JPH04215209A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH04215209A
JPH04215209A JP41918890A JP41918890A JPH04215209A JP H04215209 A JPH04215209 A JP H04215209A JP 41918890 A JP41918890 A JP 41918890A JP 41918890 A JP41918890 A JP 41918890A JP H04215209 A JPH04215209 A JP H04215209A
Authority
JP
Japan
Prior art keywords
epoxy resin
anisotropic conductive
film
resin
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41918890A
Other languages
Japanese (ja)
Other versions
JP3046081B2 (en
Inventor
Yasuo Matsui
松井 泰雄
Toshirou Komiyatani
小宮谷 寿郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2419188A priority Critical patent/JP3046081B2/en
Publication of JPH04215209A publication Critical patent/JPH04215209A/en
Application granted granted Critical
Publication of JP3046081B2 publication Critical patent/JP3046081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To obtain the anisotropic conductive film having a small residual stress (distortion) after hardening of the resin, a large adhesive strength, the excellent reliability and the excellent workability such as storage stability and hardenability or the like by compounding the solvent and conductive particles to the resin component which consists of epoxy resin, silicone modified epoxy resin and potential hardening agent. CONSTITUTION:Epoxy resin and potential hardening agent are dissolved in the solvent of silicone modified epoxy resin, and conductive particles are dispersed therein evenly to obtain the mixture. This mixture is flowed over the film, to which mold releasing processing is performed, and is dried to obtain the anisotropic conductive film.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、微細な回路同志の電気
的接続、より詳しくは、LCD(液晶ディスプレイ)と
フレキシブル回路基板の接続や、半導体ICとIC搭載
用回路基板のマイクロ接合に用いる事のできる異方導電
フィルムに関するものである。
[Industrial Application Field] The present invention is applicable to electrical connection between minute circuits, more specifically, for connection between an LCD (liquid crystal display) and a flexible circuit board, and micro-bonding between a semiconductor IC and a circuit board for mounting an IC. The present invention relates to an anisotropic conductive film that can be used for various purposes.

【0002】0002

【従来の技術】最近の電子機器の小型化、薄型化に伴い
、微細な回路同志の接続、微小部品と微細回路の接続等
の必要性が飛躍的に増大してきており、その接続方法と
して、異方性の導電性接着剤やフィルムが使用され始め
ている。(例えば、特開昭  59−120436、6
0−191228、61−274394、61−287
974、62−244142、63−153534、6
3−305591、64−47084、64−8187
8、特開平  1−46549、1−251787、各
号公報)
[Background Art] With the recent miniaturization and thinning of electronic devices, the need for connections between minute circuits, connections between minute components and minute circuits, etc. has increased dramatically. Anisotropic conductive adhesives and films are beginning to be used. (For example, JP-A-59-120436, 6
0-191228, 61-274394, 61-287
974, 62-244142, 63-153534, 6
3-305591, 64-47084, 64-8187
8, Japanese Unexamined Patent Publication No. 1-46549, 1-251787, various publications)

【0003】この方法は、接続しようとする回路間に、
所定量の導電粒子を含有する接着剤またはフィルムをは
さみ、所定の温度、圧力、時間により熱圧着することに
よって、回路間の電気的接続を行うと同時に隣接する回
路間には絶縁性を確保させるものである。
[0003] In this method, between the circuits to be connected,
By sandwiching an adhesive or film containing a predetermined amount of conductive particles and thermocompression bonding at a predetermined temperature, pressure, and time, electrical connections are made between circuits while at the same time ensuring insulation between adjacent circuits. It is something.

【0004】従来、この異方導電接着剤ないしは異方導
電フィルムには、大別して熱可塑性樹脂を接着剤成分と
した熱可塑タイプと、熱硬化性樹脂を接着剤成分とした
熱硬化タイプが有り、LCDパネルのドライバーICと
LCD基板の接続を始めとして、多数の而も微細な回路
端子同志を一括接続する用途に急速に採用が進んでいる
Conventionally, this anisotropically conductive adhesive or anisotropically conductive film can be roughly divided into a thermoplastic type that uses a thermoplastic resin as an adhesive component, and a thermosetting type that uses a thermosetting resin as an adhesive component. It is rapidly being adopted for applications that connect a large number of minute circuit terminals at once, including the connection between an LCD panel driver IC and an LCD board.

【0005】最近ではLCDパネルのカラー化・大型化
に伴い、熱可塑タイプに替わって、より高い信頼性が得
られるエポキシ系樹脂を中心とした熱硬化タイプの異方
導電フィルムの採用が増えつつある。
[0005] Recently, as LCD panels have become more colored and larger, thermosetting type anisotropic conductive films, mainly made of epoxy resins, which offer higher reliability, are increasingly being used instead of thermoplastic types. be.

