JP2014197700A - Solar cell unit - Google Patents

Solar cell unit Download PDF

Info

Publication number
JP2014197700A
JP2014197700A JP2014124313A JP2014124313A JP2014197700A JP 2014197700 A JP2014197700 A JP 2014197700A JP 2014124313 A JP2014124313 A JP 2014124313A JP 2014124313 A JP2014124313 A JP 2014124313A JP 2014197700 A JP2014197700 A JP 2014197700A
Authority
JP
Japan
Prior art keywords
film
light
resin
solar cell
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014124313A
Other languages
Japanese (ja)
Other versions
JP2014197700A5 (en
Inventor
香 岡庭
Kaoru Okaniwa
香 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014124313A priority Critical patent/JP2014197700A/en
Publication of JP2014197700A publication Critical patent/JP2014197700A/en
Publication of JP2014197700A5 publication Critical patent/JP2014197700A5/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell unit which reduces usage of expensive material, simplifies manufacturing processes, improves module efficiency, and has light weight.SOLUTION: A solar cell unit comprises: a plurality of solar cells 4 with a conduction member 5 disposed in a flush manner; connection members 6 electrically connecting the solar cells 4 each other; and a filler layer 3 protecting at least a light receiving surface side (upper side) of the solar cells 4. In the solar cell unit, a film-like light transmissive resin layer 10, which has characteristics different from the filler layer 3, is appended on light receiving surfaces of the solar cells 4 and below the filler layer 3. Preferably, embossment patterns are formed on the film-like light transmissive resin layer 10.

Description

本発明は、太陽電池ユニット及び太陽電池モジュールに関するものである。なお、本明細書では、太陽電池ユニットをフレームに組み込んだものを太陽電池モジュールという。   The present invention relates to a solar cell unit and a solar cell module. In the present specification, a solar cell module is a module in which a solar cell unit is incorporated in a frame.

クリーンで枯渇しないエネルギーの供給手段として、従来から、太陽電池の研究・開発が盛んに行われている。その中で、シリコン単結晶、シリコン多結晶、あるいはシリコン単結晶にアモルファスシリコンを積層した太陽電池は、発電効率が優れているために現在の主流である。   Research and development of solar cells have been actively conducted as a means of supplying clean and non-depleted energy. Among them, a solar cell in which amorphous silicon is laminated on a silicon single crystal, a silicon polycrystal, or a silicon single crystal is currently the mainstream because of its excellent power generation efficiency.

図5に、現在主流の結晶系太陽電池ユニット及びそれをフレームに組み込んだ太陽電池モジュールの断面模式図を示した。
導通材(半田)5a,5b付きの複数個の太陽電池セル4a,4bは、その導通材5(5a,5b)を介して接続部材(半田メッキ銅リボン等)6によって電気的に接続されており、これらを保護するように、光透過性及びコストの面で有利なエチレンビニルアセテートコポリマー(EVA)等の充填材層3(3a、3b)で封止されている。また、その表面側(上側)には、下面をエンボス加工した強化ガラス2が積層され、更にその上にMgF等からなる反射防止膜1が、スパッタリングや焼成等の方法で形成されている。そして、裏面側には、裏面保護材(通常、ポリフッ化ビニリデン樹脂)7及び裏面支持板(通常、鋼板や強化ガラス板)8を積層し、太陽電池ユニット(図5(b))としている。なお、充填材層3a、3bは通常同じ材料が用いられ、最終的には一つの充填材層3を構成する。
FIG. 5 shows a schematic cross-sectional view of a currently mainstream crystalline solar cell unit and a solar cell module in which it is incorporated into a frame.
A plurality of solar cells 4a, 4b with conductive materials (solder) 5a, 5b are electrically connected by a connecting member (solder-plated copper ribbon, etc.) 6 through the conductive material 5 (5a, 5b). In order to protect them, it is sealed with a filler layer 3 (3a, 3b) such as ethylene vinyl acetate copolymer (EVA) which is advantageous in terms of light transmittance and cost. Further, a tempered glass 2 whose bottom surface is embossed is laminated on the surface side (upper side), and an antireflection film 1 made of MgF 2 or the like is further formed thereon by a method such as sputtering or baking. Then, on the back surface side, a back surface protective material (usually polyvinylidene fluoride resin) 7 and a back surface support plate (usually steel plate or tempered glass plate) 8 are laminated to form a solar cell unit (FIG. 5B). Note that the same material is usually used for the filler layers 3a and 3b, and finally, one filler layer 3 is formed.

次に、あらかじめ用意したアルミフレーム9に上記太陽電池ユニットを嵌め込み、太陽電池モジュールを完成する。このとき、太陽電池セルの大きさによっては中心部の強度が不足するので、保護的に補強アルミフレーム9aを設けることが多い。   Next, the solar cell unit is fitted into the aluminum frame 9 prepared in advance to complete the solar cell module. At this time, the strength of the central portion is insufficient depending on the size of the solar battery cell, so that the reinforcing aluminum frame 9a is often provided in a protective manner.

ところで、上記太陽電池モジュールの難点はなおコストがかかることである。太陽電池が一層普及していくためには、使用する部材のコスト削減や製造プロセスのコスト削減が更になされなければならない(以上、非特許文献1参照)。   By the way, the difficulty of the solar cell module is that it still costs. In order for solar cells to become more widespread, the cost of members to be used and the cost of manufacturing processes must be further reduced (see Non-Patent Document 1 above).

なお、太陽電池モジュールの一層のコスト削減のための工夫や改善は、多くの研究者及び企業で盛んになされている。例えば、特許文献1では、光起電力素子の光入射側に、所定の大きさのピッチの凹凸をもつ繊維状無機化合物を含浸させた透明有機高分子樹脂(EVA等)を載せることで、透明有機高分子樹脂にあり勝ちな表面への汚れ付着を防止し、長期屋外使用に耐えうる太陽電池モジュールを提案している。   In addition, many researchers and companies are actively making efforts and improvements for further cost reduction of solar cell modules. For example, in Patent Document 1, a transparent organic polymer resin (EVA or the like) impregnated with a fibrous inorganic compound having irregularities with a predetermined pitch is placed on the light incident side of a photovoltaic element to provide a transparent We are proposing solar cell modules that can withstand long-term outdoor use by preventing dirt from adhering to organic polymer resins.

特開平9−191115号公報JP-A-9-191115

濱川圭弘編「太陽光発電」―最新の技術とシステム―、2000年、株式会社シーエムシーYasuhiro Sasakawa, “Solar Power Generation”-Latest Technology and System, 2000, CMC Corporation

上で述べた現在主流の太陽電池モジュールには、次のような諸問題がある。
(1)入射太陽光を効率よく利用するための、強化ガラス板2へのエンボス加工は製造工程を増やす。
(2)充填材層3に用いたEVAは、工程中又は長期の屋外曝露において、加水分解を受けて酸成分を生成し、電気接続部等を腐食させやすい(耐久性不良)。
The present mainstream solar cell modules described above have the following problems.
(1) Embossing on the tempered glass plate 2 to efficiently use incident sunlight increases the number of manufacturing steps.
(2) EVA used for the filler layer 3 is hydrolyzed to generate an acid component during the process or in a long-term outdoor exposure, and easily corrodes an electrical connection portion or the like (poor durability).

(3)太陽電池セル4の上に設けた導通材(半田)5は、環境面から近年は普通の半田ではなく、鉛フリー半田が用いられることが多くなってきた。このような鉛フリー半田は従来の半田に比べて融点が高く(260℃程度)、その温度以上の加熱が必要であり、そのため半田周辺材料も高温度に耐えなければならず、鉛フリー半田の普及に伴って半田周辺材料にも大きな制限が加わってきた。更に、普通の半田を含め鉛フリー半田材料は一旦溶解すると非常に流れやすいため、プロセスによっては半田が流れすぎて太陽光を受ける面積を減じさせる。 (3) As the conductive material (solder) 5 provided on the solar battery cell 4, lead-free solder is often used instead of ordinary solder in recent years from the environmental viewpoint. Such a lead-free solder has a higher melting point (about 260 ° C.) than conventional solder and needs to be heated above that temperature. Therefore, the solder peripheral material must withstand a high temperature. With widespread use, there are significant restrictions on the solder peripheral materials. Furthermore, since lead-free solder material including ordinary solder is very easy to flow once it is melted, depending on the process, the solder flows too much to reduce the area receiving sunlight.

(4)太陽電池セルを保護する目的、あるいはその裏面からの吸湿を防止する目的で用いるポリフッ化ビニリデン樹脂(裏面保護材)7は高価である。
(5)太陽光の反射を少なくし発電効率を増すために、強化ガラス板2の表面上に施すMgF等の金属薄膜からなる反射防止膜1の製膜は、原料無機材のスパッタリングや焼成等の方法を用いて行うので、高温の熱処理が必要であり、また用いる原料無機材は高価である。
(6)ねじれ等の応力に耐える強度を確保するために、鋼板や強化ガラスなどの裏面支持板8を使用したり、アルミフレーム9や補強アルミフレーム9aを使用するため、これらも材料コスト高及び重量増加につながっている。
(4) The polyvinylidene fluoride resin (back surface protective material) 7 used for the purpose of protecting the solar battery cell or preventing moisture absorption from the back surface thereof is expensive.
(5) In order to reduce the reflection of sunlight and increase the power generation efficiency, the film formation of the antireflection film 1 made of a metal thin film such as MgF 2 applied on the surface of the tempered glass plate 2 is performed by sputtering or baking raw material inorganic materials. Therefore, high-temperature heat treatment is necessary, and the raw material inorganic material used is expensive.
(6) In order to ensure the strength to withstand stresses such as torsion, a back support plate 8 such as a steel plate or tempered glass is used, or an aluminum frame 9 or a reinforced aluminum frame 9a is used. This has led to an increase in weight.

本発明は、このような諸問題を解決することであり、言い換えれば、高価な材料の使用を低減させ、製造プロセスを簡略化させ、モジュール効率を向上させ、また、一層軽量な太陽電池ユニット及び太陽電池モジュールを提供することである。   The present invention solves these problems, in other words, reduces the use of expensive materials, simplifies the manufacturing process, improves module efficiency, and further reduces the weight of the solar cell unit and It is to provide a solar cell module.

