JP5716281B2 - Light emitting device and manufacturing method thereof - Google Patents
Light emitting device and manufacturing method thereof Download PDFInfo
- Publication number
- JP5716281B2 JP5716281B2 JP2010043979A JP2010043979A JP5716281B2 JP 5716281 B2 JP5716281 B2 JP 5716281B2 JP 2010043979 A JP2010043979 A JP 2010043979A JP 2010043979 A JP2010043979 A JP 2010043979A JP 5716281 B2 JP5716281 B2 JP 5716281B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive member
- light emitting
- conductive
- emitting element
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16245—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Description
本発明は、照明器具、ディスプレイ、携帯電話のバックライト、動画照明補助光源、その他の一般的民生用光源などに用いられる発光装置及びその製造方法に関する。 The present invention relates to a light emitting device used for a lighting fixture, a display, a backlight of a mobile phone, a moving image illumination auxiliary light source, and other general consumer light sources, and a manufacturing method thereof.
近年、電子機器の小型化・軽量化に伴い、それらに搭載される発光装置(発光ダイオード)等も小型化されたものが種々開発されている。これらの発光装置は、例えば、一対のリードフレームの一方に、銀(Ag)ペースト等の接着部材を用いて発光素子を載置し、ワイヤ等を用いて他方のリードフレームと発光素子とを電気的に導通させた構造を有している(例えば、特許文献1)。 In recent years, along with the downsizing and weight reduction of electronic devices, various types of light emitting devices (light emitting diodes) mounted thereon have been developed. In these light emitting devices, for example, a light emitting element is mounted on one of a pair of lead frames using an adhesive member such as silver (Ag) paste, and the other lead frame and the light emitting element are electrically connected using a wire or the like. (For example, patent document 1).
近年、上記のような発光装置のさらなる小型化が求められている。しかし、発光装置のリードフレーム自体を小型化すると、発光素子を載置する領域が小さくなるため、発光素子の接合強度が低下してしまう。
そこで、本発明は、小型かつ軽量で、発光素子が脱落し難い発光装置及びその製造方法を提供することを目的とする。
In recent years, there has been a demand for further downsizing of the light emitting device as described above. However, when the lead frame itself of the light emitting device is downsized, the area where the light emitting element is placed becomes small, and the bonding strength of the light emitting element is reduced.
SUMMARY OF THE INVENTION An object of the present invention is to provide a light emitting device that is small and lightweight, and in which a light emitting element does not easily fall off, and a method for manufacturing the same.
本発明は、同一面側に正電極及び負電極を有する発光素子と、互いに離間する第1導電部材及び第2導電部材と、発光素子と導電部材とを接続する接着部材と、を備えた発光装置において、接着部材は、絶縁領域と導電領域とを有するものであり、第1導電部材及び第2導電部材の上面及び側面に接続されており、発光素子の正電極及び負電極は、接着部材の導電領域上に接続されている発光装置に関する。かかる構成によれば、小型かつ軽量の発光装置を得ることができるとともに、発光素子と導電部材との接合強度を高めることができる。 The present invention includes a light emitting element having a positive electrode and a negative electrode on the same surface side, a first conductive member and a second conductive member that are spaced apart from each other, and an adhesive member that connects the light emitting element and the conductive member. In the apparatus, the adhesive member has an insulating region and a conductive region, and is connected to the upper surface and the side surface of the first conductive member and the second conductive member. The positive electrode and the negative electrode of the light emitting element are the adhesive member. The present invention relates to a light emitting device connected on the conductive region. According to this configuration, it is possible to obtain a light-emitting device that is small and lightweight, and can increase the bonding strength between the light-emitting element and the conductive member.
第1導電部材と第2導電部材との間に、接着部材が充填されていることが好ましい。かかる構成によれば、発光素子と導電部材との接合強度を高めることができる。 It is preferable that an adhesive member is filled between the first conductive member and the second conductive member. According to this configuration, the bonding strength between the light emitting element and the conductive member can be increased.
第1導電部材の上に発光素子の正電極が配置され、第2導電部材の上に発光素子の負電極が配置されており、接着部材の導電領域は、第1導電部材と発光素子の正電極との間、及び第2導電部材と発光素子の負電極との間に設けられていることが好ましい。かかる構成によれば、小型かつ軽量の発光装置を得ることができる。 The positive electrode of the light emitting element is disposed on the first conductive member, the negative electrode of the light emitting element is disposed on the second conductive member, and the conductive region of the adhesive member is a positive electrode of the first conductive member and the light emitting element. It is preferable to be provided between the electrodes and between the second conductive member and the negative electrode of the light emitting element. According to this configuration, a small and lightweight light emitting device can be obtained.
第1導電部材及び第2導電部材は、互いに隣接する外縁に向かって突出する突出部を有しており、突出部の上面及び下面が接着部材で挟持されていることが好ましい。かかる構成によれば、導電部材への接着部材のアンカー効果を発揮させることができ、発光素子の脱落を防止することができる。また、発光装置の機械的強度を高めることができる。 It is preferable that the first conductive member and the second conductive member have a protruding portion that protrudes toward an outer edge adjacent to each other, and the upper surface and the lower surface of the protruding portion are sandwiched between adhesive members. According to such a configuration, the anchor effect of the adhesive member to the conductive member can be exhibited, and the light emitting element can be prevented from falling off. In addition, the mechanical strength of the light emitting device can be increased.
また、本発明は、支持基板の上に、互いに離間する第1導電部材及び第2導電部材を形成する導電部材形成工程と、第1導電部材及び第2導電部材の上に、絶縁部材と導電性フィラーを含有する接着部材を介して発光素子を圧着することにより、接着部材の一部を第1導電部材と第2導電部材との間に延在させるダイボンディング工程と、を含む発光装置の製造方法に関する。かかる構成によれば、小型かつ軽量で、発光素子が脱落し難い発光装置を得ることができる。 In addition, the present invention provides a conductive member forming step of forming a first conductive member and a second conductive member that are separated from each other on a support substrate, and an insulating member and a conductive material on the first conductive member and the second conductive member. A die bonding step of extending a part of the adhesive member between the first conductive member and the second conductive member by crimping the light emitting element via the adhesive member containing the conductive filler. It relates to a manufacturing method. According to such a configuration, it is possible to obtain a light-emitting device that is small and lightweight and in which the light-emitting element is difficult to drop off.
導電部材形成工程において、第1導電部材及び第2導電部材の互いに隣接する外縁に突出部を形成し、ダイボンディング工程において接着部材の一部を突出部の下に延在させることが好ましい。かかる構成によれば、発光素子が脱落し難い発光装置を得ることができる。 In the conductive member forming step, it is preferable that a protrusion is formed on the outer edges of the first conductive member and the second conductive member adjacent to each other, and a part of the adhesive member is extended below the protrusion in the die bonding step. According to such a configuration, a light emitting device in which the light emitting element is difficult to drop off can be obtained.
本発明によれば、小型かつ軽量の発光装置を得ることができるとともに、発光素子と導電部材との接合強度を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to obtain a small and lightweight light-emitting device, the joint strength of a light emitting element and a conductive member can be improved.
以下、本発明に係る発光装置を、実施の形態及び実施例を用いて説明する。だたし、本発明は、この実施の形態及び実施例に限定されない。 Hereinafter, a light emitting device according to the present invention will be described with reference to embodiments and examples. However, the present invention is not limited to this embodiment and example.
<実施の形態1>
図1は、本発明の実施の形態1に係る発光装置を示す概略斜視図である。図2は、本発明の実施の形態1に係る発光装置を示す概略断面図である。図3は、本発明の実施の形態1に係る発光装置の一部を拡大した概略断面図である。
<Embodiment 1>
FIG. 1 is a schematic perspective view showing a light-emitting device according to Embodiment 1 of the present invention. FIG. 2 is a schematic cross-sectional view showing the light emitting device according to Embodiment 1 of the present invention. FIG. 3 is an enlarged schematic cross-sectional view of a part of the light emitting device according to Embodiment 1 of the present invention.
(発光装置の構造)
本実施の形態の発光装置100は、発光素子104と、互いに離間する第1導電部材101及び第2導電部材102と、発光素子104と第1導電部材101及び第2導電部材102とを接続する接着部材103と、を備えている。発光素子104は、同一面側に正電極104a及び負電極104bを有している。接着部材103は、絶縁領域103aと導電領域103bとを有するものである。接着部材103としては、例えば、絶縁部材に導電性フィラーが混合された異方性導電材料が挙げられる。接着部材103は、第1導電部材101及び第2導電部材102の上面及び側面に接続されている。発光素子104の正電極104a及び負電極104bは、接着部材103の導電領域103b上に接続されている。具体的には、発光素子104の正電極104aは、第1導電部材101の上に配置され、発光素子104の負電極104bは、第2導電部材102の上に配置されている。接着部材103の導電領域103bは、少なくとも第1導電部材101と発光素子104の正電極104aとの間、及び第2導電部材102と発光素子104の負電極104bとの間に設けられている。導電領域103bは、絶縁領域103aによって囲まれている。すなわち、上記の2つの導電領域103bは、絶縁領域103aによって分離されている。
発光素子104の正電極104a及び負電極104bには、Au等の金属バンプ105が設けられていてもよい。この場合、発光素子104の正電極104a及び負電極104bは、金属バンプ105を介して接着部材103の導電領域103b上に接続される。
また、発光装置100は、発光素子104とともに、第1導電部材101及び第2導電部材102の少なくとも一面を被覆する封止部材106とを備える。封止部材106は、発光装置100の上面、側面及び下面の一部を形成している。第1導電部材101及び第2導電部材102の下面側は、外部に露出しており、発光装置100の下面の一部を形成している。第1導電部材101及び第2導電部材102は、封止部材106の下面と面一であることが好ましい。
(Structure of light emitting device)
In the
The
本実施の形態においては、発光素子104は、導電性ワイヤを用いず、正電極104a及び負電極104bを接着部材103を用いて直接第1導電部材101及び第2導電部材102に接合されている。これにより、発光装置の厚みを抑えることができる。また、導電部材に対するワイヤの接合領域を設ける必要がないため、発光装置を小型化することができる。また、接着部材103は、第1導電部材101及び第2導電部材102の上面及び側面に接続されているため、小型化された発光装置においても、導電部材と接着部材との接合面積を確保することができる。
In this embodiment mode, the light-emitting
(発光装置の製造方法)
次に、本実施の形態に係る発光装置の製造方法について説明する。図4は、本実施の形態に係る発光装置の製造工程を示す概略断面図である。
(Method for manufacturing light emitting device)
Next, a method for manufacturing the light emitting device according to this embodiment will be described. FIG. 4 is a schematic cross-sectional view showing the manufacturing process of the light emitting device according to the present embodiment.
本実施の形態に係る発光装置の製造方法は、主として、支持基板の上に、互いに離間する第1導電部材及び第2導電部材を形成する導電部材形成工程と、第1導電部材及び第2導電部材の上に、接着部材を介して発光素子を圧着することにより、接着部材の一部を第1導電部材と第2導電部材との間に延在させるダイボンディング工程と、を有する。 The light emitting device manufacturing method according to the present embodiment mainly includes a conductive member forming step of forming a first conductive member and a second conductive member that are separated from each other on a support substrate, and a first conductive member and a second conductive member. A die bonding step of extending a part of the adhesive member between the first conductive member and the second conductive member by crimping the light emitting element via the adhesive member on the member;
(導電部材形成工程)
まず、支持基板を用意する。支持基板は、第1導電部材及び第2導電部材を形成するために用いる板状又はシート状の部材であり、発光装置を個片化する前に除去されるため、発光装置には具備されていない部材である。支持基板としては、特に限定されず、導電性を有する基板であることが好ましい。
(Conductive member forming process)
First, a support substrate is prepared. The support substrate is a plate-like or sheet-like member used to form the first conductive member and the second conductive member, and is removed before the light-emitting device is separated, and thus is provided in the light-emitting device. There is no member. The support substrate is not particularly limited, and is preferably a conductive substrate.
支持基板は、例えば、ステンレス(SUS)からなるものが挙げられ、アルテンサイト系、フェライト系、オーステナイト系等、種々のステンレスを用いることができる。好ましくは、フェライト系のステンレスであり、特に好ましくは、400系、300系のものであり、さらに、SUS430(10.4×10−6/K)、SUS444(10.6×10−6/K)、SUS303(18.7×10−6/K)、SUS304(17.3×10−6/K)等が好適に用いられる。400系のステンレスは、鍍金の前処理として酸処理を行うと、300系に比し表面が荒れやすくなる。したがって、酸処理を行った400系のステンレスの上に鍍金層を形成すると、その鍍金層の表面も荒れやすくなる。これにより封止部材を構成する樹脂との密着性を良くすることができる。また、300系は酸処理では表面が荒れにくい。このため300系のステンレスを用いれば、鍍金層の表面の光沢度を向上させやすく、これにより発光素子からの反射率を向上して光取り出し効率の高い発光装置とすることができる。
支持基板の厚みは、10μm〜300μm程度の板状部材を用いるのが好ましく、また、樹脂成形後の反りを緩和するために支持基板にスリット、溝、波形状の加工を施していてもよい。
Examples of the support substrate include those made of stainless steel (SUS), and various stainless steels such as an altensite system, a ferrite system, and an austenite system can be used. Preferably, a stainless ferritic, particularly preferably 400 system, are of 300 system, further, SUS430 (10.4 × 10 -6 /K),SUS444(10.6×10 -6 / K ), SUS303 (18.7 × 10 -6 /K),SUS304(17.3×10 -6 / K) and the like are preferably used. When the 400 series stainless steel is subjected to an acid treatment as a pretreatment for plating, the surface becomes more rough than the 300 series stainless steel. Accordingly, when a plating layer is formed on 400 series stainless steel that has been subjected to acid treatment, the surface of the plating layer is also likely to be rough. Thereby, adhesiveness with resin which comprises a sealing member can be improved. In addition, the surface of 300 series is hardly roughened by acid treatment. For this reason, if 300 series stainless steel is used, it is easy to improve the glossiness of the surface of the plating layer, whereby the reflectance from the light emitting element is improved and a light emitting device with high light extraction efficiency can be obtained.
The thickness of the support substrate is preferably a plate-shaped member having a thickness of about 10 μm to 300 μm, and the support substrate may be slit, grooved, or corrugated to reduce warpage after resin molding.
支持基板の上面に、保護膜としてレジストを塗布する。このレジストの厚みによって後に形成される導電部材の厚みを調整することができる。なお、ここでは、支持基板の上面(導電部材を形成する側の面)にのみレジストを設けるが、さらに、下面(反対側の面)に形成してもよい。これにより、後述する鍍金によって支持基板の下面側に導電部材が形成されるのを防ぐことができる。保護膜(レジスト)が、フォトリソグラフィによって形成されるレジストの場合、ポジ型、ネガ型のいずれを用いてもよい。また、スクリーン印刷により形成させるレジストや、シート状のレジストを貼り付けるなどの方法も用いることができる。
塗布したレジストを乾燥させた後、その上部に所定のパターン形状の開口部を有するマスクを直接又は間接的に配置し、紫外線を照射して露光する。その後、エッチング剤で処理することによって、図4(a)に示すように、互いに離間する複数の開口部を有する保護膜が形成される。ここで、必要であれば酸活性処理などを行ってもよい。
A resist is applied as a protective film on the upper surface of the support substrate. The thickness of the conductive member formed later can be adjusted by the thickness of the resist. Here, the resist is provided only on the upper surface (surface on which the conductive member is formed) of the support substrate, but may be formed on the lower surface (surface on the opposite side). Thereby, it can prevent that a conductive member is formed in the lower surface side of a support substrate by the plating mentioned later. When the protective film (resist) is a resist formed by photolithography, either a positive type or a negative type may be used. In addition, a method of attaching a resist formed by screen printing or a sheet-like resist can be used.
After the applied resist is dried, a mask having an opening having a predetermined pattern shape is directly or indirectly disposed on the resist, and exposure is performed by irradiating ultraviolet rays. Then, by processing with an etching agent, as shown in FIG. 4A, a protective film having a plurality of openings spaced from each other is formed. Here, if necessary, acid activation treatment or the like may be performed.
次に、保護膜の開口部内に、導電部材を形成させる。導電部材を形成する方法としては、電解鍍金、無電解鍍金、スパッタ、蒸着、CVD等が挙げられる。
各形成方法において、条件を調整することで、保護膜の厚みよりも厚くなるように導電部材を形成することができる。これにより導電部材を保護膜の上面にまで形成させ、図3に示すように、突出部を形成してもよい。
Next, a conductive member is formed in the opening of the protective film. Examples of the method for forming the conductive member include electrolytic plating, electroless plating, sputtering, vapor deposition, and CVD.
In each forming method, the conductive member can be formed to be thicker than the protective film by adjusting the conditions. Thus, the conductive member may be formed up to the upper surface of the protective film, and the protruding portion may be formed as shown in FIG.
その後、保護膜を洗浄して除去することで、図4(c)に示すように、互いに離間する第1導電部材及び第2導電部材を形成する。 Thereafter, the protective film is washed and removed, thereby forming a first conductive member and a second conductive member that are separated from each other, as shown in FIG.
(ダイボンディング工程)
次いで、第1導電部材及び第2導電部材の上に、接着部材を介して発光素子を載置する。接着部材は、第1導電部材及び第2導電部材と、発光素子との間に介在するように形成する。
(Die bonding process)
Next, the light emitting element is placed on the first conductive member and the second conductive member via an adhesive member. The adhesive member is formed so as to be interposed between the first conductive member and the second conductive member and the light emitting element.
図4(d)は、第1導電部材及び第2導電部材の上に、接着部材を設けた状態を示している。接着部材を形成する方法としては、ディスペンス、ピン転写、印刷等が挙げられる。 FIG. 4D shows a state in which an adhesive member is provided on the first conductive member and the second conductive member. Examples of the method for forming the adhesive member include dispensing, pin transfer, and printing.
接着部材は、異方性導電材料を用いることが好ましい。異方性導電材料は、樹脂ボールを金属層で覆った導電性フィラーや、さらにこの金属層の外郭を絶縁膜で覆った導電性フィラーなどを、樹脂などの絶縁部材に混合したものをいう。
接着部材は、ペースト状、固体状(シート状、ブロック状、粉末状)のものを用いることができ、特にペースト状が好ましい。接着部材の形状は、接着部材の組成や導電部材の形状、発光素子の電極の形状等に応じて、適宜選択することができる。
It is preferable to use an anisotropic conductive material for the adhesive member. An anisotropic conductive material refers to a material obtained by mixing a conductive filler in which a resin ball is covered with a metal layer, a conductive filler in which the outer layer of the metal layer is covered with an insulating film, and the like in an insulating member such as a resin.
As the adhesive member, a paste or solid (sheet, block, powder) can be used, and a paste is particularly preferable. The shape of the adhesive member can be appropriately selected according to the composition of the adhesive member, the shape of the conductive member, the shape of the electrode of the light emitting element, and the like.
このような接着部材は、第1導電部材及び第2導電部材の上に、連続して形成することが好ましい。発光素子を載置する際に、発光素子の正電極及び負電極と第1導電部材及び第2導電部材との間に異方性導電材料を挟み、発光素子を加圧すると、異方性導電材料は発光素子の電極の下側の領域のみに圧力がかかる。これにより、異方性導電材料内に分散している導電性フィラーが押し付けられることで、この領域のみに導電性フィラーによって導電する導電領域が形成される。絶縁膜で外郭を覆った導電性フィラーの場合は、発光素子の電極で加圧されることで、最外郭の絶縁膜が破れ、露出した金属層が電極及び導電部材に接触することによって電気的な接続が発生する。圧力がかからなかった領域は、導電性フィラーの表面が絶縁部材で覆われているため、絶縁領域を形成している。これにより、正負の電極間の絶縁性は保持される。電極や導電部材の間隔が狭い場合においても短絡を起こさずに発光素子を実装することができる。 Such an adhesive member is preferably formed continuously on the first conductive member and the second conductive member. When the light emitting element is placed, when an anisotropic conductive material is sandwiched between the positive electrode and the negative electrode of the light emitting element and the first conductive member and the second conductive member and the light emitting element is pressed, The material is pressurized only in the region below the electrode of the light emitting element. Thereby, when the conductive filler dispersed in the anisotropic conductive material is pressed, a conductive region that is conductive by the conductive filler is formed only in this region. In the case of a conductive filler that covers the outer shell with an insulating film, the outermost insulating film is broken by being pressed by the electrode of the light emitting element, and the exposed metal layer is electrically contacted with the electrode and the conductive member. Connection occurs. The region where no pressure is applied forms an insulating region because the surface of the conductive filler is covered with the insulating member. Thereby, the insulation between positive and negative electrodes is maintained. Even when the distance between the electrodes and the conductive member is narrow, the light emitting element can be mounted without causing a short circuit.
また、発光素子を載置する際に、発光素子を圧着することにより、接着部材の一部が第1導電部材と第2導電部材との間に侵入する。接着部材が第1導電部材と第2導電部材との間に延在することによって、第1導電部材及び第2導電部材と接着部材との接合面積を十分に確保することができる。第1導電部材及び第2導電部材が、互いに隣接する外縁に向かって突出する突出部を有する場合は、発光素子を圧着する際に、圧力を調節することにより、接着部材の一部を第1導電部材及び第2導電部材の突出部の下面よりも下に延在させることができる。 Further, when the light emitting element is placed, a part of the adhesive member enters between the first conductive member and the second conductive member by pressing the light emitting element. By extending the adhesive member between the first conductive member and the second conductive member, it is possible to secure a sufficient bonding area between the first conductive member, the second conductive member, and the adhesive member. When the first conductive member and the second conductive member have protrusions that protrude toward the outer edges adjacent to each other, a part of the adhesive member is first adjusted by adjusting the pressure when the light emitting element is pressure-bonded. The conductive member and the second conductive member can extend below the lower surfaces of the protrusions.
なお、ダイボンディング工程において、発光素子の正電極及び負電極に、Au等の金属バンプを形成し、この金属バンプによって異方性導電材料に加圧してもよい。これにより、電極や導電部材の厚みが薄い場合においても短絡を起こさずに発光素子を実装することができる。発光素子の各電極に形成する金属バンプの表面が略同一平面上に位置するように構成することにより、各金属バンプを異方性導電部材に対して均一に加圧させることができるので好ましい。 In the die bonding step, metal bumps such as Au may be formed on the positive electrode and the negative electrode of the light emitting element, and the anisotropic conductive material may be pressed with the metal bumps. Thereby, even when the electrode and the conductive member are thin, the light emitting element can be mounted without causing a short circuit. It is preferable that the surface of the metal bump formed on each electrode of the light-emitting element is configured to be substantially on the same plane because each metal bump can be uniformly pressed against the anisotropic conductive member.
(封止部材形成工程)
次に、発光素子を被覆する封止部材をトランスファモールド、ポッティング、印刷などの方法で形成する。図4(f)は、発光素子の上に封止部材を形成した状態を示す図である。封止部材は、上面を平坦な面としてもよく、或いは、中央が凹んだ、又は突出したような曲面状に形成してもよい。また、封止部材は、1層構造、又は組成が異なる2層以上の多層構造としてもよい。
(Sealing member forming step)
Next, a sealing member that covers the light emitting element is formed by a method such as transfer molding, potting, or printing. FIG. 4F illustrates a state where a sealing member is formed on the light emitting element. The sealing member may have a flat upper surface, or may be formed in a curved shape in which the center is recessed or protruded. Further, the sealing member may have a single layer structure or a multilayer structure of two or more layers having different compositions.
(支持基板除去工程)
封止部材を硬化後、支持基板を剥離して除去する。これにより、第1導電部材及び第2導電部材の底面が露出する。図4(g)は、支持基板を剥離した状態を示す図である。支持基板111を除去する方法としては、物理的に剥がす方法、エッチングにより選択的に支持基板を除去する方法等を用いることができる。
(Support substrate removal process)
After the sealing member is cured, the support substrate is peeled off and removed. Thereby, the bottom surfaces of the first conductive member and the second conductive member are exposed. FIG. 4G is a diagram showing a state where the support substrate is peeled off. As a method for removing the support substrate 111, a method of physically peeling, a method of selectively removing the support substrate by etching, or the like can be used.
(ダイシング工程)
以上のような工程を経て、発光装置の集合体を得ることができる。この発光装置の集合体において、図4(g)に点線で示す分離部、つまり、発光素子間の封止部材を分割するような位置で切断することで発光素子毎に個片化し、図2に示すような発光装置を得ることができる。個片化の方法としては、ブレードによるダイシング、レーザ光によるダイシング等種々の方法を用いることができる。
(Dicing process)
Through the above steps, an assembly of light emitting devices can be obtained. In the assembly of the light emitting devices, the light emitting elements are separated into individual pieces by cutting at a separating portion indicated by a dotted line in FIG. 4G, that is, at a position where the sealing member between the light emitting elements is divided. A light emitting device as shown in FIG. Various methods such as dicing with a blade and dicing with a laser beam can be used as the method of dividing into pieces.
図2では、発光素子を個々に分割した状態を示しているが、目的によって2個毎や4個毎等のアレイや集合体として切り分けてもよい。
また、図1では、第1導電部材及び第2導電部材から離間する位置で切断しているが、これに限らず、第1導電部材及び第2導電部材のうちの少なくとも一方を含む位置で切断してもよい。導電部材から離間する位置で切断する場合、切断される部分が封止部材や接着部材などの樹脂のみとなるため、導電部材と樹脂とを合わせて切断する場合に比して容易に切断することができる。導電部材を含む位置で切断する場合、発光装置の側面にも導電部材が露出するようになり、はんだ等が接合し易くなる。
Although FIG. 2 shows a state in which the light emitting elements are individually divided, the light emitting elements may be divided into two or four arrays or aggregates depending on the purpose.
Moreover, in FIG. 1, it cut | disconnects in the position spaced apart from a 1st conductive member and a 2nd conductive member, However, Not only this, It cut | disconnects in the position containing at least one of a 1st conductive member and a 2nd conductive member May be. When cutting at a position away from the conductive member, the portion to be cut is only a resin such as a sealing member or an adhesive member, so cutting is easier than when cutting the conductive member and the resin together. Can do. When cutting at a position including the conductive member, the conductive member is exposed also on the side surface of the light emitting device, and solder or the like is easily joined.
以下、本実施形態の発光装置の各構成部材について詳述する。 Hereinafter, each component of the light emitting device of the present embodiment will be described in detail.
(導電部材)
導電部材は、発光素子に電気的に接続して、外部から供給される電気を通電させるための一対の電極として機能するものである。導電部材は、互いに離間する第1導電部材と第2導電部材とを有している。
(Conductive member)
The conductive member is electrically connected to the light emitting element and functions as a pair of electrodes for energizing electricity supplied from the outside. The conductive member has a first conductive member and a second conductive member that are separated from each other.
第1導電部材は、発光素子の正電極がその上面に接着部材を介して接続される。第2導電部材は、発光素子の負電極がその上面に接着部材を介して接続される。第1導電部材及び第2導電部材の上面は、発光素子の電極が接続可能な面積以上の大きさであればよい。第1導電部材及び第2導電部材の上面の形状は、例えば、上面視が略四角形、多角形、これらの形状に切り欠きを有する形状等、種々のものとすることができる。また、発光素子の電極を配置させる領域は、平坦な面とするのが好ましい。第1導電部材及び第2導電部材は、下面が発光装置の外表面(例えば、下面又は裏面)を形成する。すなわち、第1導電部材及び第2導電部材の下面は封止部材で被覆されずに外部に露出している。
第1導電部材及び第2導電部材の下面は、発光装置の外表面として、実質的に平坦な面とするのが好ましいが、微細な凹凸等が形成されていてもよい。
The positive electrode of the light emitting element is connected to the upper surface of the first conductive member via an adhesive member. The second conductive member is connected to the upper surface of the negative electrode of the light emitting element via an adhesive member. The upper surfaces of the first conductive member and the second conductive member may be larger than the area that can be connected to the electrode of the light emitting element. The shapes of the upper surfaces of the first conductive member and the second conductive member can be various, for example, a substantially square shape when viewed from above, a polygonal shape, or a shape having a notch in these shapes. In addition, it is preferable that the region where the electrode of the light emitting element is arranged be a flat surface. As for a 1st conductive member and a 2nd conductive member, a lower surface forms the outer surface (for example, lower surface or back surface) of a light-emitting device. That is, the lower surfaces of the first conductive member and the second conductive member are exposed to the outside without being covered with the sealing member.
The lower surfaces of the first conductive member and the second conductive member are preferably substantially flat surfaces as the outer surface of the light emitting device, but may have fine irregularities or the like.
第1導電部材及び第2導電部材の膜厚は、互いに異なっていてもよいが、略等しい膜厚とするのが好ましい。具体的には、10μm〜100μm程度が好ましく、特に、45μm〜95μm程度が好ましい。このような範囲の厚さとすることで、例えば鍍金法によって導電部材を形成する場合に、均一な膜厚の導電部材とすることができる。特に、100μm程度以下とすることにより、従来から用いられているリードフレームでは実現できない極薄い厚みであるため、発光装置のより小型化・軽量化を図ることができる。 The film thicknesses of the first conductive member and the second conductive member may be different from each other, but are preferably substantially equal. Specifically, it is preferably about 10 μm to 100 μm, and particularly preferably about 45 μm to 95 μm. By setting it as the thickness of such a range, when forming a conductive member by the plating method, for example, it can be set as the conductive member of a uniform film thickness. In particular, by setting the thickness to about 100 μm or less, the light-emitting device can be further reduced in size and weight because the thickness is extremely thin that cannot be realized with a lead frame that has been used conventionally.
第1導電部材及び第2導電部材は、互いに異なる材料によって形成されていてもよいが、同じ材料によって形成されていることが好ましい。これにより、より簡便に製造することができる。
例えば、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル、コバルト、モリブデン等の金属又は合金(例えば、鉄−ニッケル合金、りん青銅、鉄入り銅、Au−Sn等の共晶はんだ、SnAgCu、SnAgCuIn等のはんだ等)、酸化物導電体(例えば、ITO等)等が挙げられる。第1及び第2の導電部材は、単層及び積層のいずれでもよい。
The first conductive member and the second conductive member may be formed of different materials, but are preferably formed of the same material. Thereby, it can manufacture more simply.
For example, metals or alloys such as copper, aluminum, gold, silver, tungsten, iron, nickel, cobalt, molybdenum (for example, eutectic solder such as iron-nickel alloy, phosphor bronze, iron-containing copper, Au-Sn, SnAgCu, SnAgCuIn solder etc.), oxide conductors (eg ITO etc.) and the like. The first and second conductive members may be either a single layer or a stacked layer.
特に、第1及び第2の導電部材は、鍍金であることが好ましく、鍍金の積層構造とすることがより好ましい。具体的には、導電部材の最上層(発光素子の載置側)には、発光素子や波長変換部材からの光を反射可能な材料を設けるのが好ましく、具体的には、Au、Ag、Cu、Pt、Pd、Al、W、Mo、Ru、Rh等が好ましい。さらに、最表面は、高反射率、高光沢であることが好ましい。具体的には、可視域の反射率が70%以上であることが好ましく、その場合は、Au、Al、Ag、Ru、Rh、Pt、Pdなどが好ましく、特にAgが好ましい。表面光沢は、例えば、光沢度が0.5以上であることが好ましく、1.0以上がより好ましい。ここで示される光沢度は、日本電色工業製 微小面色差計VSR 300Aを用い、45°照射、垂直受光で得られる数字である。 In particular, the first and second conductive members are preferably plated, and more preferably a laminated structure of plated. Specifically, it is preferable to provide a material capable of reflecting light from the light emitting element and the wavelength conversion member on the uppermost layer of the conductive member (on the side where the light emitting element is placed). Specifically, Au, Ag, Cu, Pt, Pd, Al, W, Mo, Ru, Rh and the like are preferable. Furthermore, it is preferable that the outermost surface has high reflectivity and high gloss. Specifically, the reflectance in the visible region is preferably 70% or more. In that case, Au, Al, Ag, Ru, Rh, Pt, Pd, and the like are preferable, and Ag is particularly preferable. For example, the glossiness of the surface is preferably 0.5 or more, more preferably 1.0 or more. The glossiness shown here is a number obtained by 45 ° irradiation and vertical light reception using a minute surface color difference meter VSR 300A manufactured by Nippon Denshoku Industries Co., Ltd.
第1導電部材と第2導電部材との間隔は、10μm〜500μmであることが適している。これにより、導電部材間の短絡を防止することができる。特に、導電部材が、Ag等のマイグレーションを起こしやすい材料を含んでいる場合、第1導電部材と第2導電部材との間隔は、200μm以上であることが好ましい。 The distance between the first conductive member and the second conductive member is suitably 10 μm to 500 μm. Thereby, a short circuit between conductive members can be prevented. In particular, when the conductive member contains a material that easily causes migration, such as Ag, the distance between the first conductive member and the second conductive member is preferably 200 μm or more.
また、導電部材が金属からなる鍍金層の場合、その組成によって線膨張係数が規定されるため、比較的支持基板との線膨張係数が近いものが好ましい。例えば、支持基板として、線膨張係数が10.4×10−6/KであるSUS430を用い、その上に導電部材として、最下層側から、線膨張係数14.2×10−6/KであるAu(0.04〜0.1
μm)、線膨張係数12.8×10−6/KであるNi(又は線膨張係数16.8×10−6/KであるCu)(40〜70μm)、Au(0.01〜0.07μm)、線膨張係数119.7×10−6/KであるAg(2〜6μm)等の積層構造が好ましい。最上層のAgは線膨張係数が他の層の金属と大きく異なるが、発光素子からの光の反射率を優先しているためであり、極めて薄い厚みとしているため反りに対する影響は極めて微弱であり、実用的には問題はない程度である。
In the case where the conductive member is a plated layer made of metal, the linear expansion coefficient is defined by the composition thereof, and therefore, the conductive layer is preferably relatively close to the support substrate. For example, SUS430 having a linear expansion coefficient of 10.4 × 10 −6 / K is used as the support substrate, and a conductive member is formed thereon with a linear expansion coefficient of 14.2 × 10 −6 / K from the lowermost layer side. Some Au (0.04-0.1
μm), Ni having a linear expansion coefficient of 12.8 × 10 −6 / K (or Cu having a linear expansion coefficient of 16.8 × 10 −6 / K) (40-70 μm), Au (0.01-0. And a laminated structure such as Ag (2 to 6 μm) having a linear expansion coefficient of 119.7 × 10 −6 / K is preferable. The top layer of Ag has a linear expansion coefficient that is significantly different from that of other layers of metal, but it is because priority is given to the reflectance of light from the light emitting element, and the influence on the warp is extremely weak because of its extremely thin thickness. In practical use, there is no problem.
第1導電部材及び第2導電部材の外縁は、平坦な面でもよいが、接着部材や封止部材との密着性を考慮して、突出部を有する形状とすることが好ましい。突出部は、導電部材の下面から離間した位置に設けることが好ましい。また、接着部材の一部は、突出部の下面よりも下に延在していることが好ましい。これにより、接着部材が導電部材から剥離することを防止することができる。 Although the outer edges of the first conductive member and the second conductive member may be flat surfaces, it is preferable that the outer edges of the first conductive member and the second conductive member have a protruding portion in consideration of adhesion to the adhesive member and the sealing member. The protrusion is preferably provided at a position separated from the lower surface of the conductive member. Moreover, it is preferable that a part of adhesive member is extended below the lower surface of a protrusion part. Thereby, it can prevent that an adhesive member peels from a conductive member.
図3は、図2の発光装置の点線で囲んだ領域を拡大した概略断面図である。突出部101xは、例えば、図3のように、第1導電部材101と第2導電部材102との間において、互いに隣接する外縁に向かって突出し、突出部101xにおける上面及び下面が接着部材によって挟持されるように配置していることが好ましい。これにより、導電部材が薄い厚みであっても、機械的強度をより高めることができる。
FIG. 3 is an enlarged schematic cross-sectional view of a region surrounded by a dotted line in the light emitting device of FIG. For example, as illustrated in FIG. 3, the protruding
突出部は、第1導電部材及び第2導電部材の周囲の任意の位置に設けることができる。突起部は、例えば、上面視四角形の導電部材の2つの側面にのみ設けるなど、部分的に設けてもよいが、第1導電部材及び第2導電部材の周囲全体にわたって形成していることが好ましい。これにより、封止部材や接着部材からの脱落をより確実に防止することができる。 The protrusion can be provided at any position around the first conductive member and the second conductive member. The protrusions may be provided partially, for example, only on the two side surfaces of the conductive member having a square shape in a top view, but are preferably formed over the entire periphery of the first conductive member and the second conductive member. . Thereby, dropping off from the sealing member or the adhesive member can be prevented more reliably.
(接着部材)
接着部材は、発光素子と第1導電部材及び第2導電部材とを接着させる部材である。接着部材は、樹脂などの絶縁部材に導電性フィラーが混合された異方性導電材料であることが好ましい。
(Adhesive member)
The adhesive member is a member that adheres the light emitting element to the first conductive member and the second conductive member. The adhesive member is preferably an anisotropic conductive material in which a conductive filler is mixed with an insulating member such as a resin.
絶縁部材としては、耐熱性に優れた樹脂が好ましい。具体的には、耐熱性に優れた樹脂としては、エポキシ樹脂組成物、シリコーン樹脂組成物、ポリイミド樹脂組成物やこれらの変性樹脂、ハイブリッド樹脂等を用いることができ、特にハイブリッド樹脂が耐熱性、耐光性、接着性が良好であるため好ましい。 As the insulating member, a resin excellent in heat resistance is preferable. Specifically, as the resin having excellent heat resistance, an epoxy resin composition, a silicone resin composition, a polyimide resin composition, a modified resin thereof, a hybrid resin, or the like can be used. Since light resistance and adhesiveness are favorable, it is preferable.
導電性フィラーの構造は、次の(A1)〜(A4)のいずれでもよい。
(A1)樹脂ボールを金属層で覆ったもの
(A2)(A1)をさらに絶縁膜で覆ったもの
(A3)金属からなるボール
(A4)金属からなるボールをさらに別の金属で覆ったもの
The structure of the conductive filler may be any of the following (A1) to (A4).
(A1) A resin ball covered with a metal layer (A2) (A1) covered with an insulating film (A3) A metal ball (A4) A metal ball covered with another metal
導電性フィラーの構造の具体例としては、内側から順に、樹脂ボール/ニッケル/絶縁膜、樹脂ボール/ニッケル/金/絶縁膜、ニッケル/金、ニッケル、鉛フリーはんだ粒子等が挙げられる。樹脂ボールの材料としては、スチレン、アクリル、酸化チタン等が挙げられる。 Specific examples of the structure of the conductive filler include resin balls / nickel / insulating film, resin balls / nickel / gold / insulating film, nickel / gold, nickel, lead-free solder particles and the like in order from the inside. Examples of the resin ball material include styrene, acrylic, and titanium oxide.
導電フィラーは、粒径が1μm〜20μmの範囲のものを用いることが好ましい。これにより、導電フィラー間のリークを防ぐことが可能となり、また、ペースト内部に導電フィラーを良好に分布させることができる。また、発光素子を圧着する際に、発光素子へ傷をつけることも防止することが可能となる。特に、発光素子の電極に設けられる金属バンプや導電部材の厚みよりも小さい粒径のものを用いることが好ましい。これにより、発光素子と導電部材との間における短絡を防止することができる。 It is preferable to use a conductive filler having a particle size in the range of 1 μm to 20 μm. Thereby, it becomes possible to prevent the leakage between the conductive fillers, and the conductive fillers can be well distributed in the paste. Further, when the light emitting element is pressure-bonded, it is possible to prevent the light emitting element from being damaged. In particular, it is preferable to use one having a particle size smaller than the thickness of the metal bump or conductive member provided on the electrode of the light emitting element. Thereby, a short circuit between the light emitting element and the conductive member can be prevented.
接着部材には、Al2O3、TiO2、ZrO2等の白色フィラーを添加してもよい。これにより、発光素子からの光を反射させることによって遮光することができる。 The adhesive member, Al 2 O 3, TiO 2 , white filler such as ZrO 2 may be added. Thereby, it can shield light by reflecting the light from a light emitting element.
接着部材は、発光素子の側面を被覆するように設けてもよい。これにより、接着部材からの発光素子の剥離を防止することができる。さらに、遮光性の接着部材を用いることにより、発光素子からの光が横方向に漏れるのを防止することができ、上面方向へ効率よく光を取り出すことができる。接着部材は、発光素子の側面の略全体を覆っていてもよいが、図5に示すように、少なくとも発光素子の電極形成面と対向する上面は、接着部材から露出していることが好ましい。 The adhesive member may be provided so as to cover the side surface of the light emitting element. Thereby, peeling of the light emitting element from the adhesive member can be prevented. Furthermore, by using a light-shielding adhesive member, light from the light emitting element can be prevented from leaking in the lateral direction, and light can be efficiently extracted in the upper surface direction. The adhesive member may cover substantially the entire side surface of the light emitting element, but as shown in FIG. 5, it is preferable that at least the upper surface facing the electrode forming surface of the light emitting element is exposed from the adhesive member.
(発光素子)
本発明においては、発光素子として、同一面側に正電極と負電極が形成された構造の半導体素子を用いることができる。
(Light emitting element)
In the present invention, a semiconductor element having a structure in which a positive electrode and a negative electrode are formed on the same surface side can be used as the light emitting element.
半導体発光素子としては、任意の波長のものを選択することができる。例えば、青色、緑色の発光素子としては、ZnSeや窒化物系半導体(InXAlYGa1−X−YN、0≦X、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。さらに、これ以上の材料からなる半導体発光素子を用いることもできる。用いる発光素子の組成や発光色、大きさや、個数などは目的に応じて適宜選択することができる。
波長変換部材を有する発光装置とする場合には、その波長変換部材を効率よく励起できる短波長が発光可能な窒化物半導体(InXAlYGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。
As the semiconductor light emitting element, one having an arbitrary wavelength can be selected. For example, the blue, the green light emitting element, ZnSe and nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), used after using GaP be able to. Furthermore, a semiconductor light emitting element made of a material higher than this can also be used. The composition, emission color, size, number, and the like of the light emitting element to be used can be appropriately selected according to the purpose.
In the case of a light emitting device having a wavelength conversion member, a nitride semiconductor (In X Al Y Ga 1- XYN, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferred. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal.
また、可視光領域の光だけでなく、紫外線や赤外線を出力する発光素子とすることができる。さらには、発光素子とともに、もしくは単独で、受光素子などを搭載することができ、保護素子なども搭載することができる。 Further, a light-emitting element that outputs not only light in the visible light region but also ultraviolet rays and infrared rays can be obtained. Furthermore, a light receiving element or the like can be mounted together with or independently of the light emitting element, and a protective element or the like can also be mounted.
特に、接着部材として異方性導電材料を用いる場合は、フェイスダウン構造が発光効率を高くする上で有効である。また、電極間のショートの防止や、熱衝撃や熱サイクルによる不灯の防止のため、発光素子の電極に、金属バンプを設けてもよい。金属バンプの厚みは、接着部材の導電フィラーの粒径よりも厚いことが好ましい。 In particular, when an anisotropic conductive material is used as the adhesive member, the face-down structure is effective for increasing the light emission efficiency. In addition, metal bumps may be provided on the electrodes of the light emitting element in order to prevent a short circuit between the electrodes and to prevent unlighting due to a thermal shock or a thermal cycle. The thickness of the metal bump is preferably thicker than the particle size of the conductive filler of the adhesive member.
発光素子の電極の形状は特に限定されず、略矩形、円形などを用いることができる。
正負の電極間の距離は、接着部材の導電フィラーの粒径よりも大きいことが好ましい。これにより、電極間における短絡を防止することができる。
There is no particular limitation on the shape of the electrode of the light-emitting element, and a substantially rectangular shape, a circular shape, or the like can be used.
The distance between the positive and negative electrodes is preferably larger than the particle size of the conductive filler of the adhesive member. Thereby, the short circuit between electrodes can be prevented.
(封止部材)
封止部材は、発光素子とともに、第1導電部材及び第2導電部材の少なくとも一面を被覆するものである。封止部材は、発光素子、受光素子、保護素子などの電子部品を、塵芥や水分、外力などから保護する機能を有する。
(Sealing member)
The sealing member covers at least one surface of the first conductive member and the second conductive member together with the light emitting element. The sealing member has a function of protecting electronic components such as a light emitting element, a light receiving element, and a protective element from dust, moisture, external force, and the like.
封止部材の材料としては、発光素子からの光を透過可能な透光性を有し、且つ、耐光性及び絶縁性を有するものが好ましい。具体的には、シリコーン樹脂組成物、変性シリコーン樹脂組成物、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等、シリコーン樹脂、エポキシ樹脂、ユリア樹脂、フッ素樹脂及びこれらの樹脂を少なくとも1種以上含むハイブリッド樹脂、ガラス、シリカゾル等の無機物等が挙げられる。また、これらの有機物に限らず、ガラス、シリカゾル等の無機物も用いることができる。
封止部材は、所望に応じて着色剤、光拡散剤、光反射材、各種フィラー、波長変換部材(例えば、蛍光体)などを含有させることもできる。
封止部材の外表面の形状は、配光特性などに応じて種々選択することができる。例えば、上面を凸状レンズ形状、凹状レンズ形状、フレネルレンズ形状等とすることで、指向特性を調整することができる。また、封止部材に加え、別個にレンズ形状の部材を設けてもよい。さらに、蛍光体入り成形体(例えば蛍光体入り板状成形体、蛍光体入りドーム状成形体等)を用いる場合には、封止部材として蛍光体入り成形体との密着性に優れた材料を選択することが好ましい。蛍光体入り成形体としては、樹脂組成物の他、ガラス等の無機物を用いることができる。
As a material for the sealing member, a material having translucency capable of transmitting light from the light emitting element and having light resistance and insulation is preferable. Specifically, silicone resin composition, modified silicone resin composition, epoxy resin composition, modified epoxy resin composition, acrylic resin composition, etc., silicone resin, epoxy resin, urea resin, fluororesin, and at least these resins Examples thereof include inorganic substances such as a hybrid resin containing one or more kinds, glass, and silica sol. Moreover, not only these organic substances but also inorganic substances such as glass and silica sol can be used.
The sealing member can contain a colorant, a light diffusing agent, a light reflecting material, various fillers, a wavelength conversion member (for example, a phosphor) and the like as desired.
The shape of the outer surface of the sealing member can be variously selected according to the light distribution characteristics and the like. For example, the directivity can be adjusted by making the upper surface into a convex lens shape, a concave lens shape, a Fresnel lens shape, or the like. In addition to the sealing member, a lens-shaped member may be provided separately. Furthermore, when using a molded body with a phosphor (for example, a plate-shaped molded body with a phosphor, a dome-shaped molded body with a phosphor, etc.), a material excellent in adhesion to the molded body with a phosphor is used as a sealing member. It is preferable to select. In addition to the resin composition, an inorganic substance such as glass can be used as the phosphor-containing molded body.
封止部材は、波長変換部材として、発光素子からの光の少なくとも一部を吸収して異なる波長を有する光を発する蛍光体を含有させることもできる。
蛍光体としては、発光素子からの光を、それより短波長に変換させるものでもよいが、光取り出し効率の観点から長波長に変換させるものが好ましい。また、これに限らず、他の蛍光体によって変換された光をさらに変換させるもの等も用いることができる。このような波長変換部材は、1種の蛍光体を含有する単層、2種以上の蛍光体が混合された単層、2種以上の蛍光体が別々の層に含有された2層以上の積層、2種以上の蛍光物質等がそれぞれ混合された単層の2層以上の積層のいずれであってもよい。
The sealing member can also contain a phosphor that emits light having a different wavelength by absorbing at least part of the light from the light emitting element as a wavelength conversion member.
As a fluorescent substance, what converts the light from a light emitting element into a shorter wavelength may be sufficient, However, The thing converted into a long wavelength from a viewpoint of light extraction efficiency is preferable. Further, the present invention is not limited to this, and those that further convert light converted by other phosphors can be used. Such a wavelength conversion member is composed of a single layer containing one kind of phosphor, a single layer in which two or more kinds of phosphors are mixed, and two or more layers in which two or more kinds of phosphors are contained in separate layers. The laminate may be any one of two or more layers of a single layer in which two or more kinds of fluorescent materials are mixed.
蛍光体としては、例えば、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体や酸窒化物系蛍光体、より具体的には、(a)Eu賦活されたα又はβサイアロン型蛍光体、各種アルカリ土類金属窒化シリケート蛍光体、各種アルカリ土類金属窒化アルミニウムケイ素蛍光体、(b)Eu等のランタノイド系の元素、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類金属ハロゲンアパタイト蛍光体、アルカリ土類のハロシリケート蛍光体、アルカリ土類金属シリケート蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類金属ケイ酸塩、アルカリ土類金属硫化物、アルカリ土類金属チオガレート、アルカリ土類金属窒化ケイ素、ゲルマン酸塩、(c)Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩、希土類ケイ酸塩、アルカリ土類金属希土類ケイ酸塩、(d)Eu等のランタノイド系元素で主に賦活される有機及び有機錯体等から選ばれる少なくともいずれか1以上であることが好ましい。なかでも、Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体であるYAG系蛍光体が好ましい。YAG系蛍光体は、Y3Al5O12:Ce、(Y0.8Gd0.2)3Al5O12:Ce、Y3(Al0.8Ga0.2)5O12:Ce、(Y,Gd)3(Al,Ga)5O12などの組成式で表される。また、Yの一部又は全部をTb、Lu等で置換したTb3Al5O12:Ce、Lu3Al5O12:Ce等でもよい。さらに、上記の蛍光体以外の蛍光体であって、同様の性能、作用、効果を有する蛍光体も使用することができる。 Examples of the phosphor include nitride phosphors and oxynitride phosphors mainly activated by lanthanoid elements such as Eu and Ce, and more specifically, (a) Eu-activated α or β Mainly activated by sialon-type phosphors, various alkaline earth metal nitride silicate phosphors, various alkaline earth metal aluminum nitride silicon phosphors, (b) lanthanoid elements such as Eu, and transition metal elements such as Mn Alkaline earth metal halogen apatite phosphor, alkaline earth halosilicate phosphor, alkaline earth metal silicate phosphor, alkaline earth metal borate phosphor, alkaline earth metal aluminate phosphor, alkaline earth Runs of metal silicate, alkaline earth metal sulfide, alkaline earth metal thiogallate, alkaline earth metal silicon nitride, germanate, (c) Ce, etc. Selected from rare earth aluminates, rare earth silicates, alkaline earth metal rare earth silicates that are mainly activated with a Tanoid element, and organic and organic complexes that are mainly activated with a lanthanoid element such as (d) Eu It is preferable that it is at least any one or more. Among these, a YAG phosphor that is a rare earth aluminate phosphor mainly activated by a lanthanoid element such as Ce is preferable. YAG-based phosphors include Y 3 Al 5 O 12 : Ce, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce, Y 3 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce , (Y, Gd) 3 (Al, Ga) 5 O 12 . Also, some or all Tb of Y, Lu, etc. Tb 3 Al 5 O 12 was replaced with: Ce, Lu 3 Al 5 O 12: may be Ce or the like. Furthermore, phosphors other than the above phosphors having the same performance, function, and effect can also be used.
また、蛍光体をガラス、樹脂組成物等、他の成形体に塗布したものも用いることができる。また、蛍光体含有成形体も用いることができる。具体的には、蛍光体含有ガラス、YAG焼結体、YAGとAl2O3、SiO2、B2O3等の焼結体、無機融液中でYAGを析出させた結晶化無機バルク体等が挙げられる。蛍光体をエポキシ、シリコーン、ハイブリッド樹脂等で一体成形したものを用いてもよい。
<実施の形態2>
図6は、本発明の実施の形態2に係る発光装置を示す概略断面図である。実施の形態1と重複する説明は省略することもある。
Moreover, what apply | coated fluorescent substance to other molded objects, such as glass and a resin composition, can also be used. Moreover, a fluorescent substance containing molded object can also be used. Specifically, phosphor-containing glass, YAG sintered body, sintered body such as YAG and Al 2 O 3 , SiO 2 , B 2 O 3 , crystallized inorganic bulk body in which YAG is precipitated in an inorganic melt Etc. A phosphor that is integrally molded with epoxy, silicone, hybrid resin, or the like may be used.
<Embodiment 2>
FIG. 6 is a schematic cross-sectional view showing a light-emitting device according to Embodiment 2 of the present invention. The description which overlaps with Embodiment 1 may be omitted.
本実施の形態の発光装置200は、発光素子104と、互いに離間する第1導電部材101及び第2導電部材102と、発光素子104と第1導電部材101及び第2導電部材102とを接続する接着部材103と、を備えている。発光素子104は、同一面側に正電極104a及び負電極104bを有している。接着部材103は、絶縁領域103aと導電領域103bとを有するものであり、第1導電部材101及び第2導電部材102の上面及び側面に接続されている。発光素子104の正電極104a及び負電極104bは、接着部材103の導電領域103b上に接続されている。具体的には、発光素子104の正電極104aは、第1導電部材101の上に配置され、発光素子104の負電極104bは、第2導電部材102の上に配置されている。接着部材103の導電領域103bは、少なくとも第1導電部材101と発光素子104の正電極104aとの間、及び第2導電部材102と発光素子104の負電極104bとの間に設けられている。発光素子104の正電極104a及び負電極104bは、金属バンプ105を介して接着部材103に接続されていてもよい。
また、本実施の形態の発光装置200は、第1導電部材101及び第2導電部材102の外縁の少なくとも一部を被覆する基体107を有している。基体107は、発光素子104からの光が遮光可能な部材であり、発光素子104を収納する凹部108を形成している。凹部108の底面において、第1導電部材101及び第2導電部材102の上面の一部が露出している。基体107は、発光装置200の上面の一部、側面、及び下面の一部を形成している。第1導電部材101及び第2導電部材102の下面は、基体107の下面(裏面)から露出しており、発光装置200の下面の一部を形成している。
また、凹部108内には、発光素子104を被覆するように、封止部材106が設けられている。
In the
In addition, the
A sealing
(基体)
本実施の形態において、基体は、遮光性を有する各種充填材等を添加することで発光素子からの光を遮光可能な樹脂を含んでなる。基体は、第1導電部材と第2導電部材との間の領域を除いた第1導電部材及び第2導電部材の外縁を被覆する底面部107aと、第1導電部材及び第2導電部材の上において発光素子の周囲に設けられる側壁107bと、を有している。このような遮光性の基体を設けることで、発光素子からの光が、発光装置の横方向から外部に出射するのを抑制することができ、上面方向への光の取り出し効率を向上させることができる。尚、基体は、側壁107bを有していない、すなわち、底面部107aのみを備えるものであってもよい。基体の底面部107a及び側壁107bは、ともに外部への発光素子からの光の漏れを抑制できる厚さであればよい。
(Substrate)
In this embodiment mode, the base body includes a resin capable of blocking light from the light emitting element by adding various fillers having a light blocking property. The base includes a first conductive member excluding a region between the first conductive member and the second conductive member, a
基体は、発光素子からの光が遮光可能な部材であればよく、また、支持基板との線膨張係数の差が小さいものが好ましい。さらに、絶縁性部材を用いるのが好ましい。好ましい材料としては、熱硬化性樹脂、熱可塑性樹脂などの樹脂を用いることができる。特に、第1導電部材及び第2導電部材の膜厚が25μm〜200μm程度の薄い厚みの場合は、熱硬化性樹脂が好ましい。これによって、極めて薄型の基体を得ることができる。具体的には、エポキシ樹脂組成物、シリコーン樹脂組成物、シリコーン変性エポキシ樹脂などの変性エポキシ樹脂組成物、エポキシ変性シリコーン樹脂などの変性シリコーン樹脂組成物、ポリイミド樹脂組成物、変性ポリイミド樹脂組成物などを挙げることができる。 The substrate may be any member that can block light from the light emitting element, and preferably has a small difference in linear expansion coefficient from the support substrate. Furthermore, it is preferable to use an insulating member. As a preferable material, a resin such as a thermosetting resin or a thermoplastic resin can be used. In particular, when the film thickness of the first conductive member and the second conductive member is as thin as about 25 μm to 200 μm, a thermosetting resin is preferable. As a result, an extremely thin substrate can be obtained. Specifically, epoxy resin compositions, silicone resin compositions, modified epoxy resin compositions such as silicone-modified epoxy resins, modified silicone resin compositions such as epoxy-modified silicone resins, polyimide resin compositions, modified polyimide resin compositions, etc. Can be mentioned.
特に、熱硬化性樹脂が好ましく、特開2006−156704に記載されている樹脂が好ましい。例えば、熱硬化性樹脂のうち、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、ウレタン樹脂等が好ましい。具体的には、(i)トリグリシジルイソシアヌレート、水素化ビスフェノールAジグリシジルエーテルからなるエポキシ樹脂と、(ii)ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸からなる酸無水物とを、エポキシ樹脂へ当量となるよう溶解混合した無色透明な混合物を含む固形状エポキシ樹脂組成物を用いるのが好ましい。さらにこれら混合物100重量部に対して、硬化促進剤としてDBU(1,8−Diazabicyclo(5,4,0)undecene−7)を0.5重量部、助触媒としてエチレングリコールを1重量部、酸化チタン顔料を10重量部、ガラス繊維を50重量部添加し、加熱により部分的に硬化反応させ、Bステージ化した固形状エポキシ樹脂組成物が好ましい。 In particular, a thermosetting resin is preferable, and a resin described in JP-A-2006-156704 is preferable. For example, among thermosetting resins, epoxy resins, modified epoxy resins, silicone resins, modified silicone resins, acrylate resins, urethane resins and the like are preferable. Specifically, (i) an epoxy resin composed of triglycidyl isocyanurate and hydrogenated bisphenol A diglycidyl ether, and (ii) hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride It is preferable to use a solid epoxy resin composition containing a colorless and transparent mixture obtained by dissolving and mixing an acid anhydride composed of an acid with an epoxy resin so as to have an equivalent amount. Furthermore, with respect to 100 parts by weight of these mixtures, 0.5 parts by weight of DBU (1,8-Diazabicyclo (5,4,0) undecene-7) as a curing accelerator, 1 part by weight of ethylene glycol as a co-catalyst, oxidation A solid epoxy resin composition in which 10 parts by weight of a titanium pigment and 50 parts by weight of glass fiber are added and partially cured by heating to form a B stage is preferable.
また、国際公開番号WO2007/015426号公報に記載の、トリアジン誘導体エポキシ樹脂を含むエポキシ樹脂を必須成分とする熱硬化性エポキシ樹脂組成物が好ましい。トリアジン誘導体エポキシ樹脂としては、例えば、1,3,5−トリアジン核誘導体エポキシ樹脂を含むことが好ましい。特に、イソシアヌレート環を有するエポキシ樹脂は、耐光性や電気絶縁性に優れている。一つのイソシアヌレート環に対して、2価の、より好ましくは3価のエポキシ基を有することが望ましい。具体的には、トリス(2,3−エポキシプロピル)イソシアヌレート、トリス(α−メチルグリシジル)イソシアヌレート等を用いることができる。トリアジン誘導体エポキシ樹脂の軟化点は90〜125℃であることが好ましい。また、これらトリアジン誘導体エポキシ樹脂に、水素添加エポキシ樹脂や、その他のエポキシ樹脂を併用してもよい。さらに、シリコーン樹脂組成物の場合、メチルシリコーンレジンを含むシリコーン樹脂が好ましい。 Moreover, the thermosetting epoxy resin composition which has the epoxy resin containing a triazine derivative epoxy resin as an essential component as described in international publication number WO2007 / 015426 is preferable. As the triazine derivative epoxy resin, for example, it is preferable to include a 1,3,5-triazine nucleus derivative epoxy resin. In particular, an epoxy resin having an isocyanurate ring is excellent in light resistance and electrical insulation. It is desirable to have a divalent, more preferably a trivalent epoxy group for one isocyanurate ring. Specifically, tris (2,3-epoxypropyl) isocyanurate, tris (α-methylglycidyl) isocyanurate, or the like can be used. The softening point of the triazine derivative epoxy resin is preferably 90 to 125 ° C. These triazine derivative epoxy resins may be used in combination with a hydrogenated epoxy resin or other epoxy resins. Furthermore, in the case of a silicone resin composition, a silicone resin containing a methyl silicone resin is preferable.
トリアジン誘導体エポキシ樹脂を用いる場合には、硬化剤として作用する酸無水物を用いるのが好ましい。特に、非芳香族であり、かつ、炭素炭素2重結合を有さない酸無水物を用いることで耐光性を向上させることができる。具体的には、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物などが挙げられる。特に、メチルヘキサヒドロ無水フタル酸が好ましい。また、酸化防止剤を用いることが好ましい。酸化防止剤としては、例えば、フェノール系、硫黄系の酸化防止剤を使用することができる。また、硬化触媒としては、当該分野で公知のものを使用することができる。 When using a triazine derivative epoxy resin, it is preferable to use an acid anhydride which acts as a curing agent. In particular, light resistance can be improved by using an acid anhydride which is non-aromatic and does not have a carbon-carbon double bond. Specific examples include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hydrogenated methylnadic acid anhydride, and the like. In particular, methylhexahydrophthalic anhydride is preferred. Moreover, it is preferable to use an antioxidant. As the antioxidant, for example, phenol-based and sulfur-based antioxidants can be used. Moreover, as a curing catalyst, a well-known thing can be used in the said field | area.
そして、これら樹脂中に遮光性を付与するための充填剤や、必要に応じて各種添加剤を混入させることができる。本発明では、これらを含めて基体を構成する遮光性樹脂と称する。 And the filler for providing light-shielding property in these resin, and various additives can be mixed as needed. In the present invention, these are referred to as a light-shielding resin constituting the substrate.
これらの樹脂には、例えば、充填材(フィラー)としてTiO2、SiO2、Al2O3、MgO、MgCO3、CaCO3、Mg(OH)2、Ca(OH)2等の微粒子等を混入させることで光の透過率を調整することができる。このような充填材を用いることにより、発光素子からの光の約60%以上を遮光するよう、より好ましくは約90%を遮光するように調節することが好ましい。なお、ここでは基体によって光を反射するか、又は吸収するかどちらでもよいが、発光装置を照明等の用途に用いる場合は、より好ましくは反射させることによって遮光するのが好ましい。そのため、発光素子からの光に対する反射率が60%以上であるものが好ましく、90%以上反射するものがさらに好ましい。 For example, fine particles such as TiO 2 , SiO 2 , Al 2 O 3 , MgO, MgCO 3 , CaCO 3 , Mg (OH) 2 , and Ca (OH) 2 are mixed in these resins. By doing so, the light transmittance can be adjusted. By using such a filler, it is preferable to adjust so as to shield about 60% or more of light from the light emitting element, more preferably about 90%. Here, either the light may be reflected or absorbed by the substrate, but when the light emitting device is used for lighting or the like, it is more preferable that the light is shielded by reflection. Therefore, it is preferable that the reflectance with respect to the light from the light emitting element is 60% or more, and more preferable that reflect 90% or more.
上記のような各種充填材は、1種類のみ、或いは2種類以上を組み合わせて用いることができる。例えば、反射率を調整するための充填材と、後述のように線膨張係数を調整するための充填材とを併用する等の用い方ができる。 Various fillers as described above can be used alone or in combination of two or more. For example, it is possible to use a combination of a filler for adjusting the reflectance and a filler for adjusting the linear expansion coefficient as will be described later.
例えば、白色の充填剤としてTiO2を用いる場合は、好ましくは10〜30wt%、より好ましくは15〜25wt%配合させることが好ましい。TiO2は、ルチル形、アナタース形のどちらを用いてもよい。遮光性や耐光性の点からルチル形が好ましい。更に、分散性、耐光性を向上させたい場合、表面処理により改質した充填材も使用できる。TiO2から成る充填材の表面処理にはアルミナ、シリカ、酸化亜鉛等の水和酸化物、酸化物等を用いることができる。また、これらに加え、主として線膨張係数を調整するための充填剤として、SiO2を60〜80wt%の範囲で用いることが好ましく、さらに、65〜75wt%用いるのが好ましい。また、SiO2としては、結晶性シリカよりも線膨張係数の小さい非晶質シリカが好ましい。また、粒径が100μm以下の充填材、さらには60μm以下の充填材が好ましい。さらに、形状は球形の充填材が好ましく、これにより基体を成型する時の充填性を向上させることができる。また、ディスプレイ等に用いる場合であって、コントラストを向上させたい場合は、充填材は、発光素子からの光の吸収率が60%以上のものが好ましく、90%以上のものがより好ましい。このような場合、充填材としては、アセチレンブラック、活性炭、黒鉛などのカーボンや、酸化鉄、二酸化マンガン、酸化コバルト、酸化モリブデンなどの遷移金属酸化物、もしくは有色有機顔料などを目的に応じて利用することが好ましい。 For example, when TiO 2 is used as a white filler, it is preferably added in an amount of 10 to 30 wt%, more preferably 15 to 25 wt%. TiO 2 may be either a rutile type or an anatase type. The rutile type is preferable from the viewpoint of light shielding properties and light resistance. Furthermore, when it is desired to improve dispersibility and light resistance, a filler modified by surface treatment can also be used. For the surface treatment of the filler made of TiO 2, hydrated oxides such as alumina, silica and zinc oxide, oxides and the like can be used. In addition to these, as a filler mainly for adjusting the linear expansion coefficient, SiO 2 is preferably used in a range of 60 to 80 wt%, and more preferably 65 to 75 wt%. As the SiO 2, less amorphous silica coefficient of linear expansion than the crystalline silica is preferable. Further, a filler having a particle size of 100 μm or less, and further a filler of 60 μm or less is preferable. Further, a spherical filler is preferable, and this can improve the filling property when the substrate is molded. Further, in the case of use for a display or the like and when it is desired to improve contrast, the filler preferably has a light absorption rate of 60% or more from the light emitting element, and more preferably 90% or more. In such cases, as the filler, carbon such as acetylene black, activated carbon, graphite, transition metal oxides such as iron oxide, manganese dioxide, cobalt oxide, molybdenum oxide, or colored organic pigments are used depending on the purpose. It is preferable to do.
また、基体の線膨張係数は、個片化する前に除去(剥離)される支持基板の線膨張係数との差が小さくなるように制御することが好ましい。好ましくは30%以下、より好ましくは10%以下の差とするのがよい。支持基板としてSUS板を用いる場合、線膨張係数の差は20ppm以下が好ましく、10ppm以下がより好ましい。この場合、充填材を70wt%以上、好ましくは85wt%以上配合させることが好ましい。これにより、支持基板と基体との残留応力を制御(緩和)することができるため、個片化する前の発光装置の集合体の反りを少なくすることができる。反りを少なくすることで、内部損傷を低減し、また、個片化する際の位置ズレを抑制して歩留まりよく製造することができる。例えば、基体の線膨張係数を5〜25×10−6/Kに調整することが好ましく、さらに好ましくは7〜15×10−6/Kに調整することが望ましい。これにより、基体成型後、冷却時に生じる反りを抑制し易くすることができ、歩留まりよく製造することができる。尚、本明細書において線膨張係数とは、各種充填剤等で調整された遮光性樹脂からなる基体のガラス転移温度以下での線膨張係数を指す。この温度領域における線膨張係数が、支持基板の線膨張係数と近いものが好ましい。 Further, it is preferable to control the linear expansion coefficient of the base so that the difference from the linear expansion coefficient of the support substrate which is removed (peeled) before being separated into pieces is reduced. The difference is preferably 30% or less, more preferably 10% or less. When a SUS plate is used as the support substrate, the difference in coefficient of linear expansion is preferably 20 ppm or less, and more preferably 10 ppm or less. In this case, it is preferable to add 70 wt% or more, preferably 85 wt% or more of the filler. Thereby, since the residual stress between the support substrate and the base can be controlled (relaxed), the warpage of the assembly of the light emitting devices before being separated into pieces can be reduced. By reducing the warpage, it is possible to reduce internal damage and to suppress the positional deviation when dividing into individual pieces and to manufacture with high yield. For example, the linear expansion coefficient of the substrate is preferably adjusted to 5 to 25 × 10 −6 / K, more preferably 7 to 15 × 10 −6 / K. Thereby, it is possible to easily suppress the warpage that occurs during cooling after the base is molded, and it is possible to manufacture with high yield. In addition, in this specification, a linear expansion coefficient refers to the linear expansion coefficient below the glass transition temperature of the base | substrate which consists of light-shielding resin adjusted with various fillers. It is preferable that the linear expansion coefficient in this temperature region is close to the linear expansion coefficient of the support substrate.
また、別の観点から、基体の線膨張係数は、第1導電部材及び第2導電部材の線膨張係数との差が小さくなるように制御するのが好ましい。好ましくは40%以下、より好ましくは20%以下の差とすることが好ましい。これにより、個片化後の発光装置において、第1導電部材及び第2導電部材と基体とが剥離することを抑制し、信頼性に優れた発光装置とすることができる。 From another point of view, it is preferable to control the linear expansion coefficient of the base so that the difference between the linear expansion coefficients of the first conductive member and the second conductive member is small. The difference is preferably 40% or less, more preferably 20% or less. Thereby, in the light emitting device after separation, the first conductive member, the second conductive member, and the base are prevented from peeling off, and the light emitting device having excellent reliability can be obtained.
(実施の形態2に係る発光装置の製造方法)
本実施の形態に係る発光装置の製造方法では、実施の形態1に係る発光装置の製造方法での導電部材形成工程において、第1導電部材及び第2導電部材を形成した後に、第1導電部材と第2導電部材との間に保護膜を形成し、導電部材形成工程の後に、基体を形成する工程を備え、封止部材形成工程において、基体に囲まれて形成される凹部に封止部材を充填すること以外は、実質的に、実施の形態1に係る発光装置の製造方法と同様である。
(Method for Manufacturing Light Emitting Device According to Embodiment 2)
In the method for manufacturing the light emitting device according to the present embodiment, the first conductive member is formed after forming the first conductive member and the second conductive member in the conductive member forming step in the method for manufacturing the light emitting device according to the first embodiment. Forming a protective film between the first conductive member and the second conductive member, and forming a base after the conductive member forming step. In the sealing member forming step, the sealing member is formed in the recess surrounded by the base. Is substantially the same as the manufacturing method of the light emitting device according to Embodiment 1.
(導電部材形成工程)
実施の形態1に係る発光装置の製造方法と同様に、互いに離間する複数の開口部を有する保護膜が形成された支持基板の上に、金属を用いて鍍金することで、保護膜の開口部内に第1導電部材と第2導電部材とを形成させる。
(Conductive member forming process)
As in the method for manufacturing the light-emitting device according to Embodiment 1, by plating on a support substrate on which a protective film having a plurality of openings spaced apart from each other is formed using a metal, the inside of the openings of the protective film Forming a first conductive member and a second conductive member.
鍍金後、第1導電部材と第2導電部材との間に位置する領域を除いた部分の保護膜を除去する。なお、第1導電部材及び第2導電部材が外延に突出部を有する場合は、この保護膜を残した領域の上に、保護膜をさらに形成する。この保護膜は、少なくとも第1導電部材及び第2導電部材の上面と同じ、もしくは上面よりも高い位置まで形成する。
(基体形成工程)
次いで、発光素子からの光を反射可能な遮光性樹脂からなる基体を形成する。
基体の形成方法は、射出成形、トランスファモールド、圧縮成形等の方法を用いることができる。例えばトランスファモールドにより基体を形成する場合、第1導電部材及び第2導電部材を含む複数の導電部材を形成した支持基板を、上型及び下型からなる金型の内に挟み込むようにセットする。このとき、離型シートなどを介して金型内にセットしてもよい。金型の内には、基体の原料である樹脂ペレットが挿入されており、支持基板と樹脂ペレットとを過熱する。樹脂ペレット溶融後、加圧して金型内に充填する。加熱温度や加熱時間、また圧力等については用いる樹脂の組成等に応じて適宜調整することができる。硬化後、金型から取り出し、成型品を得ることができる。
その後、第1導電部材と第2導電部材との間に形成した保護膜を除去する。
(ダイボンディング工程)
基体形成工程の後に、ダイボンディング工程を行う。ダイボンディング工程は、実施の形態1に係る発光装置の製造方法と同様に行うことができる。
After plating, the portion of the protective film excluding the region located between the first conductive member and the second conductive member is removed. In addition, when the 1st conductive member and the 2nd conductive member have a protrusion part in an extension, a protective film is further formed on the area | region which left this protective film. This protective film is formed to at least the same position as or higher than the top surfaces of the first conductive member and the second conductive member.
(Substrate formation process)
Next, a base made of a light shielding resin capable of reflecting light from the light emitting element is formed.
As a method for forming the substrate, methods such as injection molding, transfer molding, and compression molding can be used. For example, when the substrate is formed by transfer molding, the support substrate on which a plurality of conductive members including the first conductive member and the second conductive member are formed is set so as to be sandwiched between the upper mold and the lower mold. At this time, you may set in a metal mold | die via a release sheet | seat. Resin pellets that are raw materials of the base are inserted in the mold, and the support substrate and the resin pellets are heated. After melting the resin pellets, pressurize and fill the mold. The heating temperature, heating time, pressure, and the like can be appropriately adjusted according to the composition of the resin used. After curing, the molded product can be obtained by removing from the mold.
Thereafter, the protective film formed between the first conductive member and the second conductive member is removed.
(Die bonding process)
A die bonding step is performed after the substrate forming step. The die bonding step can be performed in the same manner as the method for manufacturing the light emitting device according to Embodiment 1.
(封止部材形成工程)
次に、発光素子を被覆する封止部材を形成する。基体で形成された凹部内に封止部材を形成する場合には、ポッティングを用いて透光性樹脂を凹部内に充填するのが好ましい。ここでは、封止部材は、基体の側壁と略同一の高さになるように設けられているが、これに限らず、基体の側壁よりも低く又は高くなるように形成してもよい。また、封止部材は、上面を平坦な面としてもよく、或いは、中央が凹んだ、又は突出したような曲面状に形成してもよい。これにより、指向特性を調整することができる。また、封止部材は、1層構造、又は2層以上の多層構造としてもよい。
<実施の形態3>
図7は、本発明の実施の形態4に係る発光装置を示す概略断面図である。実施の形態1と重複する説明は省略することもある。
(Sealing member forming step)
Next, a sealing member that covers the light emitting element is formed. When the sealing member is formed in the recess formed by the base, it is preferable to fill the recess with a translucent resin by using potting. Here, the sealing member is provided so as to have substantially the same height as the side wall of the base body, but is not limited thereto, and may be formed so as to be lower or higher than the side wall of the base body. Further, the sealing member may have a flat upper surface, or may be formed in a curved shape in which the center is recessed or protruded. Thereby, the directivity can be adjusted. Further, the sealing member may have a single layer structure or a multilayer structure including two or more layers.
<Embodiment 3>
FIG. 7 is a schematic cross-sectional view showing a light-emitting device according to Embodiment 4 of the present invention. The description which overlaps with Embodiment 1 may be omitted.
本実施の形態の発光装置300は、発光素子104と、互いに離間する第1導電部材101及び第2導電部材102と、発光素子104と第1導電部材101及び第2導電部材102とを接続する接着部材103と、を備えている。発光素子104は、同一面側に正電極104a及び負電極104bを有している。接着部材103は、絶縁領域103aと導電領域103bとを有するものであり、第1導電部材101及び第2導電部材102の上面及び側面に接続されている。発光素子104の正電極104a及び負電極104bは、接着部材103の導電領域103b上に接続されている。また、発光装置300は、発光素子104とともに、第1導電部材101及び第2導電部材102の少なくとも一面を被覆する封止部材106とを備える。
本実施の形態において、第1導電部材101及び第2導電部材102の上面には、それぞれ金属バンプ105が設けられており、この金属バンプ105の上に、接着部材103を介して発光素子104の正電極104a及び負電極104bが接続される。金属バンプ105は、第1導電部材101及び第2導電部材102の上面において、発光素子104の電極パターンに対応した位置に設けられている。接着部材103の導電領域103bは、第1導電部材101及び第2導電部材102の上面にそれぞれ設けられた金属バンプ105と、その上方に配置された発光素子104の正電極104a及び負電極104bとの間に設けられている。このように、導電部材の上面に金属バンプを設けて、その金属バンプの上に接着部材を設けることにより、接着部材と導電部材との間の接合強度を高めることができる。
In the
In the present embodiment, metal bumps 105 are respectively provided on the upper surfaces of the first
本発明の発光装置は、各種表示装置、照明器具、ディスプレイ、液晶ディスプレイのバックライト光源等に利用することができる。 The light emitting device of the present invention can be used for various display devices, lighting fixtures, displays, backlight light sources for liquid crystal displays, and the like.
100、200、300 発光装置
101 第1導電部材
102 第2導電部材
101x 突出部
103 接着部材
103a 絶縁領域
103b 導電領域
104 発光素子
104a 電極
105 金属バンプ
106 封止部材
107 基体
107a 基体の底面部
107b 基体の側壁
108 凹部
109 保護膜
110 支持基板
100, 200, 300 Light-emitting
Claims (6)
互いに離間する第1導電部材及び第2導電部材と、
前記発光素子と前記導電部材とを接続する接着部材と、を備えた発光装置において、
前記第1導電部材及び第2導電部材は、互いに隣接する外縁に向かって突出する突出部を有しており、
前記接着部材は、絶縁領域と導電領域とを有するものであり、前記第1導電部材及び前記第2導電部材の上面及び側面に接続され、前記第1導電部材と前記第2導電部材との間に充填されて前記突出部の上面及び下面を挟持し、
前記発光素子の正電極及び負電極は、前記接着部材の導電領域上に接続され、
前記第1導電部材と前記第2導電部材の底面、及び充填された前記接着部材は、発光装置の下面の一部を形成していることを特徴とする発光装置。 A light emitting device having a positive electrode and a negative electrode on the same surface side;
A first conductive member and a second conductive member spaced apart from each other;
In a light emitting device comprising: an adhesive member that connects the light emitting element and the conductive member;
The first conductive member and the second conductive member have a protruding portion that protrudes toward an outer edge adjacent to each other,
The adhesive member has an insulating region and a conductive region, is connected to the upper surface and the side surface of the first conductive member and the second conductive member, and is between the first conductive member and the second conductive member. Sandwiched between the upper surface and the lower surface of the protrusion,
The positive electrode and the negative electrode of the light emitting element are connected to the conductive region of the adhesive member,
The bottom surface of the first conductive member and the second conductive member and the filled adhesive member form part of the bottom surface of the light emitting device.
前記接着部材の導電領域は、前記第1導電部材と前記発光素子の正電極との間、及び前記第2導電部材と前記発光素子の負電極との間に設けられていることを特徴とする請求項1に記載の発光装置。 A positive electrode of the light emitting element is disposed on the first conductive member, and a negative electrode of the light emitting element is disposed on the second conductive member;
The conductive region of the adhesive member is provided between the first conductive member and the positive electrode of the light emitting element, and between the second conductive member and the negative electrode of the light emitting element. The light emitting device according to claim 1.
前記導電性フィラーは、金属層で覆われた樹脂ボールが、絶縁膜で覆われたものであることを特徴とする請求項1乃至3のいずれか1項に記載の発光装置。 The adhesive member is an anisotropic conductive material in which a conductive filler is mixed with an insulating member,
The conductive filler, resin balls coated with metal layers, light-emitting device according to any one of claims 1 to 3, characterized in that covered by the insulating film.
前記第1導電部材及び第2導電部材の上に、絶縁部材と導電性フィラーを含有する接着部材を介して発光素子を圧着することにより、前記接着部材の一部を前記第1導電部材と第2導電部材との間に延在させるダイボンディング工程と、を含み、
前記導電部材形成工程において、前記第1導電部材及び第2導電部材の互いに隣接する外縁に突出部を形成し、
前記ダイボンディング工程において、前記接着部材の一部を前記突出部の下に延在させることを特徴とする発光装置の製造方法。 A conductive member forming step of forming a first conductive member and a second conductive member spaced apart from each other on the support substrate;
A light emitting element is pressure-bonded onto the first conductive member and the second conductive member via an adhesive member containing an insulating member and a conductive filler, whereby a part of the adhesive member is connected to the first conductive member and the second conductive member. a die bonding process to extend between the second conductive member, only containing,
In the conductive member forming step, a protrusion is formed on the outer edges of the first conductive member and the second conductive member adjacent to each other,
In the die bonding step, a part of the adhesive member is extended under the protruding portion .
前記支持基板は、発光装置を個片化する前に除去することを特徴とする請求項5に記載の発光装置の製造方法。 In the conductive member forming step, the first conductive member and the second conductive member are formed on a support substrate by plating,
6. The method of manufacturing a light emitting device according to claim 5 , wherein the support substrate is removed before the light emitting device is separated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010043979A JP5716281B2 (en) | 2010-03-01 | 2010-03-01 | Light emitting device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010043979A JP5716281B2 (en) | 2010-03-01 | 2010-03-01 | Light emitting device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011181655A JP2011181655A (en) | 2011-09-15 |
JP5716281B2 true JP5716281B2 (en) | 2015-05-13 |
Family
ID=44692877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010043979A Active JP5716281B2 (en) | 2010-03-01 | 2010-03-01 | Light emitting device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5716281B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012178400A (en) * | 2011-02-25 | 2012-09-13 | Toyoda Gosei Co Ltd | Led lamp |
JP5849691B2 (en) * | 2011-12-28 | 2016-02-03 | 日亜化学工業株式会社 | Mounting method of light emitting element |
JP5684751B2 (en) | 2012-03-23 | 2015-03-18 | 株式会社東芝 | Semiconductor light emitting device and manufacturing method thereof |
JP6490328B2 (en) * | 2012-06-20 | 2019-03-27 | 日亜化学工業株式会社 | Light emitting device and manufacturing method thereof |
JP6176910B2 (en) * | 2012-09-24 | 2017-08-09 | デクセリアルズ株式会社 | Method for manufacturing connection structure |
DE102012109905B4 (en) | 2012-10-17 | 2021-11-11 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Process for the production of a large number of optoelectronic semiconductor components |
DE102013100711B4 (en) * | 2013-01-24 | 2021-07-01 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Process for the production of a large number of optoelectronic components |
JP2015088744A (en) * | 2013-09-26 | 2015-05-07 | デクセリアルズ株式会社 | Light emitting device, anisotropic conductive adhesive, and method for manufacturing light-emitting device |
JP6432343B2 (en) * | 2014-12-26 | 2018-12-05 | 日亜化学工業株式会社 | Method for manufacturing light emitting device |
JP6519407B2 (en) * | 2015-08-26 | 2019-05-29 | 日亜化学工業株式会社 | Light emitting device and method of manufacturing light emitting device |
JP7011148B2 (en) * | 2016-04-01 | 2022-01-26 | 日亜化学工業株式会社 | A method for manufacturing a light emitting element mounting substrate and a method for manufacturing a light emitting device using the same, and a light emitting element mounting substrate and a light emitting device using the same. |
JP7295438B2 (en) * | 2020-11-30 | 2023-06-21 | 日亜化学工業株式会社 | planar light source |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2748705B2 (en) * | 1991-02-14 | 1998-05-13 | 日立化成工業株式会社 | Circuit connection members |
JPH05343744A (en) * | 1992-06-05 | 1993-12-24 | Nisshin Steel Co Ltd | Die bond type light emitting diode and manufacture thereof |
JP4114364B2 (en) * | 2001-11-08 | 2008-07-09 | 日亜化学工業株式会社 | Light emitting device and manufacturing method thereof |
JP3993475B2 (en) * | 2002-06-20 | 2007-10-17 | ローム株式会社 | LED chip mounting structure and image reading apparatus having the same |
JP4561056B2 (en) * | 2003-07-17 | 2010-10-13 | ソニー株式会社 | Manufacturing method of light source device |
JP2005175212A (en) * | 2003-12-11 | 2005-06-30 | Lite-On Technology Corp | Method for securing crystal grain of light emitting diode |
JP2005333014A (en) * | 2004-05-20 | 2005-12-02 | Koha Co Ltd | Led lamp |
JP4686248B2 (en) * | 2005-04-28 | 2011-05-25 | スタンレー電気株式会社 | Optical semiconductor device and optical semiconductor device manufacturing method |
JP2007109948A (en) * | 2005-10-14 | 2007-04-26 | Toyoda Gosei Co Ltd | Light-emitting device and manufacturing method thereof |
JP2007157940A (en) * | 2005-12-02 | 2007-06-21 | Nichia Chem Ind Ltd | Light emitting device and method of manufacturing same |
JP5217753B2 (en) * | 2008-08-05 | 2013-06-19 | 日亜化学工業株式会社 | Optical semiconductor device |
-
2010
- 2010-03-01 JP JP2010043979A patent/JP5716281B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011181655A (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102117909B1 (en) | Light emitting device | |
JP5716281B2 (en) | Light emitting device and manufacturing method thereof | |
KR101811885B1 (en) | Light emitting device and method for manufacturing same | |
US8080436B2 (en) | Light emitting device and method of manufacturing the light emitting device | |
JP5493553B2 (en) | Optical semiconductor device and manufacturing method thereof | |
JP5493549B2 (en) | Light emitting device and manufacturing method thereof | |
JP5482293B2 (en) | Optical semiconductor device and manufacturing method thereof | |
JP6521032B2 (en) | Optical semiconductor device and method of manufacturing the same | |
JP5338543B2 (en) | Optical semiconductor device and manufacturing method thereof | |
JP5515693B2 (en) | Light emitting device | |
JP5569158B2 (en) | Light emitting device and manufacturing method thereof | |
JP5359662B2 (en) | Light emitting device and manufacturing method thereof | |
JP5796649B2 (en) | Optical semiconductor device and manufacturing method thereof | |
JP2011060801A (en) | Light-emitting device and method of manufacturing the same | |
JP5402264B2 (en) | Light emitting device | |
JP2010287584A (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140512 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141211 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150302 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5716281 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |