JPH08249922A - Coated particle - Google Patents

Coated particle

Info

Publication number
JPH08249922A
JPH08249922A JP7282731A JP28273195A JPH08249922A JP H08249922 A JPH08249922 A JP H08249922A JP 7282731 A JP7282731 A JP 7282731A JP 28273195 A JP28273195 A JP 28273195A JP H08249922 A JPH08249922 A JP H08249922A
Authority
JP
Japan
Prior art keywords
conductive
particles
circuit
insulating layer
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7282731A
Other languages
Japanese (ja)
Inventor
Isao Tsukagoshi
功 塚越
Yutaka Yamaguchi
豊 山口
Atsuo Nakajima
敦夫 中島
Akishi Nakaso
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP7282731A priority Critical patent/JPH08249922A/en
Publication of JPH08249922A publication Critical patent/JPH08249922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

PURPOSE: To provide high and durable connection reliability and make a fine circuit connection possible by practically coating particles, which consist of a polymer core material having a conductive metal thin film layer on the surface, with a thermoplastic insulating layer. CONSTITUTION: A coated particle is produced by forming an insulating layer 3 on the surface of a conductive particle, which is produced by forming a conductive thin film 2 on the surface of a polymer core material 1. Or, a coated particle is produced by forming a hard and conductive material with smaller diameter than that of a polymer core material on the surface of a particle, which is produced by forming a conductive metal thin film on the surface of the core material of a polymer, and further forming a thermoplastic insulating layer on the surface of the conductive material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は微細回路用の接続部
材に関し、更に詳しくは集積回路、液晶パネル等の接続
端子と、それに対向配置された回路基板上に接続端子を
電気的、機械的に接続するための接続部材に好適な被覆
粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member for a fine circuit, and more specifically to a connecting terminal of an integrated circuit, a liquid crystal panel or the like, and a connecting terminal electrically or mechanically on a circuit board arranged opposite to the connecting terminal. The present invention relates to a coated particle suitable for a connecting member for connecting.

【0002】[0002]

【従来の技術】電子部品の小形薄形化に伴い、これらに
用いる回路は高密度、高精細化している。これら微細回
路の接続は、従来のハンダやゴムコネクター等では対応
が困難であることから、最近では異方導電性の接着剤や
膜状物(以下接続部材という)が多用されるようになっ
てきた。この方法は相対峙する回路間に、導電材料を所
定量含有した接着剤よりなる接続部材層を設け、加圧ま
たは加熱加圧手段を構じることによって、回路間の電気
的接続と同時に隣接回路間には絶縁性を付与し、相対峙
する回路を接着固定するものである。しかしながらこの
方法においては、回路間の導通は主として複数個の導電
物質、多くの場合にはカーボン等の繊維状物やNi等の
金属粒子あるいはガラス等を核体とし、表層に導電層を
形成した粒子等からなる導電物質の接触によって得られ
るものであり、これらの材料は剛直であるために粒子/
回路間あるいは、粒子/粒子間の接触面積が十分でな
く、接続信頼性が不十分であった。接触面積を大きくす
る試みとして、導電材料として例えばハンダ等よりなる
低融点金属粒子を用いる方法もあるが、金属の融点以上
では従来のハンダ付けと同様に隣接回路間が連通してし
まうので絶縁性がなくなり、融点以下では金属の溶融が
起こらないために接触面積が十分に得られない。そのた
め回路接続時の温度─圧力─時間を融点近傍の狭い巾で
厳密に管理する必要があるが、回路基板により熱伝導率
が異なること等から実用性に乏しかった。更に上記した
ような導電性材料に共通する欠点は、熱膨張率が接着剤
に比べて一般的に1桁程度小さいために、例えば高温時
においては導電性材料の膨張量に比べて少なく接続回路
の間隙の変化に対して追随(温度変化に対する追随性)
できないので、回路への導電材料の接触面積や接触点数
が減少することから接続抵抗の増大や導電不良を生じる
ので、初期の接続性が得られたとしても、温度変化を含
むような長期信頼性に劣っていた。我々は先に上記した
従来の導電材料を用いた場合の欠点を解消し信頼性を著
しく向上する方法として、高分子核体の表面が金属薄層
により実質的に被覆されてなる粒子(以下導電性粒子と
いう)を用いる方法を提案(特願昭61─31088号
公報)した。この方法によれば、導電性粒子は、回路接
続時の加圧あるいは加熱加圧により回路面あるいは導電
性粒子相互間で押しつけるように適度に変形するため、
十分な接触面積が得られることや、高分子核材は熱軟化
特性、剛性および熱膨張収縮特性が接着剤の性質に極め
て近いことから接続時の条件巾が広く、また接続部は温
度変化に対する追随性を有するので接続部の長期信頼性
が著しく向上した。
2. Description of the Related Art As electronic parts have become smaller and thinner, circuits used therein have become higher in density and higher in definition. Since it is difficult to connect these fine circuits with conventional solder and rubber connectors, anisotropic conductive adhesives and film-like materials (hereinafter referred to as connecting members) have come to be frequently used. It was According to this method, a connecting member layer made of an adhesive containing a predetermined amount of a conductive material is provided between opposing circuits, and pressing or heating / pressurizing means is provided, so that the circuits are adjacent to each other at the same time as electrical connection. Insulation is provided between the circuits, and the circuits facing each other are fixed by adhesion. However, in this method, conduction between circuits is mainly formed by a plurality of conductive materials, in many cases fibrous materials such as carbon, metal particles such as Ni or glass, etc. as a core, and a conductive layer is formed on the surface layer. It is obtained by contact with a conductive material composed of particles and the like, and since these materials are rigid,
The contact area between the circuits or between particles / particles was not sufficient, and the connection reliability was insufficient. As an attempt to increase the contact area, there is a method of using low melting point metal particles such as solder as a conductive material, but if the temperature is higher than the melting point of the metal, the adjacent circuits will communicate with each other as in the case of conventional soldering. Since the melting point does not occur and the metal does not melt below the melting point, a sufficient contact area cannot be obtained. Therefore, it is necessary to strictly control the temperature-pressure-time during circuit connection within a narrow width near the melting point, but it was not practical because the thermal conductivity differs depending on the circuit board. Further, the disadvantage common to the conductive materials as described above is that the coefficient of thermal expansion is generally smaller than that of the adhesive by about one digit, so that it is smaller than the expansion amount of the conductive material at a high temperature, for example, in the connection circuit. The change in the gap between the two (following ability to the temperature change)
Since the contact area and the number of contact points of the conductive material to the circuit are reduced, the connection resistance increases and conductive failure occurs.Even if the initial connectivity is obtained, long-term reliability including temperature change including Was inferior to As a method of resolving the drawbacks of the above-mentioned conventional conductive material and significantly improving the reliability, we have developed a method in which the surface of the polymer core is substantially covered with a thin metal layer (hereinafter referred to as conductive material). A method of using a hydrophilic particle was proposed (Japanese Patent Application No. 61-31088). According to this method, the conductive particles are appropriately deformed so as to be pressed between the circuit surfaces or the conductive particles by pressure or heat and pressure at the time of circuit connection,
Since a sufficient contact area can be obtained and the polymer core material has thermal softening properties, rigidity and thermal expansion / contraction properties very close to the properties of the adhesive, the range of conditions for connection is wide, and the connection part is resistant to temperature changes. Since it has followability, the long-term reliability of the connection part is significantly improved.

【0003】[0003]

【発明が解決しようとする課題】上記したような回路の
接続部材は、多数点回路の一括接続材料であることから
極めて有用であるが、高精細化の進む微細回路の接続に
対して分解能を向上することと、前記したような長期接
続信頼性を合わせて得る要求が極めて強い。すなわち従
来技術では、一般的に5本/mmの回路(回路巾100
μm、絶縁巾100μm)の接続が可能であるが、最近
の回路の微細化により例えば10本/mm(回路巾50
μm、絶縁巾50μm)の回路接続や、ICチップのボ
ンディング用途においては、例えば1電極の接続面積が
50μm□といったように、回路の微細化がますます進
行している。接続部材を高分解能化するための基本的な
考え方は、隣接回路との絶縁性を確保するために導電材
料の粒径を回路間の絶縁部分よりも小さくし、合わせて
導電材料が接触しない程度に添加量を加減しながら回路
接続部における導通性を確実に得ることである。しかし
ながら導電材料の粒径を小さくすると、表面積の増加と
粒子個数の著しい増加により粒子は2次凝集してしま
い、隣接回路との絶縁性が保持できなくなり、また粒子
の添加量を減少すると接続すべき回路上の導電材料の数
が減少することから接触点数が不足し接続回路間での導
通が得られなくなるために、長期接続信頼性を保ちなが
ら接続部材を高分解能することは極めて困難であった。
The above-described circuit connecting member is extremely useful because it is a collective connecting material for a large number of circuits, but it has a high resolution for connecting fine circuits which are becoming higher in definition. There is an extremely strong demand for both improvement and long-term connection reliability as described above. That is, in the prior art, a circuit of 5 lines / mm (circuit width 100
connection is possible, but with recent miniaturization of circuits, for example, 10 lines / mm (circuit width 50
For circuit connection (μm, insulation width 50 μm) and IC chip bonding applications, circuit miniaturization is progressing further, for example, the connection area of one electrode is 50 μm □. The basic idea for increasing the resolution of connecting members is to make the particle size of the conductive material smaller than the insulating part between circuits to ensure insulation with adjacent circuits, and to the extent that the conductive material does not contact. The purpose is to reliably obtain conductivity in the circuit connecting portion while adjusting the addition amount. However, if the particle size of the conductive material is reduced, the particles will be secondary aggregated due to the increase of the surface area and the number of particles remarkably, and the insulation between the adjacent circuits cannot be maintained. Since the number of conductive materials on the power circuit decreases, the number of contact points becomes insufficient, and conduction between the connection circuits cannot be obtained.Therefore, it is extremely difficult to achieve high resolution of connection members while maintaining long-term connection reliability. It was

【0004】[0004]

【課題を解決するための手段】本発明は上記欠点に鑑み
てなされたものであり、その目的とするところは長期接
続信頼性に優れ、かつ微細回路の接続が可能である高分
解能な回路の接続部材に好適な被覆粒子を提供すること
である。すなわち本発明は、高分子を核材とし、その表
面に導電性金属薄層を形成してなる粒子が、熱可塑性絶
縁層で実質的に覆われてなる被覆粒子に関するものであ
る。また高分子を核材とし、その表面に導電性金属薄層
を形成してなる粒子の表面に、前記高分子核材よりも小
粒径でかつ硬質の導電材料を形成し、前記導電材料の表
面が熱可塑性絶縁層で実質的に覆われてなる被覆粒子に
関する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above drawbacks, and an object of the present invention is to provide a high-resolution circuit which has excellent long-term connection reliability and enables connection of fine circuits. The purpose of the present invention is to provide a coated particle suitable for a connecting member. That is, the present invention relates to coated particles in which a polymer is used as a core material and a thin conductive metal layer is formed on the surface of the polymer to be substantially covered with a thermoplastic insulating layer. Further, using a polymer as a core material, a conductive material having a smaller particle size than the polymer core material and a hard conductive material is formed on the surface of the particles formed by forming a conductive metal thin layer on the surface of the conductive material. The present invention relates to coated particles whose surface is substantially covered with a thermoplastic insulating layer.

【0005】[0005]

【発明の実施の形態】本発明の被覆粒子について、以下
図面により説明する。図1は高分子核材1の表面に導電
性薄層2を形成してなる本発明でいう導電性粒子の表面
に絶縁層3を構成した被覆粒子の断面模式図である。こ
の場合の高分子核材1の材質としては、スチレンブタジ
ェンゴムやシリコーンゴム等の各種ゴム、ポリスチレン
やエポキシ樹脂等の各種プラスチック、およびデンプン
やセルロース等の天然物等よりなる各種高分子物質が適
用可能である。形状については略球状が好ましいが特に
問わない。また完全な充填体、内部に気泡を有する発泡
体、内部が気体からなる中空体、および小粒子の集まり
である凝集体等のいずれでもよく、これらを単独もしく
は複合して用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The coated particles of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of coated particles in which an insulating layer 3 is formed on the surface of conductive particles according to the present invention in which a conductive thin layer 2 is formed on the surface of a polymer core material 1. In this case, as the material of the polymer core material 1, various rubbers such as styrene butadiene rubber and silicone rubber, various plastics such as polystyrene and epoxy resin, and various polymer substances such as natural products such as starch and cellulose are used. Applicable. The shape is preferably substantially spherical, but is not particularly limited. Further, it may be a complete packing, a foam having bubbles inside, a hollow body having a gas inside, or an agglomerate that is a collection of small particles, and these may be used alone or in combination.

【0006】導電性薄層2の材質としては、導電性を有
する各種の金属、金属酸化物、合金、ポリアセチレン系
等の導電性高分子等でよく、例えばZn、Al、Sb、
Au、Ag、Sn、Fe、Ta、Cu、Pb、Ni、P
d、Pt等があり、これらを単独もしくは複合して用い
ることが可能であり、更に特殊な目的、例えば硬度、表
面張力および密着性の改良等のために、Mo、Mn、C
d、Si、およびCr等の他の元素や化合物も添加する
ことができる。また導電性薄層2は複層以上の多層構造
としてもよい。高分子核体1上への導電性薄層2の形成
方法としては、蒸着法、スパッタリング法、イオンプレ
ーティング法、および溶射法等のいわゆる乾式法やめっ
き法等が適用可能であるが、湿式の分散系によることか
ら均一厚みの薄層を得やすい無電解めっき法が特に好ま
しい。導電性薄層2の厚みとしては、0.01〜5μm
程度が一般的に適用可能である。ここに厚みは例えば下
地層のある場合はその層も含むものとし、0.01μm
以下では導電性が不足し、5μm以上では高分子核材の
温度変化に対する追随性が抑制されるために接続信頼性
が不満足となり好ましくない。
The material of the electroconductive thin layer 2 may be various electroconductive metals, metal oxides, alloys, electroconductive polymers such as polyacetylene series, such as Zn, Al, Sb,
Au, Ag, Sn, Fe, Ta, Cu, Pb, Ni, P
d, Pt, etc., which can be used alone or in combination, and for special purposes such as improvement of hardness, surface tension and adhesion, Mo, Mn, C, etc.
Other elements and compounds such as d, Si, and Cr can also be added. Further, the conductive thin layer 2 may have a multi-layer structure including a plurality of layers. As a method for forming the conductive thin layer 2 on the polymer core 1, a so-called dry method such as a vapor deposition method, a sputtering method, an ion plating method, and a thermal spraying method, a plating method, or the like can be applied. The electroless plating method that facilitates obtaining a thin layer having a uniform thickness is particularly preferable due to the above dispersion system. The thickness of the conductive thin layer 2 is 0.01 to 5 μm.
The degree is generally applicable. The thickness here is, for example, 0.01 μm when including a base layer, if any.
If the thickness is less than 5 μm, the conductivity will be insufficient, and if the thickness is 5 μm or more, the followability to the temperature change of the polymer core material will be suppressed, and the connection reliability will be unsatisfactory.

【0007】図2は被覆粒子の応用例の一例であり、高
分子核材1の表面に導電性薄層2を形成した導電性粒子
の表面に、導電材料4を付着形成し、その表面に絶縁層
3を構成した被覆粒子の断面模式図である。この場合の
導電材料4としては、高分子核材1や絶縁層3よりも回
路の接続時に高剛性であり変形性を示さないこと、およ
びその粒径は高分子核材1より小さいことが必要で、そ
の粒子径は0.01〜30μmが好ましい。この場合の
導電材料4を例示すると、前記した導電性薄層2と同様
な各種の金属類や、これら金属をセラミック、ガラス、
カーボン等の変形し難い物質を核として、その表面状に
形成したものでもよい。高分子核材1への導電材料4の
付着形成方法としては、例えば高温下で導電材料4を噴
霧することで吸着させたり、接着剤の薄層により接着さ
せる方法等がある。図2の被覆粒子によれば、導電材料
4が接続時に高剛性で変形性を示さないので、回路表面
の酸化層や汚染層を突き破って接続できるので、低抵抗
な初期接続特性が得られる。また、導電材料4の粒径を
高分子核材1より小さくしたので、接続回路間の熱膨張
に対する追随性を有するために接続信頼性が良好とな
る。従って各種の回路面に対して広く適用可能である。
FIG. 2 is an example of an application example of the coated particles. A conductive material 4 is adhered and formed on the surface of the conductive particles in which the conductive thin layer 2 is formed on the surface of the polymer core material 1. FIG. 3 is a schematic cross-sectional view of coated particles forming the insulating layer 3. In this case, the conductive material 4 is required to have higher rigidity than the polymer core material 1 and the insulating layer 3 at the time of circuit connection and exhibit no deformability, and have a particle size smaller than that of the polymer core material 1. The particle size is preferably 0.01 to 30 μm. Examples of the conductive material 4 in this case include various kinds of metals similar to those of the conductive thin layer 2 described above, ceramics, glass,
It may be formed on the surface of a material such as carbon which is not easily deformed. As a method for depositing and forming the conductive material 4 on the polymer core material 1, for example, there is a method in which the conductive material 4 is adsorbed by being sprayed at a high temperature, or is adhered by a thin layer of an adhesive. According to the coated particles of FIG. 2, since the conductive material 4 has high rigidity and does not exhibit deformability at the time of connection, the oxide layer and the contamination layer on the circuit surface can be pierced and connected, so that low resistance initial connection characteristics can be obtained. Further, since the particle diameter of the conductive material 4 is made smaller than that of the polymer core material 1, since the conductive material 4 can follow the thermal expansion between the connecting circuits, the connection reliability becomes good. Therefore, it can be widely applied to various circuit surfaces.

【0008】図3は導電性粒子5が小粒子の集まりであ
る凝集体を形成した場合であり、その表面に絶縁層3が
構成される。この場合、導電性粒子5が凝集し易い小粒
径粒子を用いて被覆粒子が簡単に得られる。図4は導電
性粒子5の表面上に絶縁層3が形成さた被覆粒子が凝集
体を形成した場合を示したものである。単粒子毎に表面
が絶縁処理されてなるので、高分解な接続部材を得易
い。これらはいずれも好ましく適用可能であり、単粒子
状のものと混用も可能である。
FIG. 3 shows the case where the conductive particles 5 form an aggregate which is a collection of small particles, and the insulating layer 3 is formed on the surface thereof. In this case, the coated particles can be easily obtained by using the small-sized particles in which the conductive particles 5 easily aggregate. FIG. 4 shows a case where the coated particles having the insulating layer 3 formed on the surface of the conductive particles 5 form an aggregate. Since the surface of each single particle is insulated, it is easy to obtain a connection member with high resolution. Any of these can be preferably applied, and can be mixed with a single particle.

【0009】以上図1から図4の説明における導電性粒
子は、導電性粒子の表面が絶縁層で被覆されているので
原則的には各種の粒径が適用可能であるが、回路の絶縁
巾(スペース)以下であることが分解能の信頼性確保の
点から必要である。例えば、10本/mm(回路巾50
μm、絶縁巾50μm)の分解能を達成するには、粒径
は50μmを越えないことが必要となる。この場合、粒
径50μm以上の粒子がスペース部に存在すると、回路
接続時の加熱加圧により回路部において絶縁層が破壊さ
れるので、隣接回路との絶縁性が保持できなくなる。図
1〜図4における絶縁層3としては加熱加圧により流動
性を有する絶縁体が適用できる。すなわち回路接続時の
加熱加圧により接続すべき回路間において導電性粒子と
回路あるいは導電性粒子相互の絶縁層3が流動して接触
部から排除されることにより、接続回路間に導電性が得
られる。これらの絶縁層3としては、熱可塑性樹脂類や
ホットメルト性の接着剤が代表的である。また熱軟化性
や融点を有するホットメルト接着剤のベースポリマーや
エラストマー類も有用であり、例えばポリエチレン、エ
チレン共重合体ポリマー、エチレン─酢酸ビニル共重合
体、ポリプロピレン、エチレン─アクリル酸共重合体、
エチレン─アクリル酸エステル共重合体、ポリアミド、
ポリエステル、スチレン─イソプレン共重合体、スチレ
ン─ジビニルベンゼン共重合体、エチレン─プロピレン
共重合体、アクリク酸エステル系ゴム、ポリビニルアセ
タール、アクリロニトリル─ブタジェン共重合体、スチ
レン、フェノキシ、固形エポキシ、ポリウレタン等があ
る。その他、テルペン樹脂やロジン等の天然および剛性
樹脂やEDTA等のキレート剤もあり、これらは単独も
ししくは複合して用いることができる。
The conductive particles in the description of FIGS. 1 to 4 are applicable to various particle sizes in principle because the surface of the conductive particles is covered with an insulating layer. It is necessary to be less than (space) from the viewpoint of ensuring reliability of resolution. For example, 10 lines / mm (circuit width 50
In order to achieve a resolution of (μm, insulation width of 50 μm), it is necessary that the particle size does not exceed 50 μm. In this case, if particles having a particle size of 50 μm or more are present in the space portion, the insulating layer in the circuit portion is destroyed by heating and pressurizing at the time of circuit connection, so that the insulating property from the adjacent circuit cannot be maintained. As the insulating layer 3 in FIGS. 1 to 4, an insulator having fluidity by heating and pressing can be applied. That is, the conductive particles and the circuit or the insulating layer 3 between the conductive particles flow between the circuits to be connected by the heating and pressurization at the time of circuit connection and are removed from the contact portion, so that the conductivity is obtained between the connecting circuits. To be Typical of these insulating layers 3 are thermoplastic resins and hot-melt adhesives. Also useful are base polymers and elastomers of hot melt adhesives having thermal softening properties and melting points, such as polyethylene, ethylene copolymer polymers, ethylene-vinyl acetate copolymers, polypropylene, ethylene-acrylic acid copolymers,
Ethylene-acrylic acid ester copolymer, polyamide,
Polyester, styrene-isoprene copolymer, styrene-divinylbenzene copolymer, ethylene-propylene copolymer, acrylate ester rubber, polyvinyl acetal, acrylonitrile-butadiene copolymer, styrene, phenoxy, solid epoxy, polyurethane, etc. is there. In addition, there are natural and rigid resins such as terpene resin and rosin, and chelating agents such as EDTA, and these can be used alone or in combination.

【0010】これらの絶縁層3が加熱加圧により流動性
を示す条件としては、回路接続時の条件である80〜2
50℃、および0.1〜100kg/cm2 が適用でき
る。80℃以下では回路接続部の耐熱性が低下するので
好ましくなく、250℃以上では接続時に高温を必要と
するため接続部品等に熱損傷を与えることから好ましく
ない。また、圧力は0.1kg/cm2 以下では回路と
の接触点における絶縁層が十分に排除されないことから
十分な導電性が得られず、100kg/cm2 以上では
接続部品等に機械的損傷を及ぼすことから好ましくな
い。これらの絶縁層3を導電性粒子上に形成する方法と
しては、静電塗装法、微粒子吸着法、熱溶融被覆法およ
び溶液塗布法等がある。上記のうち、絶縁層3が汎用溶
剤に可溶性の場合には、絶縁層の形成材料を溶液状とし
て、導電粒子を処理した後で溶剤を除去する溶液塗布法
が簡単な設備で実施可能なことから好適である。また耐
溶剤や耐熱性を向上するために絶縁層を架橋することも
できる。被覆層の厚みは0.1〜5μm程度が好まし
い。0.1μm以下では絶縁性が不足し、5μm以上で
は回路接続時に絶縁層の排除が十分にされ難いので十分
な導電性が得にくい。以上よりなる被覆粒子を接着剤中
に混合することで接続部材を製造することができる。
The conditions under which the insulating layer 3 exhibits fluidity by heating and pressurizing are 80 to 2 which are conditions at the time of circuit connection.
50 ° C, and 0.1-100 kg / cm 2 Can be applied. If the temperature is 80 ° C. or lower, the heat resistance of the circuit connecting portion is deteriorated, which is not preferable. The pressure is 0.1 kg / cm 2. In the following, sufficient conductivity cannot be obtained because the insulating layer at the contact point with the circuit is not sufficiently removed, and 100 kg / cm 2 The above is not preferable because it causes mechanical damage to the connecting parts and the like. As a method for forming these insulating layers 3 on the conductive particles, there are an electrostatic coating method, a fine particle adsorption method, a hot melt coating method, a solution coating method and the like. Among the above, when the insulating layer 3 is soluble in a general-purpose solvent, the solution coating method in which the insulating layer forming material is in the form of a solution and the solvent is removed after treating the conductive particles can be carried out with simple equipment. Is preferred. Further, the insulating layer may be crosslinked to improve solvent resistance and heat resistance. The thickness of the coating layer is preferably about 0.1 to 5 μm. If the thickness is 0.1 μm or less, the insulating property is insufficient, and if the thickness is 5 μm or more, it is difficult to sufficiently remove the insulating layer at the time of circuit connection, and thus it is difficult to obtain sufficient conductivity. A connecting member can be manufactured by mixing the above-described coated particles in an adhesive.

【0011】接着剤中に占める被覆粒子の添加量は、そ
の表面が絶縁層で被覆されているために高密度に充填す
ることが可能である。すなわち従来の回路の接続部材に
おいては、その添加量は一般的に5体積%以下と少量の
添加により隣接回路との絶縁性を制御していたが、本発
明においては2〜35体積%と多量に添加することが可
能である。上記の被覆粒子を混合した接続部材用組成物
は、接続を要する一方もしくは相方の回路上にスクリー
ン印刷やロールコータ等の手段を用いて直接回路上に接
続部材を構成するか、あるいはフィルム状の接続部材と
してもよい。本発明になる被覆粒子を用いた接続部材の
使用方法としては、例えば回路にフィルム状接続部材を
仮貼付した状態でセパレータのある場合にはそれを剥離
し、あるいは上記組成物を回路上に塗布し必要に応じて
溶剤や分散媒を除去した状態で、その面に他の接続すべ
き回路を位置合わせして、熱プレスや加熱ロール等によ
り加熱加圧すればよい。
The amount of the coated particles occupying in the adhesive can be filled with high density because the surface is covered with the insulating layer. That is, in the conventional connecting member of the circuit, the addition amount thereof is generally 5% by volume or less to control the insulating property with the adjacent circuit, but in the present invention, it is as large as 2 to 35% by volume. Can be added to. The composition for a connecting member in which the above-mentioned coated particles are mixed, constitutes a connecting member directly on a circuit using a means such as screen printing or a roll coater on one or the other side of the circuit that requires connection, or in the form of a film. It may be a connecting member. As a method of using the connecting member using the coated particles according to the present invention, for example, in the case where a film-like connecting member is temporarily attached to a circuit, a separator is peeled off, or the above composition is applied onto the circuit. Then, in a state where the solvent and the dispersion medium are removed as necessary, other circuits to be connected may be aligned with the surface and heated and pressed by a hot press, a heating roll or the like.

【0012】回路接続時の加熱加圧により接着剤が軟化
流動すると、絶縁層も軟化し加圧部から排除される。す
なわち相対峙する回路部においては、回路が絶縁部に比
べて一般的に一定の高さを有することや、絶縁部よりも
硬度が高いことから変形性が少ない等の理由により絶縁
部に比べ優先的に加圧されるので、導電性粒子1は加圧
方向である回路面において絶縁層がなくなり導電性が得
られる。従って、接続部の回路間は絶縁層3が排除さ
れ、絶縁部間においては絶縁層3を保持することが可能
となる。この時、回路に沿うように導電性粒子は軟化変
形し接触面積が増加する。また高分子核材1は接着剤の
熱膨張率と近似させることが可能であり、導電性薄層2
は極めて薄いことから回路間が熱膨張しても、高分子核
材1も同様に熱膨張できるので、接続部の温度変化に対
して良好な追随性を有し、長期の信頼性にも優れた接続
を得ることができる。
When the adhesive softens and flows due to heating and pressurizing at the time of circuit connection, the insulating layer also softens and is removed from the pressing portion. In other words, in the circuit parts that face each other, the circuit generally has a constant height as compared with the insulating part, and because the hardness is higher than the insulating part, it is less deformable, so it has priority over the insulating part. Since the conductive particles 1 are electrically pressed, the conductive layer 1 has no insulating layer on the circuit surface, which is the pressing direction, and conductivity is obtained. Therefore, the insulating layer 3 is eliminated between the circuits of the connecting portion, and the insulating layer 3 can be held between the insulating portions. At this time, the conductive particles are softened and deformed along the circuit to increase the contact area. Further, the polymer core material 1 can be approximated to the coefficient of thermal expansion of the adhesive, and the conductive thin layer 2
Since it is extremely thin, the polymer core material 1 can also be thermally expanded even when the circuits are thermally expanded. Therefore, the polymer core material 1 has a good followability with respect to the temperature change of the connection part and is excellent in long-term reliability. You can get a good connection.

【0013】本発明にかかる被覆粒子の作用について説
明する。本発明になる被覆粒子は、少なくとも加熱加圧
下において核材の高分子に比べ絶縁層が軟質である。従
って導電性粒子の表面の絶縁層が回路接続時の加熱加圧
により軟化流動し、その被覆が回路もしくは粒子の接触
部において排除されることにより接続回路間に導電性を
与える。一方、絶縁回路部においては、回路間の粒子ほ
どには加圧されないために絶縁層の被覆はそのまま保た
れることから絶縁性が得られる。上記した理由により、
被覆粒子は接着剤中に高濃度に充填することが可能とな
り、微小接続面積においても導電粒子が確実に存在する
ため導通が確実に得られるので、高分解能な接続部品を
得ることができる。また被覆粒子の内部の導電性粒子
は、回路接続時の加熱加圧により軟化変形し回路や粒子
との接触面積が向上することと、接続部の温度変化に対
して追随性を有するので接続部の信頼性、特に高温高湿
試験や温度変化を含む場合のような長期間の接続信頼性
が著しく向上できる。更に、導電性粒子は絶縁層で被覆
されているので粒子の酸化劣化を防止できることから導
電性に優れ、特にその特性の安定した接続部材を得るこ
とが可能となる。
The operation of the coated particles according to the present invention will be described. In the coated particles according to the present invention, the insulating layer is softer than the polymer as the core material at least under heating and pressure. Therefore, the insulating layer on the surface of the conductive particles is softened and fluidized by heating and pressurizing at the time of circuit connection, and the coating is removed at the circuit or the contact portion of the particles to give conductivity between the connection circuits. On the other hand, in the insulating circuit portion, since the pressure is not so high as the particles between the circuits, the insulating layer coating is maintained as it is, so that the insulating property is obtained. Because of the above reasons
The coated particles can be filled in the adhesive at a high concentration, and since the conductive particles are surely present even in a minute connection area, conduction can be surely obtained, so that a high-resolution connection component can be obtained. In addition, the conductive particles inside the coated particles are softened and deformed by heating and pressurizing at the time of circuit connection to improve the contact area with the circuit and particles, and have the following property with respect to the temperature change of the connection part. It is possible to remarkably improve the reliability of the above, especially the long-term connection reliability such as when including the high temperature and high humidity test and the temperature change. Further, since the conductive particles are covered with the insulating layer, it is possible to prevent the particles from being oxidized and deteriorated, so that it is possible to obtain a connecting member having excellent conductivity and particularly stable characteristics.

【0014】[0014]

【実施例】本発明を実施例により更に詳細に説明する。 実施例1 (1)導電性粒子の作製 (イ)前処理 コニベックスCタイプ(球状フェノール樹脂、平均粒径
20μm、ユニチカ(株)製商品名)をメチルアルコー
ル中で強制的に撹拌して、脱脂および粗化を兼ねた前処
理を行い、その後濾過によりメチルアルコールを分離し
て、前処理した高分子核材を得た。 (ロ)活性化 次にサーキットプレップ3316(PdCl+HCl+
SnCl2 系の活性化処理液、日本エレクトロプレーテ
ィングエンジニアーズ(株)製商品名)中に分散し、2
5℃−20分間の撹拌により活性化処理を行い、続いて
水洗、濾過により表面を活性化した高分子核体を得た。 (ハ)無電解Niめっき 活性化処理後の粒子をブルーシューマ(無電解Niめっ
き液、浴能力300μdm2 /l、日本カニゼン(株)
製商品名)液中に浸漬し、90℃−30分間強制撹拌を
行った。所定時間後水洗した。めっき液量は粒子の表面
積から算出した。 (ニ)無電解Auめっき 以上で得られたNi被覆粒子の表面に、Auの置換めっ
きを行った。めっき液はエレクトロレスプレップ(無電
解Auめっき液、日本エレクトロプレーティングエンジ
ニアーズ(株)製商品名)であり、90℃−30分間の
めっき処理を行い、その後で水を用いてよく洗浄し、続
いて90℃−2時間の乾燥を行い導電性粒子を得た。こ
の粒子は、Ni0.3μm/Au0.05μmの金属薄
層を有していた。 (2)被覆粒子の作製 前記導電性粒子の表面に絶縁層を形成した被覆粒子を作
製した。絶縁層の材料としてパラプレンP−25M(熱
可塑性ポリウレタン樹脂、軟化点130℃、日本エラス
トラン(株)製商品名)の1%ジメチルホルムアミド
(DMF)溶液とし、導電性粒子を添加撹拌した。この
後スプレードライヤー(ヤマト科学(株)製GA−32
型)により100℃で10分間噴霧乾燥を行い被覆粒子
を得た。この時の被覆層の平均厚みは、電子顕微鏡(S
EM)による断面観察の結果約1μmであった。 (3)接続部材の作製 絶縁性接着剤として下部固形分配合比のホットメルト接
着剤を調整した。この接着剤のメルトインデックス(M
I.ASTM D−1238準拠、但し150℃)は2
0g/minであった。 タフプレン(スチレン−ブタジェン−ブロックポリマー、旭化成工業(株)製 商品名)・・・・・・・・・・・・・・・・・・・・・・60部(重量) YSポリスターT−115(テルペンフェノール樹脂、安原油脂(株)製商品 名)・・・・・・・・・・・・・・・・・・・・・・・・40部 トルエン・・・・・・・・・・・・・・・・・・・・・・200部 上記よりなる接着剤溶液中に、前記した被覆粒子を添加
混合した。この時の被覆粒子の添加量は接着剤の固形分
に対し5体積%とした。この混合液をバーコータにより
セパレータ(シリコーン処理ポリエステルフィルム厚み
38μm)上に塗布し、100℃−20分間の乾燥によ
りトルエンを除去し、厚み25μmの接続部材を得た。
絶縁層はトルエンに不溶であり、接着剤は可溶のために
両者は相溶せずに良好な接続部材が得られた。 (4)回路の接続 ライン巾50μm、ピッチ100μm、厚み18μmの
Cu回路を有するポリイミド基板の全回路巾50mmの
フレキシブル回路板(FPC)に、接着巾3mm、長さ
50mmに切断した接続部材を載置して、140℃−2
kg/cm2 −5秒の加熱加圧により接続部材付FPC
を得た。その後セパレータを剥離して、他の同一ピッチ
を有する透明導電ガラス(ITO回路、ガラス厚み1.
1mm)と顕微鏡下で回路の位置合わせを行い、150
℃−30kg/cm2 −20秒間の加熱加圧により回路
の接続を行った。 (5)評価方法と結果 上記により得た回路の接続抵抗および隣接回路間の絶縁
抵抗を測定した。接続抵抗はマルチメータ(TR−68
77、アドバンテスト(株)製)、絶縁抵抗はハイオー
ムメータ(TR−8611、アドバンテトス(株)製)
で行った。これらの測定結果を表1に示したが、10本
/mmの高密度回路に対して良好な回路間の接続抵抗
と、隣接回路間の絶縁抵抗とが合わせて得られた。また
接続体は冷熱衝撃試験(−40℃/30分⇔100℃/
30分を1サイクル)500サイクルの処理後に上記と
同様な評価を行ったが、接続抵抗および絶縁抵抗共にほ
とんど劣化は見られなかった。この冷熱衝撃試験は苛酷
な長期信頼性とされていることから、本実施例は優れた
長期信頼性も合わせて有していることがわかる。なお本
実施例の接続部断面をSEMにより観察したところ、接
続回路間において導電性粒子は単層で存在し、回路に沿
って変形して存在していた。
EXAMPLES The present invention will be described in more detail by way of examples. Example 1 (1) Preparation of conductive particles (a) Pretreatment Conivex C type (spherical phenol resin, average particle size 20 μm, trade name of Unitika Ltd.) is forcibly stirred in methyl alcohol to degrease it. Then, pretreatment which also serves as roughening was performed, and then methyl alcohol was separated by filtration to obtain a pretreated polymer core material. (B) Activation Next, circuit prep 3316 (PdCl + HCl +
SnCl 2 -based activation treatment solution, dispersed in Nippon Electroplating Engineers Co., Ltd.)
An activation treatment was carried out by stirring at 5 ° C. for 20 minutes, followed by washing with water and filtration to obtain a polymer core having an activated surface. (C) Electroless Ni Plating Particles after the activation treatment are treated with blue shoe (electroless Ni plating solution, bath capacity 300 μdm 2 / L, Nippon Kanigen Co., Ltd.
It was immersed in a liquid (product name) and stirred at 90 ° C. for 30 minutes. After a predetermined time, it was washed with water. The amount of plating solution was calculated from the surface area of the particles. (D) Electroless Au Plating The surface of the Ni-coated particles obtained above was subjected to Au displacement plating. The plating solution is an electroless prep (electroless Au plating solution, trade name of Japan Electroplating Engineers Co., Ltd.), which is subjected to a plating treatment at 90 ° C. for 30 minutes, and then washed well with water, Then, it dried at 90 degreeC-2 hours, and obtained the electroconductive particle. The particles had a thin metal layer of Ni 0.3 μm / Au 0.05 μm. (2) Preparation of Coated Particles Coated particles having an insulating layer formed on the surface of the conductive particles were prepared. A 1% dimethylformamide (DMF) solution of paraprene P-25M (thermoplastic polyurethane resin, softening point 130 ° C., trade name of Nippon Elastollan Co., Ltd.) was used as a material for the insulating layer, and conductive particles were added and stirred. After this, spray dryer (GA-32 manufactured by Yamato Scientific Co., Ltd.)
Spray drying at 100 ° C. for 10 minutes to obtain coated particles. The average thickness of the coating layer at this time was determined by using an electron microscope (S
As a result of cross-sectional observation by EM), it was about 1 μm. (3) Preparation of Connection Member A hot melt adhesive having a lower solid content ratio was prepared as an insulating adhesive. The melt index (M
I. Compliant with ASTM D-1238, but 150 ° C) is 2
It was 0 g / min. Toughprene (styrene-butadiene-block polymer, trade name, manufactured by Asahi Kasei Co., Ltd.) ... 60 parts (weight) YS Polystar T-115 (Terpene phenol resin, trade name of Yasuhara Yushi Co., Ltd.) ... 40 parts Toluene ... ... 200 parts The above-mentioned coated particles were added and mixed in the adhesive solution consisting of the above. The amount of the coated particles added at this time was 5% by volume based on the solid content of the adhesive. This mixed solution was applied on a separator (silicone-treated polyester film thickness 38 μm) by a bar coater, and toluene was removed by drying at 100 ° C. for 20 minutes to obtain a connecting member having a thickness of 25 μm.
Since the insulating layer was insoluble in toluene and the adhesive was soluble, both were not compatible and a good connecting member was obtained. (4) Circuit connection A flexible circuit board (FPC) having a circuit width of 50 mm, a pitch of 100 μm, and a Cu circuit having a thickness of 18 μm and having a total circuit width of 50 mm, and a connecting member cut into an adhesive width of 3 mm and a length of 50 mm is mounted. Place it at 140 ° C-2
kg / cm 2 FPC with connecting member by heating and pressing for -5 seconds
I got Then, the separator is peeled off, and another transparent conductive glass having the same pitch (ITO circuit, glass thickness 1.
1mm) and position of the circuit under the microscope,
℃ -30kg / cm 2 The circuit was connected by applying heat and pressure for -20 seconds. (5) Evaluation method and result The connection resistance of the circuit obtained above and the insulation resistance between adjacent circuits were measured. Connection resistance is multimeter (TR-68
77, manufactured by Advantest Corporation, insulation resistance is a high ohm meter (TR-8611, manufactured by Advantetos Corporation)
I went in. The results of these measurements are shown in Table 1, and good connection resistance between circuits and insulation resistance between adjacent circuits were obtained for a high-density circuit of 10 lines / mm. In addition, the connection body has a thermal shock test (-40 ° C / 30 minutes ⇔ 100 ° C /
After 500 cycles of treatment (30 minutes for 1 cycle), the same evaluation as above was performed, but almost no deterioration was observed in both the connection resistance and the insulation resistance. Since this thermal shock test is considered to have severe long-term reliability, it is clear that this example also has excellent long-term reliability. When the cross section of the connection portion of this example was observed by SEM, the conductive particles existed as a single layer between the connection circuits and were deformed along the circuit.

【0015】実施例2 実施例1と同様に行ったが、導電性粒子の表面にNi粉
(カルボニル法、平均粒径2μmの表面凹凸を有する略
球状粒子)を以下の方法で付着形成した粒子を用いた。
その方法は、実施例1の接着剤材料であるホットメルト
接着剤の0.5%トルエン溶液中に導電性粒子を添加撹
拌した。この後スプレードライヤー中でDMFの大半を
乾燥し、その後スプレードライヤー中にNi粉を導電性
粒子の10体積%添加し、更にスプレードライヤーで乾
燥することにより導電性粒子にNi粉を付着形成せしめ
た。その後、実施例1と同様に被覆層を作製した。本実
施例の評価結果を表1に示すが、良好な分解能と長期信
頼性の両立した良好な特性を得た。
Example 2 Particles were formed in the same manner as in Example 1 except that Ni powder (carbonyl method, substantially spherical particles having surface irregularities with an average particle size of 2 μm) was attached and formed on the surface of conductive particles by the following method. Was used.
In the method, conductive particles were added and stirred in a 0.5% toluene solution of a hot melt adhesive which is the adhesive material of Example 1. After that, most of the DMF was dried in a spray dryer, 10% by volume of the Ni powder was added to the spray dryer, and the powder was further dried with a spray dryer to form the Ni powder on the conductive particles. . Then, a coating layer was prepared in the same manner as in Example 1. The evaluation results of this example are shown in Table 1, and good characteristics having both good resolution and long-term reliability were obtained.

【0016】実施例3 高分子核体は実施例1のユニペックスCであるが、マイ
クロシーブを用いて3μmオン8μmパスとなるように
分級して平均5μmの粒子とした。実施例1と同様な無
電解めっきにより導電性粒子を得た後、実施例1で用い
たホットメルト接着剤を1%トルエン溶液として同様な
方法により被覆粒子を得た。接着剤はバイロナールMD
−1930(水分散タイプの熱可塑性ポリエステル樹
脂、融点113℃、東洋紡績(株)製商品名)を用い
た。実施例1と同様に被覆粒子を分散し接続部材を得
た。接着剤は水分散タイプであるために絶縁層と非相溶
であり、良好に接続部材を作製できた。この時、被覆粒
子の添加量は接着剤に対して25体積%であり、接続部
材の厚みは15μmであった。本実施例の評価結果を表
1に示したが、良好な分解能と長期信頼性の両立した良
好な特性を得た。また実施例1と同様にその断面を観察
したところ、粒子は高密度に充填されていた。
Example 3 The polymer core was the Unipex C of Example 1, but the particles were classified into particles of 5 μm on average by using a microsieve so as to have a path of 3 μm on 8 μm. After electroconductive particles were obtained by the same electroless plating as in Example 1, coated particles were obtained by the same method using the hot melt adhesive used in Example 1 as a 1% toluene solution. Adhesive is Bayronal MD
-1930 (water-dispersion type thermoplastic polyester resin, melting point 113 ° C., trade name of Toyobo Co., Ltd.) was used. The coated particles were dispersed in the same manner as in Example 1 to obtain a connecting member. Since the adhesive is a water-dispersed type, it is incompatible with the insulating layer, and the connection member could be manufactured well. At this time, the added amount of the coated particles was 25% by volume with respect to the adhesive, and the thickness of the connecting member was 15 μm. The evaluation results of this example are shown in Table 1, and good characteristics having both good resolution and long-term reliability were obtained. When the cross section was observed in the same manner as in Example 1, the particles were densely packed.

【0017】比較例1 導電層に絶縁層を形成しない導電性粒子を用いた他は、
実施例3と同様に接続部材を作製し評価した。結果を表
1に示したが、良好な接続抵抗値は得られるものの隣接
回路間での絶縁性がなくなり、接続部材としての適用は
できなかった。
Comparative Example 1 Except that conductive particles not forming an insulating layer were used as the conductive layer,
A connecting member was prepared and evaluated in the same manner as in Example 3. The results are shown in Table 1. Although a good connection resistance value was obtained, the insulating property between adjacent circuits was lost and it could not be applied as a connection member.

【0018】比較例2 導電材料として融点183℃、平均粒径10μmのハン
ダ粒子を用いた他は、実施例3と同様に絶縁層を形成し
た被覆粒子により接続部材を作製評価した。結果を表1
に示したが、隣接回路との絶縁性は得られたものの、長
期信頼性の評価で十分な接続が得られなかった。この理
由はハンダ粒子(線膨張率2.8×10-5/℃)と接着
剤(線膨張率30×10-5/℃)との熱膨張率が大きく
異なるために、熱衝撃試験時にハンダ粒子が温度変化に
対する追随性がなかったためと考えられる。
Comparative Example 2 A connecting member was prepared and evaluated using coated particles having an insulating layer formed thereon in the same manner as in Example 3 except that solder particles having a melting point of 183 ° C. and an average particle diameter of 10 μm were used as the conductive material. The results are shown in Table 1.
As shown in Fig. 5, although the insulation with the adjacent circuit was obtained, the sufficient connection could not be obtained by the evaluation of long-term reliability. The reason for this is that the thermal expansion coefficient of solder particles (coefficient of linear expansion 2.8 × 10 −5 / ° C.) and the adhesive (coefficient of linear expansion 30 × 10 −5 / ° C.) are significantly different, so that the solder during the thermal shock test. It is considered that the particles did not follow the temperature change.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例4 実施例3の接続部材を用いて、ICチップをFPCに接
続した。用いたICチップは5×7mmであり、片面に
50μm□の電極パッド(高さ2μm、アルミニウムの
表面を金で処理、電極数50個)を有しており、このパ
ッド面に実施例2の接続部材を載置し、150℃熱盤上
で軽く圧着してセパレータを除去した。次いで、パッド
と同一配置の電極を有するFPC(銅回路の高さ18μ
m、基材ポリイミド、通称TAB)と位置合わせを行
い、160℃─10kg/cm2─10秒間の加熱加圧
でICとFPCを接続した。この接続体を評価したとこ
ろ、各電極で確実に導通が得られ隣接回路とは絶縁され
ていた。また実施例1と同様な長期信頼性を評価した
が、その特性劣化は見られなかった。本実施例において
は、平均粒径5μmの導電粒子が接着剤中に25体積%
と多量に添加されているので、50μm□という小面積
の電極接続が簡単に、しかも確実に行われ、合わせて良
好な長期信頼性を有していることがわかった。
Example 4 An IC chip was connected to an FPC using the connecting member of Example 3. The IC chip used was 5 × 7 mm and had an electrode pad of 50 μm □ (height 2 μm, aluminum surface was treated with gold, the number of electrodes was 50) on one side, and the pad surface of Example 2 was used. The connecting member was placed and lightly pressure-bonded on a 150 ° C. hot plate to remove the separator. Next, the FPC (electrode height of the copper circuit is 18 μ
m, the substrate polyimide, commonly called TAB), and the IC and FPC were connected by heating and pressurizing at 160 ° C.-10 kg / cm 2 -10 seconds. When this connection body was evaluated, conduction was surely obtained at each electrode and it was insulated from an adjacent circuit. Moreover, the long-term reliability similar to that of Example 1 was evaluated, but no characteristic deterioration was observed. In this embodiment, conductive particles having an average particle size of 5 μm are contained in the adhesive in an amount of 25% by volume.
Since it was added in a large amount, it was found that the electrode connection of a small area of 50 μm □ can be easily and surely made and, in addition, it has good long-term reliability.

【0021】[0021]

【発明の効果】以上詳述したように本発明によれば、例
えば長期接続信頼性と合わせて微細回路の接続が可能で
ある高分解能な回路の接続部材に好適な被覆粒子を提供
することが可能となる。
As described in detail above, according to the present invention, it is possible to provide coated particles suitable for a connecting member of a high resolution circuit capable of connecting a fine circuit together with long-term connection reliability. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる被覆粒子を示す断面模式図。FIG. 1 is a schematic sectional view showing coated particles according to the present invention.

【図2】 本発明にかかる被覆粒子を示す断面模式図。FIG. 2 is a schematic cross-sectional view showing coated particles according to the present invention.

【図3】 本発明にかかる被覆粒子を示す断面模式図。FIG. 3 is a schematic cross-sectional view showing coated particles according to the present invention.

【図4】 本発明にかかる被覆粒子を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing coated particles according to the present invention.

【符号の説明】[Explanation of symbols]

1 高分子核材 2 導電性薄層 3 絶縁層 4 導電材料 5 導電性粒子 1 Polymer Core Material 2 Conductive Thin Layer 3 Insulating Layer 4 Conductive Material 5 Conductive Particle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中祖 昭士 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akashi Nakaso 1500 Ogawa, Shimodate City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Shimodate Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高分子を核材とし、その表面に導電性金属
薄層を形成してなる粒子が、熱可塑性絶縁層で実質的に
覆われてなる被覆粒子。
1. Coated particles in which a polymer is used as a core material and a thin conductive metal layer is formed on the surface of the polymer to be substantially covered with a thermoplastic insulating layer.
【請求項2】高分子を核材とし、その表面に導電性金属
薄層を形成してなる粒子の表面に、前記高分子核材より
も小粒径でかつ硬質の導電材料を形成し、前記導電材料
の表面が熱可塑性絶縁層で実質的に覆われてなる被覆粒
子。
2. A conductive material having a particle diameter smaller than that of the polymer core material is formed on the surface of the particles having a polymer as a core material and a thin conductive metal layer formed on the surface of the polymer. Coated particles in which the surface of the conductive material is substantially covered with a thermoplastic insulating layer.
JP7282731A 1995-10-31 1995-10-31 Coated particle Pending JPH08249922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7282731A JPH08249922A (en) 1995-10-31 1995-10-31 Coated particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7282731A JPH08249922A (en) 1995-10-31 1995-10-31 Coated particle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62071255A Division JP2546262B2 (en) 1987-03-25 1987-03-25 Circuit connecting member and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH08249922A true JPH08249922A (en) 1996-09-27

Family

ID=17656317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7282731A Pending JPH08249922A (en) 1995-10-31 1995-10-31 Coated particle

Country Status (1)

Country Link
JP (1) JPH08249922A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081606A1 (en) * 2002-03-25 2003-10-02 Sony Chemicals Corporation Conductive particle and adhesive agent
JP2004137345A (en) * 2002-10-16 2004-05-13 Tomoegawa Paper Co Ltd Electroconductive adhesive and method for producing the same
JP2009029862A (en) * 2007-07-25 2009-02-12 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
WO2014046088A1 (en) * 2012-09-24 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
JP2016136615A (en) * 2015-01-23 2016-07-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board with embedded electronic component and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177279A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPS61195568A (en) * 1985-02-25 1986-08-29 松下電器産業株式会社 Film connector
JPS6353805A (en) * 1986-08-25 1988-03-08 富士ゼロックス株式会社 Anisotropic conducting material and mounting of semiconductor device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177279A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPS61195568A (en) * 1985-02-25 1986-08-29 松下電器産業株式会社 Film connector
JPS6353805A (en) * 1986-08-25 1988-03-08 富士ゼロックス株式会社 Anisotropic conducting material and mounting of semiconductor device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081606A1 (en) * 2002-03-25 2003-10-02 Sony Chemicals Corporation Conductive particle and adhesive agent
US7413686B2 (en) 2002-03-25 2008-08-19 Sony Chemicals Corporation Conductive particle and adhesive agent
JP2004137345A (en) * 2002-10-16 2004-05-13 Tomoegawa Paper Co Ltd Electroconductive adhesive and method for producing the same
JP2009029862A (en) * 2007-07-25 2009-02-12 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
WO2014046088A1 (en) * 2012-09-24 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
JP2014067762A (en) * 2012-09-24 2014-04-17 Dexerials Corp Anisotropic conductive adhesive
JP2016136615A (en) * 2015-01-23 2016-07-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board with embedded electronic component and manufacturing method of the same
KR20160091050A (en) * 2015-01-23 2016-08-02 삼성전기주식회사 A printed circuit board comprising embeded electronic component within and a method for manufacturing

Similar Documents

Publication Publication Date Title
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
EP0242025B1 (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
KR100710103B1 (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
US4642421A (en) Adhesive electrical interconnecting means
JPH04259766A (en) Connecting member for circuit
JPH0758148A (en) Electronic element
JP6429228B2 (en) Metal-coated resin particles and conductive adhesive using the same
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP2006216388A (en) Conductive fine particle and anisotropic conductive material
JPS6177278A (en) Connection member for circuit
JP2504057B2 (en) Conductive particles
JPH08249922A (en) Coated particle
JPH0750104A (en) Conductive particle and connection member using conductive particle
JP2008210908A (en) Method for mounting electronic component
JP2737723B2 (en) Circuit connection structure
JPH0773066B2 (en) Circuit connection member
JPH0773067B2 (en) Circuit connection member
JPH03129607A (en) Anisotropic conductive film
JP3783785B2 (en) Method for manufacturing anisotropic conductive resin film adhesive and method for connecting between fine circuits
GB2222327A (en) Hot-melt adhesive anisotropic interconnector
JPH083963B2 (en) Circuit connection member
JP3578223B2 (en) Manufacturing method of anisotropic conductive sheet
KR100251673B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP2546262C (en)