上で述べた諸問題は、互いに関連しあっているので、単一の部材、あるいは工程の一部の改良によって解決することは、必ずしも得策とは言えない。一部部材の変更は、他の部材の変更を余儀なくするからである。逆に言えば、特定の利点を複数の関連しあう部材で引き出すことが得策のように思える。このような観点から、本発明者は種々検討して、以下の発明を完成した。すなわち、本発明は、次のいくつかの発明を包含する。   Since the problems described above are related to each other, it is not always a good idea to solve them by improving a single member or a part of a process. This is because changing some members necessitates changing other members. Conversely, it seems to be a good idea to draw a particular advantage with a number of related members. From such a viewpoint, the present inventor made various studies and completed the following invention. That is, the present invention includes the following several inventions.

第1の発明は、図1に示すように、複数個の導通材5付き太陽電池セル(複数個の太陽電池セルは、通常、面一に平面的に配列される)4(4a,4b)と、これら太陽電池セル4同士を電気的に接続する接続部材6と、少なくとも太陽電池セル4の受光面側(上側)を保護する充填材層3とを備える太陽電池ユニットにおいて、太陽電池セル4の受光面上に(かつ、充填材層3の下側に)、上記充填材層3とは異なる性状のフィルム状光透過性樹脂層10が更に形成されていることを特徴とする太陽電池ユニットである。
なお、第1の発明では、図2に示すように、フィルム状光透過性樹脂層10におけるエンボス模様(微細凹凸模様)が無くとも光発電効率の向上がみられるが、エンボス模様(微細凹凸模様)を設けるほうが好ましい。
As shown in FIG. 1, the first invention has a plurality of solar cells with a conductive material 5 (a plurality of solar cells are usually arranged in a plane on a plane) 4 (4a, 4b) And a solar cell unit comprising a connecting member 6 that electrically connects the solar cells 4 and a filler layer 3 that protects at least the light receiving surface side (upper side) of the solar cells 4. A light-transmitting resin layer 10 having a property different from that of the filler layer 3 is further formed on the light receiving surface (and below the filler layer 3). It is.
In the first invention, as shown in FIG. 2, the photovoltaic power generation efficiency is improved without the embossed pattern (fine uneven pattern) in the film-like light-transmitting resin layer 10, but the embossed pattern (fine uneven pattern) ) Is preferable.

第2の発明は、図3に示すように、複数個の導通材5付き太陽電池セル4と、これら太陽電池セル4同士を電気的に接続する接続部材6と、少なくとも太陽電池セル4の受光面側を保護する充填材層3とを備える太陽電池ユニットにおいて、前記充填材層3の上面に、更に、入射光を拡散させることのできるエンボス模様を付与したフィルム状光透過性樹脂層10が形成されていることを特徴とする太陽電池ユニットである。
ここで、エンボス模様の付与はフィルム状光透過性樹脂層10の片面でも両面でも構わない。加工性・作業性の点から選ぶ(通常は片面のみ)。また、片面にだけエンボス模様を付与する場合は、そのエンボス模様面はフィルム状光透過性樹脂層10の上面でも下面でもどちらでも構わない。これも加工性・作業性を考慮して適宜決める。
As shown in FIG. 3, the second invention includes a plurality of solar cells 4 with a conductive material 5, a connection member 6 that electrically connects these solar cells 4, and at least light reception of the solar cells 4. In a solar cell unit comprising a filler layer 3 for protecting the surface side, a film-like light transmissive resin layer 10 provided with an embossed pattern capable of diffusing incident light on the upper surface of the filler layer 3 is further provided. It is the solar cell unit characterized by being formed.
Here, the embossed pattern may be provided on one side or both sides of the film-like light transmissive resin layer 10. Select from the viewpoint of workability and workability (usually only one side). Moreover, when giving an embossed pattern only to one side, the embossed pattern surface may be either the upper surface or the lower surface of the film-form light-transmitting resin layer 10. This is also determined in consideration of workability and workability.

第3の発明は、複数個の導通材5付き太陽電池セル4と、これら太陽電池セル4同士を電気的に接続する接続部材6と、少なくとも太陽電池セル4の受光面側を保護する充填材層3とを備える太陽電池ユニットにおいて、前記充填材層3は、熱硬化性樹脂及び/又はUV硬化性樹脂を含む樹脂で、その波長400〜1100nmの全エネルギーにおける光透過率は、加重平均で(すなわち、積分値で)80%以上の透明な樹脂層であることを特徴とする太陽電池ユニットである。   3rd invention is the filler which protects the several photovoltaic cell 4 with the electrically conductive material 5, the connection member 6 which electrically connects these photovoltaic cells 4, and the light-receiving surface side of the photovoltaic cell 4 at least. In the solar cell unit including the layer 3, the filler layer 3 is a resin containing a thermosetting resin and / or a UV curable resin, and the light transmittance at the total energy of the wavelength of 400 to 1100 nm is a weighted average. It is a solar cell unit characterized by being a transparent resin layer of 80% or more (in terms of integral value).

第4の発明は、複数個の導通材5付き太陽電池セル4と、これら太陽電池セル4同士を電気的に接続する接続部材6と、少なくとも太陽電池セル4の受光面側を保護する充填材層3とを備える太陽電池ユニットにおいて、前記導通材5は、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤であることを特徴とする太陽電池ユニットである。   4th invention is the filler which protects the several photovoltaic cell 4 with the electrically conductive material 5, the connection member 6 which electrically connects these photovoltaic cells 4, and the light-receiving surface side of the photovoltaic cell 4 at least. In the solar cell unit including the layer 3, the conducting material 5 is a solar cell unit including a polymer resin and a conductive adhesive and a film adhesive having anisotropic conductivity.

第5の発明は、図1,2に示すように、複数個の導通材5付き太陽電池セル4と、これら太陽電池セル4同士を電気的に接続する接続部材6と、少なくとも太陽電池セル4の受光面側を保護する充填材層3とを備える太陽電池ユニットにおいて、前記太陽電池セル4の裏面(下面)側には、更に有機高分子樹脂からなるフィルム状セル裏面支持層11が形成されていることを特徴とする太陽電池ユニットである。   As shown in FIGS. 1 and 2, the fifth invention includes a plurality of solar cells 4 with a conductive material 5, a connection member 6 that electrically connects these solar cells 4, and at least the solar cells 4. In the solar cell unit provided with the filler layer 3 for protecting the light receiving surface side, a film-like cell back surface support layer 11 made of an organic polymer resin is further formed on the back surface (lower surface) side of the solar cell 4. It is the solar cell unit characterized by the above.

上記第1〜第5の発明において、充填材層3の上側には、通常、ガラス製や透明樹脂製の光透過性表面部材2を積層する。   In the first to fifth inventions, a light-transmitting surface member 2 made of glass or transparent resin is usually laminated on the upper side of the filler layer 3.

また、以上で述べた第1〜第5の発明及びその他の発明は、これらのうちの任意の二つ又はそれ以上の発明を組み合わせて太陽電池ユニットを構築することもでき、更には、全部の発明を組み合わせて太陽電池ユニットを構築することもできる。   In addition, the first to fifth inventions and other inventions described above can be combined with any two or more of these inventions to construct a solar cell unit. A solar cell unit can also be constructed by combining the invention.

本発明は、図4に示すように、上記太陽電池ユニットを成形樹脂製フレーム15に収納してなる太陽電池モジュールにも関する。ここで、太陽電池ユニットと成形樹脂製フレーム15との隙間は、通常、封止樹脂16によって封止する。   As shown in FIG. 4, the present invention also relates to a solar cell module in which the solar cell unit is housed in a molded resin frame 15. Here, the gap between the solar cell unit and the molded resin frame 15 is usually sealed with a sealing resin 16.

以下、本発明を更に詳しく説明する。
第1の発明におけるフィルム状光透過性樹脂層10の材料は、作業が容易で生産性が高い等の理由で、光硬化性又は熱硬化性を有する透明な樹脂が好ましい。また、太陽電池セル4の受光面上に形成させたフィルム状光透過性樹脂層10における光屈折率は、充填材層3における光屈折率よりも大きいことが好ましい。但し、フィルム状光透過性樹脂層10におけるエンボス模様は無くとも(あったほうが好ましいが)光発電効率は向上する。太陽電池セル4の受光面上に接するようにフィルム状光透過性樹脂層10を設けると、エンボス模様が無くとも光発電効率が向上する理由は分からないが、屈折により入射光が太陽電池セル4内に効率よく導入するからと推測している。
Hereinafter, the present invention will be described in more detail.
The material of the film-like light transmissive resin layer 10 in the first invention is preferably a transparent resin having photocurability or thermosetting properties because it is easy to work and has high productivity. The light refractive index in the film-like light transmissive resin layer 10 formed on the light receiving surface of the solar battery cell 4 is preferably larger than the light refractive index in the filler layer 3. However, even if there is no emboss pattern in the film-like light-transmitting resin layer 10 (it is preferable), the photovoltaic power generation efficiency is improved. If the film-like light-transmitting resin layer 10 is provided so as to be in contact with the light receiving surface of the solar battery cell 4, the reason why the photovoltaic power generation efficiency is improved without an embossed pattern is not known. It is estimated that it will be introduced efficiently within.

なお、太陽電池セル4の受光面上へのフィルム状光透過性樹脂層10の形成とともに、そのフィルム状光透過性樹脂層10の片面へエンボス模様を付与する場合は、例えば、次のようにして行う。
(i)光硬化性又は熱硬化性を有する透明な樹脂(半硬化の状態)を太陽電池セル4の片面にラミネートする。
(ii)ラミネートした樹脂側に微細凹凸状のエンボス加工付きの型を押し当て、その微細凹凸模様を樹脂側へ転写させる。
(iii)光照射又は加熱処理をして樹脂を硬化させ、転写したエンボス模様を定着させる。
In addition, when forming an embossed pattern on one side of the film-like light-transmitting resin layer 10 together with the formation of the film-like light-transmitting resin layer 10 on the light-receiving surface of the solar battery cell 4, for example, as follows. Do it.
(I) A transparent resin (semi-cured state) having photocurability or thermosetting property is laminated on one surface of the solar battery cell 4.
(Ii) The embossed mold of fine unevenness is pressed against the laminated resin side, and the fine uneven pattern is transferred to the resin side.
(Iii) The resin is cured by light irradiation or heat treatment, and the transferred embossed pattern is fixed.

ここで、フィルム状光透過性樹脂層10の材料樹脂として光硬化性樹脂を用いた場合、エンボス加工付きの型を用いる代わりに、エンボス模様のある透明プラスチックフィルムを型としてそのまま用い、重ね合わせ、光硬化させ、エンボス模様を付与することもできる。   Here, when a photocurable resin is used as the material resin of the film-like light transmissive resin layer 10, instead of using a mold with an embossing, a transparent plastic film with an embossed pattern is used as a mold as it is, It can also be photocured to give an embossed pattern.

第1の発明で、太陽電池セル4の受光面上にフィルム状光透過性樹脂層10を形成させるときにエンボス模様(通常は片面)を付ける場合の凹凸模様は、凹凸のピッチが0.5〜1000μm、高低差は、0.5〜1000μmであることが好ましく、ピッチ1〜100μm、高低差1〜100μmであることがより好ましい。ここで、個々の凹凸の形状及びピッチは必ずしも一様である必要はなく、ランダムであっても構わない。   In the first invention, when the embossed pattern (usually one side) is applied when the film-like light transmissive resin layer 10 is formed on the light receiving surface of the solar battery cell 4, the uneven pattern has an uneven pitch of 0.5. The height difference is preferably 0.5 to 1000 μm, more preferably 1 to 100 μm in pitch, and 1 to 100 μm in height difference. Here, the shapes and pitches of the individual irregularities are not necessarily uniform, and may be random.

また、第1の発明においては、フィルム状光透過性樹脂層10における光屈折率は、充填材層3における光屈折率よりも大きくなるように(すなわち、太陽電池セル4に近いほうの層が太陽電池セル4に遠いほうの層の光屈折率より大きくなるように)工夫する。   Moreover, in 1st invention, the light refractive index in the film-form light-transmitting resin layer 10 is larger than the light refractive index in the filler layer 3 (that is, the layer closer to the solar battery cell 4 is It is devised so that it is larger than the optical refractive index of the layer farther from the solar battery cell 4.

第2の発明におけるフィルム状光透過性樹脂層10の材料樹脂についても、作業が容易で生産性が高い等の理由で、光硬化性樹脂もしくは熱硬化性樹脂を、光もしくは熱によって硬化する透明な樹脂が好ましく用いられる。   Also for the material resin of the film-like light transmissive resin layer 10 in the second invention, the photocurable resin or the thermosetting resin is transparently cured by light or heat because the work is easy and the productivity is high. New resin is preferably used.

第2の発明で、エンボス模様のあるフィルム状光透過性樹脂層10を充填材層3と光透過性表面部材2との間に形成させる場合、そのフィルム状光透過性樹脂層10の厚みとしては、0.5〜2000μmが好ましく、光拡散及び吸収損失低減の点で、0.5〜500μmがより好ましく、0.5〜200μmが特に好ましい。フィルム状光透過性樹脂層10の光透過性としては、300〜1200nmの光をできるだけ多く透過することが好ましい。   In the second invention, when the embossed film-shaped light transmissive resin layer 10 is formed between the filler layer 3 and the light transmissive surface member 2, the thickness of the film-shaped light transmissive resin layer 10 is as follows. Is preferably 0.5 to 2000 μm, more preferably 0.5 to 500 μm, and particularly preferably 0.5 to 200 μm in terms of light diffusion and reduction of absorption loss. The light transmittance of the film-like light transmissive resin layer 10 is preferably as much as possible through 300 to 1200 nm.

ここで、フィルム状光透過性樹脂層10における光屈折率は、充填材層3における光屈折率よりも小さくする方が好ましい。言い換えれば、太陽電池セル4に近いほうの層が太陽電池セル4に遠いほうの層の屈折率よりも大きくなるように工夫する。   Here, it is preferable that the light refractive index in the film-like light transmissive resin layer 10 is smaller than the light refractive index in the filler layer 3. In other words, the layer closer to the solar battery cell 4 is devised so as to be larger than the refractive index of the layer farther from the solar battery cell 4.

フィルム状光透過性樹脂層10の材料樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、PC(ポリカーボネート)、TAC(トリアセチルセルロース)、PET(ポリエチレンテレフタレート)、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PEI(ポリエーテルイミド)、ポリエステル、EVA(エチレン−ビニルアセテートコポリマー)、PCV(ポリ塩化ビニル)、PI(ポリイミド)、PA(ポリアミド)、PU(ポリウレタン)、PE(ポリエチレン)、PP(ポリプロピレン)、PS(ポリスチレン)、PAN(ポリアクリロニトリル)、ブチラール樹脂、ABS(アクリロニトリル−ブタジエン−スチレンコポリマー)、ETFE(エチレン−テトラフルオロエチレンコポリマー)、PVF(ポリフッ化ビニル)などのフッ素樹脂、シリコン樹脂、または、これらに熱硬化性あるいはUV硬化性を付与した樹脂組成物等が挙げられ、中でもアクリル樹脂、フッ素樹脂、PUで熱硬化性あるいはUV硬化性を付与した樹脂組成物が透明性、信頼性、加工性の点で好ましい。また、樹脂中に紫外線吸収剤、光安定化剤、酸化防止剤、シランカップリング剤を適宜添加することが好ましい。これら添加剤としては、公知のもの(例えば、特開平9−191115号公報に記載されているもの)を使用することができる。   Examples of the material resin of the film-like light transmissive resin layer 10 include acrylic resin, epoxy resin, PC (polycarbonate), TAC (triacetyl cellulose), PET (polyethylene terephthalate), PVA (polyvinyl alcohol), and PVB (polyvinyl butyral) ), PEI (polyetherimide), polyester, EVA (ethylene-vinyl acetate copolymer), PCV (polyvinyl chloride), PI (polyimide), PA (polyamide), PU (polyurethane), PE (polyethylene), PP (polypropylene) ), PS (polystyrene), PAN (polyacrylonitrile), butyral resin, ABS (acrylonitrile-butadiene-styrene copolymer), ETFE (ethylene-tetrafluoroethylene copolymer), PVF ( Fluorine resins such as vinyl fluoride), silicon resins, and resin compositions obtained by imparting thermosetting or UV curing properties to them, among which acrylic resins, fluororesins, and PU are thermosetting or UV curable. Is preferred in terms of transparency, reliability, and processability. Moreover, it is preferable to add suitably an ultraviolet absorber, a light stabilizer, antioxidant, and a silane coupling agent in resin. As these additives, known ones (for example, those described in JP-A-9-191115) can be used.

第3の発明における充填材層3の材料樹脂は、上述したように、熱硬化性樹脂及び/又はUV硬化性樹脂を含む樹脂で、その波長400〜1100nmの全エネルギーに対する光透過率は、加重平均で(すなわち、積分値で)80%以上の透明な樹脂が好ましい。但し、フィルム状光透過性樹脂層10で用いた樹脂とは異なる樹脂を用いる。樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、PC(ポリカーボネート)、TAC(トリアセチルセルロース)、PET(ポリエチレンテレフタレート)、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PEI(ポリエーテルイミド)、ポリエステル、EVA(エチレン−ビニルアセテートコポリマー)、PCV(ポリ塩化ビニル)、PI(ポリイミド)、PA(ポリアミド)、PU(ポリウレタン)、PE(ポリエチレン)、PP(ポリプロピレン)、PS(ポリスチレン)、PAN(ポリアクリロニトリル)、ブチラール樹脂、ABS(アクリロニトリル−ブタジエン−スチレンコポリマー)、ETFE(エチレン−テトラフルオロエチレンコポリマー)、PVF(ポリフッ化ビニル)などのフッ素樹脂、シリコン樹脂、または、これらに熱硬化性あるいはUV硬化性を付与した樹脂組成物等が挙げられ、中でもアクリル樹脂、フッ素樹脂又はPUが、透明性、信頼性の点で好ましい。   As described above, the material resin of the filler layer 3 in the third invention is a resin containing a thermosetting resin and / or a UV curable resin, and the light transmittance with respect to the total energy at a wavelength of 400 to 1100 nm is weighted. A transparent resin having an average (ie, integral value) of 80% or more is preferable. However, a resin different from the resin used in the film-like light transmissive resin layer 10 is used. Examples of the resin include acrylic resin, epoxy resin, PC (polycarbonate), TAC (triacetyl cellulose), PET (polyethylene terephthalate), PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PEI (polyetherimide), and polyester. , EVA (ethylene-vinyl acetate copolymer), PCV (polyvinyl chloride), PI (polyimide), PA (polyamide), PU (polyurethane), PE (polyethylene), PP (polypropylene), PS (polystyrene), PAN (poly Fluoronitrile resins such as acrylonitrile), butyral resin, ABS (acrylonitrile-butadiene-styrene copolymer), ETFE (ethylene-tetrafluoroethylene copolymer), PVF (polyvinyl fluoride) Silicone resins, or these resin composition imparted with thermosetting or UV-curable, and among these acrylic resins, fluorocarbon resins or PU is preferred in terms of transparency and an reliability.

第4の発明で用いる高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤(導通材)の高分子樹脂としては、好ましくは、アクリル系ポリマー及び熱硬化性樹脂を含有する樹脂である。また、上記導電粒子は、好ましくは、接続端子1cm(平面視の面積)あたり10〜1,000,000個を分散させる。
このようなフィルム状接着剤は、半田の場合に比べ低い150℃程度以下の温度で熱圧着することで導通性が得られるため、半田付けの際によく見られるセル受光面上での部材の黄変を避けるとともに、作業効率を高め、製造コストを低減することができる。また、部材の選択の幅を広げることができる。
The polymer resin of the film adhesive (conductive material) having anisotropic conductivity including the polymer resin and conductive particles used in the fourth invention preferably contains an acrylic polymer and a thermosetting resin. Resin. The conductive particles are preferably dispersed in an amount of 10 to 1,000,000 per 1 cm 2 (area in plan view) of the connection terminals.
Such a film-like adhesive can obtain electrical conductivity by thermocompression bonding at a temperature of about 150 ° C. or lower, which is lower than that of solder. Therefore, the adhesive of the member on the cell light receiving surface often seen during soldering is obtained. While avoiding yellowing, work efficiency can be improved and manufacturing cost can be reduced. Moreover, the range of selection of a member can be expanded.

第5の発明で用いるフィルム状セル裏面支持層11の材料樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、PC(ポリカーボネート)、TAC(トリアセチルセルロース)、PET(ポリエチレンテレフタレート)、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PEI(ポリエーテルイミド)、ポリエステル、EVA(エチレン−ビニルアセテートコポリマー)、PCV(ポリ塩化ビニル)、PI(ポリイミド)、PA(ポリアミド)、PU(ポリウレタン)、PE(ポリエチレン)、PP(ポリプロピレン)、PS(ポリスチレン)、PAN(ポリアクリロニトリル)、ブチラール樹脂、ABS(アクリロニトリル−ブタジエン−スチレンコポリマー)、ETFE(エチレン−テトラフルオロエチレンコポリマー)、PVF(ポリフッ化ビニル)などのフッ素樹脂、シリコン樹脂、または、これらに熱硬化性あるいはUV硬化性を付与した樹脂組成物等が挙げられ、中でもアクリル樹脂、フッ素樹脂、PU、これらに熱硬化性あるいはUV硬化性を付与した樹脂組成物が信頼性、加工性の点で好ましい。   Examples of the material resin for the film cell back support layer 11 used in the fifth invention include acrylic resin, epoxy resin, PC (polycarbonate), TAC (triacetyl cellulose), PET (polyethylene terephthalate), and PVA (polyvinyl alcohol). , PVB (polyvinyl butyral), PEI (polyetherimide), polyester, EVA (ethylene-vinyl acetate copolymer), PCV (polyvinyl chloride), PI (polyimide), PA (polyamide), PU (polyurethane), PE (polyethylene) ), PP (polypropylene), PS (polystyrene), PAN (polyacrylonitrile), butyral resin, ABS (acrylonitrile-butadiene-styrene copolymer), ETFE (ethylene-tetrafluoroethylene copolymer) ), Fluororesins such as PVF (polyvinyl fluoride), silicon resins, or resin compositions that have been provided with thermosetting or UV curable properties. Among them, acrylic resins, fluororesins, PU, and the like. A resin composition imparted with thermosetting property or UV curable property is preferable in terms of reliability and workability.

ここで、フィルム状セル裏面支持層11の下側には、更に低吸湿性の発泡体層13が形成されていることが好ましく、一層好ましくは、金属薄膜などの反射膜12を挟み込むようにして、発泡体層13を形成させる。このような構造をとれば、高価なポリフッ化ビニリデンの使用を避けることができ、低コスト化が可能となる。
また、上記発泡体層13は、その発泡体積の50%以上が独立気泡であることが好ましい。
Here, it is preferable that a lower hygroscopic foam layer 13 is formed on the lower side of the film-like cell back surface support layer 11, and more preferably, a reflective film 12 such as a metal thin film is sandwiched. Then, the foam layer 13 is formed. With such a structure, the use of expensive polyvinylidene fluoride can be avoided, and the cost can be reduced.
Moreover, it is preferable that 50% or more of the foam volume of the foam layer 13 is closed cells.

また、フィルム状セル裏面支持層11と発泡体層13との間には、更に反射膜12が形成されていることが好ましく、その反射膜12は、通常、アルミニウム又はアルミニウム含有合金の金属薄膜が好ましい。   Further, it is preferable that a reflective film 12 is further formed between the film-like cell back surface support layer 11 and the foam layer 13, and the reflective film 12 is usually a metal thin film of aluminum or an aluminum-containing alloy. preferable.

第1〜第5の発明において、充填材層3の上側には、通常、光透過性表面部材2を積層する。その場合の光透過性表面部材2としては、ガラス、強化ガラス、有機ガラスのほか、アクリル板等の透明有機樹脂板などがあり、好ましくは、強化ガラスである。   In the first to fifth inventions, the light transmissive surface member 2 is usually laminated on the upper side of the filler layer 3. In this case, the light transmissive surface member 2 includes a transparent organic resin plate such as an acrylic plate in addition to glass, tempered glass, and organic glass, and is preferably tempered glass.

充填材層3の上側に光透過性表面部材2を積層した場合、その光透過性表面部材2の表面側(上側)に、更に反射防止膜1を形成させることが好ましい。できるだけ多くの外部光を太陽電池セル4に供給させるためである。ここで、反射防止膜1は、MgFのような従来利用されているような反射防止膜を使用することができるが、好ましくは、有機高分子系材料、含フッ素有機高分子系材料、低温ゾルゲル系材料又はポリシラザン系材料等の塗布型材料からつくる。このような塗布型の有機材料を使用すれば、簡便な塗布方法及び低温硬化が可能となり、他の工程との共通化も可能である。塗膜の厚みは、好ましくは10〜300nmである。また、反射防止膜1の光屈折率は光透過性表面部材2の光屈折率よりも小さくすることが好ましい。 When the light transmissive surface member 2 is laminated on the upper side of the filler layer 3, it is preferable to further form the antireflection film 1 on the surface side (upper side) of the light transmissive surface member 2. This is to supply as much external light as possible to the solar cells 4. Here, as the antireflection film 1, an antireflection film such as MgF 2 which has been conventionally used can be used. Preferably, an organic polymer material, a fluorine-containing organic polymer material, a low temperature is used. It is made from a coating-type material such as a sol-gel material or a polysilazane material. If such a coating-type organic material is used, a simple coating method and low-temperature curing are possible, and it is possible to share with other processes. The thickness of the coating film is preferably 10 to 300 nm. The light refractive index of the antireflection film 1 is preferably smaller than the light refractive index of the light transmissive surface member 2.

このような反射防止膜1の形成方法としては、例えば、硬化後に膜厚10〜300nmが得られるように適宜希釈したのち、スピンコート、スプレーコート、ディップコート等の方法により所望の膜厚を得ることができ、中でもスプレーコートがコスト的には最も好ましい。また、光透過性表面部材2としてガラス板を用いた場合は、密着性を向上させるために適宜プライマー処理を行うことが好ましい。また、後述するように、太陽電池モジュール組立の最後の封止樹脂の硬化と同時に行うことにより、従来の無機材を用いた場合における800℃程度の焼成が不要となり、昇温及び降温に要する時間短縮と、焼成エネルギーのコスト削減が可能となる。   As a method for forming such an antireflection film 1, for example, after being appropriately diluted so as to obtain a film thickness of 10 to 300 nm after curing, a desired film thickness is obtained by a method such as spin coating, spray coating, or dip coating. Among them, spray coating is most preferable in terms of cost. Moreover, when a glass plate is used as the light transmissive surface member 2, it is preferable to appropriately perform primer treatment in order to improve adhesion. In addition, as will be described later, by performing simultaneously with the curing of the last sealing resin of the solar cell module assembly, firing at about 800 ° C. in the case of using a conventional inorganic material becomes unnecessary, and the time required for temperature increase and decrease Shortening and cost reduction of firing energy are possible.

(1)第1の発明によれば、入射太陽光を効率よく利用できる。その理由は、太陽電池セル4の受光面上のフィルム状光透過性樹脂層10における光の屈折により入射光が太陽電池セル内に効率よく導入されるからと推定している。また、強化ガラス板等の光透過性表面部材2にエンボス模様を付与することは不要となる。
(2)第2の発明によれば、充填材層3の上側に形成したフィルム状光透過性樹脂層10におけるエンボス模様が入射太陽光を拡散させるので、入射太陽光を効率よく利用できる。また、フィルム状光透過性樹脂層10にエンボス模様を付与することは、強化ガラス板にエンボス模様を付与する処理に比べて、簡単である。
(3)第3の発明によれば、充填材層3に、熱硬化性樹脂及び/又はUV硬化性樹脂を含む透明な樹脂を用いるので、工程中又は長期の屋外曝露においても、加水分解を受けることは少なく、したがって、電気接続部等を腐食させず、耐久性が良い。
(1) According to the first invention, incident sunlight can be used efficiently. The reason is presumed that incident light is efficiently introduced into the solar cell by refraction of light in the film-like light transmissive resin layer 10 on the light receiving surface of the solar cell 4. Moreover, it becomes unnecessary to give an embossed pattern to the light transmissive surface member 2 such as a tempered glass plate.
(2) According to the second invention, since the embossed pattern in the film-like light transmissive resin layer 10 formed on the upper side of the filler layer 3 diffuses incident sunlight, the incident sunlight can be used efficiently. Moreover, it is simpler to give an embossed pattern to the film-form light-transmitting resin layer 10 as compared with a process to give an embossed pattern to a tempered glass plate.
(3) According to the third invention, since a transparent resin containing a thermosetting resin and / or a UV curable resin is used for the filler layer 3, hydrolysis can be performed during the process or in a long-term outdoor exposure. Therefore, it does not corrode the electrical connection part or the like, and has high durability.

(4)第4の発明によれば、導通材5として、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤を用いるので、半田又は鉛フリー半田を用いた場合のような高温度(260℃程度以上)の加熱は不要であり、そのため導通材周辺材料も高温度に耐える必要は無い。導通材周辺材料の選択における制限が少ない。また、半田を用いた場合の半田の溶けすぎ(流れすぎ)で生じる太陽光受光面積の減少も生じにくい。また、半田を用いる場合に比べ、作業も容易である。
(5)第5の発明によれば、太陽電池セル4の裏面(下面)側には、有機高分子樹脂(ポリフッ化ビニリデン樹脂は使わず)からなるフィルム状セル裏面支持層11が形成されているので、部材コストは削減できる。
(6)充填材層3の上側にガラス製や透明樹脂製の光透過性表面部材2を積層し、その上に、有機高分子系材料、含フッ素有機高分子系材料、低温ゾルゲル系材料又はポリシラザン系材料からつくった反射防止膜1を形成させたものでは、強化ガラス板表面上への高価なMgF等の金属薄膜の形成(スパッタリングや焼成等)は不要となり、したがって高温の熱処理も不要となる。また用いる材料コストも削減できる。
(7)本発明の太陽電池モジュールによれば、アルミフレームや補強アルミフレームを使用する代わりに、成形樹脂製フレーム15を使用するので、比較的軽量とすることができ、材料コストも削減できる。
(4) According to the fourth invention, since the conductive material 5 is made of a film-like adhesive that includes a polymer resin and conductive particles and has anisotropic conductivity, as in the case of using solder or lead-free solder. Heating at a high temperature (about 260 ° C. or higher) is not necessary, and therefore the conductive material peripheral material does not need to withstand the high temperature. There are few restrictions on the selection of materials around the conductive material. In addition, when the solder is used, it is difficult for the solar light receiving area to decrease due to excessive melting (overflow) of the solder. In addition, the work is easier than using solder.
(5) According to the fifth invention, a film-like cell back surface support layer 11 made of an organic polymer resin (without using polyvinylidene fluoride resin) is formed on the back surface (lower surface) side of the solar battery cell 4. Therefore, the member cost can be reduced.
(6) A transparent surface member 2 made of glass or transparent resin is laminated on the upper side of the filler layer 3, and an organic polymer material, a fluorine-containing organic polymer material, a low-temperature sol-gel material, or In the case of forming the antireflection film 1 made of a polysilazane-based material, it is not necessary to form an expensive metal thin film such as MgF 2 (sputtering or firing) on the surface of the tempered glass plate, and therefore no high-temperature heat treatment is required. It becomes. Moreover, the material cost to be used can be reduced.
(7) According to the solar cell module of the present invention, since the molded resin frame 15 is used instead of using the aluminum frame or the reinforced aluminum frame, it can be made relatively light and the material cost can be reduced.

本発明に係る第一実施例の太陽電池ユニットで、(b)は縦断面図、(a)はその分解図。It is a solar cell unit of the 1st example concerning the present invention, (b) is a longitudinal section and (a) is the exploded view. 本発明に係る第二実施例の太陽電池ユニットの分解図。The exploded view of the solar cell unit of the 2nd example concerning the present invention. 本発明に係る第三実施例の太陽電池ユニットで、(b)は縦断面図、(a)はその分解図。It is a solar cell unit of the 3rd example concerning the present invention, (b) is a longitudinal section and (a) is the exploded view. 本発明に係る第一実施例の太陽電池ユニットの製造法と、それに続く太陽電池モジュールの製造法を示す説明図。Explanatory drawing which shows the manufacturing method of the solar cell unit of the 1st Example which concerns on this invention, and the manufacturing method of a solar cell module following it. 従来例のシリコン結晶系の太陽電池ユニット及び太陽電池モジュールの断面模式図。(b)は太陽電池ユニット、(c)は太陽電池モジュール、(a)は太陽電池ユニットの分解図である。The cross-sectional schematic diagram of the silicon crystal type solar cell unit and solar cell module of a prior art example. (B) is a solar cell unit, (c) is a solar cell module, and (a) is an exploded view of the solar cell unit.

添付図面を参照しながら、本発明をさらに具体的に説明する。なお、本発明における図面は、特に説明のない限りは上側が外部光(主に太陽光)の入射面となるように描いている。
図1は、本発明に係る第一実施例の太陽電池ユニットを示すもので、(b)は縦断面図、(a)はその分解図である。ここで、分解図は理解のために各部材ごとに分割して描いたものであり、それぞれが単独で存在しうることを示すものではない。
The present invention will be described more specifically with reference to the accompanying drawings. In the drawings of the present invention, unless otherwise specified, the upper side is depicted as an incident surface for external light (mainly sunlight).
FIG. 1 shows a solar cell unit according to a first embodiment of the present invention, in which (b) is a longitudinal sectional view and (a) is an exploded view thereof. Here, the exploded view is divided for each member for the sake of understanding, and does not indicate that each can exist independently.

太陽電池ユニットは、面一で横並びに配列された複数個の導通材5付き太陽電池セル4(4a,4b)と、これら太陽電池セル同士を電気的に接続する接続部材6と、太陽電池セル4(4a,4b)の受光面側(上側)を保護する充填材層3と、その充填材層3の上に積層されたガラス製の光透過性表面部材2とを備えており、太陽電池セル4の受光面上(すなわち、太陽電池セル4の受光面と充填材層3との間)に、エンボス模様を付与したフィルム状光透過性樹脂層10が形成されている。   The solar cell unit includes a plurality of solar cells 4 (4a, 4b) with conductive material 5 arranged side by side in a plane, a connecting member 6 that electrically connects these solar cells, and solar cells. 4 (4a, 4b) comprising a filler layer 3 that protects the light-receiving surface side (upper side), and a light-transmitting surface member 2 made of glass laminated on the filler layer 3, and a solar cell On the light receiving surface of the cell 4 (that is, between the light receiving surface of the solar battery cell 4 and the filler layer 3), a film-like light transmissive resin layer 10 provided with an embossed pattern is formed.

充填材層3は、図1(b)に示すように太陽電池セル4の受光面側だけを保護するように形成させ、また、太陽電池セル4の裏面側には、フィルム状セル裏面支持層11を形成させ、その下側には、金属薄膜などの反射膜12を挟み込むようにして低吸湿性の発泡体層(樹脂フォーム)13を形成させている。なお、充填材層3は、太陽電池セル4全体を保護するように形成させてもよい。   The filler layer 3 is formed so as to protect only the light receiving surface side of the solar battery cell 4 as shown in FIG. 1B, and the film cell back support layer is provided on the back surface side of the solar battery cell 4. 11 is formed, and a low hygroscopic foam layer (resin foam) 13 is formed on the lower side so as to sandwich a reflective film 12 such as a metal thin film. In addition, you may form the filler layer 3 so that the whole photovoltaic cell 4 may be protected.

ここで注意するべき点は、フィルム状光透過性樹脂層10が太陽電池セル4(4a,4b)の受光面に接するように設けられていることであり、充填材層3はフィルム状光透過性樹脂層10よりも太陽電池セル4に遠い場所に位置していることである。太陽電池セル4の受光面に接するようにフィルム状光透過性樹脂層10を設けた場合、これを設けない場合やこれを太陽電池セル4から遠い上方に設けた場合よりも光発電効率が向上する。フィルム状光透過性樹脂層10にエンボス模様を付与しなくともそうである(図2参照)。その理由の詳細は分からないが、フィルム状光透過性樹脂層10における光の屈折により入射光が太陽電池セル4内に効率よく導入されるからと推定している。   What should be noted here is that the film-like light-transmitting resin layer 10 is provided so as to be in contact with the light-receiving surface of the solar battery cell 4 (4a, 4b), and the filler layer 3 has a film-like light-transmitting property. It is located in the place far from the photovoltaic cell 4 rather than the conductive resin layer 10. When the film-like light-transmitting resin layer 10 is provided so as to be in contact with the light receiving surface of the solar battery cell 4, the photovoltaic power generation efficiency is improved as compared with the case where it is not provided or the case where it is provided above the solar battery cell 4 To do. This is true even if an embossed pattern is not applied to the film-like light transmissive resin layer 10 (see FIG. 2). Although details of the reason are not known, it is estimated that incident light is efficiently introduced into the solar battery cell 4 due to refraction of light in the film-like light-transmitting resin layer 10.

また、上記位置関係は、フィルム状光透過性樹脂層10における光屈折率が、充填材層3における光屈折率よりも大きい場合に、特に有効である。光が太陽電池セル4に効率よく導入されるためであろう。   The positional relationship is particularly effective when the light refractive index in the film-like light transmissive resin layer 10 is larger than the light refractive index in the filler layer 3. This is because light is efficiently introduced into the solar battery cell 4.

図2は、本発明に係る第二実施例の太陽電池ユニット(分解図)である。太陽電池セル4の受光面上に、エンボス模様を付与していないフィルム状光透過性樹脂層10を形成する点を除いて、上記図1と同様である。上で述べたように、フィルム状光透過性樹脂層10における光の屈折により入射光が太陽電池セル4内に効率よく導入されるのであろう。   FIG. 2 is a solar cell unit (exploded view) of a second embodiment according to the present invention. Except for forming a film-like light-transmitting resin layer 10 not provided with an embossed pattern on the light-receiving surface of the solar battery cell 4, it is the same as FIG. As described above, incident light will be efficiently introduced into the solar battery cell 4 by refraction of light in the film-like light-transmitting resin layer 10.

図3は、本発明に係る第三実施例の太陽電池ユニットで、(b)は縦断面図、(a)はその分解図である。
太陽電池ユニットは、面一で平面的に配列された複数個の導通材5付き太陽電池セル4(4a,4b)と、これら太陽電池セル4同士を電気的に接続する接続部材6と、太陽電池セル4(4a,4b)の受光面側(上側)を保護する充填材層3と、その充填材層3の上に積層された光透過性表面部材2とを備えており、光透過性表面部材2と充填材層3との間に、エンボス模様を付与したフィルム状光透過性樹脂層10が形成されている。
FIG. 3 shows a solar cell unit according to a third embodiment of the present invention, in which (b) is a longitudinal sectional view and (a) is an exploded view thereof.
The solar cell unit includes a plurality of solar cells 4 (4a, 4b) with conducting material 5 arranged in a plane and in a plane, a connection member 6 that electrically connects the solar cells 4 to each other, It is provided with a filler layer 3 that protects the light receiving surface side (upper side) of the battery cell 4 (4a, 4b) and a light transmissive surface member 2 laminated on the filler layer 3, and is light transmissive. Between the surface member 2 and the filler layer 3, a film-like light transmissive resin layer 10 provided with an embossed pattern is formed.

ここで、充填材層3は太陽電池セル4全体を保護するように設けてもよいが、図3に示すように、受光面側だけを保護するようにしており、裏面側には第一実施例と同様に発泡体層13を設けている。   Here, the filler layer 3 may be provided so as to protect the entire solar battery cell 4, but as shown in FIG. 3, only the light receiving surface side is protected, and the back surface side is the first implementation. A foam layer 13 is provided as in the example.

また、この第三実施例では、充填材層3はフィルム状光透過性樹脂層10よりも太陽電池セル4に近い場所に位置することになる。このような位置関係の場合、充填材層3における光屈折率はフィルム状光透過性樹脂層10における光屈折率よりも大きいことが好ましい。太陽電池セル4に太陽光を効率よく導入するためである。   In the third embodiment, the filler layer 3 is positioned closer to the solar battery cell 4 than the film-like light transmissive resin layer 10. In the case of such a positional relationship, the light refractive index in the filler layer 3 is preferably larger than the light refractive index in the film-like light transmissive resin layer 10. This is for efficiently introducing sunlight into the solar battery cell 4.

次に、図4を用いて、本発明に係る第一実施例の太陽電池ユニットの製造法と、それに続く太陽電池モジュールの製造法を説明する。
二つの太陽電池セル4の表面に導通材5が配され、その二つの太陽電池セル4同士は、導通材5及び接続部材6を介して電気的に接続されている。また、太陽電池セル4の表面には多数の配線14が走っており、導通材5は配線14の上に配されている(図4(a2))。
Next, the manufacturing method of the solar cell unit of the first embodiment according to the present invention and the subsequent manufacturing method of the solar cell module will be described with reference to FIG.
Conductive material 5 is arranged on the surface of two solar cells 4, and the two solar cells 4 are electrically connected to each other via conductive material 5 and connecting member 6. A large number of wirings 14 run on the surface of the solar battery cell 4, and the conductive material 5 is disposed on the wirings 14 (FIG. 4 (a2)).

導通材5が存在しない太陽電池セル4上面の部分に、光透過性樹脂フィルム10をラミネートし、太陽電池セル4の裏面側にセル裏面支持フィルム11をラミネートする(図4(b1/b2))。   The transparent resin film 10 is laminated on the upper surface portion of the solar battery cell 4 where the conductive material 5 is not present, and the cell back support film 11 is laminated on the rear face side of the solar battery cell 4 (FIG. 4 (b1 / b2)). .

太陽電池セル4の受光面側の光透過性樹脂フィルム10の上に、充填材層3aを形成する(図4(c))。なお、先に説明したように、充填材層3は太陽電池セル4に対して両面に同じ充填材(表面充填材3aと裏面充填材3b)を用意し、最終的には一つの充填材層3としてセル全体を保護するように設けてもよい。   A filler layer 3a is formed on the light-transmitting resin film 10 on the light-receiving surface side of the solar battery cell 4 (FIG. 4C). Note that, as described above, the filler layer 3 is prepared by preparing the same fillers (surface filler 3a and back filler 3b) on both sides for the solar battery cell 4, and finally one filler layer. 3 may be provided to protect the entire cell.

このような方法をとれば、充填材層3aを有機フィルム材料のように薄膜化することが可能となり、充填材層3aによる光吸収を低減できるので、入光効率も向上する。なお、充填材層3aの薄膜化のみでは厚みを均一にできなくても、セル裏面支持フィルム11の下側に(充填材層3bの代わりに)発泡体層13を用いて凹凸を吸収させることで、薄膜化と表面平坦化の両立が可能となる(図4(d))。   By adopting such a method, the filler layer 3a can be thinned like an organic film material, and light absorption by the filler layer 3a can be reduced, so that the light incident efficiency is also improved. In addition, even if the thickness cannot be made uniform only by reducing the thickness of the filler layer 3a, the foam layer 13 is used to absorb irregularities under the cell back support film 11 (instead of the filler layer 3b). Thus, both thinning and surface flattening can be achieved (FIG. 4D).

すでに説明した方法の通りに、充填材層3aの上側に、あらかじめ準備した光透過性表面部材2及び反射防止膜1を形成させ、その後、成形樹脂製フレーム15に収容し、隙間を封止樹脂16によって封止することにより太陽電池ユニットが完成する(図4(e))。   As described above, the light-transmitting surface member 2 and the antireflection film 1 prepared in advance are formed on the upper side of the filler layer 3a, and then accommodated in the molded resin frame 15, and the gap is sealed with the sealing resin. The solar cell unit is completed by sealing with 16 (FIG. 4E).

ここに示した方法によれば、一部の無機材料(太陽電池セルや接続部材)を除いて、太陽電池ユニットの部材の多くを有機化合物で製造することが可能になり、製造条件の緩和、材料設計の範囲拡大及び低コスト化などが図れる。
また、成形樹脂製フレーム15に、下側から各々の材料を順番に重ねていって、最後に熱処理又は光照射を一括で行うことによって製造することも可能となり、生産性を大きく向上させることが可能となる。
According to the method shown here, it becomes possible to produce many of the members of the solar cell unit with an organic compound except for some inorganic materials (solar cells and connection members), The range of material design can be expanded and the cost can be reduced.
Moreover, it becomes possible to manufacture each of the molded resin frames 15 by sequentially stacking the respective materials from the lower side and finally performing heat treatment or light irradiation collectively, which can greatly improve productivity. It becomes possible.

<太陽電池モジュールの製造例>
(i)PETフィルム(基材)に感光性樹脂組成物の溶液を厚さ10μmとなるように塗工し、炉内で溶剤を乾燥させたのち、保護フィルム(PP)をラミネートし、UV硬化型フィルムとした。縦横150(mm)×150(mm)で、厚さ0.3mmの多結晶シリコン太陽電池セルの受光面及び裏面にある電極に合わせて、上記UV硬化型フィルムを打ち抜きにより穴開け加工した後、保護フィルム(PP)を剥がして位置合わせをしながら、これをセル表面上に、感光性樹脂層がセルに接するように載せ、さらに離型フィルムを載せ、真空ラミネータを用い、ラミネートした。そのあと、PETフィルムを剥がし、その上に凹凸のある透明なエンボス型フィルムを載せ、再度真空ラミネータを用い、エンボス構造の転写をした。さらに、露光装置を用い、このUV硬化型フィルムを硬化させた。
穴開け加工したUV硬化型フィルムのPP保護フィルムを剥がして位置合わせをしながら、感光性樹脂層がセルに接するようにこれをセル裏面上に載せ、さらに離型フィルムを載せ、真空ラミネータを用い、ラミネートした。露光装置を用い、このUV硬化型フィルムを硬化させ、PETフィルムを剥がし、表面にエンボス模様の付いた支持フィルム付きセルを作製した。
<Example of solar cell module production>
(I) The photosensitive resin composition solution was applied to a PET film (base material) to a thickness of 10 μm, the solvent was dried in an oven, a protective film (PP) was laminated, and UV curing was performed. A mold film was obtained. After punching the UV curable film by punching according to the electrodes on the light receiving surface and the back surface of a polycrystalline silicon solar cell with a thickness of 150 mm (mm) x 150 (mm) and a thickness of 0.3 mm, While the protective film (PP) was peeled off and aligned, this was placed on the surface of the cell so that the photosensitive resin layer was in contact with the cell, and a release film was placed thereon, followed by lamination using a vacuum laminator. After that, the PET film was peeled off, a transparent embossed film with unevenness was placed thereon, and the embossed structure was transferred again using a vacuum laminator. Further, this UV curable film was cured using an exposure apparatus.
While peeling and aligning the PP protective film of the UV curable film that has been punched, place it on the back of the cell so that the photosensitive resin layer is in contact with the cell, and then place a release film on it, using a vacuum laminator Laminated. This UV curable film was cured using an exposure apparatus, the PET film was peeled off, and a cell with a support film having an embossed pattern on the surface was produced.

(ii)熱硬化型樹脂組成物に導電性粒子を分散させた溶液をPETフィルム(基材)に厚さ10μmとなるように塗工し、炉内で溶剤を乾燥させ、PPの保護フィルムをラミネートし、異方導電性フィルムとした。次いで、上記(i)の支持フィルム付きセルと、半田メッキ銅リボンとを異方導電性フィルムを介して熱圧着し、各セルを直列に接続した。 (Ii) A solution in which conductive particles are dispersed in a thermosetting resin composition is applied to a PET film (base material) to a thickness of 10 μm, the solvent is dried in a furnace, and a PP protective film is applied. Laminated to make an anisotropic conductive film. Next, the cell with the support film (i) and the solder-plated copper ribbon were thermocompression bonded through an anisotropic conductive film, and the cells were connected in series.

(iii)PPフィルム上に、不飽和ポリエステル樹脂組成物を塗工し、この上にガラス繊維を分散させ、さらに同様の塗工フィルムとサンドイッチ構造とし、半硬化状態を作った(SMCと呼ぶ)。このSMCから金型プレス成形により、断面構造が図4(e)15のような盆状の成形フレームを作製した。アルミニウムの真空蒸着によりPET基材上に膜厚み500nmの反射膜を形成した。厚み3mmのポリエチレン製のフォームにウレタン系接着剤を介して、反射膜をAl面が接着層に接するようにラミネートした(Alラミネートフォームと呼ぶ)。成形フレーム上にAlラミネートフォームを、ウレタン系接着剤を介してラミネートし、FRP支持体を得た。 (Iii) An unsaturated polyester resin composition was coated on a PP film, and glass fibers were dispersed on the PP film to form a sandwich structure with a similar coated film (referred to as SMC). . A basin-shaped molding frame having a cross-sectional structure as shown in FIG. A reflective film having a film thickness of 500 nm was formed on the PET substrate by vacuum deposition of aluminum. The reflective film was laminated to a polyethylene foam having a thickness of 3 mm via a urethane adhesive so that the Al surface was in contact with the adhesive layer (referred to as an Al laminate foam). An Al laminate foam was laminated on the molding frame via a urethane adhesive to obtain an FRP support.

(iv)このFRP支持体上に、上記(ii)で作製した接続済みの支持フィルム付きセルを並べ、高透明接着フィルムを介してその上にガラス基板を載せた。この状態で、ガラス基板とFRP支持体の間をクランプで挟み、周囲にシリカ充填されたエポキシ樹脂封止剤を注入した。このまま、150℃の炉に20分間入れ、エポキシ樹脂を半硬化させ、クランプを外した。その上にフッ素含有でかつシロキサン含有アクリル樹脂とその硬化剤を酢酸ブチル(溶媒)に希釈し、硬化後80nm程度の膜厚となるようにスプレー塗布し、再び150℃の炉に60分入れ、反射防止膜、および周囲の充填材層を硬化させ、太陽電池モジュールを完成させた。 (Iv) On the FRP support, the connected cells with a support film prepared in (ii) above were arranged, and a glass substrate was placed thereon via a highly transparent adhesive film. In this state, the glass substrate and the FRP support were clamped, and an epoxy resin sealant filled with silica was injected into the periphery. The epoxy resin was semi-cured and placed in a 150 ° C. oven for 20 minutes, and the clamp was removed. On top of that, fluorine-containing and siloxane-containing acrylic resin and its curing agent are diluted in butyl acetate (solvent), spray-coated so as to have a film thickness of about 80 nm after curing, and again placed in a furnace at 150 ° C. for 60 minutes, The antireflection film and the surrounding filler layer were cured to complete the solar cell module.

なお、ここで作製したモジュールと、ここで使ったセルを用いている市販品のモジュールとを比較したところ、初期特性においては同等であり、また、ここで作製したモジュールは、部材コスト及び製造コストで約40%程度を削減できたものと推算した。また、信頼性試験においては、サンシャインウェザーメータ(デューサイクル)テストに1000時間かけたところ、市販品の変換効率低下が−10%であったのに対し、−2%と極めて良好な結果となった。軽量化については、この試作では2%減程度であったが、これはモジュールの面積に大きく依存するものである。   In addition, when the module produced here is compared with the commercial module using the cell used here, the initial characteristics are the same, and the module produced here has a member cost and a manufacturing cost. It was estimated that about 40% could be reduced. In addition, in the reliability test, when the sunshine weather meter (Due cycle) test was performed for 1000 hours, the reduction in conversion efficiency of the commercial product was -10%, whereas the result was very good at -2%. It was. The weight reduction was about 2% in this prototype, but this greatly depends on the area of the module.

本発明によれば、下記の太陽電池ユニット、太陽電池セルの接続方法、太陽電池セルの接続構造及び太陽電池セル接続用導通材が提供される。
(1)複数の太陽電池セルと、前記太陽電池同士を電気的に接続する接続部材及び導通材と、少なくとも前記太陽電池セルの受光面側を保護する充填材層とを備える太陽電池ユニットであって、前記導通材は、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤である、太陽電池ユニット。
(2)前記高分子樹脂は、アクリル系ポリマー及び熱硬化性樹脂を含有する、(1)に記載の太陽電池ユニット。
(3)前記導電粒子は、前記フィルム状接着剤中に接続端子1cm(平面視の面積)あたり10〜1,000,000個分散されている、(1)又は(2)に記載の太陽電池ユニット。
(4)前記導通材は、150℃以下の温度で熱圧着される、(1)〜(3)のいずれか一つに記載の太陽電池ユニット。
(5)複数の導通材と、前記導通材同士を電気的に接続する接続部材とを介して複数の太陽電池セルを電気的に接続する太陽電池セルの接続方法であって、前記導通材は、それぞれの前記太陽電池セルの表面に配置されると共に、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤である、太陽電池セルの接続方法。
(6)前記太陽電池セルの表面に複数の配線を配置し、前記複数の前記配線をまたぐように前記導通材を配置する、(5)に記載の太陽電池セルの接続方法。
(7)前記高分子樹脂は、アクリル系ポリマー及び熱硬化性樹脂を含有する、(5)又は(6)に記載の太陽電池セルの接続方法。
(8)前記導電粒子は、前記フィルム状接着剤中に接続端子1cm(平面視の面積)あたり10〜1,000,000個分散されている、(5)〜(7)のいずれか一つに記載の太陽電池セルの接続方法。
(9)前記導通材を150℃以下の温度で熱圧着する、(5)〜(8)のいずれか一つに記載の太陽電池セルの接続方法。
(10)複数の導通材と、前記導通材同士を電気的に接続する接続部材とを介して複数の太陽電池セルが電気的に接続される太陽電池セルの接続構造であって、前記導通材は、前記太陽電池セルの表面に配置されると共に、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤である、太陽電池セルの接続構造。
(11)前記太陽電池セルの表面に複数の配線が配置され、前記導通材は前記複数の前記配線をまたぐように配置される、(10)に記載の太陽電池セルの接続構造。
(12)前記高分子樹脂は、アクリル系ポリマー及び熱硬化性樹脂を含有する、(10)又は(11)に記載の太陽電池セルの接続構造。
(13)前記導電粒子は、フィルム状接着剤中に接続端子1cm(平面視の面積)あたり10〜1,000,000個分散されている、(10)〜(12)のいずれか一つに記載の太陽電池セルの接続構造。
(14)前記導通材は、150℃以下の温度で熱圧着される、(10)〜(13)のいずれか一つに記載の太陽電池セルの接続構造。
(15)接続部材によって互いに電気的に接続されると共に複数の太陽電池セルを電気的に接続する太陽電池セル接続用導通材であって、前記導通材は、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤である、太陽電池セル接続用導通材。
(16)前記導通材は、それぞれの前記太陽電池セルの表面に配置される、(15)に記載の太陽電池セル接続用導通材。
(17)前記高分子樹脂は、アクリル系ポリマー及び熱硬化性樹脂を含有する、(15)又は(16)に記載の太陽電池セル接続用導通材。
(18)前記導電粒子は、前記フィルム状接着剤中に接続端子1cm(平面視の面積)あたり10〜1,000,000個分散されている、(15)〜(17)のいずれか一つに記載の太陽電池セル接続用導通材。
(19)前記導通材は、150℃以下の温度で熱圧着される、(15)〜(18)のいずれか一つに記載の太陽電池セル接続用導通材。
According to this invention, the following solar cell unit, the connection method of a photovoltaic cell, the connection structure of a photovoltaic cell, and the electrically conductive material for photovoltaic cell connection are provided.
(1) A solar cell unit comprising a plurality of solar cells, a connection member and a conductive material that electrically connect the solar cells, and a filler layer that protects at least the light receiving surface side of the solar cells. The conductive material is a solar cell unit that is a film adhesive having anisotropic conductivity including a polymer resin and conductive particles.
(2) The solar cell unit according to (1), wherein the polymer resin includes an acrylic polymer and a thermosetting resin.
(3) The sun according to (1) or (2), wherein 10 to 1,000,000 conductive particles are dispersed per 1 cm 2 (area in plan view) of connection terminals in the film adhesive. Battery unit.
(4) The solar cell unit according to any one of (1) to (3), wherein the conductive material is thermocompression bonded at a temperature of 150 ° C. or lower.
(5) A solar cell connection method for electrically connecting a plurality of solar cells via a plurality of conductive materials and a connection member for electrically connecting the conductive materials to each other, wherein the conductive material is A method for connecting solar cells, which is a film-like adhesive that is disposed on the surface of each of the solar cells and has an anisotropic conductivity including a polymer resin and conductive particles.
(6) The solar cell connection method according to (5), wherein a plurality of wirings are arranged on a surface of the solar battery cell, and the conductive material is arranged so as to straddle the plurality of the wirings.
(7) The solar cell connection method according to (5) or (6), wherein the polymer resin contains an acrylic polymer and a thermosetting resin.
(8) Any one of (5) to (7), wherein 10 to 1,000,000 conductive particles are dispersed per 1 cm 2 (area in plan view) of connection terminals in the film adhesive. The connection method of the photovoltaic cell as described in one.
(9) The method for connecting solar cells according to any one of (5) to (8), wherein the conductive material is thermocompression bonded at a temperature of 150 ° C. or lower.
(10) A solar cell connection structure in which a plurality of solar cells are electrically connected via a plurality of conductive materials and a connection member that electrically connects the conductive materials to each other. Is a solar cell connection structure which is a film-like adhesive which is disposed on the surface of the solar cell and which has a polymer resin and conductive particles and has anisotropic conductivity.
(11) The connection structure of solar cells according to (10), wherein a plurality of wirings are arranged on a surface of the solar cells, and the conductive material is arranged so as to straddle the plurality of the wirings.
(12) The solar cell connection structure according to (10) or (11), wherein the polymer resin includes an acrylic polymer and a thermosetting resin.
(13) Any one of (10) to (12), in which 10 to 1,000,000 conductive particles are dispersed per 1 cm 2 (area in plan view) of the connection terminal in the film adhesive. The connection structure of the photovoltaic cell described in 1.
(14) The connection structure for solar cells according to any one of (10) to (13), wherein the conductive material is thermocompression bonded at a temperature of 150 ° C. or lower.
(15) A solar cell connecting conductive material that is electrically connected to each other by a connecting member and that electrically connects a plurality of solar cells, wherein the conductive material includes a polymer resin and conductive particles. A conductive material for connecting solar cells, which is a film adhesive having anisotropic conductivity.
(16) The conductive material for connecting solar battery cells according to (15), wherein the conductive material is disposed on a surface of each of the solar battery cells.
(17) The conductive material for connecting solar battery cells according to (15) or (16), wherein the polymer resin contains an acrylic polymer and a thermosetting resin.
(18) Any one of (15) to (17), wherein 10 to 1,000,000 conductive particles are dispersed per 1 cm 2 (area in plan view) of connection terminals in the film adhesive. Conductive material for solar cell connection as described in one.
(19) The conductive material for solar cell connection according to any one of (15) to (18), wherein the conductive material is thermocompression bonded at a temperature of 150 ° C. or lower.

1:反射防止膜
2:光透過性表面部材(強化ガラス板や透明樹脂板)
3:充填材層
3a:受光面側の充填材層
3b:裏面側の充填材層
4、4a、4b:太陽電池セル
5:導通材
4+5:導通材付き太陽電池セル
6:接続部材
7:裏面保護材
8:裏面支持板
9:アルミフレーム
9a:補強アルミフレーム
10:フィルム状光透過性樹脂層(光透過性樹脂フィルム)
11:フィルム状セル裏面支持層
12:反射膜
13:発泡体層(低吸湿性発泡体層)
14:配線
15:フレーム(成形樹脂製フレーム)
16:封止樹脂
1: Antireflection film 2: Light transmissive surface member (tempered glass plate or transparent resin plate)
3: Filler layer 3a: Light-receiving-surface-side filler layer 3b: Back-side filler-material layer 4, 4a, 4b: Solar cell 5: Conductive material 4 + 5: Conductive material-equipped solar cell 6: Connection member 7: Back surface Protective material 8: Back support plate 9: Aluminum frame 9a: Reinforced aluminum frame 10: Film-like light transmissive resin layer (light transmissive resin film)
11: Film-like cell back support layer 12: Reflective film 13: Foam layer (low hygroscopic foam layer)
14: Wiring 15: Frame (molded resin frame)
16: Sealing resin

Claims (1)

複数の結晶系太陽電池セルと、前記太陽電池セル同士を電気的に接続する接続部材及び導通材と、少なくとも前記太陽電池セルの受光面側を保護する充填材層とを備える太陽電池ユニットであって、
前記導通材は、高分子樹脂及び導電粒子を含んで異方導電性を有するフィルム状接着剤であり、
一の前記太陽電池セルの受光面と、他の前記太陽電池セルの受光面とは反対側の面とが前記接続部材及び前記導通材を介して電気的に接続されている、太陽電池ユニット。
A solar cell unit comprising a plurality of crystalline solar cells, a connecting member and a conductive material that electrically connect the solar cells, and a filler layer that protects at least the light receiving surface side of the solar cells. And
The conducting material is a film adhesive having anisotropic conductivity including a polymer resin and conductive particles,
The solar cell unit in which the light-receiving surface of one said photovoltaic cell and the surface on the opposite side to the light-receiving surface of another said photovoltaic cell are electrically connected through the said connection member and the said electrically-conductive material.
JP2014124313A 2003-09-05 2014-06-17 Solar cell unit Pending JP2014197700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124313A JP2014197700A (en) 2003-09-05 2014-06-17 Solar cell unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003313921 2003-09-05
JP2003313921 2003-09-05
JP2014124313A JP2014197700A (en) 2003-09-05 2014-06-17 Solar cell unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012069108A Division JP2012147008A (en) 2003-09-05 2012-03-26 Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage method of conduction material for connection of solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016174819A Division JP2016201577A (en) 2003-09-05 2016-09-07 Solar cell unit

Publications (2)

Publication Number Publication Date
JP2014197700A true JP2014197700A (en) 2014-10-16
JP2014197700A5 JP2014197700A5 (en) 2015-06-25

Family

ID=41190105

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2009123330A Pending JP2009218612A (en) 2003-09-05 2009-05-21 Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2012069108A Pending JP2012147008A (en) 2003-09-05 2012-03-26 Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage method of conduction material for connection of solar cell
JP2012069117A Pending JP2012199240A (en) 2003-09-05 2012-03-26 Conduction material for connection of solar cells
JP2012269327A Pending JP2013051446A (en) 2003-09-05 2012-12-10 Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage of conduction material for solar cell connection
JP2012269325A Pending JP2013110420A (en) 2003-09-05 2012-12-10 Solar cell with conductive material, connection structure, and method for connecting solar cells
JP2014124313A Pending JP2014197700A (en) 2003-09-05 2014-06-17 Solar cell unit
JP2016174819A Pending JP2016201577A (en) 2003-09-05 2016-09-07 Solar cell unit

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2009123330A Pending JP2009218612A (en) 2003-09-05 2009-05-21 Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2012069108A Pending JP2012147008A (en) 2003-09-05 2012-03-26 Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage method of conduction material for connection of solar cell
JP2012069117A Pending JP2012199240A (en) 2003-09-05 2012-03-26 Conduction material for connection of solar cells
JP2012269327A Pending JP2013051446A (en) 2003-09-05 2012-12-10 Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage of conduction material for solar cell connection
JP2012269325A Pending JP2013110420A (en) 2003-09-05 2012-12-10 Solar cell with conductive material, connection structure, and method for connecting solar cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016174819A Pending JP2016201577A (en) 2003-09-05 2016-09-07 Solar cell unit

Country Status (1)

Country Link
JP (7) JP2009218612A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293779B2 (en) * 2010-07-20 2013-09-18 日立化成株式会社 Adhesive composition, circuit connection structure, semiconductor device and solar cell module
JP5558339B2 (en) * 2010-12-28 2014-07-23 京セラ株式会社 Manufacturing method of photoelectric conversion module
KR101283142B1 (en) * 2011-10-20 2013-07-05 엘지이노텍 주식회사 Solar apparatus and method of fabricating the same
DE102013111748A1 (en) * 2013-10-24 2015-04-30 Hanwha Q Cells Gmbh Solar module and solar module manufacturing process
JP2015233095A (en) * 2014-06-10 2015-12-24 日立化成株式会社 Solar battery unit and method for manufacturing solar battery unit
JP6365057B2 (en) * 2014-07-22 2018-08-01 大日本印刷株式会社 Designed solar cell and solar cell prepared sheet
JP6862486B2 (en) * 2018-03-28 2021-04-21 エルジー エレクトロニクス インコーポレイティド Solar panel and its manufacturing method
CN117438505B (en) * 2023-11-24 2024-03-22 浙江求是半导体设备有限公司 Preparation method and arrangement method of photovoltaic cell and preparation equipment thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188184A (en) * 1986-02-14 1987-08-17 日立化成工業株式会社 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH09199739A (en) * 1996-01-19 1997-07-31 Canon Inc Solar cell module and its manufacture
JPH10313126A (en) * 1997-05-13 1998-11-24 Sharp Corp Solar cell element, its electrode surface treating method and solar cell module
JPH1161060A (en) * 1997-08-08 1999-03-05 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
JP2000323734A (en) * 1999-05-06 2000-11-24 Dainippon Printing Co Ltd Solar cell film and solar cell module using the same
JP2001031915A (en) * 1999-07-22 2001-02-06 Bridgestone Corp Anisotropically electroconductive film
JP2001193244A (en) * 2000-01-07 2001-07-17 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2001202830A (en) * 2000-01-17 2001-07-27 Asahi Kasei Corp Anisotropy conductive film and electrical connection body using it
JP2001297631A (en) * 2000-04-13 2001-10-26 Asahi Kasei Corp Anisotropic conductive film
JP2003188394A (en) * 2001-12-19 2003-07-04 Toppan Printing Co Ltd Film for solar cell and solar cell module

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534458A (en) * 1978-08-31 1980-03-11 Mitsubishi Electric Corp Semiconductor device
US4642421A (en) * 1984-10-04 1987-02-10 Amp Incorporated Adhesive electrical interconnecting means
JPH0671093B2 (en) * 1985-04-19 1994-09-07 株式会社日立製作所 Photovoltaic element
JP2939075B2 (en) * 1992-12-24 1999-08-25 キヤノン株式会社 Solar cell module
JP3078933B2 (en) * 1992-12-28 2000-08-21 キヤノン株式会社 Photovoltaic device
JP3578484B2 (en) * 1993-06-29 2004-10-20 旭化成エレクトロニクス株式会社 Composition for anisotropic conductive connection
JP3164183B2 (en) * 1993-08-06 2001-05-08 キヤノン株式会社 Photovoltaic element and module
JP3448924B2 (en) * 1993-11-25 2003-09-22 富士電機株式会社 Method for manufacturing thin-film solar cell module
JPH08330615A (en) * 1995-05-30 1996-12-13 Canon Inc Series solar cell and manufacture thereof
JPH08325543A (en) * 1995-06-05 1996-12-10 Soken Chem & Eng Co Ltd Anisotropically electroconductive adhesive
JPH1021746A (en) * 1996-07-02 1998-01-23 Toshiba Chem Corp Anisotropic conductive film
JPH11243224A (en) * 1997-12-26 1999-09-07 Canon Inc Photovoltaic element module, manufacture thereof and non-contact treatment
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP4585652B2 (en) * 2000-06-01 2010-11-24 キヤノン株式会社 Photovoltaic element and method for producing photovoltaic element
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP2002252362A (en) * 2001-02-22 2002-09-06 Canon Inc Solar battery module
JP3821661B2 (en) * 2001-04-23 2006-09-13 シャープ株式会社 Solar cell module and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188184A (en) * 1986-02-14 1987-08-17 日立化成工業株式会社 Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
JPH09199739A (en) * 1996-01-19 1997-07-31 Canon Inc Solar cell module and its manufacture
JPH10313126A (en) * 1997-05-13 1998-11-24 Sharp Corp Solar cell element, its electrode surface treating method and solar cell module
JPH1161060A (en) * 1997-08-08 1999-03-05 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
JP2000323734A (en) * 1999-05-06 2000-11-24 Dainippon Printing Co Ltd Solar cell film and solar cell module using the same
JP2001031915A (en) * 1999-07-22 2001-02-06 Bridgestone Corp Anisotropically electroconductive film
JP2001193244A (en) * 2000-01-07 2001-07-17 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2001202830A (en) * 2000-01-17 2001-07-27 Asahi Kasei Corp Anisotropy conductive film and electrical connection body using it
JP2001297631A (en) * 2000-04-13 2001-10-26 Asahi Kasei Corp Anisotropic conductive film
JP2003188394A (en) * 2001-12-19 2003-07-04 Toppan Printing Co Ltd Film for solar cell and solar cell module

Also Published As

Publication number Publication date
JP2016201577A (en) 2016-12-01
JP2009218612A (en) 2009-09-24
JP2013110420A (en) 2013-06-06
JP2012199240A (en) 2012-10-18
JP2012147008A (en) 2012-08-02
JP2013051446A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP2005101519A (en) Solar cell unit and solar cell module
JP2016201577A (en) Solar cell unit
JP6686116B2 (en) Photovoltaic module with light directing medium and method of making same
US20100252107A1 (en) Solar cell module
JP5381717B2 (en) Manufacturing method of solar cell module
US5508205A (en) Method of making and utilizing partially cured photovoltaic assemblies
EP2913921B1 (en) Solar cell apparatus
JP2012533169A (en) Composite system for solar cell module
US20140076382A1 (en) Photovoltaic module and process for manufacture thereof
WO2023103260A1 (en) Photovoltaic cell assembly and manufacturing method therefor
JP4703231B2 (en) Solar cell module and manufacturing method thereof
JP2012109414A (en) Solar cell module
JP5540738B2 (en) Insulating substrate for solar cell, solar cell module, and method for manufacturing solar cell insulating substrate
CN116093167A (en) Battery assembly, photovoltaic assembly and preparation method of photovoltaic assembly
JP5598986B2 (en) Solar cell module
WO2015021849A1 (en) Flexible, large-area laminated solar battery capable of multi-scale light trapping, and preparation method therefor
CN217719626U (en) Low-glare high-reliability photovoltaic module
CN108831936A (en) Light trapping structure glue and smooth flannelette crystalline silicon composite battery and its processing method
CN220627820U (en) Photovoltaic module
JP2011124510A (en) Solar-cell module
JP2006041168A (en) Solar battery module and method for manufacturing same
CN217387177U (en) Light photovoltaic module
CN101244893A (en) Method for manufacturing reflection-preventing layer of glass substrate
CN101913773A (en) Ultra-white float glass plated with anti-reflective coating and used for packaging solar battery assembly
WO2014047291A1 (en) Photovoltaic cell sockets, photovoltaic module and process for manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161024

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161222