JPS6331906B2 - - Google Patents

Info

Publication number
JPS6331906B2
JPS6331906B2 JP59199247A JP19924784A JPS6331906B2 JP S6331906 B2 JPS6331906 B2 JP S6331906B2 JP 59199247 A JP59199247 A JP 59199247A JP 19924784 A JP19924784 A JP 19924784A JP S6331906 B2 JPS6331906 B2 JP S6331906B2
Authority
JP
Japan
Prior art keywords
particles
conductive particles
connecting member
conductive
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59199247A
Other languages
Japanese (ja)
Other versions
JPS6177279A (en
Inventor
Isao Tsukagoshi
Yutaka Yamaguchi
Atsuo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP19924784A priority Critical patent/JPS6177279A/en
Publication of JPS6177279A publication Critical patent/JPS6177279A/en
Publication of JPS6331906B2 publication Critical patent/JPS6331906B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は回路の接続に用いられる導電性の接続
部材に関する。 〔従来の技術〕 従来より集積回路類の配線基板への接続、表示
素子類と配線基板への接続、電気回路とリードと
の接続などのように接続端子が細かいピツチで並
んでいる場合の接続方法として、ハンダ付や導電
性接着剤による方法が広く用いられている。しか
しながら、これらの方法においては導電回路部の
みに限定して接続部材を形成しなければならない
ので、高密度、高精細化の進む微細回路の接続に
困難をきたしていた。 最近回路接続用の接続部材について検討が加え
られ、すでに特開昭51−20941号公報、特開昭55
−104007号公報、特開昭56−122193号公報、特開
昭51−21192号公報等により提案されている。こ
れらはいずれもその基本思想は、相対峙する回路
間に導電性材料を含む異方導電性の接続部材層を
設け、加圧または加熱加圧手段を構じることによ
つて、回路間の電気的接続と同時に隣接回路間に
絶縁性を付与し相対峙する回路を接着固定するも
のである。 しかしながらこのような従来の方法において
は、回路間の導電は主として複数個の導電性材
料、多くの場合には金属粒子の接触によつて得ら
れるものであり、いま一歩導通の信頼性が不足し
ていた。 上記導通の信頼性向上の方法として、接着剤成
分中に熱溶融性金属粒子を充填し、回路接続時の
加熱により金属粒子を溶融させて接続する試みも
ある。 しかしながらこの方法においても、接続時の条
件巾が狭く温度・圧力−時間の厳密なコントロー
ルが要求される為、接続信頼性が充分に得られな
い欠点を有していた。 すなわち接続時に金属粒子を加熱溶融する為に
は、該金属の融点以上の温度が必要であり、接続
温度が金属の融点より高くなる程、溶融金属の粘
度低下により電気的接続を必要とする回路部以外
にも流れだす結果、隣接回路間との充分な絶縁性
が得られず微細回路に対応できなかつた。その為
に接続時の昇温カーブに充分留意して、温度・時
間の条件を設定しなければならなかつた。 さらに加うる欠点は、たとえば回路がITO
(indium tin oxide)膜などの場合のように、回
路と熱溶融性金属が接着性を有しない場合には界
面に存在する絶縁性接着剤のために導電性に劣る
欠点を有していた。 本発明者らは先に回路接続用に極めて良好な透
明性を有する導電性接着シートを提案したがさら
に上記欠点を改善し、信頼性の高い接続を可能と
する方法について鋭意検討の結果、本発明に達し
た。 〔発明の目的〕 本発明は簡便な接着作業により信頼性にすぐれ
た異方導電性と高い接着力を併せもつ微細回路接
続用の接続部材を提供せんとするものである。 〔発明の開示〕 すなわち本発明は、接着剤成分と導電性粒子と
よりなる接続部材において導電性粒子として熱可
塑性粒子からなる核材のほゞ全表面を、融点が
100〜250℃の低融点金属により被覆した粒子を使
用することを特徴とする接続部材であり、好まし
くは前記被覆層を有する導電性粒子は、平均粒径
が1〜50μmであり、粒子の最大径に対する最小
径の比が0.5〜1.0であり接続部材中に0.1〜10体積
%含有され、かつ接続部材の厚みは前記導電性粒
子の平均粒径の110%以上であり、全光線透過率
40%以上の透明性と感熱貼付性を有する接続部材
である。 本発明にかゝる接続部材においては、核材に被
覆された低融点金属は接続時の加熱あるいは加熱
加圧により溶融し、導電性粒子相互あるいは導電
回路部との連結材として使用するため、信頼性に
優れた微細回路の接続が可能となり、さらには熱
可塑性核材は加熱あるいは加熱加圧による接続操
作時に、導電回路に沿つた形で押付けるように変
形し、それに伴い被覆された金属は回路との接触
面積が増大することから特に優れた導電性を得る
ことができる。あわせて導電性粒子として、極め
て少量の金属を用いれば良いので、接続部材の軽
量化と貴重な金属の省資源化を提供するものであ
る。 また感熱貼付性を有する接着剤は、接続時の加
熱あるいは加熱加圧により接着性を発現する為
に、絶縁回路部においても同時に機械的接続が行
なえる。 さらに本発明になる接続部材は、導電性粒子の
核が熱可塑性である為、接続時の加熱あるいは加
熱加圧により、距離も短かく熱伝導性の良好な回
路間において主に軟化変形し、絶縁回路部におけ
る粒子は変形しないので隣接回路との絶縁性が充
分に得られる為に微細回路に適応可能である。 本発明にかかる接続部材の構成を図面を用いて
説明すると、第1図は本発明に使用する導電性粒
子を示す断面模式図であり、熱可塑性粒子からな
る核材1の表面が低融点金属2で被覆されている
様子を示している。この場合、核材1は低融点金
属2により全面被覆されているのが最適である
が、一部の未被覆部があつてもかまわない。 本発明で用いられる核材1としては、たとえば
ポリエチレン、ポリプロピレン、ポリスチレン、
および、アクリロニトリル−スチレン共重合体、
アクリロニトリル−ブタジエン−スチレン共重合
体、ポリカーボネート、ポリメチルメタアクリレ
ート等の各種アグリレート、ポリビニルブチラー
ル、ポリイミド、ポリアミド、アルキルフエノー
ル、ポリイソブチレン等の合成樹脂類や各種ゴム
類などから作られた粒子が使用でき、またこれら
の単体や2種以上の複合物であつて良い。 核材1の形状はほゞ球状であることが好ましい
が、表面に突出や凹凸があつても良い。接続作業
時における条件巾を広く設定可能とする為には、
はつきりした融点を示さない、すなわち非結晶性
物質を用いることが好ましい。 2は低融点金属層であり融点が100〜250℃の範
囲にあるものが適用できる。融点が100℃よりも
低いと高温時における回路の接続信頼性が低下す
るため好ましくなく、250℃以上であると、回路
接続時に高温を必要とし回路に装着した部品に高
温による悪影響が生じるため好ましくない。 これら低融点金属粒子としては各種の共晶合金
あるいは非共晶低融点合金があるいは単独金属が
使用できる。たとえばPb88.7%/Sn11.1%(融点
250℃)、以下同様な表現で示すと、Pb82.6/
Cd17.4(248℃)Pb85/Au(215℃)、Tl93.7/
Na6.3(238℃)、Tl92/As8(220℃)、Tl99.4/
Li0.6(211℃)、Tl82.9/Cd17.1(203℃)、Tl97/
Mg3(203℃)、Tl80/Sb20(195℃)、Tl(52.5/
Bi47.5(188℃)、Tl96.5/K3.5(173℃)、Tl73/
Au27(131℃)、Bi97/Na3(218℃)、Bi76.5/
23.5Tl(198℃)、Bi60/Cd40(144℃)、Bi57/
Sn43(139℃)、Bi56.5/Pb43.5(125℃)、Sn(232
℃)、Sn67.7/Cd32.3(177℃)、Sn56.5/Tl43.5
(170℃)、In97.2/Zn2.8(144℃)、In74/Cd26
(123℃)、Bi57/Pb11/Sn42(135℃)、Bi56/
Sn40/Zn4(130℃)、Bi53.9/Sn25.9/Cd20.2
(103℃)、Sn48/In52(117℃)、In(157℃)、
Ag5/Pb15/In80(149℃)、Pb38/Sn62(183℃)、
Pb47/Sn50/S63(186℃)、Pb50/In50(180℃)、
Pb50/Sn50(183℃)Pb10/Sn90(183℃)、
Au3.5/Pb96.5(221℃)、Pb5/Sn95(183℃)、
Ag10/In90(204℃)Pb60/Sn40(183℃)、
Sn95/Sb5(232℃)などがある。 熱可塑性核材1の表面上に熱溶融性金属2を形
成する方法としては、たとえば蒸着法、スパツタ
リング法、メツキ法などの物理化学的方法や、核
材粒子の合成時に熱溶融金属粉を吸着させたり、
官能基を有する核材と熱溶融性金属を化学結合さ
せたり、界面活性剤やセツプリング剤などにより
吸着させるなどの化学的手法による等の方法が採
用できる。また被覆層の厚みは任意に設定でき
る。 上記により得られた導電性粒子は平均粒径が1
〜50μm、粒子径の最大径に対する最小径の比が
0.5〜1.0であるものとする。 粒子径が1μm以下では多量の導電性粒子を必
要とするため接着力の低下が大きく、50μm以上
では隣接微細回路間に存在する確率が大きいため
に高分解が得られない。 導電性粒子の形状については、前記の如く最大
径に対する最小径の比(以下粒径比という)が
0.5〜1.0程度とする。この範囲外では導電性と接
着性のバランスがくずれる。 この範囲を満たす例としては、ほゞ球状である
ものが代表的であるが、上記の条件を満たすもの
であれば特に限定されない。また粒子表面に突起
物や凹凸があつても良い。 また粒子径は全体的な平均粒径をとるものと
し、粒子の形状や粒子径の測定は、たとえば走査
形電子顕微鏡などによる方法が便利である。 導電性粒子が球状であると、接続時の加熱加圧
により粒子相互あるいは粒子と回路面との接触を
得やすく高導電性を得やすい。 導電性粒子は接続部材の厚み方向の単層で存在
しても良いし、厚み方向に複数個配列あるいは凝
集した構造であつても良い。 接着剤中に占める導電性粒子は0.1〜10体積%
が適当である。0.1体積%以下では満足する導電
性が得られず、10体積%以上では隣接回路との絶
縁性が低下し接続部材の透明性も得られない。 本発明で用いられる接着剤としては、基本的に
は絶縁性を示す通常の接着性シート類に用いられ
ている配合が適用可能である。通常の接着シート
類に用いられる配合は凝集力を付与するポリマー
と、その他必要に応じて用いる粘着付与剤、粘着
性調整剤、架橋剤、老化防止剤、分散剤等からな
つている。 これらポリマー種としては、エチレン酢酸ビニ
ル共重合体、エチレン−酢酸ビニル共重合体変性
物、ポリエチレン、エチレン−プロピレン共重合
体、エチレン−アクリル酸共重合体、エチレン−
アクリル酸エステル共重合体、エチレン−アクリ
ル酸塩共重合体、アクリル酸エステル系ゴム、ポ
リイソブチレン、アタクチツクポリプロピレン、
ポリビニルブチラール、アクリロニトリル−ブタ
ジエン共重合体、スチレン−ブタジエンブロツク
共重合体、スチレン−イソプレンブロツク共重合
体、ポリブタジエン、エチレンセルロース、ポリ
エステル、ポリアミド、ポリウレタン、天然ゴ
ム、シリコン系ゴム、ポリクロロプレン等の合成
ゴム類、ポリビニルエーテルなどが適用可能であ
り、単独あるいは2種以上併用して用いられる。 粘着付与剤としては、ジシクロペンタジエン樹
脂、ロジン、変性ロジン、テルペン樹脂、キシレ
ン樹脂、テルペン−フエノール樹脂、アルキルフ
エノール樹脂、クマロン−インデン樹脂等があ
り、これらを必要に応じて、単独あるいは2種以
上併用して用いる。粘着性調整剤としてはたとえ
ばジオクチルフタレートをはじめとする各種可塑
剤類等が代表的である。 架橋剤はポリマーの凝集力を高めることが必要
な場合に用いられ、ポリマの官能基と反応する多
官能性物質であり、たとえばポリイソシアネー
ト、メラミン樹脂尿素樹脂、フエノール樹脂等が
あげられる。 老化防止剤は、ポリマーバインダの熱、酸素、
光等に対する安定性を高めることが必要な場合に
用いるものでたとえば金属石ケン類を代表とする
安定剤や、アルキルフエノール類などの酸化防止
剤、ベンゾフエノン系、ベンゾトリアゾール系な
どの紫外線吸収剤等があり、やはり必要に応じて
単独あるいは2種以上併用して用いられる。 分散剤は、導電性粒子の分散性向上のために用
いる場合がある。この例としてはたとえば界面活
性剤がありノニオン系、カチオン系、アニオン
系、両性のうち1種あるいは2種以上併用して用
いることができる。 本発明にかゝる接続部材の製造方法としては、
ポリマおよびその他必要に応じて使用する添加剤
からなる接着剤組成物を溶剤に溶解するか懸濁状
に媒体中に分散し、あるいは熱溶融させて液状と
した後に導電性粒子をボールミルなどの通常の方
法により混合し導電性粒子混合接着剤組成物を得
る。 溶剤を用いる場合については核材粒子上に金属
層の形成された導電性粒子は溶剤に対する溶解性
が減少しているため溶剤を用いることも可能であ
るが、接着剤を溶解し核材粒子を溶解しない溶剤
を選択することがさらに好ましい。この手段とし
ては、たとえば接着剤をエマルシヨン化して水媒
体中に導電性粒子を分散することがよい。 上記導電性粒子混合接着剤を、接続を要する一
方あるいは双方の回路上にスクリーン印刷やロー
ルコータ等の手段を用いて接続部材層を形成して
も良いし、あるいは又接続部材の連続長尺体を得
るには紙やプラスチツクフイルム等に必要に応じ
て剥離処理を行なつたセパレータ上に前記手段に
より接続部材層を形成後巻重しても良いし、接続
層の粘着性が無い場合においてはセパレータを用
いずに巻重することも可能である。 上記製法において接着剤組成物中に溶剤あるい
は分散媒を含む場合においては溶剤乾燥時の厚み
方向の体積収縮現象を利用して導電性粒子が厚み
方向により密な配列を有する接続部材を得ること
が可能であり、又無溶剤下のホツトメルト塗工に
おいては、製造時の溶剤による環境汚染を防止す
ることができる。 接続部材層の厚みは、導電性粒子の粒径および
接続部材の特性を考慮して相対的に決定する。 すなわち接着剤により導電性粒子を充分に保持
するためには導電性粒子の粒径の110%以上を最
低必要とする。110%以下であると導電性粒子が
接着剤で保護されない為に酸化あるいは腐食等に
より導電性に劣化を生じる。また接続部材の特性
上5〜110μmの厚みが必要である。 5μm以下では充分な接着性が得られず、100μ
m以上では充分な導電性を得る為に多量の導電性
粒子の混合を必要とすることから実用的でない。
接続部材層には必要に応じて導電性あるいは非導
電性のたとえば不織布等よりなる芯材を用いても
良い。 得られた接続部材面は、必要に応じて塵埃等の
付着防止のためにセパレータで覆つても良いし、
あるいは両面セパレータを用いれば連続的に巻重
することも可能である。 このようにして得られた接続部材はかなりの透
明性を有する。接続部材が透明性を有すると製造
時の品質管理が行い易く外観上に見映えも良い。
また表示素子類の接着等においては、被着体を透
視できる構成をとることが可能となる。 得られた接続部材を用いて回路を接着する方法
としてはたとえば回路Aにフイルム状接続部材を
仮貼付した状態でセパレータのある場合にはセパ
レータを剥離し、あるいは導電性接着剤組成物を
塗布し必要に応じて溶剤除去後の状態でその面に
回路Bを熱プレスあるいは加熱ロール等で貼付け
ればよい。 第2図および第3図はかかる方法により回路を
接続した状態を模式的に示したもので熱と圧力に
よつて接着剤3が軟化流動するとともに導電性粒
子7も軟化変形し相互に接触するので両回路4,
5間の導通接着が可能となる。回路4,5の一方
もしくは両方が接着性を有しない場合、たとえば
ITOよりなる透明導電ガラスのような場合におい
ても核材が熱可塑性を有するために回路と核材表
面の低融点金属層が面で接触するので安定した高
導電性が得られる。 以下本発明を実施例によりさらに詳細に説明す
る。 実施例 1〜6 (1) 導電性粒子の作成 核材として平均粒径35μm、分子量5000のポ
リスチレン粒子を乳化重合法により得た。一方
Sn48/In52よりなる粒径5μmの低融点金属粒
子(融点117℃)をチタン系カツプリング剤の
2%水溶液中に分散して撹拌しながら前記核材
を添加してさらに1撹拌をつゞけた。上記によ
り得た分散液を目開き30μの金網上で水洗後、
水分を乾燥して未吸着の過剰の金属を除去した
導電性粒子を得た。 この導電性粒子は粒径35μmのポリスチレン
表面上にカツプリング剤により粒径5μmの金
属粒子がほゞ単層に吸着密集したほゞ球状物で
ある。 (2) 導電性粒子混合分散液および接続部材の作成 アクリル酸エステル系エマルシヨン(ガラス
転移点−30℃)中に前記導電性粒子の充填量を
変えて配合後、超音波分散を行なうことで導電
性粒子混合分散液を得た。 この分散液をバーコータでセパレータ(シリ
コン処理ポリエステルフイルム)上に塗布し90
℃−10分間乾燥して分散媒である水を除去して
接続部材を得た。 (3) 評価 ライン幅0.1mm、ピツチ0.2mmの回路を有する
全回路幅100mmのフレキシブル回路板(FPC)
に、接着巾3mm、長さ100mmに切断した上記接
続部材を載置し手で軽く圧着することで接続部
材をFPCに接続した。接続部材は室温におい
ても粘着性を有していたので上記仮接続が簡単
に行なえた。 そのあとセパレータを剥離して、他の同一ピ
ツチを有するFPCをセパレータ剥離面に載せ
て、顕微鏡下でFPC回路の位置合わせをした
後、圧力5Kg/cm2で10秒間加熱加圧して回路を
接続した。 接続温度は第1表に示すとおりであり、プレ
スの熱板温度を調節して求めた。 このとき接着シートは透明である為に、透過
光の助けにより回路の位置合わせが極めて容易
であつた。 このものの特性を第1表に示したが、いずれ
の実施例においても充分なる接続導通抵抗およ
び隣接回路間の絶縁性を有し、かつ充分な接着
力を示した。また実施例3〜5に見られるよう
に広い接続条件において上記特性が得られた。 比較例 1〜3 実施例1〜6と同様であるが導電性粒子の添加
量、厚みをかえた。条件およびその評価結果をを
第1表に示す。 比較例1、2においては接続部材の透明性が不
足した為回路の位置合わせが困難であり、比較例
2においては導電性粒子の添加量が多い為に隣接
回路との絶縁性が不足した。 比較例3においてはシート厚み/導電性粒子の
粒径の比が小さい為に、接着力が低下した。 実施例 7 ポリビニルブチラール粒子を撹拌しながら
Pb38/Sn62(融点183℃)のハンダを真空蒸着し
た。 上記により得た導電性粒子は核材粒径が約10μ
mでありハンダ層の厚みは約0.5μmであつた。次
にスチレンブタジエンブロツク共重合体
(MI2.6)100部と軟化点120℃の芳香族系粘着付
与剤50部およびトルエン200部よりなる接着剤溶
液中に前記導電性粒子の含量を変えてボールミル
で48時間混合して導電性粒子を含む接着剤溶液を
えた。ポリビニルブチラールはトルエンに不溶の
ためハンダの未被覆層が一部あつたにもかゝわら
ず導電性粒子は溶解せずに安定して存在した。 上記溶液を用いて実施例1〜6と同様にしてフ
イルム状の接続部材を作成し、前記FPCに120℃
−5Kg/cm−5秒の条件で加熱加圧して仮接続を
行なつたあと、FPCと同一ピツチを有する厚み
1mmのITO系透明導電ガラス(表面抵抗200Ω/
□)と位置合せを行ない接続した。結果を第1表
に示すが良好な異方導電性を有していた。又接続
部の断面を電子顕微鏡で観察したところ透明導電
ガラス面と熱溶融金属は核材で押付けられたよう
に面接触していた。 実施例 8〜9 実施例7で得た導電性粒子を含む接着剤溶液を
FPC基材上にスクリーン印刷後90℃−10分間乾
燥して接続部材付FPCをえた。 この接続部材面に実施例7で用いた透明導電ガ
ラスを接続評価した。 特性を第1表に示すが、良好な異方導電性を示
した。また本実施例においては、接続部材を一方
の回路に仮接続する工程が省けた。 なお実施例7〜9の導通抵抗値は、透明導電ガ
ラスの影響により若干高い値であるが、充分に実
用性のあるものである。 比較例 4 導電性粒子として、熱可塑性核材を用いない
で、平均粒径11μmのPb38/Sn62(融点183℃)の
ハンダ粒子を用いて、導電性粒子を含む接着剤溶
液を得た。 実施例8〜9と同様にして接続部材付のFPC
を得た後に、実施例7と同様にして透明導電ガラ
スと接続した。この時ハンダの溶融温度より32℃
高い215℃で接続したところ、ハンダは導電回路
部より流れ出して隣接回路と導通してしまい絶縁
不良であつた。
[Industrial Field of Application] The present invention relates to a conductive connecting member used for connecting circuits. [Prior art] Conventionally, connections have been made in cases where connection terminals are lined up at a fine pitch, such as connection of integrated circuits to wiring boards, connection of display elements to wiring boards, connection of electrical circuits to leads, etc. As a method, methods using soldering or conductive adhesive are widely used. However, in these methods, the connection member must be formed only in the conductive circuit portion, making it difficult to connect fine circuits that are becoming increasingly dense and fine. Recently, connection members for circuit connections have been studied, and have already been published in Japanese Patent Application Laid-Open No. 51-20941 and Japanese Patent Laid-Open No. 55
This method has been proposed in Japanese Patent Application Laid-open No. 104007, Japanese Patent Application Laid-open No. 56-122193, Japanese Patent Application Laid-open No. 21192-1982, etc. The basic idea of all of these is to provide an anisotropically conductive connecting member layer containing a conductive material between opposing circuits, and to provide pressure or heating and pressure means to connect the circuits. At the same time as electrical connection, insulation is provided between adjacent circuits, and opposing circuits are bonded and fixed. However, in such conventional methods, conduction between circuits is mainly achieved through contact between multiple conductive materials, often metal particles, and the reliability of conduction is still lacking. was. As a method for improving the reliability of the conduction, there has been an attempt to fill an adhesive component with heat-melting metal particles and to melt the metal particles by heating during circuit connection. However, this method also has the disadvantage that sufficient connection reliability cannot be obtained because the range of conditions at the time of connection is narrow and strict control of temperature, pressure and time is required. In other words, in order to heat and melt the metal particles during connection, a temperature higher than the melting point of the metal is required, and as the connection temperature becomes higher than the melting point of the metal, the viscosity of the molten metal decreases, making the circuit requiring electrical connection. As a result, sufficient insulation between adjacent circuits could not be obtained, making it impossible to handle fine circuits. Therefore, it was necessary to set the temperature and time conditions with due consideration to the temperature rise curve at the time of connection. An additional drawback is that, for example, if the circuit is ITO
When the circuit and the heat-fusible metal do not have adhesive properties, such as in the case of an indium tin oxide (indium tin oxide) film, the electrical conductivity is poor due to the insulating adhesive present at the interface. The present inventors had previously proposed a conductive adhesive sheet with extremely good transparency for circuit connections, but as a result of intensive study on a method to improve the above-mentioned drawbacks and enable highly reliable connections, the present invention was developed. Achieved invention. [Object of the Invention] It is an object of the present invention to provide a connecting member for connecting microcircuits that has both highly reliable anisotropic conductivity and high adhesive strength through a simple bonding operation. [Disclosure of the Invention] That is, the present invention provides a connecting member comprising an adhesive component and conductive particles, in which substantially the entire surface of a core material comprising thermoplastic particles as conductive particles has a melting point.
The connecting member is characterized by using particles coated with a low melting point metal of 100 to 250°C, and preferably the conductive particles having the coating layer have an average particle size of 1 to 50 μm, and the maximum particle diameter is 1 to 50 μm. The ratio of the minimum diameter to the diameter is 0.5 to 1.0, the connecting member contains 0.1 to 10% by volume, and the thickness of the connecting member is 110% or more of the average particle diameter of the conductive particles, and the total light transmittance is
It is a connecting member with transparency of 40% or more and heat-sensitive adhesive properties. In the connecting member according to the present invention, the low melting point metal coated on the core material is melted by heating or heating and pressure during connection, and is used as a connecting material between the conductive particles or with the conductive circuit part. It is now possible to connect microcircuits with excellent reliability, and when the thermoplastic core material is heated or heated and pressurized, it deforms so as to be pressed along the conductive circuit, and the covered metal deforms accordingly. Since the contact area with the circuit increases, particularly excellent conductivity can be obtained. In addition, since it is sufficient to use a very small amount of metal as the conductive particles, it is possible to reduce the weight of the connecting member and save valuable metal resources. In addition, since adhesives having heat-sensitive pasting properties develop their adhesive properties by heating or heating and pressing during connection, mechanical connection can be made at the same time in the insulated circuit portion. Furthermore, in the connecting member of the present invention, since the core of the conductive particles is thermoplastic, it is mainly softened and deformed between circuits that are short in distance and have good thermal conductivity due to heating or heating and pressurization during connection. Since the particles in the insulating circuit portion do not deform, sufficient insulation from adjacent circuits can be obtained, making it applicable to fine circuits. To explain the structure of the connecting member according to the present invention using drawings, FIG. 1 is a schematic cross-sectional view showing conductive particles used in the present invention, in which the surface of the core material 1 made of thermoplastic particles is a low melting point metal. It shows how it is covered with 2. In this case, it is optimal that the entire surface of the core material 1 is covered with the low melting point metal 2, but there may be some uncoated portions. Examples of the core material 1 used in the present invention include polyethylene, polypropylene, polystyrene,
and acrylonitrile-styrene copolymer,
Particles made from various acrylates such as acrylonitrile-butadiene-styrene copolymer, polycarbonate, and polymethyl methacrylate, synthetic resins such as polyvinyl butyral, polyimide, polyamide, alkylphenol, and polyisobutylene, and various rubbers are used. Moreover, it may be a single substance or a composite of two or more types of these. The shape of the core material 1 is preferably approximately spherical, but the surface may have protrusions or irregularities. In order to be able to set a wide range of conditions during connection work,
It is preferable to use a material that does not exhibit a sharp melting point, ie, is amorphous. 2 is a low melting point metal layer, and a layer having a melting point in the range of 100 to 250°C can be used. If the melting point is lower than 100℃, it is undesirable because the reliability of circuit connection at high temperatures will decrease, and if it is 250℃ or higher, high temperature is required when connecting the circuit, and high temperature will have an adverse effect on the parts installed in the circuit, so it is not preferable. do not have. As these low melting point metal particles, various eutectic alloys, non-eutectic low melting point alloys, or individual metals can be used. For example, Pb88.7%/Sn11.1% (melting point
250℃), and expressed similarly below, Pb82.6/
Cd17.4 (248℃) Pb85/Au (215℃), Tl93.7/
Na6.3 (238℃), Tl92/As8 (220℃), Tl99.4/
Li0.6 (211℃), Tl82.9/Cd17.1 (203℃), Tl97/
Mg3 (203℃), Tl80/Sb20 (195℃), Tl (52.5/
Bi47.5 (188℃), Tl96.5/K3.5 (173℃), Tl73/
Au27 (131℃), Bi97/Na3 (218℃), Bi76.5/
23.5Tl (198℃), Bi60/Cd40 (144℃), Bi57/
Sn43 (139℃), Bi56.5/Pb43.5 (125℃), Sn (232
℃), Sn67.7/Cd32.3 (177℃), Sn56.5/Tl43.5
(170℃), In97.2/Zn2.8 (144℃), In74/Cd26
(123℃), Bi57/Pb11/Sn42 (135℃), Bi56/
Sn40/Zn4 (130℃), Bi53.9/Sn25.9/Cd20.2
(103℃), Sn48/In52 (117℃), In (157℃),
Ag5/Pb15/In80 (149℃), Pb38/Sn62 (183℃),
Pb47/Sn50/S63 (186℃), Pb50/In50 (180℃),
Pb50/Sn50 (183℃) Pb10/Sn90 (183℃),
Au3.5/Pb96.5 (221℃), Pb5/Sn95 (183℃),
Ag10/In90 (204℃) Pb60/Sn40 (183℃),
Examples include Sn95/Sb5 (232℃). Methods for forming the hot melt metal 2 on the surface of the thermoplastic core material 1 include, for example, physicochemical methods such as vapor deposition, sputtering, and plating, and adsorption of hot melt metal powder during synthesis of core material particles. or
Chemical methods such as chemically bonding a core material having a functional group with a heat-fusible metal or adsorption using a surfactant or a setting agent can be employed. Moreover, the thickness of the coating layer can be set arbitrarily. The conductive particles obtained above have an average particle size of 1
~50 μm, the ratio of the minimum particle size to the maximum particle size is
It shall be between 0.5 and 1.0. When the particle size is 1 μm or less, a large amount of conductive particles are required, resulting in a large decrease in adhesive strength, and when the particle size is 50 μm or more, high resolution cannot be obtained because there is a high probability that the particles will exist between adjacent fine circuits. Regarding the shape of the conductive particles, as mentioned above, the ratio of the minimum diameter to the maximum diameter (hereinafter referred to as particle size ratio) is
It should be about 0.5 to 1.0. Outside this range, the balance between conductivity and adhesiveness will be lost. A typical example that satisfies this range is one that is approximately spherical, but is not particularly limited as long as it satisfies the above conditions. Further, the particle surface may have protrusions or irregularities. Further, the particle size is assumed to be the overall average particle size, and it is convenient to measure the particle shape and particle size using, for example, a scanning electron microscope. When the conductive particles are spherical, it is easy to obtain contact between the particles or between the particles and the circuit surface by applying heat and pressure during connection, and it is easy to obtain high conductivity. The conductive particles may exist in a single layer in the thickness direction of the connection member, or may have a structure in which a plurality of conductive particles are arranged or aggregated in the thickness direction. Conductive particles account for 0.1 to 10% by volume in the adhesive
is appropriate. If it is less than 0.1% by volume, satisfactory conductivity cannot be obtained, and if it is more than 10% by volume, the insulation with adjacent circuits decreases and the transparency of the connecting member cannot be obtained. As the adhesive used in the present invention, basically any formulation used in ordinary adhesive sheets exhibiting insulation properties can be used. The formulation used for ordinary adhesive sheets consists of a polymer that imparts cohesive force, and other components such as a tackifier, tackifier, crosslinking agent, anti-aging agent, dispersant, etc., which are used as necessary. These polymer types include ethylene-vinyl acetate copolymer, modified ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, and ethylene-vinyl acetate copolymer.
Acrylic ester copolymer, ethylene-acrylate copolymer, acrylic ester rubber, polyisobutylene, atactic polypropylene,
Synthetic rubbers such as polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, polybutadiene, ethylene cellulose, polyester, polyamide, polyurethane, natural rubber, silicone rubber, polychloroprene, etc. etc., polyvinyl ether, etc. can be used alone or in combination of two or more kinds. Tackifiers include dicyclopentadiene resin, rosin, modified rosin, terpene resin, xylene resin, terpene-phenol resin, alkylphenol resin, coumaron-indene resin, etc. These can be used alone or in combination as necessary. Used in combination with the above. Typical tackiness modifiers include various plasticizers such as dioctyl phthalate. The crosslinking agent is used when it is necessary to increase the cohesive force of the polymer, and is a polyfunctional substance that reacts with the functional groups of the polymer, such as polyisocyanates, melamine resins, urea resins, and phenolic resins. Anti-aging agents are activated by polymer binder heat, oxygen,
These are used when it is necessary to increase stability against light, such as stabilizers such as metal soaps, antioxidants such as alkylphenols, and ultraviolet absorbers such as benzophenones and benzotriazoles. These are used alone or in combination of two or more, if necessary. A dispersant may be used to improve the dispersibility of conductive particles. Examples of this include surfactants, which can be used singly or in combination of nonionic, cationic, anionic, and amphoteric surfactants. As a method for manufacturing a connecting member according to the present invention,
An adhesive composition consisting of a polymer and other additives used as necessary is dissolved in a solvent or dispersed in a suspension state in a medium, or heated and melted to a liquid state, and then the conductive particles are processed using a conventional method such as a ball mill. A conductive particle mixed adhesive composition is obtained by mixing according to the method described in the following. When using a solvent, conductive particles with a metal layer formed on the core particles have reduced solubility in solvents, so it is possible to use a solvent, but it is possible to dissolve the adhesive and separate the core particles. It is further preferred to choose a solvent that does not dissolve. As a means for this, for example, it is preferable to form an adhesive into an emulsion and disperse the conductive particles in an aqueous medium. The conductive particle mixed adhesive may be used to form a connecting member layer on one or both circuits to be connected using means such as screen printing or a roll coater, or alternatively, a continuous elongated connecting member may be formed. To obtain this, a connecting member layer may be formed by the above method on a separator made of paper or plastic film, etc., which has been subjected to peeling treatment as necessary, and then rolled up. It is also possible to stack the layers without using a separator. In the above manufacturing method, when a solvent or a dispersion medium is included in the adhesive composition, it is possible to obtain a connecting member in which the conductive particles are more densely arranged in the thickness direction by utilizing the volumetric shrinkage phenomenon in the thickness direction when the solvent dries. This is possible, and in hot-melt coating without a solvent, environmental pollution caused by solvents during production can be prevented. The thickness of the connection member layer is determined relative to the size of the conductive particles and the characteristics of the connection member. That is, in order to sufficiently hold the conductive particles with an adhesive, the adhesive needs to have a minimum particle size of 110% or more of the particle size of the conductive particles. If it is less than 110%, the conductive particles will not be protected by the adhesive, resulting in deterioration in conductivity due to oxidation or corrosion. Further, due to the characteristics of the connecting member, a thickness of 5 to 110 μm is required. If it is less than 5μm, sufficient adhesiveness cannot be obtained, and if it is less than 100μm,
m or more is not practical because a large amount of conductive particles must be mixed in order to obtain sufficient conductivity.
For the connection member layer, a conductive or non-conductive core material made of, for example, non-woven fabric may be used as required. The obtained connection member surface may be covered with a separator to prevent dust from adhering to it, if necessary.
Alternatively, continuous winding is also possible by using double-sided separators. The connecting member thus obtained has considerable transparency. When the connecting member is transparent, quality control during manufacturing is easy to perform and the appearance is good.
Furthermore, when adhering display elements, etc., it becomes possible to adopt a configuration in which the adherend can be seen through. A method of bonding a circuit using the obtained connecting member is, for example, by temporarily pasting a film-like connecting member on the circuit A and peeling off the separator if there is a separator, or applying a conductive adhesive composition. If necessary, the circuit B may be attached to the surface after the solvent has been removed using a hot press or a heated roll. FIGS. 2 and 3 schematically show a state in which circuits are connected by this method. As the adhesive 3 softens and flows due to heat and pressure, the conductive particles 7 also soften and deform, and come into contact with each other. So both circuits 4,
It becomes possible to conductively bond between the two. If one or both of the circuits 4 and 5 do not have adhesive properties, for example
Even in the case of transparent conductive glass made of ITO, since the core material has thermoplasticity, stable high conductivity can be obtained because the circuit and the low melting point metal layer on the surface of the core material are in surface contact. The present invention will be explained in more detail below using examples. Examples 1 to 6 (1) Preparation of conductive particles Polystyrene particles having an average particle diameter of 35 μm and a molecular weight of 5000 were obtained as a core material by an emulsion polymerization method. on the other hand
Low melting point metal particles made of Sn48/In52 with a particle diameter of 5 μm (melting point 117° C.) were dispersed in a 2% aqueous solution of a titanium coupling agent, and the core material was added while stirring, and stirring was continued for one more time. After washing the dispersion obtained above with water on a wire mesh with an opening of 30μ,
Conductive particles were obtained by drying the water and removing unadsorbed excess metal. These conductive particles are substantially spherical particles in which metal particles with a particle size of 5 μm are adsorbed and densely packed in a single layer on the polystyrene surface with a particle size of 35 μm using a coupling agent. (2) Preparation of conductive particle mixed dispersion and connection member After mixing the conductive particles in an acrylic acid ester emulsion (glass transition point -30°C) with varying amounts, conductive particles are created by performing ultrasonic dispersion. A mixed dispersion of particles was obtained. This dispersion was applied onto a separator (siliconized polyester film) using a bar coater.
C. for 10 minutes to remove water as a dispersion medium to obtain a connecting member. (3) Evaluation Flexible circuit board (FPC) with a total circuit width of 100 mm and a circuit with a line width of 0.1 mm and a pitch of 0.2 mm.
The above-mentioned connecting member cut into a piece with an adhesive width of 3 mm and a length of 100 mm was placed thereon, and the connecting member was connected to the FPC by being lightly crimped by hand. Since the connecting member had adhesive properties even at room temperature, the above-mentioned temporary connection could be easily performed. After that, the separator is peeled off, another FPC with the same pitch is placed on the separator peeled surface, the FPC circuit is aligned under a microscope, and the circuit is connected by heating and pressing at a pressure of 5 kg/cm 2 for 10 seconds. did. The connection temperature is as shown in Table 1, and was determined by adjusting the hot plate temperature of the press. At this time, since the adhesive sheet was transparent, it was extremely easy to align the circuits with the aid of transmitted light. The properties of this product are shown in Table 1, and in all Examples, it had sufficient connection resistance and insulation between adjacent circuits, and also exhibited sufficient adhesive strength. Further, as seen in Examples 3 to 5, the above characteristics were obtained under a wide range of connection conditions. Comparative Examples 1 to 3 Same as Examples 1 to 6, but the amount of conductive particles added and the thickness were changed. Table 1 shows the conditions and their evaluation results. In Comparative Examples 1 and 2, alignment of the circuits was difficult due to insufficient transparency of the connecting member, and in Comparative Example 2, insulation with adjacent circuits was insufficient due to the large amount of conductive particles added. In Comparative Example 3, the adhesive strength decreased because the ratio of sheet thickness to conductive particle diameter was small. Example 7 While stirring polyvinyl butyral particles
Pb38/Sn62 (melting point 183°C) solder was vacuum deposited. The conductive particles obtained above have a core particle size of approximately 10μ.
m, and the thickness of the solder layer was approximately 0.5 μm. Next, the content of the conductive particles was varied in an adhesive solution consisting of 100 parts of styrene-butadiene block copolymer (MI2.6), 50 parts of an aromatic tackifier with a softening point of 120°C, and 200 parts of toluene. After mixing for 48 hours, an adhesive solution containing conductive particles was obtained. Since polyvinyl butyral is insoluble in toluene, the conductive particles were not dissolved and existed stably even though there was a part of the layer not covered with solder. Using the above solution, a film-like connection member was created in the same manner as in Examples 1 to 6, and the film was placed on the FPC at 120°C.
After making a temporary connection by heating and pressurizing under the conditions of -5Kg/cm-5 seconds, a 1mm-thick ITO-based transparent conductive glass (surface resistance 200Ω/
□) was aligned and connected. The results are shown in Table 1, and it was found that it had good anisotropic conductivity. When the cross section of the connection was observed using an electron microscope, it was found that the transparent conductive glass surface and the hot melt metal were in surface contact as if pressed together by a core material. Examples 8-9 The adhesive solution containing the conductive particles obtained in Example 7 was
After screen printing on the FPC substrate, it was dried at 90°C for 10 minutes to obtain an FPC with connecting members. The connection of the transparent conductive glass used in Example 7 to this connection member surface was evaluated. The properties are shown in Table 1, and it showed good anisotropic conductivity. Furthermore, in this embodiment, the step of temporarily connecting the connecting member to one circuit can be omitted. Although the conduction resistance values of Examples 7 to 9 are slightly high values due to the influence of the transparent conductive glass, they are sufficiently practical. Comparative Example 4 An adhesive solution containing conductive particles was obtained by using solder particles of Pb38/Sn62 (melting point 183° C.) with an average particle size of 11 μm without using a thermoplastic core material as the conductive particles. FPC with connection members in the same manner as Examples 8 and 9
After obtaining, it was connected to transparent conductive glass in the same manner as in Example 7. At this time, it is 32℃ higher than the melting temperature of the solder.
When connections were made at a high temperature of 215°C, the solder flowed out of the conductive circuit and was electrically connected to the adjacent circuit, resulting in poor insulation.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明になる接続部材に
よれば導電性粒子として、熱可塑性粒子からなる
核材の表面に低融点金属を被覆した粒子を用いる
ことにより、導電粒子相互あるいは導電回路部と
溶融連結し、熱可塑性核材は加圧により回路に沿
つて変形し易いために、回路と導電性粒子は面接
触状の配置となるので、信頼性にすぐれた微細回
路の接続が可能となる。さらに低融点金属と熱可
塑性核材の組み合せが認意に設定できるので、広
い接続条件巾において信頼性にすぐれた接続が可
能となる。また絶縁部においては接着剤による接
続が行なわれるので柔軟性を有する接続が可能で
あり、さらに接続部材は透明性を有するので、透
過光の助けにより微細回路の位置合わせを簡単に
行なえるなどの利点を有する。
As described in detail above, according to the connecting member of the present invention, particles in which the surface of the core material made of thermoplastic particles is coated with a low melting point metal are used as the conductive particles, so that the conductive particles can be connected to each other or connected to a conductive circuit. Since the thermoplastic core material is easily deformed along the circuit under pressure, the circuit and conductive particles are arranged in surface contact, making it possible to connect fine circuits with excellent reliability. Become. Furthermore, since the combination of low melting point metal and thermoplastic core material can be specified, highly reliable connections can be made over a wide range of connection conditions. In addition, since the connection is made with adhesive in the insulating part, a flexible connection is possible, and since the connection member is transparent, it is possible to easily align fine circuits with the help of transmitted light. has advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は導電性粒子の断面図、第2図および第
3図は本発明に係る接続部材を用いて回路接続し
た状態を示す断面模式図である。 符号の説明、1……核材、2……低融点金属、
3……接着剤、4,5……回路、6……絶縁性基
板、7……導電性粒子。
FIG. 1 is a cross-sectional view of conductive particles, and FIGS. 2 and 3 are schematic cross-sectional views showing a state in which a circuit is connected using a connecting member according to the present invention. Explanation of symbols, 1...Nuclear material, 2...Low melting point metal,
3... Adhesive, 4, 5... Circuit, 6... Insulating substrate, 7... Conductive particles.

Claims (1)

【特許請求の範囲】 1 絶縁性接着剤成分中に、厚み方向に体積を減
少させたときに、厚み方向にのみ導電路を形成す
る程度に導電性粒子を分散させてなる回路の接続
部材において、前記導電性粒子が熱可塑性樹脂の
粒子からなる核材のほぼ全面を融点が100〜250℃
の低融点金属により被覆された粒子であることを
特徴とする回路の接続部材。 2 導電性粒子が平均粒径が1〜50μm、粒子の
最大径に対する最小径の比が0.5〜1.0であり、接
続部材中に0.1〜10体積%含有され、接続部材の
厚みが前記導電性粒子の平均粒径の110%以上で
あり、かつ全光線透過率(JIS K−6714)が40%
以上である特許請求の範囲第1項記載の回路の接
続部材。 3 接着剤成分が熱可塑性ポリマを主成分とする
感熱貼付性を有するものである特許請求の範囲第
1項または第2項記載の回路の接続部材。
[Claims] 1. In a circuit connecting member in which conductive particles are dispersed in an insulating adhesive component to such an extent that a conductive path is formed only in the thickness direction when the volume is reduced in the thickness direction. , the conductive particles cover almost the entire surface of the core material made of thermoplastic resin particles with a melting point of 100 to 250°C.
A circuit connecting member characterized by being particles coated with a low melting point metal. 2 The conductive particles have an average particle diameter of 1 to 50 μm, a ratio of the minimum diameter to the maximum diameter of the particles of 0.5 to 1.0, are contained in the connection member at 0.1 to 10% by volume, and the thickness of the connection member is the same as that of the conductive particles. 110% or more of the average particle diameter of
The circuit connection member according to claim 1, which is the above. 3. The circuit connecting member according to claim 1 or 2, wherein the adhesive component is mainly composed of a thermoplastic polymer and has heat-sensitive adhesion properties.
JP19924784A 1984-09-21 1984-09-21 Connection member for circuit Granted JPS6177279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19924784A JPS6177279A (en) 1984-09-21 1984-09-21 Connection member for circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19924784A JPS6177279A (en) 1984-09-21 1984-09-21 Connection member for circuit

Publications (2)

Publication Number Publication Date
JPS6177279A JPS6177279A (en) 1986-04-19
JPS6331906B2 true JPS6331906B2 (en) 1988-06-27

Family

ID=16404614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19924784A Granted JPS6177279A (en) 1984-09-21 1984-09-21 Connection member for circuit

Country Status (1)

Country Link
JP (1) JPS6177279A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177278A (en) * 1984-09-21 1986-04-19 日立化成工業株式会社 Connection member for circuit
JPS6178069A (en) * 1984-09-26 1986-04-21 日立化成工業株式会社 Connection member for circuit
JPS61173471A (en) * 1985-01-28 1986-08-05 シャープ株式会社 Heat compressed connector
JPS62115679A (en) * 1985-11-15 1987-05-27 富士高分子工業株式会社 Electric jointing unit
JPH083963B2 (en) * 1987-05-29 1996-01-17 日立化成工業株式会社 Circuit connection member
JPH0644132Y2 (en) * 1987-09-16 1994-11-14 日立化成工業株式会社 Circuit connection structure
JP2629490B2 (en) * 1991-07-12 1997-07-09 日立化成工業株式会社 Anisotropic conductive adhesive
JPH08249922A (en) * 1995-10-31 1996-09-27 Hitachi Chem Co Ltd Coated particle
JP2002260446A (en) * 2001-02-27 2002-09-13 Sekisui Chem Co Ltd Conductive fine particle and conductive connecting structure
CN101945943B (en) * 2007-12-20 2014-07-09 可乐丽股份有限公司 Thermoplastic polymer composition and molded article composed of the same
JP5346607B2 (en) * 2009-02-04 2013-11-20 日立電線株式会社 Terminal and connection method of terminal and electric wire
JP4737348B2 (en) 2009-06-30 2011-07-27 Dic株式会社 Method for forming transparent conductive layer pattern
DE102010030063A1 (en) * 2010-06-15 2011-12-15 Robert Bosch Gmbh Assembly for electrical connection between e.g. motor and/or transmission control unit of motor car and conductors of three-pin flat cable carrier, has pad head and conductor, which are formed with thermoplastic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135938A (en) * 1975-05-21 1976-11-25 Seiko Epson Corp Anisotropic electroconductive adhesive
JPS5823174A (en) * 1981-07-31 1983-02-10 信越ポリマー株式会社 Connector
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135938A (en) * 1975-05-21 1976-11-25 Seiko Epson Corp Anisotropic electroconductive adhesive
JPS5823174A (en) * 1981-07-31 1983-02-10 信越ポリマー株式会社 Connector
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet

Also Published As

Publication number Publication date
JPS6177279A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
US4731282A (en) Anisotropic-electroconductive adhesive film
JPS62188184A (en) Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
KR102114626B1 (en) Anisotropic conductive film, connection method, and assembly
JPS6331906B2 (en)
US5939190A (en) Electroconductive transfer tape
JPH04259766A (en) Connecting member for circuit
JPS6331905B2 (en)
WO2004064143A1 (en) Method of microelectrode connection and connected structure of use threof
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
EP0508722A1 (en) Electrically conductive adhesive tape
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP6293524B2 (en) Anisotropic conductive film, method for producing the same, connection method and joined body
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPS6178069A (en) Connection member for circuit
EP0083503B1 (en) Insulated connector sheet
JPH03129607A (en) Anisotropic conductive film
JPH0340899B2 (en)
JPH083963B2 (en) Circuit connection member
JP3026432B2 (en) Circuit connection structure
JPS5812586B2 (en) Manufacturing method of film electrode connector for liquid crystal display tube
JPH0773067B2 (en) Circuit connection member
JP6532575B2 (en) Anisotropic conductive film, connection method, bonded body, and method of manufacturing bonded body
JP4155470B2 (en) Electrode connection method using connecting members
JPS6174275A (en) Connection member for circuit
JPH0462714A (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term