【0006】熱可塑タイプについては、SBS(スチレ
ン−ブタジエン−スチレン),SIS(スチレン−イソ
プレン−スチレン),SEBS(スチレン−エチレン−
ブタジエン−スチレン)等スチレン系共重合体が主とし
て用いられてきているが、これら熱可塑タイプの使用方
法は、基本的には溶融融着方式であり、その作業性は一
般的に条件を選べば熱硬化タイプのものに比べて比較的
低温・短時間での適用が可能であり、良好であると考え
られるが、接合部分に求められる耐熱性、接着力等今後
益々強くなる高信頼性への要求に応えられなくなってき
ている。
Thermoplastic types include SBS (styrene-butadiene-styrene), SIS (styrene-isoprene-styrene), and SEBS (styrene-ethylene-styrene).
Styrenic copolymers such as (butadiene-styrene) have been mainly used, but the method of using these thermoplastic types is basically a melt-fusion method, and the workability generally depends on the selection of conditions. Compared to thermosetting types, it can be applied at relatively low temperatures and in a short time, and is considered to be good. It is becoming impossible to meet the demands.

【0007】一方熱硬化タイプのものについても、作業
性については被着体(LCDパネル、基板等)の耐熱性
に基く加熱温度の上限があり、又サイクル時間の短縮等
、作業効率向上への強い要求から、通常200℃以下の
温度で30秒前後或いはそれ以下の時間で硬化しなけれ
ばならない。又同時に通常の使用条件下では室温で3ケ
月以上の貯蔵安定性を必要とする。
On the other hand, regarding the workability of thermosetting type products, there is an upper limit to the heating temperature based on the heat resistance of the adherend (LCD panel, substrate, etc.), and there are also improvements in work efficiency such as shortening cycle time. Due to strong requirements, it must be cured in about 30 seconds or less at a temperature of 200° C. or less. At the same time, under normal usage conditions, it is required to have storage stability of 3 months or more at room temperature.

【0008】これらの要求特性を満たす異方導電フィル
ムは既に上市されているが、LCDパネルやプリント回
路基板等、被着体の大型化が進むに従って、異方導電フ
ィルムの熱硬化反応時の硬化収縮や種々の雰囲気中での
樹脂自体の歪み応力に基づき、被着体が損傷(例えば基
板のクラックや反り)するという問題が新たに生じてき
ている。
[0008] Anisotropic conductive films that meet these required characteristics are already on the market, but as adherends such as LCD panels and printed circuit boards become larger, the hardening during the thermosetting reaction of anisotropic conductive films becomes more difficult. A new problem has arisen in which adherends are damaged (for example, cracks and warpage of substrates) due to shrinkage and distortion stress of the resin itself in various atmospheres.

【0009】即ち、速硬化、長ライフに加えて、接合部
分に残存する歪みが小さい、従って長期間高信頼性を有
する熱硬化タイプの異方導電フィルムは未だ得られてい
ないのが現状である。
[0009] In other words, the current situation is that a thermosetting type anisotropic conductive film that has fast curing, long life, and small residual strain in the bonded portion, and therefore has high reliability over a long period of time, has not yet been obtained. .

【0010】0010

【発明が解決しようとする課題】異方導電フィルムは主
として、多数の微細な回路端子を一括接続するために用
いられるが、被着体(液晶ディスプレイーパネル等)の
大型化によって、接合端子数も増加し、従って接続部分
も長く大きくなり、接合部分に残る歪みもこれに比例し
て大きくなっている。
[Problems to be Solved by the Invention] Anisotropic conductive films are mainly used to connect a large number of fine circuit terminals all at once, but as the size of the adherend (liquid crystal display panel, etc.) increases, As a result, the connecting portion also becomes longer and larger, and the strain remaining in the joint portion also increases in proportion to this.

【0011】このため所定の加熱加圧条件で接合した場
合においても、基板(例えばガラス基板)が反ったり、
基板端面の小さな瑕疵を始めとして、基板(パネル)全
面にクラックを生じる。このことを防ぐ方法として、接
合幅を細くして、トータルの応力量を減らす等の対策を
講じているが、応力集中に基づく歪みは減少するものの
、結局接合信頼性を低下させることになっている。
Therefore, even when bonding is performed under predetermined heating and pressurizing conditions, the substrate (for example, a glass substrate) may warp or
Cracks occur all over the board (panel), including small defects on the edge of the board. To prevent this, measures have been taken to reduce the total amount of stress by narrowing the joint width, but although this reduces distortion due to stress concentration, it ends up reducing joint reliability. There is.

【0012】異方導電フィルムに必要な特性は長期の信
頼性等の他に、造膜性(フィルム形成性)、加熱加圧時
の適度の流動性、被着体への適度の粘着性、キャリアフ
ィルムとの密着性、キャリアフィルムからの離型性等々
の特性が満たされていなければならない。
[0012] In addition to long-term reliability, the properties required for an anisotropic conductive film include film-forming properties, appropriate fluidity when heated and pressurized, appropriate adhesion to adherends, Properties such as adhesion to the carrier film and releasability from the carrier film must be satisfied.

【0013】本発明は、これらの基本特性に加えて、従
来の熱硬化タイプでは得られなかった、極めて歪み(応
力)の小さい、高信頼性の異方導電フィルムを提供せん
とするものである。
[0013] In addition to these basic properties, the present invention aims to provide a highly reliable anisotropic conductive film with extremely low strain (stress), which has not been available with conventional thermosetting types. .

【0014】[0014]

【課題を解決するための手段】従来の熱硬化タイプの異
方導電フィルムはエポキシ樹脂を主成分とし、潜在性硬
化剤、溶剤、導電性粒子を混合し、離型性の良好なフィ
ルム、例えばフッ素樹脂系フィルムやシリコン処理を施
したポリエステルフィルム上に流延・乾燥して作製され
ている。
[Means for solving the problem] Conventional thermosetting type anisotropic conductive films contain epoxy resin as a main component, mixed with a latent curing agent, a solvent, and conductive particles, and are used to create films with good mold releasability, such as It is produced by casting and drying onto a fluororesin film or a silicone-treated polyester film.

【0015】しかし、これらの系では硬化収縮や硬化後
の熱膨張係数等に起因する応力が大きく、残留歪みとし
て、例えばLCD基板とドライバーIC搭載ガラスエポ
キシ樹脂回路基板を、通常の条件で3mm×50mmの
大きさで接合を行った場合0.5〜2.0kg/mm2
の応力が接合ガラス部分に加わっており、この応力が信
頼性を低下させることになっている。これを低減する方
法として、各種の可塑剤、添加物等の混合が考えられる
が、硬化性、保存性、接着力、粘着性等の特性の一部が
損なわれ、結果として信頼性の良好なフィルムは得られ
ない。
However, in these systems, the stress caused by curing shrinkage and the coefficient of thermal expansion after curing is large, and residual strain occurs, for example, when the LCD board and the glass epoxy resin circuit board mounted with the driver IC are 3mm x 3mm under normal conditions. 0.5 to 2.0 kg/mm2 when joining with a size of 50 mm
stress is applied to the bonded glass portion, and this stress reduces reliability. One possible way to reduce this is to mix various plasticizers, additives, etc., but some of the properties such as curing, preservability, adhesive strength, and tackiness are lost, resulting in poor reliability. No film available.

【0016】本発明は、樹脂の硬化収縮や被着体との熱
膨張係数の差に基づく応力を減らすべく樹脂処方面から
種々検討を行ない、エポキシ樹脂およびシリコン変性エ
ポキシ樹脂と潜在性硬化剤とを樹脂成分として、これに
溶剤および導電粒子を配合して作製した異方導電フィル
ムが、従来のフィルムに比べて樹脂硬化後の弾性率が低
く、残留応力が極めて小さいことを見出した。
[0016] In order to reduce the stress caused by curing shrinkage of the resin and the difference in coefficient of thermal expansion with the adherend, the present invention conducted various studies from the viewpoint of resin formulation, and developed a combination of an epoxy resin, a silicone-modified epoxy resin, and a latent curing agent. It has been found that an anisotropically conductive film prepared by blending the resin component with a solvent and conductive particles has a lower elastic modulus and extremely small residual stress after the resin is cured than conventional films.

【0017】また、シリコン変性エポキシ樹脂の配合比
率が、残留応力の多寡を決定するが、シリコン変性エポ
キシ樹脂の配合量が多くなれば、残留応力は減少するが
、密着性他の熱硬化性の特性の一部が損なわれ、少なす
ぎる場合は残留応力を減少させる効果は少ない。シリコ
ン変性エポキシ樹脂の配合量が20〜50重量%、さら
に好ましくは25〜40重量%の場合に、各種特性を保
持しながら、残留応力が大幅に低減することを見いだし
本発明に到達した。
[0017] The blending ratio of the silicone-modified epoxy resin determines the amount of residual stress. As the blending ratio of the silicone-modified epoxy resin increases, the residual stress decreases, but the adhesion and other thermosetting properties Some of the properties will be lost, and if it is too small, the effect of reducing residual stress will be small. The present invention has been achieved by discovering that residual stress can be significantly reduced while maintaining various properties when the amount of silicone-modified epoxy resin is 20 to 50% by weight, more preferably 25 to 40% by weight.

