-undecylimidazole was used.
Production Example 6 of Reactant
A reaction product (6) was obtained by reacting in the same manner as in Production Example 1 except that 22.2 g (0.1 mol) of 2-undecylimidazole was used.
[0019]
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
As a reactive elastomer, 25 parts by weight of a polyvinyl butyral resin having a polymerization degree of 1700, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 225 ° C. was toluene / ethyl acetate = 5: 1 (weight ratio). ) A solution dissolved in a mixed solution to 10% by weight, 25 parts by weight of a high molecular weight bisphenol A type epoxy resin (epoxy equivalent 4000) dissolved in a toluene / butyl acetate = 3: 1 mixed solution to 50% by weight. The obtained solution, 40 parts by weight of a low molecular weight bisphenol A type epoxy resin (epoxy equivalent 200) and 40 parts by weight of the reaction product (1) are rapidly stirred and mixed, and conductive particles (Ni / Au plated on a polystyrene spherical core material) 4 parts by weight of an average particle size of 5 μm) is added and dispersed uniformly, and further toluene is added to form 4-fluoroethylene-perfluoride. Thickness cast and dried on a vinyl ether copolymer film on to obtain a anisotropic conductive film of 25 [mu] m.
Table 1 shows the results of evaluating the anisotropic conductive film after various treatments of storage stability, adhesive strength, and connection resistance value.
With regard to storage stability, the connection resistance when TAB and ITO glass are connected after leaving the film at room temperature (23 ° C.) for 30 days or at 40 ° C. for 7 days is 20% or more higher than the initial connection resistance value. If it was an increase of less than x <20%, it was rated as ○.
Adhesive strength is TAB (pitch 0.10 mm, number of terminals 200) with copper foil / polyimide = 35/75 μm plated with 0.4 μm tin, and indium / tin oxide conductive sheet resistance 30Ω. Using an ITO glass with a thickness of 1.1 mm with a coating formed on the entire surface, a sample obtained by pressure bonding an anisotropic conductive film with a width of 2 mm at a pressure of 30 kg / cm 2 for 30 seconds at 180 ° C. by a 90 ° peel test evaluated.
For the connection resistance value, the average value was calculated by measuring the connection resistance value between 200 terminals using the above sample.
[0020]
Examples 2-6
According to the composition of Table 1, an anisotropic conductive film was prepared by the same method as in Example 1, and the same test as in Example 1 was performed. The evaluation results are shown in Table 1.
Comparative Examples 1 and 2
As the reactive elastomer, in Comparative Example 1, a polymerization degree of 300, a degree of acetylation exceeding 3 mol%, a butyralization degree of 63 ± 3 mol% and a flow softening point of 115 ° C., a polyvinyl butyral resin, and in Comparative Example 2 a polymerization degree. An anisotropic conductive film was obtained in the same manner as in Example 1 except that a polyvinyl butyral resin having a degree of acetylation of 3 mol% or less, a degree of butyralization of 70 mol%, and a flow softening point of 160 ° C. was used. The evaluation results are shown in Table 2.
Comparative Examples 3-6
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the reaction products (3) to (6) were used. The evaluation results are shown in Table 2.
[0021]
[Table 1]
Figure 0003620751
[0022]
[Table 2]
Figure 0003620751
[0023]
【The invention's effect】
According to the present invention, it is possible to obtain an anisotropic conductive film that can be used for micro-joining with a pitch of 0.05 mm or less, has excellent adhesion, and has high reliability.

Claims (3)

重合度が1500〜2500、アセチル化度が3モル%以下、ブチラール化度が65モル%以上、フロー軟化点が200℃以上の特性を有するポリビニルブチラール樹脂(A)、エポキシ樹脂(B)、イミダゾール誘導体と式(1)で表わされるシリコーンエポキシ化合物との反応物(C)、及び高分子球状核材の表面に金属被覆を有する導電粒子を必須成分とし、該イミダゾール誘導体と式(1)で表わされるシリコーンエポキシ化合物の反応モル比が、1.5〜2.5であることを特徴とする異方導電フィルム。
Figure 0003620751
(R1、R2は2価の炭素数1〜5の脂肪族基、又は炭素数6以上の芳香族から2個の水素を除いた残基を示し、互いに同じであっても異なっていてもよい)
Polyvinyl butyral resin (A), epoxy resin (B), imidazole having a polymerization degree of 1500 to 2500, an acetylation degree of 3 mol% or less, a butyralization degree of 65 mol% or more, and a flow softening point of 200 ° C. or more. The reaction product (C) of the derivative and the silicone epoxy compound represented by the formula (1), and conductive particles having a metal coating on the surface of the polymer spherical core material are essential components, and the imidazole derivative and the formula (1) The anisotropic conductive film characterized by the reaction molar ratio of the silicone epoxy compound being 1.5-2.5 .
Figure 0003620751
(R 1 and R 2 represent a divalent aliphatic group having 1 to 5 carbon atoms, or a residue obtained by removing two hydrogen atoms from an aromatic group having 6 or more carbon atoms. Also good)
式(1)で表わされるシリコーンエポキシ化合物が、下記式(2)である請求項1記載の異方導電フィルム。
Figure 0003620751
The anisotropic conductive film of the silicone epoxy compound represented by the formula (1) is, according to claim 1 Symbol placement is the following formula (2).
Figure 0003620751
高分子球状核材の表面に金属被覆を有する導電粒子の粒径が3〜15μm、平均粒径が5〜10μmである請求項1又は請求項2記載の異方導電フィルム。The particle size of the conductive particles with a metal coating on the surface of the polymer spherical nucleus material 3 to 15 [mu] m, the anisotropic conductive film having an average particle size of 5~10μm claim 1 or claim 2 Symbol placement.
JP28145395A 1995-10-30 1995-10-30 Anisotropic conductive film Expired - Fee Related JP3620751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28145395A JP3620751B2 (en) 1995-10-30 1995-10-30 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28145395A JP3620751B2 (en) 1995-10-30 1995-10-30 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH09124771A JPH09124771A (en) 1997-05-13
JP3620751B2 true JP3620751B2 (en) 2005-02-16

Family

ID=17639400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28145395A Expired - Fee Related JP3620751B2 (en) 1995-10-30 1995-10-30 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3620751B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356414B1 (en) 1998-10-22 2002-03-12 World Properties, Inc. Liquid crystal polymer disk drive suspension assembly
US6574075B2 (en) 1998-10-22 2003-06-03 World Properties, Inc. Liquid crystal polymer disk drive suspension assembly and method of manufacture thereof
JP2002237216A (en) * 2001-02-09 2002-08-23 Bridgestone Corp Anisotropic conductive film
KR100733975B1 (en) * 2001-05-25 2007-06-29 에스케이케미칼주식회사 Anisotropic Conductive Film Including Silicon Intermediate
JP4487542B2 (en) * 2003-11-27 2010-06-23 Tdk株式会社 Conductor paste for multilayer ceramic electronic component and method for manufacturing multilayer unit for multilayer ceramic electronic component
JP4662298B2 (en) * 2003-12-15 2011-03-30 Tdk株式会社 Dielectric paste for spacer layer of multilayer ceramic electronic components
JP4487595B2 (en) 2004-02-27 2010-06-23 Tdk株式会社 Method for manufacturing multilayer unit for multilayer ceramic electronic component
KR100827535B1 (en) * 2006-12-11 2008-05-06 제일모직주식회사 Anisotropic conductive adhesive composition using silane modified epoxy resin and the adhesive flim using thereof
JP5268260B2 (en) * 2007-01-24 2013-08-21 デクセリアルズ株式会社 Anisotropic conductive adhesive and electrical device
CN107142046A (en) * 2017-05-27 2017-09-08 句容耀皮节能玻璃科技发展有限公司 A kind of anti-moisture absorption laminated glass and preparation method thereof

Also Published As

Publication number Publication date
JPH09124771A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
EP1944346B1 (en) Anisotropic conductive adhesive
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
WO2010073885A1 (en) Film adhesive and anisotropic conductive adhesive
WO2010047200A1 (en) Anisotropic electroconductive film
JP3620751B2 (en) Anisotropic conductive film
JP3418492B2 (en) Anisotropic conductive film
JP2983816B2 (en) Conductive resin paste
JP4433564B2 (en) Adhesive for circuit connection
JPH09169958A (en) Anisotropically electroconductive film
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP3391870B2 (en) Anisotropic conductive film
JPH06295617A (en) Anithotropic conductive adhesive compound
JP3991268B2 (en) Film adhesive for connecting circuit members and semiconductor device using the same
JP4867805B2 (en) Adhesive for electrode connection
JP3947532B2 (en) Anisotropic conductive adhesive film
JP2500826B2 (en) Anisotropic conductive film
JPH09165435A (en) Anisotropic conductive film
JP3480754B2 (en) Method for producing anisotropic conductive film
JP2680412B2 (en) Anisotropic conductive film
JP2006028521A (en) Addhesive for circuit connection
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
JP3046081B2 (en) Anisotropic conductive film
JP4626495B2 (en) Adhesive for circuit connection
JP2003147287A (en) Adhesive film for connecting circuit
JP2680430B2 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees