JP2018131569A - Resin composition comprising conductive particles - Google Patents

Resin composition comprising conductive particles Download PDF

Info

Publication number
JP2018131569A
JP2018131569A JP2017027248A JP2017027248A JP2018131569A JP 2018131569 A JP2018131569 A JP 2018131569A JP 2017027248 A JP2017027248 A JP 2017027248A JP 2017027248 A JP2017027248 A JP 2017027248A JP 2018131569 A JP2018131569 A JP 2018131569A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
mass
parts
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017027248A
Other languages
Japanese (ja)
Inventor
祐樹 吉岡
Yuki Yoshioka
祐樹 吉岡
日野 裕久
Hirohisa Hino
裕久 日野
康寛 鈴木
Yasuhiro Suzuki
康寛 鈴木
新 岸
Arata Kishi
新 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017027248A priority Critical patent/JP2018131569A/en
Priority to TW106146261A priority patent/TW201831589A/en
Priority to KR1020170181679A priority patent/KR20180094772A/en
Priority to CN201810034981.XA priority patent/CN108441156A/en
Publication of JP2018131569A publication Critical patent/JP2018131569A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition capable of forming an adhesion part which can be hardened even at a low temperature and has sufficient conductivity and connection reliability.SOLUTION: There is provided a resin composition which comprises conductive particles, an epoxy resin, a phenoxy resin and a curing agent and comprises solder particles as the conductive particles, wherein the epoxy resin is one or more selected from a bisphenol type epoxy resin, a phenol novolac type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, a dicyclopentadiene type epoxy resin, a triglycidyl isocyanurate, a cyclohexane type epoxy resin and an adamantane type epoxy resin and the curing agent is one or more compounds selected from the group consisting of an epoxy resin amine adduct compound, an epoxy resin imidazole adduct compound and a modified aliphatic polyamine compound.SELECTED DRAWING: Figure 1

Description

本発明は、導電性粒子を含む樹脂組成物に関し、特に配線基板同士や、電子部品と配線基板との接続に用いられる異方性導電接着剤として使用することができる、導電性粒子を含む樹脂組成物に関する。   The present invention relates to a resin composition containing conductive particles, and in particular, a resin containing conductive particles that can be used as an anisotropic conductive adhesive used for connection between wiring boards or between an electronic component and a wiring board. Relates to the composition.

近年、フレキシブル基板とリジット基板との接合や、電子部品と配線基板との電気的接続には、例えば、ペースト状態やフィルム・シート状態の異方性導電接着剤を用いた接続方式が利用されている。   In recent years, for example, a connection method using an anisotropic conductive adhesive in a paste state or a film / sheet state has been used to join a flexible substrate and a rigid substrate or to electrically connect an electronic component and a wiring substrate. Yes.

異方性導電接着剤としては、例えば、電気的な絶縁性と接着強度とを確保するための熱硬化性樹脂に、金、銀、ニッケル等の金属被膜を有するものやハンダ材料などの導電性粒子を配合したものなどが提案されている(例えば、特許文献1)。このような異方性導電接着剤を用いて、例えば電子部品と配線基板とを圧着させることによって、その電極同士が導電性粒子などによって接触して接合されることにより、導電性が確保される。その一方で、電子部品や配線基板の電極間の間隙において、導電性粒子は上述の樹脂内に埋め込まれた状態で存在するため、隣接する電極間における絶縁性や、接合すべき部品と基板との十分な接着性などが確保される。   As an anisotropic conductive adhesive, for example, a thermosetting resin for securing electrical insulation and adhesive strength, a conductive material such as a solder material such as a metal coating such as gold, silver, nickel, etc. The thing etc. which mix | blended particle | grains are proposed (for example, patent document 1). By using such an anisotropic conductive adhesive, for example, by crimping an electronic component and a wiring board, the electrodes are brought into contact with each other by conductive particles, thereby ensuring conductivity. . On the other hand, since the conductive particles exist in the gap between the electrodes of the electronic component and the wiring board, the conductive particles are embedded in the above-described resin. Sufficient adhesion is ensured.

特開2012−67281号公報JP 2012-67281 A

しかしながら、従来の異方性導電接着剤では、導電性粒子として、例えば、ハンダ粒子を使用する場合、そのハンダ粒子の溶融によって、低荷重でその接続を確保することができるが、その接続信頼性を確保するために必要な樹脂の硬化に、比較的高い温度(例えば140〜190℃)が必要であった。このため、例えばガラス基板、ガラスエポキシ基板、フレキシブルプリント基板等であり得る、接合される基板の熱による歪み、反りの量が大きくなり、大型化、狭額縁化、薄型化が進むLCDモジュールの実装等に際し、このような歪み、反りに起因する表示品位の低下が生じるという問題があった。   However, in the conventional anisotropic conductive adhesive, for example, when solder particles are used as the conductive particles, the connection can be ensured with a low load by melting the solder particles. A relatively high temperature (for example, 140 to 190 ° C.) was required for curing the resin necessary for ensuring the above. For this reason, for example, a glass substrate, a glass epoxy substrate, a flexible printed circuit board, etc., the amount of distortion and warpage of the substrates to be joined is increased, and the mounting of LCD modules that are becoming larger, narrower and thinner. In such a case, there is a problem that display quality is deteriorated due to such distortion and warpage.

そこで、本発明では、ハンダ粒子などの導電性粒子を含む樹脂組成物であって、低温でも硬化することができ、十分な導電性と接続信頼性とを有する接着部を形成することのできる樹脂組成物を提供することを目的とする。   Therefore, in the present invention, a resin composition containing conductive particles such as solder particles, which can be cured even at a low temperature and can form an adhesive part having sufficient conductivity and connection reliability. An object is to provide a composition.

上記の課題を達成するために、本発明の導電性粒子を含む樹脂組成物(以下、「樹脂組成物」と略記する場合もある)は、導電性粒子とエポキシ樹脂とフェノキシ樹脂と硬化剤とを含む樹脂組成物であって、導電性粒子としてハンダ粒子を含み、エポキシ樹脂はビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂およびアダマンタン型エポキシ樹脂からなる群より選択される少なくとも1種以上のエポキシ樹脂であり、硬化剤が、エポキシ樹脂アミンアダクト化合物、エポキシ樹脂イミダゾールアダクト化合物および変性脂肪族ポリアミン化合物からなる群から選択される少なくとも1種の化合物であり、ハンダ粒子の含有量が、樹脂組成物の全質量に対して、1質量%以上40質量%以下の範囲内にあり、前記エポキシ樹脂、前記フェノキシ樹脂および前記硬化剤の質量の合計を100質量部としたとき、前記エポキシ樹脂が12質量部以上の割合で含まれ、前記フェノキシ樹脂が12質量部以上の割合で含まれ、前記硬化剤が12質量部以上58質量部以下の割合で含まれることを特徴とする。   In order to achieve the above object, a resin composition containing the conductive particles of the present invention (hereinafter sometimes abbreviated as “resin composition”) includes conductive particles, an epoxy resin, a phenoxy resin, and a curing agent. The epoxy resin is a bisphenol type epoxy resin, a phenol novolac type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, a dicyclopentadiene type epoxy resin, It is at least one epoxy resin selected from the group consisting of glycidyl isocyanurate, cyclohexane type epoxy resin and adamantane type epoxy resin, and the curing agent is an epoxy resin amine adduct compound, an epoxy resin imidazole adduct compound, and a modified aliphatic polyamine Composed of compounds At least one compound selected from the group consisting of: a solder particle content in the range of 1% by mass to 40% by mass with respect to the total mass of the resin composition; and the epoxy resin and the phenoxy resin. When the total mass of the curing agent is 100 parts by mass, the epoxy resin is included at a rate of 12 parts by mass or more, the phenoxy resin is included at a rate of 12 parts by mass or more, and the curing agent is 12 parts by mass. It is characterized by being contained in a proportion of not less than 58 parts by mass.

本発明の樹脂組成物において、ハンダ粒子はBi―In系の合金であってもよい。このとき、ハンダ粒子におけるBiの含有量が、ハンダ粒子の全質量に対して、33質量%以上85質量%以下の範囲内にあるBiの含有量が、ハンダ粒子の全質量に対して、33質量%以上85質量%以下の範囲内にあることが好ましい。   In the resin composition of the present invention, the solder particles may be a Bi-In alloy. At this time, the Bi content in the solder particles is in the range of 33% by mass to 85% by mass with respect to the total mass of the solder particles, and the Bi content is 33% with respect to the total mass of the solder particles. It is preferable to be in the range of mass% to 85 mass%.

本発明の樹脂組成物において、エポキシ樹脂、フェノキシ樹脂および硬化剤の質量の合計を100質量部としたとき、エポキシ樹脂が15質量部以上55質量部以下の割合で含まれることが好ましい。またこのとき、フェノキシ樹脂が12質量部以上76質量部以下の割合で含まれることが好ましい。さらに、エポキシ樹脂、フェノキシ樹脂および硬化剤の質量の合計を100質量部としたとき、硬化剤が15質量部以上55質量部以下の割合で含まれることが好ましい。   In the resin composition of the present invention, when the total mass of the epoxy resin, the phenoxy resin and the curing agent is 100 parts by mass, the epoxy resin is preferably contained in a proportion of 15 parts by mass or more and 55 parts by mass or less. Moreover, it is preferable at this time that a phenoxy resin is contained in the ratio of 12 to 76 mass parts. Furthermore, when the total mass of the epoxy resin, the phenoxy resin, and the curing agent is 100 parts by mass, the curing agent is preferably included in a proportion of 15 parts by mass or more and 55 parts by mass or less.

本発明によれば、ハンダ粒子などの導電性粒子を含む樹脂組成物であって、低温でも硬化することができ、十分な導電性と、接続信頼性とを有する接着部を形成することのできる樹脂組成物が提供される。低温での硬化が可能であることから、LCDモジュールなどの製造において、基板の歪みや反り量が低下して、ひずみの少ない良好な電気的接続が可能となるので、高品質な製品を提供することができるようになる。   According to the present invention, a resin composition containing conductive particles such as solder particles, which can be cured even at a low temperature, and an adhesive portion having sufficient conductivity and connection reliability can be formed. A resin composition is provided. Since it can be cured at low temperatures, the amount of distortion and warpage of the substrate is reduced in the manufacture of LCD modules, etc., and good electrical connection with less distortion is possible, thus providing a high-quality product. Will be able to.

本発明の実施の形態における導電性粒子を含む樹脂組成物の模式断面図である。It is a schematic cross section of the resin composition containing the electroconductive particle in embodiment of this invention. 本発明の実施の形態における導電性粒子を含む樹脂組成物を使用して作製した、ガラス基板とフレキシブル基板との接合体の模式断面図である。It is a schematic cross section of the joined body of the glass substrate and flexible substrate produced using the resin composition containing the electroconductive particle in embodiment of this invention.

以下、本発明の実施の形態について図を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態における導電性粒子を含む樹脂組成物の模式断面図である。図1において、樹脂組成物1は、導電性粒子2と樹脂成分3とを含み、導電性粒子2は樹脂成分3中に分散している。樹脂組成物1は、図示されるような断面を有する、フィルム状またはシート状の形状とすることが好ましい。導電性粒子2としてははんだ粒子が使用され、樹脂成分3にはエポキシ樹脂とフェノキシ樹脂と硬化剤とが含まれる。樹脂組成物1の絶縁性および接着性等は、樹脂成分3によってもたらされるものであり、導電性粒子2は、樹脂成分3中に均一に分散していることが好ましい。以下、各成分について詳しく説明する。   FIG. 1 is a schematic cross-sectional view of a resin composition containing conductive particles in an embodiment of the present invention. In FIG. 1, the resin composition 1 includes conductive particles 2 and a resin component 3, and the conductive particles 2 are dispersed in the resin component 3. The resin composition 1 preferably has a film-like or sheet-like shape having a cross section as illustrated. Solder particles are used as the conductive particles 2, and the resin component 3 contains an epoxy resin, a phenoxy resin, and a curing agent. The insulating property and adhesiveness of the resin composition 1 are brought about by the resin component 3, and the conductive particles 2 are preferably dispersed uniformly in the resin component 3. Hereinafter, each component will be described in detail.

[導電性粒子]
導電性粒子2には、ハンダ粒子が使用される。導電性粒子2としてハンダ粒子を使用することにより、ハンダ粒子の融点以上に加熱してハンダ粒子を溶融させることで、接着時に印加する荷重を小さくすることが可能である。ハンダ粒子には、導電性を有する任意の材料を使用することができ、例えばSn、In、Biなどの純金属またはこれらの元素を含む合金などを使用することができるが、これらに限定されない。ハンダ粒子として、BiとInとを含むBi−In系の合金や、SnとInとを含むSn−In系の合金を使用することが好ましく、特にBi−In系の合金を使用することが好ましい。Bi−In系の合金は、85℃以上100℃以下の融点を有するため、接着を130℃以下の低温で行うことが可能になる。また、ハンダ粒子にBi−In系の合金を用いることにより製造コストを削減することができる。
[Conductive particles]
Solder particles are used for the conductive particles 2. By using solder particles as the conductive particles 2, it is possible to reduce the load applied during bonding by heating the solder particles to a melting point or higher to melt the solder particles. For the solder particles, any material having electrical conductivity can be used. For example, a pure metal such as Sn, In, Bi, or an alloy containing these elements can be used, but it is not limited thereto. As the solder particles, it is preferable to use a Bi—In alloy containing Bi and In or a Sn—In alloy containing Sn and In, and it is particularly preferable to use a Bi—In alloy. . Since a Bi—In alloy has a melting point of 85 ° C. or higher and 100 ° C. or lower, bonding can be performed at a low temperature of 130 ° C. or lower. In addition, the manufacturing cost can be reduced by using a Bi-In alloy for the solder particles.

本明細書におけるはんだ粉末の組成は、ハンダ粉末に含まれる元素の元素記号をハイフンで結んで表記している。本明細書中、ハンダ粉末の金属組成を説明するのに、金属元素の直前に数値または数値範囲を示すことがあるが、これは、当該技術分野において一般的に使用されているように、金属組成中に占める各元素の質量%(=重量%)を数値または数値範囲で示すものである。ハンダ粉末は、列挙した元素で実質的に構成されている限り、不可避的に混入する微量金属を含んでいてもよい。   The composition of the solder powder in this specification is expressed by connecting element symbols of elements contained in the solder powder with hyphens. In the present specification, to describe the metal composition of the solder powder, a numerical value or a numerical range may be indicated immediately before the metal element, and this is a common practice in the art. The mass% (=% by weight) of each element in the composition is indicated by a numerical value or a numerical range. The solder powder may contain trace metals that are inevitably mixed as long as the solder powder is substantially composed of the listed elements.

Bi−In系の合金であるハンダ粒子におけるBiの含有量は、前記ハンダ粒子の全質量に対して33質量%以上85質量%以下の範囲内にあってよく、好ましくは40質量%以上85質量%以下の範囲内にある。ハンダ粒子の含有量が上記の範囲内にある場合、はんだ粒子は、樹脂成分の硬化温度よりも十分に低い温度で溶融することができるようになる。また、LCDモジュールなどの製造の際、樹脂組成物に加える荷重を低減することができるようになり、ひいては基板へのストレスを大幅に低減することができるようになる。   The Bi content in the solder particles which are Bi-In alloys may be in the range of 33% by weight to 85% by weight, preferably 40% by weight to 85% by weight, based on the total weight of the solder particles. % Or less. When the content of the solder particles is within the above range, the solder particles can be melted at a temperature sufficiently lower than the curing temperature of the resin component. In addition, when manufacturing an LCD module or the like, the load applied to the resin composition can be reduced, and as a result, the stress on the substrate can be greatly reduced.

ハンダ粒子の平均粒径は、1μm以上20μm以下の、好ましくは3μm以上10μm以下の範囲内にある。ハンダ粒子の平均粒径が1μm以上であることにより、ハンダ粒子同士による電気的接続の信頼性が高まり、20μm以下であることにより、隣接する電極間にハンダ粒子が介在することにより、ショートなどが引き起こされる可能性を有意に低減することができる。   The average particle size of the solder particles is in the range of 1 μm to 20 μm, preferably 3 μm to 10 μm. When the average particle size of the solder particles is 1 μm or more, the reliability of the electrical connection between the solder particles is increased, and when the solder particle is 20 μm or less, the solder particles are interposed between the adjacent electrodes, thereby causing a short circuit. The possibility of being caused can be significantly reduced.

本明細書において平均粒径とは、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径(D50)である。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。   In the present specification, the average particle size is a particle size (D50) at which the cumulative value is 50% in a cumulative curve obtained by obtaining a particle size distribution on a volume basis and setting the total volume to 100%. The average particle diameter can be measured using a laser diffraction / scattering particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.

ハンダ粒子の含有量は、樹脂組成物の全質量を基準として(100質量%として)、例えば1質量%以上40質量%以下、好ましくは3質量%以上30質量%以下の範囲内にある。ハンダ粒子の含有量が1質量%以上であることにより、樹脂組成物の十分な導電性と電気的接続の信頼性が確保でき、40質量%以下であることにより、隣接するハンダ粒子同士の接触や、隣接する電極間にハンダ粒子が介在することにより、ショートなどが引き起こされる可能性を有意に低減することができる。   The content of the solder particles is in the range of, for example, 1% by mass to 40% by mass, preferably 3% by mass to 30% by mass, based on the total mass of the resin composition (as 100% by mass). When the solder particle content is 1% by mass or more, sufficient electrical conductivity of the resin composition and reliability of electrical connection can be secured, and when the solder particle content is 40% by mass or less, contact between adjacent solder particles is achieved. In addition, the possibility that a short circuit or the like is caused by the presence of solder particles between adjacent electrodes can be significantly reduced.

[エポキシ樹脂]
樹脂成分3にエポキシ樹脂が含まれることにより、樹脂組成物の接着性が改善され、加熱時の樹脂流動性が向上し、形成時の取り扱い易さ(ハンドリング)が向上する。エポキシ樹脂は、例えば、グリシジルエーテル型、グリシジルアミン型、グリシジルエステル型、オレフィン酸化型(脂環式)等の各種のエポキシ樹脂を用いることができる。例えば、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ナフタレン含有ノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型(トリスフェノールメタン型)エポキシ樹脂、テトラキスフェノールエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール・ビフェニル型エポキシ樹脂、結晶性エポキシ樹脂とノボラック型エポキシ樹脂の混合物等のノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、ブロム含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、アダマンタン型エポキシ樹脂およびトリグリシジルイソシアヌレート等を用いることができる。これらのエポキシ樹脂は、単独で使用することができ、また必要に応じて複数種類のエポキシ樹脂を任意に組み合わせて使用することもできる。過熱時の流動性及び熱硬化後の高い接着性を示すものが好ましく使用され、なかでも、例えばビスフェノール型A型およびビスフェノールF型などである、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、シクロヘキサン型エポキシ樹脂、アダマンタン型エポキシ樹脂、グリシジルエーテル基含有型のエポキシ樹脂およびトリグリシジルイソシアヌレート等が特に好ましく使用される。
[Epoxy resin]
By including an epoxy resin in the resin component 3, the adhesiveness of the resin composition is improved, the resin fluidity during heating is improved, and the ease of handling (handling) during formation is improved. As the epoxy resin, for example, various epoxy resins such as glycidyl ether type, glycidyl amine type, glycidyl ester type, and olefin oxidation type (alicyclic) can be used. For example, phenol novolac type epoxy resin, alkylphenol novolak type epoxy resin, naphthalene-containing novolak type epoxy resin, bisphenol A novolak type epoxy resin, triphenylmethane type (trisphenolmethane type) epoxy resin, tetrakisphenolethane type epoxy resin, dicyclo Pentadiene type epoxy resin, phenol biphenyl type epoxy resin, novolac type epoxy resin such as mixture of crystalline epoxy resin and novolak type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, naphthalene type epoxy resin, Alicyclic epoxy resin, bromine-containing epoxy resin, cyclohexane type epoxy resin, adamantane type epoxy resin and triglycidyl isocyanate It can be used rates. These epoxy resins can be used singly, and a plurality of types of epoxy resins can be arbitrarily combined and used as necessary. Those exhibiting fluidity at the time of overheating and high adhesiveness after heat curing are preferably used. Among them, for example, bisphenol type A type resin and bisphenol F type, bisphenol type epoxy resin, phenol novolac type epoxy resin, biphenyl type Epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, cyclohexane type epoxy resins, adamantane type epoxy resins, glycidyl ether group-containing type epoxy resins and triglycidyl isocyanurate are particularly preferably used.

本発明において使用されるエポキシ樹脂の当量は、例えば150以上、好ましくは160以上250以下、より好ましくは170以上200以下の範囲内にある。エポキシ樹脂の当量が上記範囲内にあることにより、樹脂組成物の接着性が効果的に改善され、加熱時の樹脂流動性がさらに向上し、フィルムやシートへの形成性が向上する。   The equivalent of the epoxy resin used in the present invention is, for example, 150 or more, preferably 160 or more and 250 or less, more preferably 170 or more and 200 or less. When the equivalent amount of the epoxy resin is within the above range, the adhesiveness of the resin composition is effectively improved, the resin fluidity during heating is further improved, and the formability to a film or sheet is improved.

エポキシ樹脂の含有量は、エポキシ樹脂と、フェノキシ樹脂と硬化剤との質量の合計を100質量部としたときに、12質量部以上、好ましくは15質量部以上55質量部以下、より好ましくは20質量部以上55質量部以下の範囲内にあってよい。エポキシ樹脂の含有量がこのような範囲内にあることにより、樹脂組成物の接着性が効果的に改善され、フィルムやシートへの形成性が向上する。   The content of the epoxy resin is 12 parts by mass or more, preferably 15 parts by mass or more and 55 parts by mass or less, more preferably 20 parts when the total mass of the epoxy resin, the phenoxy resin and the curing agent is 100 parts by mass. It may be in the range of not less than 55 parts by mass. When content of an epoxy resin exists in such a range, the adhesiveness of a resin composition is improved effectively, and the formability to a film or a sheet improves.

[フェノキシ樹脂]
樹脂成分3にフェノキシ樹脂が含まれることにより、樹脂組成物に可撓性が付与され、基材との接着性を改善することができる。フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格、イミド骨格等の骨格を有するフェノキシ樹脂を使用することができ、上述した骨格のいずれかを含む1種ないし2種以上のフェノキシ樹脂が使用されることが好ましい。
[Phenoxy resin]
By including a phenoxy resin in the resin component 3, flexibility is imparted to the resin composition, and adhesion to the substrate can be improved. As the phenoxy resin, for example, a phenoxy resin having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton can be used. It is preferable to use one or more phenoxy resins containing any of the skeletons described above.

フェノキシ樹脂の重量平均分子量は、例えば30000以上、好ましくは35000〜100000、より好ましくは38000〜70000の範囲内にある。フェノキシ樹脂の重量平均分子量が上記範囲内にあることにより、安定したフィルム形成が可能となる。また、軟化点は、約80℃〜約160℃の範囲にあり、これにより常温で固体であり、熱可塑性樹脂として挙動するため、樹脂組成物のフィルムおよびシート形成性を向上させることができる。   The weight average molecular weight of the phenoxy resin is, for example, 30000 or more, preferably 35,000 to 100,000, more preferably 38,000 to 70,000. When the weight average molecular weight of the phenoxy resin is within the above range, a stable film can be formed. Moreover, since the softening point is in the range of about 80 ° C. to about 160 ° C., it is solid at ordinary temperature and behaves as a thermoplastic resin, the film and sheet formability of the resin composition can be improved.

フェノキシ樹脂の含有量は、エポキシ樹脂と、フェノキシ樹脂と硬化剤との質量の合計を100質量部としたときに、12質量部以上となり、好ましくは12質量部以上76質量部以下となる。エポキシ樹脂の質量部が上記範囲内にあることにより、樹脂組成物からの固形状の異方性導電材料の作製が簡便となり、例えばシート、フィルムなどの成形が簡便となる。また、樹脂成分の硬化不足による接着強度の低下を防ぐとともに、接続抵抗の不安定化を抑制することができる。   The content of the phenoxy resin is 12 parts by mass or more, preferably 12 parts by mass or more and 76 parts by mass or less when the total mass of the epoxy resin, the phenoxy resin, and the curing agent is 100 parts by mass. When the mass part of the epoxy resin is within the above range, it is easy to produce a solid anisotropic conductive material from the resin composition, and for example, it is easy to form a sheet, a film, or the like. In addition, it is possible to prevent a decrease in adhesive strength due to insufficient curing of the resin component and to suppress instability of connection resistance.

[硬化剤]
樹脂成分3に硬化剤が含まれることにより、樹脂組成物を低温で硬化させることができるようになる。硬化剤としては、例えば、エポキシ樹脂アミンアダクト化合物、エポキシ樹脂イミダゾールアダクト化合物、変性脂肪族ポリアミン化合物等を挙げることができる。エポキシ樹脂アミンアダクト化合物とは、エポキシ化合物とアミン化合物の反応生成物(一般に、エポキシ化合物アミンアダクトと呼称されている)である。詳しくは、単官能および多官能エポキシ化合物のエポキシ基と付加反応し得る活性水素を1分子内に1個以上有し、かつ1級、2級、3級アミノ基の中から選ばれた置換基を少なくとも1分子内に1個以上有するアミン化合物との反応生成物(即ち、エポキシ化合物アミンアダクト)である。エポキシ樹脂イミダゾールアダクト化合物は、エポキシ樹脂との混合系中でも安定で、かつ、エポキシ樹脂とともに80℃以上120℃以下で熱処理することにより、高い熱変形温度を示す硬化物を得ることができる硬化剤であり、室温付近で液状の一般エポキシ樹脂には不溶性の固体であるが、加熱することにより可溶化し、本来の機能を発揮する化合物である。変性脂肪族ポリアミン化合物とは、エポキシ樹脂との混合系中でも安定で、かつ80〜120℃の熱処理で高い熱変形温度を示す硬化物が得られる硬化剤であり、室温付近で液状の一般エポキシ樹脂には不溶性の固体であるが、加熱することにより可溶化し本来の機能を発揮する化合物である。基本はアミン化合物とイソシアネート化合物との反応生成物(一般に、脂肪族ポリアミン変性体と呼称されている)である。詳しくは、ジアルキルアミノアルキルアミン化合物、分子内に活性水素を有する窒素原子を1あるいは2個以上有する環状アミン化合物、およびジイソシアネート化合物の反応生成物(すなわち、脂肪族ポリアミン変性体)である。本発明ではエポキシ樹脂アミンアダクト化合物、エポキシ樹脂イミダゾールアダクト化合物、変性脂肪族ポリアミン化合物等を単独で用いても、2種以上を選択して用いてもよく、特に、エポキシ樹脂アミンアダクト化合物を用いることで130℃以下の温度での十分な硬化性を確保することができる。
[Curing agent]
By including a curing agent in the resin component 3, the resin composition can be cured at a low temperature. Examples of the curing agent include an epoxy resin amine adduct compound, an epoxy resin imidazole adduct compound, and a modified aliphatic polyamine compound. The epoxy resin amine adduct compound is a reaction product of an epoxy compound and an amine compound (generally called an epoxy compound amine adduct). Specifically, the substituent has at least one active hydrogen capable of undergoing an addition reaction with an epoxy group of a monofunctional or polyfunctional epoxy compound, and is selected from primary, secondary, and tertiary amino groups. Is a reaction product (namely, epoxy compound amine adduct) with an amine compound having at least one in a molecule. An epoxy resin imidazole adduct compound is a curing agent that is stable even in a mixed system with an epoxy resin, and can obtain a cured product having a high heat distortion temperature by heat treatment at 80 ° C. or more and 120 ° C. or less together with the epoxy resin. Yes, it is a solid that is insoluble in general epoxy resins that are liquid near room temperature, but is solubilized by heating and exhibits its original function. A modified aliphatic polyamine compound is a curing agent that is stable even in a mixed system with an epoxy resin, and that provides a cured product exhibiting a high heat distortion temperature by heat treatment at 80 to 120 ° C., and is a general epoxy resin that is liquid near room temperature Although it is an insoluble solid, it is a compound that is solubilized by heating and exhibits its original function. The basis is a reaction product of an amine compound and an isocyanate compound (generally called an aliphatic polyamine modified product). Specifically, it is a dialkylaminoalkylamine compound, a cyclic amine compound having one or more nitrogen atoms having active hydrogen in the molecule, and a reaction product of a diisocyanate compound (that is, a modified aliphatic polyamine). In the present invention, an epoxy resin amine adduct compound, an epoxy resin imidazole adduct compound, a modified aliphatic polyamine compound or the like may be used alone, or two or more kinds may be selected and used, and in particular, an epoxy resin amine adduct compound is used. Thus, sufficient curability at a temperature of 130 ° C. or less can be secured.

硬化剤の含有量は、エポキシ樹脂と、フェノキシ樹脂と、硬化剤との質量の合計を100質量部としたときに、12質量部以上58質量部以下、好ましくは15質量部以上55質量部以下、好ましくは20質量部以上50質量部以下の範囲内にある。硬化剤の含有量が上記範囲内にあることにより、樹脂組成物からの固形状の異方性導電材料の作製が簡便となり、例えばシートやフィルムなどへの成形が簡便となる。また、樹脂成分の硬化不足による接着強度の低下を防ぐとともに、接続抵抗の不安定化を抑制することができる。   The content of the curing agent is 12 parts by mass or more and 58 parts by mass or less, preferably 15 parts by mass or more and 55 parts by mass or less when the total mass of the epoxy resin, the phenoxy resin, and the curing agent is 100 parts by mass. Preferably, it exists in the range of 20 to 50 mass parts. When the content of the curing agent is within the above range, it is easy to produce a solid anisotropic conductive material from the resin composition, and for example, it is easy to form into a sheet or a film. In addition, it is possible to prevent a decrease in adhesive strength due to insufficient curing of the resin component and to suppress instability of connection resistance.

[その他の成分]
本実施形体の樹脂組成物は上記以外の任意の成分を含んでいてもよく、例えばカップリング剤等を含んでいてもよい。例えばカップリング剤が含まれることにより、樹脂組成物の接着性を向上させることができる。
[Other ingredients]
The resin composition of the present embodiment may contain any component other than those described above, for example, a coupling agent or the like. For example, the adhesiveness of the resin composition can be improved by including a coupling agent.

図2は、本発明の実施の形態における導電性粒子を含む樹脂組成物を使用して作製した、ガラス基板とフレキシブル基板との接合体の模式断面図である。図2において、Auメッキ部5を有するフレキシブル基板4とITO6を蒸着したガラス基板7とは、本願発明の樹脂組成物によって接合されている。図2において、フレキシブル基板4とガラス基板7とは圧着されており、それにより間の樹脂組成物に含まれる導電性粒子2を介して互いに接触しており、導電性が確保されている。このように使用される本発明の樹脂組成物の製造方法および使用方法について、以下にさらに記載する。   FIG. 2 is a schematic cross-sectional view of a joined body of a glass substrate and a flexible substrate manufactured using a resin composition containing conductive particles according to an embodiment of the present invention. In FIG. 2, the flexible substrate 4 having the Au plating portion 5 and the glass substrate 7 on which ITO 6 is deposited are bonded by the resin composition of the present invention. In FIG. 2, the flexible substrate 4 and the glass substrate 7 are pressure-bonded so that they are in contact with each other via the conductive particles 2 contained in the resin composition therebetween, and the conductivity is ensured. The production method and use method of the resin composition of the present invention used in this manner will be further described below.

[樹脂組成物の製造方法]
本発明の上記実施形態の樹脂組成物は、例えば、上述した導電性粒子とエポキシ樹脂とフェノキシ樹脂と硬化剤とをミキサー等で混合することによって製造することができる。このとき、フェノキシ樹脂は、予め溶剤中に溶解させた後に他の成分と混合してもよい。この場合、溶剤には、フェノキシ樹脂を溶解することができる任意の溶剤を使用することができ、例えば、成形性の観点から、蒸気圧が低く、沸点が100℃以下の溶剤であって、具体的にはトルエンやメチルエチルケトン、酢酸エチルなどを単独で、または複数を組み合わせて使用することが好ましい。
[Method for Producing Resin Composition]
The resin composition of the said embodiment of this invention can be manufactured by mixing the electroconductive particle mentioned above, an epoxy resin, a phenoxy resin, and a hardening | curing agent with a mixer etc., for example. At this time, the phenoxy resin may be previously dissolved in a solvent and then mixed with other components. In this case, as the solvent, any solvent capable of dissolving the phenoxy resin can be used. For example, from the viewpoint of moldability, the solvent has a low vapor pressure and a boiling point of 100 ° C. or less. Specifically, it is preferable to use toluene, methyl ethyl ketone, ethyl acetate or the like alone or in combination.

さらに、バーコーター等を用いて、樹脂組成物をフィルム状またはシート状等の形状に成形してもよい。このとき、樹脂組成物の成形後の厚みはその用途にあわせて適宜設定され得るが、通常は10μm〜30μmの範囲にあることが好ましい。なお、本発明の導電性粒子を含む樹脂組成物は任意の形状を取ることができ、例えばペースト状、フィルム状およびシート状で用いることができるが、これらに限定されるものではない。   Furthermore, you may shape | mold a resin composition in shapes, such as a film form or a sheet form, using a bar coater etc. At this time, the thickness of the resin composition after molding can be appropriately set according to the use, but it is usually preferably in the range of 10 μm to 30 μm. In addition, although the resin composition containing the electroconductive particle of this invention can take arbitrary shapes, for example, it can be used by a paste form, a film form, and a sheet form, However, It is not limited to these.

[樹脂組成物の使用方法]
本発明の樹脂組成物は、加熱することによって硬化させることができ、それと同時に加圧することによって、両端面に導電性粒子を露出させて導電性を提供することができる。このときの加熱温度は、例えば80℃〜150℃、好ましくは90℃〜130℃、より好ましくは90℃〜110℃である。また、このとき加える圧力は、例えば0.5MPa以上5MPa以下、好ましくは0.5MPa以上3MPa以下である。加熱および/または加圧の時間は、例えば5秒〜20秒、好ましくは8秒〜15秒であってよい。
[Usage method of resin composition]
The resin composition of the present invention can be cured by heating, and by applying pressure at the same time, the conductive particles can be exposed at both end surfaces to provide conductivity. The heating temperature at this time is 80 degreeC-150 degreeC, for example, Preferably it is 90 degreeC-130 degreeC, More preferably, it is 90 degreeC-110 degreeC. The pressure applied at this time is, for example, 0.5 MPa or more and 5 MPa or less, preferably 0.5 MPa or more and 3 MPa or less. The time of heating and / or pressurization may be, for example, 5 seconds to 20 seconds, preferably 8 seconds to 15 seconds.

本発明の上記実施形態の樹脂組成物は、上述の加熱、加圧後において、優れた導電性及び接続信頼性を示す。以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は、以下の実施例に限定されるものではない。   The resin composition of the above embodiment of the present invention exhibits excellent conductivity and connection reliability after the heating and pressurization described above. EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to a following example.

導電性粒子とエポキシ樹脂とフェノキシ樹脂と硬化剤とを任意の配合量で混合し、自転・公転ミキサーにて混練し、実施例1〜10および比較例1〜6のペーストを調製した。ここで、フェノキシ樹脂は、トルエンおよび酢酸エチルを用いて予め溶解しておき、所定の固形分量となるように上記のペーストに添加して混練した。続いて、上述の通り作成したペーストを、バーコーターを用いて、15μm〜20μmの膜厚となるように塗布して、常温で乾燥させることによって、実施例1〜10および比較例1〜6のシート状の樹脂組成物を得た。実施例1〜10および比較例1〜6においては、混練する成分の種類は変えず、配合量を変えている。エポキシ樹脂には、三菱化学株式会社製のビスフェノールA型エポキシ樹脂であるjER828と、株式会社ADEKA製のジシクロペンタジエン型エポキシ樹脂であるEP−4088Lを用いた。フェノキシ樹脂には、ビスフェノールFA型の骨格を有する巴工業株式会社製のPKHCを用いた。硬化剤には株式会社ADEKA製のエポキシ樹脂アミンアダクト化合物であるEH−5030Sを用いた。導電性粒子にはBi−In系(55Bi−45In)ハンダ粒子であって、平均粒径が3μm〜5μmの範囲にあるものを用いた。   Conductive particles, an epoxy resin, a phenoxy resin, and a curing agent were mixed in an arbitrary amount and kneaded by a rotation / revolution mixer to prepare pastes of Examples 1 to 10 and Comparative Examples 1 to 6. Here, the phenoxy resin was dissolved in advance using toluene and ethyl acetate, and added to the paste so as to have a predetermined solid content and kneaded. Subsequently, the paste prepared as described above was applied using a bar coater so as to have a film thickness of 15 μm to 20 μm, and dried at room temperature, whereby Examples 1 to 10 and Comparative Examples 1 to 6 were used. A sheet-like resin composition was obtained. In Examples 1 to 10 and Comparative Examples 1 to 6, the types of components to be kneaded are not changed, but the blending amounts are changed. As the epoxy resin, jER828, which is a bisphenol A type epoxy resin manufactured by Mitsubishi Chemical Corporation, and EP-4088L, which is a dicyclopentadiene type epoxy resin manufactured by ADEKA Corporation, were used. As the phenoxy resin, PKHC manufactured by Sakai Kogyo Co., Ltd. having a bisphenol FA type skeleton was used. As the curing agent, EH-5030S, which is an epoxy resin amine adduct compound manufactured by ADEKA Corporation, was used. As the conductive particles, Bi-In (55Bi-45In) solder particles having an average particle size in the range of 3 μm to 5 μm were used.

本発明の実施例1〜10および比較例1〜6における樹脂組成物の各成分の配合量を、以下の表1、表2に示した。表中、エポキシ樹脂、フェノキシ樹脂、硬化剤およびはんだ粒子の配合量は、樹脂成分全体の全質量を100質量部としたときの割合を表しており、単位は質量部である。表中、樹脂成分および導電性粒子の質量が、樹脂組成物全体の質量に対して占める割合を、パーセント(%)の単位を付して示した。   The compounding amounts of the components of the resin compositions in Examples 1 to 10 and Comparative Examples 1 to 6 of the present invention are shown in Tables 1 and 2 below. In the table, the blending amounts of epoxy resin, phenoxy resin, curing agent and solder particles represent the ratio when the total mass of the entire resin component is 100 parts by mass, and the unit is mass parts. In the table, the ratio of the mass of the resin component and the conductive particles to the mass of the entire resin composition is shown in units of percent (%).

Figure 2018131569
Figure 2018131569

Figure 2018131569
Figure 2018131569

実施例および比較例で調製した樹脂組成物の剥離接着強度および接続抵抗値の評価を目的として、図2に示されるような、ITO6を蒸着したガラス基板7と、Auメッキ部5を有するポリイミド製のフレキシブル基板4とを用意した。ガラス基板7のサイズは、30mm×30mm×0.3mmであり、ITO6の膜厚は、2000〜2500Å(200〜250nm)であった。ポリイミド製のフレキシブル基板4のサイズは、35mm×16mm×0.08mmであり、Auメッキ部5の膜厚は、0.03〜0.5μmであった。   For the purpose of evaluating the peel adhesion strength and connection resistance value of the resin compositions prepared in Examples and Comparative Examples, as shown in FIG. 2, a glass substrate 7 on which ITO 6 is deposited and a polyimide having an Au plating portion 5 are used. The flexible substrate 4 was prepared. The size of the glass substrate 7 was 30 mm × 30 mm × 0.3 mm, and the thickness of the ITO 6 was 2000-2500 mm (200-250 nm). The size of the flexible substrate 4 made of polyimide was 35 mm × 16 mm × 0.08 mm, and the film thickness of the Au plating part 5 was 0.03 to 0.5 μm.

実施例および比較例で調製したシート状の樹脂組成物(1.5mm×15mm)を、それぞれガラス基板とフレキシブル基板との間に配置し、100℃に加熱しながら、1MPaの圧力で10秒間加圧して接着させることで、図2に示されるような接合体を形成し、形成した接合体を以下の方法で評価した。   The sheet-shaped resin compositions (1.5 mm × 15 mm) prepared in the examples and comparative examples were respectively placed between a glass substrate and a flexible substrate and heated at 100 ° C. for 10 seconds at a pressure of 1 MPa. The bonded body as shown in FIG. 2 was formed by pressing and bonding, and the formed bonded body was evaluated by the following method.

<接続抵抗値評価方法>
各接合体の接続抵抗値をテスター(マルチ計測器(株)、MCD008)にて測定した。測定結果を表3および表4に示した。表中、接続抵抗値が3kΩ以上6kΩ未満を◎とし、6kΩ以上10kΩ未満を○、10kΩ以上30kΩ未満を△、30kΩ以上を×と評価した。接続抵抗値が10kΩ未満であると、接合状態は非常に良好であり、安定した導通性を提供できるが、接続抵抗値が30kΩ以上であると、不安定な導通状態となり、信頼性が乏しくなる。
<Connection resistance value evaluation method>
The connection resistance value of each joined body was measured with a tester (Multi Instrument Co., Ltd., MCD008). The measurement results are shown in Tables 3 and 4. In the table, a connection resistance value of 3 kΩ or more and less than 6 kΩ was evaluated as “◎”, 6 kΩ or more and less than 10 kΩ was evaluated as “◯”, 10 kΩ or more and less than 30 kΩ was evaluated as “Δ”, and 30 kΩ or more was evaluated as “X”. If the connection resistance value is less than 10 kΩ, the junction state is very good and can provide stable conduction. However, if the connection resistance value is 30 kΩ or more, the connection state becomes unstable and reliability is poor. .

<高温高湿信頼性試験方法>
接続抵抗値測定用に作成した試験片の抵抗値を測定した後、湿度85%の条件下、85℃で1000時間保持したのち、再度抵抗値を測定した。再度測定した抵抗値(高温高湿信頼性試験後の接続抵抗値)を、高温高湿に条件に晒す前の抵抗値(初期接続抵抗値)と併せて表3および表4に示した。初期接続抵抗値と同様に、接続抵抗値が3kΩ以上6kΩ未満を◎とし、6kΩ以上10kΩ未満を○、10kΩ以上30kΩ未満を△、30kΩ以上を×と評価した。
<High temperature and high humidity reliability test method>
After measuring the resistance value of the test piece prepared for measuring the connection resistance value, the resistance value was measured again after being held at 85 ° C. for 1000 hours under the condition of 85% humidity. The resistance values measured again (connection resistance values after the high-temperature and high-humidity reliability test) are shown in Tables 3 and 4 together with the resistance values (initial connection resistance values) before being exposed to high-temperature and high-humidity conditions. Similarly to the initial connection resistance value, the connection resistance value was evaluated as “◎” when the connection resistance value was 3 kΩ or more and less than 6 kΩ, “◯” when 6 kΩ or more and less than 10 kΩ, and “B” when 30 kΩ or more.

初期接続抵抗値および高温高湿信頼性試験後の接続抵抗値の評価結果から総合的に樹脂組成物を評価し、これを総合判定として表3および表4に併せて示した。初期接続抵抗値と高温高湿信頼性試験後の接続抵抗値の少なくとも一方が×の場合には×とし、少なくとも一方が△の場合には△とし、両方が◎の場合には◎とし、それら以外の場合は全て○として判定した。上記の総合判定で◎または○と判定されたものは、初期接続抵抗値と高温高湿信頼性試験後の接続抵抗値の両方に優れるものであったといえる。   The resin composition was comprehensively evaluated from the evaluation results of the initial connection resistance value and the connection resistance value after the high-temperature and high-humidity reliability test, and these are collectively shown in Tables 3 and 4 as comprehensive judgment. When at least one of the initial connection resistance value and the connection resistance value after the high-temperature and high-humidity reliability test is ×, at least one is △, and when both are ◎, both are ◎ In all other cases, it was determined as ○. Those judged as ◎ or ○ in the above comprehensive judgment can be said to be excellent in both the initial connection resistance value and the connection resistance value after the high temperature and high humidity reliability test.

Figure 2018131569
Figure 2018131569

Figure 2018131569
Figure 2018131569

実施例1では、樹脂成分全質量に対して、エポキシ樹脂の配合量を38質量部、フェノキシ樹脂の配合量を26質量部、硬化剤の配合量を36質量部とし、ハンダ粒子の配合量を、樹脂組成物全質量に対して、7.4質量%とした(表1)。その結果、エポキシ樹脂による密着性、フェノキシ樹脂による可撓性、硬化剤の低温硬化性によって、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果も◎であり、いずれも良好であった(表3)。   In Example 1, with respect to the total mass of the resin component, the compounding amount of the epoxy resin is 38 parts by mass, the compounding amount of the phenoxy resin is 26 parts by mass, the compounding amount of the curing agent is 36 parts by mass, and the compounding amount of the solder particles is And 7.4% by mass relative to the total mass of the resin composition (Table 1). As a result, due to the adhesion with epoxy resin, the flexibility with phenoxy resin, and the low temperature curability of the curing agent, the result of the initial connection resistance value is ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test is also ◎. Both were good (Table 3).

実施例2では、樹脂成分全質量に対して、エポキシ樹脂の配合量を48質量部、フェノキシ樹脂の配合量を20質量部、硬化剤の配合量を32質量部とし、ハンダ粒子の配合量を、樹脂組成物全質量に対して、7.4質量%とした(表1)。その結果、エポキシ樹脂による密着性、フェノキシ樹脂による可撓性、硬化剤の低温硬化性によって、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果も◎であり、いずれも良好であった(表3)。   In Example 2, the amount of the epoxy resin is 48 parts by mass, the amount of the phenoxy resin is 20 parts by mass, the amount of the curing agent is 32 parts by mass, and the amount of the solder particles is based on the total mass of the resin component. And 7.4% by mass relative to the total mass of the resin composition (Table 1). As a result, due to the adhesion with epoxy resin, the flexibility with phenoxy resin, and the low temperature curability of the curing agent, the result of the initial connection resistance value is ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test is also ◎. Both were good (Table 3).

実施例3では、樹脂成分全質量に対して、エポキシ樹脂の配合量を30質量部、フェノキシ樹脂の配合量を21質量部、硬化剤の配合量を48質量部とし、ハンダ粒子の配合量を、樹脂組成物全質量に対して、7.4質量%とした(表1)。その結果、エポキシ樹脂による密着性、フェノキシ樹脂による可撓性、硬化剤の低温硬化性によって、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果も◎であり、いずれも良好であった(表3)。   In Example 3, the compounding amount of the epoxy resin is 30 parts by mass, the compounding amount of the phenoxy resin is 21 parts by mass, the compounding amount of the curing agent is 48 parts by mass, and the compounding amount of the solder particles is based on the total mass of the resin component. And 7.4% by mass relative to the total mass of the resin composition (Table 1). As a result, due to the adhesion with epoxy resin, the flexibility with phenoxy resin, and the low temperature curability of the curing agent, the result of the initial connection resistance value is ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test is also ◎. Both were good (Table 3).

実施例4では、樹脂成分全質量に対して、エポキシ樹脂の配合量を40質量部、フェノキシ樹脂の配合量を16質量部、硬化剤の配合量を44質量部とし、ハンダ粒子の配合量を、樹脂組成物全質量に対して、7.4質量%とした(表1)。その結果、エポキシ樹脂による密着性、フェノキシ樹脂による可撓性、硬化剤の低温硬化性によって、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果も◎であり、いずれも良好であった(表3)。   In Example 4, with respect to the total mass of the resin component, the amount of the epoxy resin is 40 parts by mass, the amount of the phenoxy resin is 16 parts by mass, the amount of the curing agent is 44 parts by mass, and the amount of the solder particles is And 7.4% by mass relative to the total mass of the resin composition (Table 1). As a result, due to the adhesion with epoxy resin, the flexibility with phenoxy resin, and the low temperature curability of the curing agent, the result of the initial connection resistance value is ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test is also ◎. Both were good (Table 3).

実施例5では、ハンダ粒子の配合量を、1.0質量%とした以外は、実施例1の樹脂組成物と同一の配合量で各成分を混合した(表1)。その結果、エポキシ樹脂による密着性、フェノキシ樹脂による可撓性、硬化剤の低温硬化性によって、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果も◎であり、いずれも良好であった(表3)。   In Example 5, each component was mixed in the same amount as the resin composition of Example 1 except that the amount of solder particles was 1.0% by mass (Table 1). As a result, due to the adhesion with epoxy resin, the flexibility with phenoxy resin, and the low temperature curability of the curing agent, the result of the initial connection resistance value is ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test is also ◎. Both were good (Table 3).

実施例6では、ハンダ粒子の配合量を40質量%とした以外は、実施例1の樹脂組成物と同一の配合量で各成分を混合した(表1)。その結果、エポキシ樹脂による密着性、フェノキシ樹脂による可撓性、硬化剤の低温硬化性によって、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果も◎であり、いずれも良好であった(表3)。   In Example 6, each component was mixed in the same amount as the resin composition of Example 1 except that the amount of solder particles was 40% by mass (Table 1). As a result, due to the adhesion with epoxy resin, the flexibility with phenoxy resin, and the low temperature curability of the curing agent, the result of the initial connection resistance value is ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test is also ◎. Both were good (Table 3).

実施例7では、樹脂成分中のエポキシ樹脂の配合量を15質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表1)。その結果、初期接続抵抗値の結果は◎であり、高温高湿信頼性試験後の接続抵抗値の結果は○であった(表3)。これは、エポキシ樹脂量が少ないために高温高湿下での密着性が確保できず、電気的接続がわずかに不安定となったためと考えられる。   In Example 7, the compounding amount of the epoxy resin in the resin component was 15 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 1). As a result, the result of the initial connection resistance value was ◎, and the result of the connection resistance value after the high temperature and high humidity reliability test was ◯ (Table 3). This is presumably because the adhesiveness under high temperature and high humidity cannot be ensured due to the small amount of epoxy resin, and the electrical connection becomes slightly unstable.

実施例8では、樹脂成分中のエポキシ樹脂の配合量を55質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表1)。その結果、エポキシ樹脂の配合量増加により密着性は向上するが、硬化不足が起こったため初期接続抵抗値の結果は○であり、高温高湿信頼性試験後の接続抵抗値の結果は○であった(表3)。   In Example 8, the compounding amount of the epoxy resin in the resin component was 55 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 1). As a result, the adhesion was improved by increasing the compounding amount of the epoxy resin, but because of insufficient curing, the result of the initial connection resistance value was ○, and the result of the connection resistance value after the high temperature and high humidity reliability test was ○. (Table 3).

実施例9では、樹脂成分中の硬化剤の配合量を15質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表1)。その結果、硬化不足が起こったため初期接続抵抗値の結果は○であり、高温高湿信頼性試験後の接続抵抗値の結果は○であった(表3)。   In Example 9, the compounding amount of the curing agent in the resin component was 15 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 1). As a result, since the curing was insufficient, the result of the initial connection resistance value was ◯, and the result of the connection resistance value after the high temperature and high humidity reliability test was ◯ (Table 3).

実施例10では、樹脂成分中の硬化剤の配合量を55質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表1)。その結果、初期接続抵抗値の結果は◎であったが、硬化剤過多による高温高湿下での吸湿により電気的接続が不安定となったため、高温高湿信頼性試験後の接続抵抗値の結果は○であった(表3)。   In Example 10, the compounding amount of the curing agent in the resin component was 55 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 1). As a result, the result of the initial connection resistance value was ◎, but the electrical connection became unstable due to moisture absorption under high temperature and high humidity due to excessive curing agent, so the connection resistance value after the high temperature and high humidity reliability test was The result was (circle) (Table 3).

上述の実施例1〜10の接続抵抗値は、高温高湿信頼性試験の前後においていずれも10kΩを下回り、表3に示す総合判定は、いずれも◎または○であった。上述の実施例1〜10により本発明の樹脂組成物は、120℃以下の低温で硬化させることができ、かつ十分な剥離接着強度および接続抵抗値を提供することができることが明らかになった。   The connection resistance values of Examples 1 to 10 described above were both below 10 kΩ before and after the high-temperature and high-humidity reliability test, and the overall judgments shown in Table 3 were all “◎” or “◯”. From the above Examples 1 to 10, it was revealed that the resin composition of the present invention can be cured at a low temperature of 120 ° C. or less and can provide a sufficient peel adhesive strength and connection resistance value.

比較例1では、実施例1の樹脂成分のみで接合体を作製した。従って、ハンダ粒子は全く配合されていない(表2)。その結果、樹脂成分のみで構成されるため、電気的接続を確保されず、初期接続抵抗値および高温高湿信頼性試験後の接続抵抗値の結果は測定不能(−)であり、総合評価は×とした(表4)。   In Comparative Example 1, a joined body was produced using only the resin component of Example 1. Therefore, no solder particles are blended (Table 2). As a result, since it is composed only of resin components, electrical connection is not secured, and the results of the initial connection resistance value and the connection resistance value after the high-temperature and high-humidity reliability test cannot be measured (−). X (Table 4).

比較例2では、比較例1の樹脂組成物中のハンダ粒子配合量を50質量%とした(表2)。その結果、ハンダ粒子の配合量が多いために樹脂による絶縁性が確保されず、初期接続抵抗値および高温高湿信頼性試験後の接続抵抗値のいずれも測定不能(−)であり、総合判定は×とした(表4)。   In Comparative Example 2, the solder particle content in the resin composition of Comparative Example 1 was set to 50% by mass (Table 2). As a result, since the amount of solder particles is large, insulation by the resin is not ensured, and neither the initial connection resistance value nor the connection resistance value after the high-temperature, high-humidity reliability test is measurable (-), and comprehensive judgment Is x (Table 4).

比較例3では、樹脂成分中のエポキシ樹脂の配合量を10質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表2)。その結果、エポキシ樹脂不足のため密着性が確保できず、初期接続抵抗値の結果は△であり、高温高湿信頼性試験後の接続抵抗値の結果も△となった(表4)。   In Comparative Example 3, the compounding amount of the epoxy resin in the resin component was 10 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 2). As a result, adhesion could not be secured due to insufficient epoxy resin, the result of the initial connection resistance value was Δ, and the result of the connection resistance value after the high temperature and high humidity reliability test was also Δ (Table 4).

比較例4では、樹脂成分中のエポキシ樹脂の配合量を60質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表2)。その結果、エポキシ樹脂過多のため硬化不足となり、密着性が確保できなかったため、初期接続抵抗値の結果は△であり、高温高湿信頼性試験後の接続抵抗値の結果も△となった(表4)。   In Comparative Example 4, the compounding amount of the epoxy resin in the resin component was 60 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 2). As a result, curing was insufficient due to excessive epoxy resin, and adhesion could not be secured, so the result of the initial connection resistance value was △, and the result of the connection resistance value after the high temperature and high humidity reliability test was also △ ( Table 4).

比較例5では、樹脂成分中の硬化剤の配合量を10質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表2)。その結果、硬化剤不足により樹脂成分の硬化性が低く、密着性が確保できなかったため、初期接続抵抗値の結果は△であり、高温高湿信頼性試験後の接続抵抗値の結果も×となった(表4)。   In Comparative Example 5, the compounding amount of the curing agent in the resin component was 10 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 2). As a result, the curability of the resin component was low due to insufficient curing agent, and adhesion could not be secured, so the result of the initial connection resistance value was △, and the result of the connection resistance value after the high temperature and high humidity reliability test was × (Table 4).

比較例6では、樹脂成分中の硬化剤の配合量を60質量部とし、樹脂組成物中のハンダ粒子の配合量を7.4質量%とした(表2)。その結果、初期接続抵抗値の結果は○であったが、硬化剤過多による高温高湿下での吸湿により電気的接続が特に不安定となったため、高温高湿信頼性試験後の接続抵抗値の結果は△であった(表4)。   In Comparative Example 6, the compounding amount of the curing agent in the resin component was 60 parts by mass, and the compounding amount of the solder particles in the resin composition was 7.4% by mass (Table 2). As a result, the result of the initial connection resistance value was ○, but the electrical connection became particularly unstable due to moisture absorption under high temperature and high humidity due to excessive curing agent, so the connection resistance value after the high temperature and high humidity reliability test The result was Δ (Table 4).

上述の比較例1〜6において、表4に示す総合判定は、いずれも×または△であり、比較例の配合量で各成分を混練して得られた樹脂組成物は、いずれも十分な接続抵抗値および高温高湿信頼性試験後の接続抵抗値を有し得ないことが明らかになった。   In the above Comparative Examples 1 to 6, the comprehensive judgments shown in Table 4 are all x or Δ, and the resin compositions obtained by kneading the components with the blending amounts of the comparative examples are all sufficiently connected. It became clear that it could not have resistance value and connection resistance value after high temperature and high humidity reliability test.

以上の結果より、少なくとも、樹脂組成物の全質量を基準として1質量%以上40質量%以下のハンダ粒子を使用し、接着性や、加熱時の樹脂流動性を確保するエポキシ樹脂と、可撓性付与材であるフェノキシ樹脂と、さらにエポキシ樹脂アミンアダクト化合物、エポキシ樹脂イミダゾールアダクト化合物、変性脂肪族ポリアミン化合物などの硬化剤とを使用して調整した樹脂組成物は、低温(例えば130℃以下、好ましくは110℃以下)かつ短時間(例えば20秒以下、好ましくは10秒程度)で硬化可能であり、所望の初期接続抵抗および温高湿信頼性試験後の接続抵抗値を有する接着部を形成し得ることがわかった。これは、加熱時に流動性を有し、かつ剛直な骨格をもつエポキシ樹脂を使用することにより、ハンダ溶融時におけるハンダを介した導通面積を増加させることができ、およびその剛直性及び分子構造の立体障害による三次元網目構造中の主査セグメントのミクロブラウン運動が阻害され、強固な接着性を確保することができるためであると考えられる。このような特性に加えて、硬化物はその水酸基濃度が低いことにより低吸湿性を有するため、接着部は高温高湿信頼性を有する。さらに、反応性に富むエポキシ樹脂アダクト化合物からなる硬化剤を使用することにより、上記のような硬化物が低温かつ短時間の硬化で得られる。   From the above results, at least an epoxy resin that uses 1% to 40% by mass of solder particles based on the total mass of the resin composition to secure adhesiveness and resin fluidity during heating, and flexible The resin composition prepared by using a phenoxy resin that is a property-imparting material and a curing agent such as an epoxy resin amine adduct compound, an epoxy resin imidazole adduct compound, and a modified aliphatic polyamine compound is a low temperature (for example, 130 ° C. or less, It is preferably 110 ° C. or less) and can be cured in a short time (for example, 20 seconds or less, preferably about 10 seconds) to form an adhesive portion having a desired initial connection resistance and a connection resistance value after a hot and humid reliability test. I knew it could be. The use of an epoxy resin that has fluidity when heated and has a rigid skeleton can increase the conduction area through the solder during melting of the solder, and its rigidity and molecular structure. This is thought to be because the micro brown motion of the investigator segment in the three-dimensional network structure due to steric hindrance is hindered and strong adhesiveness can be secured. In addition to such characteristics, the cured product has low hygroscopicity due to its low hydroxyl group concentration, and thus the bonded portion has high temperature and high humidity reliability. Furthermore, by using a curing agent composed of a highly reactive epoxy resin adduct compound, the cured product as described above can be obtained at a low temperature and in a short time.

本発明の樹脂組成物は異方性導電接着剤として有益であり、例えば、電子部品と配線基板とを接続する技術に好適に用いることができ、より具体的には、LCDモジュール、カメラモジュール、ハードディスク、電子ペーパー、タッチパネル、プリンタヘッド、ICカード、タグ、携帯電話内部などの様々な電子装置において使用することができる。   The resin composition of the present invention is useful as an anisotropic conductive adhesive, and can be suitably used for, for example, a technique for connecting an electronic component and a wiring board. More specifically, an LCD module, a camera module, It can be used in various electronic devices such as a hard disk, electronic paper, touch panel, printer head, IC card, tag, and mobile phone.

1 導電性粒子を含む樹脂組成物
2 導電性粒子
3 樹脂成分
4 フレキシブル基板
5 Auメッキ部
6 ITO
7 ガラス基板
DESCRIPTION OF SYMBOLS 1 Resin composition containing electroconductive particle 2 Conductive particle 3 Resin component 4 Flexible substrate 5 Au plating part 6 ITO
7 Glass substrate

Claims (6)

導電性粒子とエポキシ樹脂とフェノキシ樹脂と硬化剤とを含む樹脂組成物であって、前記導電性粒子としてハンダ粒子を含み、前記エポキシ樹脂はビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂およびアダマンタン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂であり、前記硬化剤が、エポキシ樹脂アミンアダクト化合物、エポキシ樹脂イミダゾールアダクト化合物および変性脂肪族ポリアミン化合物からなる群から選択される少なくとも1種の化合物であり、前記ハンダ粒子の含有量が、前記樹脂組成物の全質量に対して、1質量%以上40質量%以下の範囲内にあり、前記エポキシ樹脂、前記フェノキシ樹脂および前記硬化剤の質量の合計を100質量部としたとき、前記エポキシ樹脂が12質量部以上の割合で含まれ、前記フェノキシ樹脂が12質量部以上の割合で含まれ、前記硬化剤が12質量部以上58質量部以下の割合で含まれる、樹脂組成物。   A resin composition comprising conductive particles, an epoxy resin, a phenoxy resin, and a curing agent, the solder particles being included as the conductive particles, wherein the epoxy resin is a bisphenol type epoxy resin, a phenol novolac type epoxy resin, or a biphenyl type epoxy. Resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, triglycidyl isocyanurate, cyclohexane type epoxy resin and adamantane type epoxy resin, and the curing agent is an epoxy. It is at least one compound selected from the group consisting of a resin amine adduct compound, an epoxy resin imidazole adduct compound, and a modified aliphatic polyamine compound, and the content of the solder particles is based on the total mass of the resin composition When the total of the mass of the epoxy resin, the phenoxy resin and the curing agent is 100 parts by mass, the epoxy resin is included at a ratio of 12 parts by mass or more. The resin composition in which the phenoxy resin is contained in a proportion of 12 parts by mass or more and the curing agent is contained in a proportion of 12 parts by mass or more and 58 parts by mass or less. 前記ハンダ粒子が、Bi―In系の合金である、請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the solder particles are a Bi—In alloy. 前記ハンダ粒子におけるBiの含有量が、前記ハンダ粒子の全質量に対して、33質量%以上85質量%以下の範囲内にある、請求項2に記載の樹脂組成物。   The resin composition according to claim 2, wherein a content of Bi in the solder particles is in a range of 33% by mass to 85% by mass with respect to a total mass of the solder particles. 前記エポキシ樹脂、前記フェノキシ樹脂および前記硬化剤の質量の合計を100質量部としたとき、前記エポキシ樹脂が15質量部以上55質量部以下の割合で含まれる、請求項1〜3のいずれか1項に記載の樹脂組成物。   The said epoxy resin is contained in the ratio of 15 mass parts or more and 55 mass parts or less when the sum total of the mass of the said epoxy resin, the said phenoxy resin, and the said hardening | curing agent is 100 mass parts. The resin composition according to item. 前記エポキシ樹脂、前記フェノキシ樹脂および前記硬化剤の質量の合計を100質量部としたとき、前記フェノキシ樹脂が12質量部以上76質量部以下の割合で含まれる、請求項1〜4のいずれか1項に記載の樹脂組成物。   The said phenoxy resin is contained in the ratio of 12 mass parts or more and 76 mass parts or less when the sum total of the mass of the said epoxy resin, the said phenoxy resin, and the said hardening | curing agent is 100 mass parts. The resin composition according to item. 前記エポキシ樹脂、前記フェノキシ樹脂および前記硬化剤の質量の合計を100質量部としたとき、前記硬化剤が15質量部以上55質量部以下の割合で含まれる、請求項1〜5のいずれか1項に記載の樹脂組成物。   The said hardening | curing agent is contained in the ratio of 15 mass parts or more and 55 mass parts or less, when the sum total of the mass of the said epoxy resin, the said phenoxy resin, and the said hardening | curing agent is 100 mass parts. The resin composition according to item.
JP2017027248A 2017-02-16 2017-02-16 Resin composition comprising conductive particles Pending JP2018131569A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017027248A JP2018131569A (en) 2017-02-16 2017-02-16 Resin composition comprising conductive particles
TW106146261A TW201831589A (en) 2017-02-16 2017-12-28 Resin composition containing conductive particles capable of being cured even at low temperature and forming an adhesive portion with sufficient conductivity and connection reliability
KR1020170181679A KR20180094772A (en) 2017-02-16 2017-12-28 Resin composition containing conducting particle
CN201810034981.XA CN108441156A (en) 2017-02-16 2018-01-15 Include the resin combination of electroconductive particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027248A JP2018131569A (en) 2017-02-16 2017-02-16 Resin composition comprising conductive particles

Publications (1)

Publication Number Publication Date
JP2018131569A true JP2018131569A (en) 2018-08-23

Family

ID=63190897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027248A Pending JP2018131569A (en) 2017-02-16 2017-02-16 Resin composition comprising conductive particles

Country Status (4)

Country Link
JP (1) JP2018131569A (en)
KR (1) KR20180094772A (en)
CN (1) CN108441156A (en)
TW (1) TW201831589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152789A (en) * 2019-03-19 2020-09-24 パナソニックIpマネジメント株式会社 Resin composition, anisotropic conductive film containing the same, and electronic apparatus
WO2024005149A1 (en) * 2022-06-30 2024-01-04 株式会社スリーボンド Conductive resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435006A (en) * 2023-05-16 2023-07-14 苏州三环科技有限公司 Conductive silver paste and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113480A (en) * 1987-10-27 1989-05-02 Sony Chem Corp Thermosetting anisotropically electroconductive adhesive
JP2011231146A (en) * 2010-04-23 2011-11-17 Asahi Kasei E-Materials Corp Anisotropic conductive film
JP2012156453A (en) * 2011-01-28 2012-08-16 Kyocera Corp Wiring board and implementation structure thereof
JP2012216770A (en) * 2011-03-30 2012-11-08 Tamura Seisakusho Co Ltd Anisotropic conductive paste, and connection method of electronic component using the same
WO2014112541A1 (en) * 2013-01-17 2014-07-24 積水化学工業株式会社 Curable composition for electronic component, connection structure, and method for producing connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116961A1 (en) * 2005-11-23 2007-05-24 3M Innovative Properties Company Anisotropic conductive adhesive compositions
CN102737752B (en) * 2011-03-30 2016-06-29 株式会社田村制作所 Anisotropic conductive is stuck with paste and uses the method for attachment of electronic unit of this electroconductive paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113480A (en) * 1987-10-27 1989-05-02 Sony Chem Corp Thermosetting anisotropically electroconductive adhesive
JP2011231146A (en) * 2010-04-23 2011-11-17 Asahi Kasei E-Materials Corp Anisotropic conductive film
JP2012156453A (en) * 2011-01-28 2012-08-16 Kyocera Corp Wiring board and implementation structure thereof
JP2012216770A (en) * 2011-03-30 2012-11-08 Tamura Seisakusho Co Ltd Anisotropic conductive paste, and connection method of electronic component using the same
WO2014112541A1 (en) * 2013-01-17 2014-07-24 積水化学工業株式会社 Curable composition for electronic component, connection structure, and method for producing connection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152789A (en) * 2019-03-19 2020-09-24 パナソニックIpマネジメント株式会社 Resin composition, anisotropic conductive film containing the same, and electronic apparatus
JP7249549B2 (en) 2019-03-19 2023-03-31 パナソニックIpマネジメント株式会社 Resin composition, anisotropic conductive film containing the same, and electronic device
WO2024005149A1 (en) * 2022-06-30 2024-01-04 株式会社スリーボンド Conductive resin composition

Also Published As

Publication number Publication date
KR20180094772A (en) 2018-08-24
TW201831589A (en) 2018-09-01
CN108441156A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
EP1944346B1 (en) Anisotropic conductive adhesive
JP5030196B2 (en) Adhesive for circuit connection
JP5151902B2 (en) Anisotropic conductive film
KR100804840B1 (en) Electroconductive paste and substrate using the same for mounting electronic parts
JP2008094908A (en) Adhesive for electrode connection
JP3837858B2 (en) Conductive adhesive and method of using the same
JP2018131569A (en) Resin composition comprising conductive particles
JP2007317563A (en) Circuit connecting adhesive
JP2007056209A (en) Adhesive for circuit connection
JP2017020047A (en) Adhesive film, connection structure for circuit member and connection method for circuit member
JP2005290241A (en) Film-like adhesive
KR20170127355A (en) Resin composition comprising conductive particle and electronic apparatus comprising the same
JP2010024416A (en) Adhesive for connecting electrodes
KR20150060683A (en) Anisotropic conductive film, connection method, and connected body
JP4867805B2 (en) Adhesive for electrode connection
KR102098758B1 (en) Circuit connection material
JP2009001661A (en) Adhesive and bonded body
JP7249549B2 (en) Resin composition, anisotropic conductive film containing the same, and electronic device
JP2009024149A (en) Adhesive and bonded body
JP2006176716A (en) Adhesive for connecting circuit
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP3046081B2 (en) Anisotropic conductive film
JP2009108158A (en) Anisotropically conductive film
JP2005294086A (en) Film glue
JP3085714B2 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331