【0018】本発明におけるシリコン変性エポキシ樹脂
は、一分子中に少なくとも二個以上のエポキシ基とシロ
キサン構造とを有するエポキシ樹脂が用いられる。具体
例としては、ビスフェノールA型エポキシ樹脂中で、ポ
リシラノールと架橋剤のメトキシシラン誘導体を加熱攪
拌し、橋架けしたシリコーン相をエポキシ樹脂中に分散
させたものや、同じくビスフェノールA型エポキシ樹脂
と両末端シラノールポリジメチルシロキサン、架橋剤と
してシランカップリング剤、及び触媒を加えて加熱攪拌
したもの、或いはエポキシ樹脂中に相溶化剤としてポリ
エーテル変性シリコーンオイルを用いてRTVシリコン
ゴムを分散させたもの等が挙げられ、単独或いは二種以
上を混合して用いられる。シリコン変性率は50%(重
量%、以下同じ)程度のもの迄使用可能であるが、樹脂
の溶解性・相溶性・応力等全ての特性についてバランス
の良いフィルムを得るためには、5〜20%の変性率の
範囲が好んで用いられる。
The silicon-modified epoxy resin used in the present invention is an epoxy resin having at least two epoxy groups and a siloxane structure in one molecule. Specific examples include those in which polysilanol and a methoxysilane derivative as a crosslinking agent are heated and stirred in a bisphenol A epoxy resin, and the crosslinked silicone phase is dispersed in the epoxy resin; Both terminal silanol polydimethylsiloxane, a silane coupling agent as a crosslinking agent, and a catalyst are added and heated and stirred, or RTV silicone rubber is dispersed in an epoxy resin using polyether-modified silicone oil as a compatibilizer. etc., and may be used alone or in combination of two or more. It is possible to use a silicone modification rate up to about 50% (weight%, the same applies hereinafter), but in order to obtain a film with a good balance in all properties such as resin solubility, compatibility, and stress, it is necessary to use a silicone modification rate of 5 to 20%. A range of percent modification is preferably used.

【0019】潜在性硬化剤とは、ジシアンジアミド及び
その誘導体、三フッ化ホウ素アミンコンプレックス、イ
ミダゾール及びその誘導体等、エポキシ樹脂の潜在性硬
化剤として広く用いられるものはすべて使用可能である
が、主として硬化性・保存安定性等の作業性の点からイ
ミダゾール及びその誘導体化合物が好んで用いられる。
The latent curing agent can be any of those widely used as a latent curing agent for epoxy resins, such as dicyandiamide and its derivatives, boron trifluoride amine complex, imidazole and its derivatives, but mainly for curing. Imidazole and its derivative compounds are preferably used from the viewpoint of workability such as stability and storage stability.

【0020】そのイミダゾール化合物としては、イミダ
ゾール、2−メチルイミダゾール、2−エチルイミダゾ
ール、2−エチル−4−メチルイミダゾール、2−フェ
ニルイミダゾール、2−フェニル−4−メチルイミダゾ
ール、1−ベンジル−2−メチルイミダゾール、1−ベ
ンジル−2−エチルイミダゾール、1−ベンジル−2−
エチル−5−メチルイミダゾール、2−フェニル−4−
メチル−5−ヒドロキシメチルイミダゾール、2−フェ
ニル−4,5−ジヒドロキシメチルイミダゾール、2−
メチルイミダゾールアジン、2−ヘプタデシルイミダゾ
ール、2−ウンデシルイミダゾール、2,4−ジアミノ
−6{2’−メチルイミダゾール−(1)’}エチル−
S−トリアジン・イソシアヌール酸付加物、N,N’−
{2−メチルイミダゾリル−(1)−エチル}ドデカン
ジオイルジアジド、N,N’−{2−メチルイミダゾリ
ル−(1)−エチル}−エイコンサンジオイルジアジド
などが使用可能であり、またこれらイミダゾールとエポ
キシ樹脂の反応生成物もエポキシ樹脂用の潜在性硬化剤
として使用可能である。
The imidazole compounds include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2- Methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-
Ethyl-5-methylimidazole, 2-phenyl-4-
Methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-
Methylimidazoleazine, 2-heptadecylimidazole, 2-undecylimidazole, 2,4-diamino-6{2'-methylimidazole-(1)'}ethyl-
S-triazine/isocyanuric acid adduct, N,N'-
{2-methylimidazolyl-(1)-ethyl}dodecanedioyldiazide, N,N'-{2-methylimidazolyl-(1)-ethyl}-eikonsandioyldiazide, etc. can be used, and these imidazoles The reaction products of epoxy resins and epoxy resins can also be used as latent hardeners for epoxy resins.

【0021】イミダゾールとエポキシ化合物の反応生成
物は、微粉末として市販されている。さらにはイソシア
ネート化合物と混合したり、マイクロカプセル化して貯
蔵安定性を高め、潜在性硬化剤として使用されているも
のもあるが、エポキシ樹脂との配合物の保存安定性と短
時間での急速硬化が可能であることからマイクロカプセ
ル化したものが好んで用いられる。
The reaction product of imidazole and epoxy compound is commercially available as a fine powder. Furthermore, some are mixed with isocyanate compounds or microencapsulated to increase storage stability and are used as latent curing agents, but formulations with epoxy resins have excellent storage stability and rapid curing in a short time. Microcapsules are preferably used because they are possible.

【0022】溶剤としては、シリコン変性エポキシ樹脂
とエポキシ樹脂を溶解し、且つ前記潜在性硬化剤と混合
したときに均一な溶液となるものであれば全て使用可能
である。
Any solvent can be used as long as it dissolves the silicone-modified epoxy resin and the epoxy resin and forms a uniform solution when mixed with the latent curing agent.

【0023】具体的には、アセトン、メチルエチルケト
ン、メチルイソブチルケトン、ベンゼン、トルエン、キ
シレン、メチルアルコール、エチルアルコール、イソプ
ロピルアルコール、n−ブチルアルコール、酢酸エチル
、テトラヒドロフラン、メチルセロソルブ、エチルセロ
ソルブ、ジアセトンエーテル、メチルセロソルブアセテ
ート、エチルセロソルブアセテート、ジメチルホルムア
ミド、ジメチルアセトアミドなどが挙げられ、溶解性・
作業性を考慮して単独あるいは二種以上を混合して用い
られる。
Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, ethyl acetate, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, diacetone ether , methyl cellosolve acetate, ethyl cellosolve acetate, dimethyl formamide, dimethyl acetamide, etc.
They are used alone or in combination of two or more in consideration of workability.

【0024】導電粒子としては、ニッケル、鉄、銅、ア
ルミニウム、錫、鉛、クロム、コバルト、銀、金などの
金属および金属酸化物、半田をはじめとする合金や、カ
ーボン、グラファイト、あるいはガラスやセラミック、
プラスチックなどの核材にメッキなどの方法によって金
属をコーティングした導電粒子などが挙げられる。耐候
性・信頼性の点からは、金、ニッケル、半田合金などの
金属をコーティングしたものが好ましい。
[0024] As the conductive particles, metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold, metal oxides, alloys including solder, carbon, graphite, glass, etc. ceramic,
Examples include conductive particles in which a core material such as plastic is coated with metal by a method such as plating. From the viewpoint of weather resistance and reliability, it is preferable to use a metal coating such as gold, nickel, or solder alloy.

【0025】本発明に用いられる導電粒子の径は、接合
される回路の精度によっても変える必要があるが、隣接
する回路間の絶縁性を確保するためと接続の信頼性を確
保するためには、1〜10μmの範囲であることが必要
であり、さらに好ましくは3〜8μmの範囲で粒度分布
がシャープなものがより良好な信頼性を示す。
The diameter of the conductive particles used in the present invention needs to be changed depending on the precision of the circuits to be joined, but in order to ensure insulation between adjacent circuits and reliability of connection, , is required to be in the range of 1 to 10 μm, and more preferably in the range of 3 to 8 μm, with a sharp particle size distribution showing better reliability.

【0026】導電粒子の配合量は、3〜10体積%が良
く、このましくは4〜6%の間で用いられる。配合量が
3体積%以下の場合、接合後安定した導通信頼性が得ら
れず、10体積%以上では隣接回路間の絶縁信頼性が劣
る場合が生じるので好ましくない。
The content of the conductive particles is preferably 3 to 10% by volume, preferably 4 to 6%. If the amount is less than 3% by volume, stable conduction reliability after bonding cannot be obtained, and if it is more than 10% by volume, insulation reliability between adjacent circuits may be deteriorated, which is not preferable.

【0027】以上のようにして、選択準備した樹脂材料
及び導電粒子を用いて異方導電フィルムを作製するが、
さらに樹脂溶液の安定性・相溶性、導電粒子の分散性向
上のために各種界面活性剤、消泡剤や、安定剤を適宜添
加してもよい。
[0027] As described above, an anisotropic conductive film is produced using the selected and prepared resin material and conductive particles.
Furthermore, various surfactants, antifoaming agents, and stabilizers may be added as appropriate to improve the stability and compatibility of the resin solution and the dispersibility of the conductive particles.

【0028】異方導電フィルムの作製方法は、次に示す
方法によって行なう。先ず、シリコン変性エポキシ樹脂
及びエポキシ樹脂を溶剤に溶解し、均一な樹脂溶液を作
製する。次に潜在性硬化剤を添加混合し、この中に、導
電粒子を秤取し、樹脂溶液中に均一に分散する迄十分攪
拌混合する。更に必要に応じて各種の添加剤を加え、溶
剤で調整して固形分20〜30%の異方導電フィルム用
樹脂溶液を作製する。次に、この樹脂溶液を離型処理を
施したポリエステル系フィルム若しくはフッ素樹脂系フ
ィルムの上に流延・乾燥し、乾燥後の厚みが20〜50
μmの異方導電フィルムを得る。
The anisotropic conductive film is produced by the following method. First, a silicon-modified epoxy resin and an epoxy resin are dissolved in a solvent to prepare a uniform resin solution. Next, a latent curing agent is added and mixed, and conductive particles are weighed into the mixture and sufficiently stirred and mixed until they are uniformly dispersed in the resin solution. Furthermore, various additives are added as necessary and adjusted with a solvent to prepare a resin solution for an anisotropic conductive film having a solid content of 20 to 30%. Next, this resin solution is cast onto a polyester film or a fluororesin film that has been subjected to a mold release treatment, and is dried to a thickness of 20 to 50 mm after drying.
A μm-sized anisotropic conductive film is obtained.

【0029】[0029]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。
EXAMPLES The present invention will be explained in detail below using examples.

【0030】 〔実施例1〕 エポキシ当量340のビスフェノールA型エポキシ樹脂
および平均分子量2,500両末端シラノールポリジメ
チルシロキサンと、架橋剤としてシランカップリング剤
及び触媒を加えて、MEK中で80℃で加熱攪拌し、1
5%シリコン変性エポキシ樹脂の60%溶液を作製した
。この樹脂溶液100重量部(以下、添加量は全て重量
部数を表す)と、エポキシ当量340のビスフェノール
A型エポキシ樹脂40部と潜在性硬化剤として2−ウン
デシルイミダゾールの12部を混合した。
[Example 1] A bisphenol A epoxy resin with an epoxy equivalent of 340 and a double-terminated silanol polydimethylsiloxane with an average molecular weight of 2,500 were added with a silane coupling agent and a catalyst as a crosslinking agent, and the mixture was heated in MEK at 80°C. Heat and stir, 1
A 60% solution of 5% silicon-modified epoxy resin was prepared. 100 parts by weight of this resin solution (all amounts added hereinafter represent parts by weight), 40 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 340, and 12 parts of 2-undecylimidazole as a latent curing agent were mixed.

【0031】次に導電粒子として、平均径10μm,最
大粒径20μm、最小粒径2μmの半田アトマイズ粉6
5gを均一分散させ、更にMEKによって全固形分が2
2%となるように希釈、樹脂溶液を得た。これをシリコ
ン樹脂で離型処理をほどこしたポリエチレンテレフタレ
ートフィルム上に、乾燥後の厚みが25μmになるよう
に塗膜を形成し、50℃で1時間乾燥させ(キャリアフ
ィルム付き)異方導電フィルムを得た。
Next, as conductive particles, solder atomized powder 6 having an average diameter of 10 μm, a maximum particle diameter of 20 μm, and a minimum particle diameter of 2 μm was used.
5g was uniformly dispersed, and further the total solid content was reduced to 2 by MEK.
A resin solution was obtained by diluting the resin to a concentration of 2%. A coating film was formed on a polyethylene terephthalate film that had been subjected to mold release treatment with silicone resin so that the thickness after drying would be 25 μm, and dried at 50°C for 1 hour (with a carrier film) to form an anisotropic conductive film. Obtained.

【0032】 〔実施例2〕 実施例1と同様にして、エポキシ当量195のビスフェ
ノールA型エポキシ樹脂および平均分子量3200の末
端シラノールポリジメチルシロキサンと、シランカップ
リング剤と触媒を添加し、トルエン中で100℃で3時
間加熱反応させ、変性率7%のシリコン変性エポキシ樹
脂を得、更にトルエンを加えて65%樹脂溶液を調整し
た。この樹脂溶液100部に同じくエポキシ当量195
のビスフェノールA型エポキシ樹脂35部と、エポキシ
当量195のビスフェノールA型エポキシ樹脂とN,N
’−{2−メチルイミダゾリル−(1)−エチル}−エ
イコサンジオイルジアジドとの反応生成物55部を混合
し均一に分散する。
[Example 2] In the same manner as in Example 1, a bisphenol A type epoxy resin with an epoxy equivalent of 195, a terminal silanol polydimethylsiloxane with an average molecular weight of 3200, a silane coupling agent and a catalyst were added, and the mixture was dissolved in toluene. A heating reaction was carried out at 100° C. for 3 hours to obtain a silicone-modified epoxy resin with a modification rate of 7%, and toluene was further added to prepare a 65% resin solution. 100 parts of this resin solution also has an epoxy equivalent of 195
35 parts of bisphenol A epoxy resin, bisphenol A epoxy resin with an epoxy equivalent of 195, and N,N
55 parts of the reaction product with '-{2-methylimidazolyl-(1)-ethyl}-eicosandioyldiazide are mixed and uniformly dispersed.

【0033】ここに実施例1と同様の半田アトマイズ粉
80部を添加、均一分散せしめ、更にトルエンを添加し
て、22%溶液を得た。この樹脂溶液を厚み50μmの
FEP(4フッ化エチレン−6フッ化プロピレン共重合
体)フィルムの上に、流延・乾燥し、厚み25μm異方
導電フィルムを得た。
80 parts of the same solder atomized powder as in Example 1 was added and uniformly dispersed, and toluene was further added to obtain a 22% solution. This resin solution was cast on a 50 μm thick FEP (tetrafluoroethylene-hexafluoropropylene copolymer) film and dried to obtain a 25 μm thick anisotropic conductive film.

【0034】 〔比較例1〕 実施例1のシリコン変性エポキシ樹脂の代わりに、エポ
キシ当量340のビスフェノールA型エポキシ樹脂60
部を用いる以外は、全く同様にして異方導電フィルムを
作製した。
[Comparative Example 1] Instead of the silicone-modified epoxy resin of Example 1, a bisphenol A type epoxy resin with an epoxy equivalent of 340 was used.
An anisotropic conductive film was produced in exactly the same manner except that the following was used.

【0035】 〔比較例2〕 実施例2に用いたシリコン変性エポキシ樹脂の代わりに
、エポキシ当量195のビスフェノールA型エポキシ樹
脂を65gを用いた他は、実施例2と全く同様にして異
方導電フィルムを作製した。
[Comparative Example 2] Anisotropic conduction was carried out in the same manner as in Example 2, except that 65 g of bisphenol A type epoxy resin with an epoxy equivalent of 195 was used instead of the silicone-modified epoxy resin used in Example 2. A film was produced.

【0036】以上のようにして得られた4種の異方導電
フィルムを、テストパターン(基板厚さ0.5mm、銅
箔厚さ18μm、回路幅0.1mm、回路間隔0.1m
m、パターン表面はNi/Au〔5/1μ〕メッキ)に
3mm×50mmの大きさに仮止めし、キャリアフィル
ムを剥がした後、全面にITO膜(インジウム/スズ酸
化膜)を形成した厚さ1.1mmのガラス板表面に、1
50℃で1分間圧着した。次にこれらの試験片を、光弾
性実験装置を用いて回路基板の圧着部について、ガラス
端面から光を入射して光路差をコンペンセーターで測定
し、圧着面にかかる応力値を測定した。その結果を表1
に示す。
[0036] The four types of anisotropic conductive films obtained as described above were used in test patterns (substrate thickness 0.5 mm, copper foil thickness 18 μm, circuit width 0.1 mm, circuit spacing 0.1 m).
m, the pattern surface is temporarily fixed to a size of 3 mm x 50 mm (Ni/Au [5/1 μ] plating), and after peeling off the carrier film, an ITO film (indium/tin oxide film) is formed on the entire surface. 1 on the surface of a 1.1 mm glass plate.
Pressure bonding was carried out at 50° C. for 1 minute. Next, using a photoelasticity experiment device, light was incident on the crimped portion of the circuit board from the end surface of the glass, and the optical path difference was measured using a compensator, and the stress value applied to the crimped surface was measured. Table 1 shows the results.
Shown below.

【0037】また、異方導電フィルムに要求される基本
的な特性である、作業性および信頼性評価結果を表2に
示す。
Table 2 shows the evaluation results of workability and reliability, which are the basic properties required of an anisotropic conductive film.

【0038】[0038]

【表1】[Table 1]

【0039】[0039]

【表2】[Table 2]

【0040】表1に示すように、本発明による異方導電
フィルムは、その硬化後、接着界面に残留する応力値は
、従来のエポキシ樹脂単独系に替えてシリコン変性エポ
キシ樹脂を併用することによって、従来品に比べて約1
/3〜1/4の大きさに大幅に減少させることが出来た
As shown in Table 1, the anisotropic conductive film according to the present invention can reduce the stress value remaining at the adhesive interface after curing by using a silicone-modified epoxy resin in place of the conventional epoxy resin alone. , about 1 compared to conventional products
It was possible to significantly reduce the size to 1/3 to 1/4.

【0041】表2において、貯蔵安定性については、フ
ィルムを20〜25℃、50〜55%の雰囲気中で保存
し、3ヵ月後に初期の性能と同様の接合特性(導通抵抗
、接着強度等)を評価したが良好な保存性を示した。
In Table 2, regarding storage stability, the film was stored at 20 to 25°C in an atmosphere of 50 to 55%, and after 3 months, the bonding properties (continuity resistance, adhesive strength, etc.) were similar to the initial performance. was evaluated and showed good storage stability.

【0042】硬化性については、いずれも150℃で1
分以内で硬化した時に良好な特性が得られている。
[0042] As for the curing properties, 1 at 150°C.
Good properties are obtained when cured within minutes.

【0043】接着強度については、FPCとガラス基板
を3×30mmの大きさに接合した時の90℃ピール(
引き剥がし)強度が500g/cm以上の場合を〇とし
、300g/cm以下の場合×とした。
Regarding the adhesive strength, 90°C peeling (
When the peel strength was 500 g/cm or more, it was marked as ○, and when it was 300 g/cm or less, it was marked as ×.

【0044】信頼性試験については、TC(温度サイク
ルテスト、−30℃⇔RT⇔80℃)において、従来の
フィルムが100サイクル未満で不良(導電不良)を発
生したのに比較し、本発明によるフィルムによる場合5
00サイクル以上まで安定であった。
Regarding the reliability test, in TC (temperature cycle test, -30°C ⇔ RT ⇔ 80°C), the conventional film failed (conductivity failure) after less than 100 cycles, whereas the film according to the present invention failed after less than 100 cycles. When using film 5
It was stable up to 00 cycles or more.

【0045】また更に、−65℃⇔RT⇔150℃の条
件で温度サイクル試験を行なったところ、従来品では5
〜10サイクルで接続抵抗値が50%以上上昇するのに
対して、本発明によるフィルムを用いた場合30サイク
ルを越えても初期抵抗値は10%以下の変化に止まり、
良好な結果が得られた。
Furthermore, when we conducted a temperature cycle test under the conditions of -65°C⇔RT⇔150°C, we found that the conventional product
While the connection resistance value increases by more than 50% after ~10 cycles, when the film according to the present invention is used, the initial resistance value only changes by less than 10% even after 30 cycles.
Good results were obtained.

【0046】[0046]

【発明の効果】以上に述べたように、本発明による異方
導電フィルムは、硬化後の残留応力(歪み)が小さく、
大きな接着強度を有し、信頼性に優れているだけでなく
、貯蔵安定性や硬化性などの作業特性にも優れ、益々高
度の信頼性を要求される微細な回路端子等の接続用途に
適したものである。
[Effects of the Invention] As described above, the anisotropic conductive film according to the present invention has small residual stress (strain) after curing.
It not only has high adhesive strength and excellent reliability, but also has excellent working properties such as storage stability and curing properties, making it suitable for connection applications such as fine circuit terminals that require increasingly high reliability. It is something that

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン変性エポキシ樹脂及びエポキシ樹
脂と潜在性硬化剤とこれらを溶解する溶剤と導電性粒子
を含む混合物を製膜してなることを特徴とする異方導電
フィルム。
1. An anisotropic conductive film comprising a silicon-modified epoxy resin, a mixture containing the epoxy resin, a latent curing agent, a solvent for dissolving these, and conductive particles.
JP2419188A 1990-12-13 1990-12-13 Anisotropic conductive film Expired - Fee Related JP3046081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419188A JP3046081B2 (en) 1990-12-13 1990-12-13 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419188A JP3046081B2 (en) 1990-12-13 1990-12-13 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH04215209A true JPH04215209A (en) 1992-08-06
JP3046081B2 JP3046081B2 (en) 2000-05-29

Family

ID=18526849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419188A Expired - Fee Related JP3046081B2 (en) 1990-12-13 1990-12-13 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3046081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386376C (en) * 2004-12-30 2008-05-07 第一毛织株式会社 Anisotropic conductive film forming composition
JP2008222785A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film
JP2008222786A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film for circuit connection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2886479T3 (en) * 2013-12-23 2017-06-30 Tetra Laval Holdings & Finance S.A. An opening device for a container and a method for producing such opening device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386376C (en) * 2004-12-30 2008-05-07 第一毛织株式会社 Anisotropic conductive film forming composition
JP2008222785A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film
JP2008222786A (en) * 2007-03-09 2008-09-25 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive film for circuit connection

Also Published As

Publication number Publication date
JP3046081B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
EP1944346B1 (en) Anisotropic conductive adhesive
WO2010073885A1 (en) Film adhesive and anisotropic conductive adhesive
JPH05506691A (en) Reworkable adhesives for electronic applications
JP2008097922A (en) Adhesive for electrode connection
JP2007056209A (en) Adhesive for circuit connection
JP3418492B2 (en) Anisotropic conductive film
JP2007317563A (en) Circuit connecting adhesive
JP3391870B2 (en) Anisotropic conductive film
JP3046081B2 (en) Anisotropic conductive film
JP2008308682A (en) Circuit connection material
JP2500826B2 (en) Anisotropic conductive film
JP4867805B2 (en) Adhesive for electrode connection
JP2680412B2 (en) Anisotropic conductive film
JP2006022230A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
JPH09263683A (en) Electroconductive epoxy resin composition
JP2500819B2 (en) Anisotropic conductive film
JP3981341B2 (en) Anisotropic conductive adhesive
JPH1135903A (en) Anisotropically conductive adhesive
JP3080972B2 (en) Anisotropic conductive film
JP3075742B2 (en) Anisotropic conductive film
JPH04218210A (en) Anisotropic conductive film
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
JP2004288560A (en) Conductive adhesion film and semiconductor device using the same
JPH08185713A (en) Anisotropic conductive film
JP3326806B2 (en) Anisotropic conductive adhesive for circuit connection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees